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Abstract 
The bone marrow (BM) is located inside the bone. Now, it appears that bone 
tissue functionally communicates with the BM hematopoietic system. Osteoblast 

lineage cells serve as a part of the microenvironment for immature 
hematopoietic (stem/progenitor) cells. In contrast, mature hematopoietic cells 
such as neutrophils and macrophages play a critical role to regulate osteoblast 

activity. A progressive distortion of this precise inter-organ communication 
between hematopoietic and skeletal systems may lead to hematologic disorders. 
Recent studies have revealed that vitamin D receptor is a pivotal bridging 

molecule for this network and for the pathogenesis of myelofibrosis.       
 
 

 
Introduction 
From the evolutional aspect, osteogenesis and hematopoiesis take place in 

different organs. For example, fish do not have a bone marrow (BM) cavity in the 
bone tissue and hematopoiesis is carried out in the kidney. However, even for 
studies of mammals in which the BM is located inside the bone tissue with direct 

contact, bone metabolism and hematology have been researched separately. 
Since the identification of osteoblasts as a part of the microenvironment for 
hematopoietic stem/progenitor cells (HSCs/HPCs) [1-5], research interests in 

both fields are becoming closer. In this review, the mechanisms of the two 
phenomena observed in clinical hematology are introduced based on the basic 
research associated with bone metabolism, (A) HSC/HPC mobilization from the 

BM to circulation by cytokine granulocyte colony-stimulating factor (G-CSF) and 
(B) pathogenesis of myelofibrosis, as examples for transient and irreversible 
distortions of inter-organ communication between hematopoietic and skeletal 

systems, respectively.    
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(A) HSC/HPC mobilization and bone metabolism 
 
Multiple players in hematopoiesis and HSC/HPC mobilization 

HSC transplantation (HSCT) is an important therapeutic option for the cure of 
intractable hematologic disorders such as leukemia, lymphoma, myelodysplastic 
syndrome, myelofibrosis, and aplastic anemia. In the case of allogeneic 

transplantation, healthy volunteers provide hematopoietic cell sources that 
contain HSCs/HPCs. The BM was a major HSCT graft in the 20th century; 
however, the vast majority has been replaced by peripheral blood stem cells 

(PBSCs) in the past two decades. The standard method to harvest PBSCs is the 
usual procedure of apheresis after the mobilization of HSCs/HPCs from the BM 
to circulation by the administration of G-CSF for 4 to 5 consecutive days [6]. The 

clear advantage of this method over BM harvest is the no need for general 
anesthesia and operating room.  
 Despite the worldwide consensus that G-CSF is a standard mobilizing 

agent in the clinic, it is not clear yet how G-CSF induces the change of 
HSC/HPC location from the BM to peripheral blood. Studies have revealed that 
G-CSF, in addition to the expansion of neutrophils as its original 

pharmacological effect, triggers many changes in different types of cells in the 
BM microenvironment, many of which are deeply associated with bone 
metabolism. Among supportive cells for HSC/HPC maintenance in the BM, we 

examined the change of osteoblasts during G-CSF treatment and found that 
G-CSF strongly suppresses osteoblast activity [7]. This was an indirect effect 
because osteoblasts do not express the G-CSF receptor. We finally found that 

G-CSF stimulates the sympathetic nervous system (SNS), which leads to the 
high catecholaminergic tone in the BM with an organ specificity. The stimulation 
of β2-adrenergic receptor (AR) on osteoblasts by this sympathetic signal 

strongly suppresses the number and function of osteoblasts, which results in the 
release of HSCs/HPCs from the BM microenvironment [7]. Subsequently, it was 
shown that the sympathetic nerve expresses the functional G-CSF receptor and 

its stimulation leads to the suppression of the reuptake, but not the facilitation of 
release, of catecholamine at the synapse [8]. We also reported that bone 
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matrix-embedded osteocytes, the end-terminal differentiation stage of osteoblast 
lineage cells, significantly contribute to HSC/HPC trafficking as supportive 
modulators of osteoblasts [9]. In addition, we proposed the concept that the 

bone tissue equipped with osteocytes contributes to immunity and energy 
metabolism through the regulation of lymphopoietic microenvironment and fat 
storage in the body [10]. Thus, hematopoiesis appears to be closely regulated 

by several different machineries such as nervous and skeletal systems.        
 
Vitamin D receptor (VDR) as a bridging molecule for multiple systems 

In a downstream signaling pathway of β2-AR in osteoblasts during 
G-CSF-induced HSC/HPC mobilization, we identified VDR as an indispensable 
molecule in this phenomenon. VDR has been extensively studied as a critical 

regulator of bone metabolism and its deficiency (VDR-/- mice) results in 
characteristic features of rickets type II [11]. We found that G-CSF fails to 
mobilize HSCs/HPCs in VDR-/- mice even after the rescue of rickets phenotype 

by high calcium diet [12]. Sympathetic signal through β2-AR induces rapid (2 h) 
and strong (10 times increase in both mRNA and protein levels) up-regulation of 
VDR in osteoblasts. This enhanced VDR, by forming a complex with an active 

vitamin D [1,25(OH)2D3], keeps the downstream signal to facilitate HSC/HPC 
mobilization, such as receptor activator of nuclear factor-κB ligand (RANKL), at 
high level for a long time (several hours) [12]. It is reported that RANKL activates 

bone-resorbing osteoclasts, which degrade anchoring proteins for HSCs/HPCs 
in the BM such as CXCL12 by the production of proteolytic enzymes [13]. Thus, 
we identified VDR as a critical bridging molecule for nervous, skeletal, and 

hematopoietic systems (Fig. 1).                                          
 The unclear points in VDR-mediated HSC/HPC mobilization are as 
follows: (1) factors that induce the up-regulation of VDR other than β2-AR 

signaling in an osteoblastic microenvironment, (2) downstream signals of VDR 
other than RANKL, and (3) identification of cell specificity among mesenchymal 
lineage cells (mesenchymal progenitors, osteoblasts, and osteocytes) for the 

regulation of VDR signaling, all of which are important issues that need to be 
addressed in the future.     
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 There is a time lag between HSC/HPC mobilization and the initiation of 
G-CSF administration (4–5 days for prominent mobilization). It has been 
reported that the down-regulation of serum osteocalcin after the initiation of 

G-CSF takes a few days [14]. In addition, the effect of G-CSF on the nerve is not 
the stimulation of the release but the suppression of the re-uptake of 
catecholamine at the synapse [8]. Thus, it may take a while to accumulate 

neurotransmitters in BM.  
Poor mobilizers exist in 10–20% of human healthy donors, which is one 

of the unsolved clinical problems. It is well known that even mice with identical 

genetic background such as littermate males can produce a wide range of 
mobilization efficiency, including poor mobilizers, after the administration of the 
same dose of G-CSF. We have recently shown that BM neutrophils express 

β3-AR, and sympathetic stimulation activates the arachidonic acid cascade in 
BM neutrophils to produce prostaglandin E2 (PGE2) via stress-inducible 
prostaglandin synthase mPGES-1, which supports osteoblast activity [15]. 

Mobilization efficiency may be determined by the balance between the 
mobilization-promoting signal relay such as SNS and the 
mobilization-suppressing feedback machinery such as PGE2 from BM 

neutrophils, which may make it difficult to predict poor mobilizers or to avoid 
insufficient mobilization.      
 

 
Contribution of the hematopoietic system to bone metabolism 
In addition to the contribution of bone cells (osteoblast lineage cells) to the 

hematopoietic system as mentioned above, the contribution of hematopoietic 
cells to bone formation has been emerging. As mentioned above, BM 
neutrophils promote osteoblast activity under SNS control [15]. In addition to 

bone-resorbing osteoclasts, the classical myeloid cell contribution to bone 
metabolism, recent studies have shed light on a new class of bone-specific 
macrophages, OsteoMacs, as a strong supporter for osteoblasts [16]. It has 

been shown that OsteoMacs exist as a single layer and cover the bone-lining 
osteoblasts, forming a canopy-like structure [17]. The deletion of macrophages, 
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including OsteoMacs by the macrophage Fas-induced apoptosis (MaFIA) 
transgenic (Tg) system, results in the disappearance of osteoblasts from the 
bone surface and also in HSC/HPC mobilization [17-19]. Even in vitro, common 

knowledge about osteoblast functions obtained by the primary calvarial 
osteoblast culture was reported to be at least partially mediated by the 
contaminated OsteoMacs [17]. For example, the depletion of macrophages from 

this culture resulted in tremendous impairments of tumor necrosis factor (TNF) 
production, osteoblast differentiation, and mineralization after an appropriate 
stimulation for each osteoblast activity [17]. The importance of OsteoMacs are 

also demonstrated in vivo for the osteoblast differentiation of mesenchymal 
progenitors and parathyroid hormone-induced facilitation of bone formation [20, 
21]. In vivo depletion of OsteoMacs does not affect the number and function of 

osteoclasts [20, 21], which suggests that osteoclasts and OsteoMacs are the 
different classes of macrophages. It has been suggested that the candidates for 
the signals from OsteoMacs to support osteoblast activity are oncostatin M and 

TNF-α [16, 22]; however, no direct proof by an in vivo study has been 
demonstrated.  

Collectively, hematopoietic myeloid (innate immune) cells regulate 

bone metabolism in several ways. Two different (hematopoietic and 
mesenchymal) stem cell systems in the BM are both important players to 
precisely form bone tissue through their differentiation toward 

neutrophils/OsteoMacs/osteoclasts and osteoblasts/osteocytes, respectively, 
many of which are governed by the SNS (Fig. 2). The bone is an artistic work of 
inter-organ communication.        

   
 
 

 
(B) Myelofibrosis and bone metabolism      
 

Classical theory for the pathogenesis of myelofibrosis 
Myeloproliferative neoplasms (MPNs) include polycythemia vera (PV), essential 
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thrombocythemia (ET), and primary myelofibrosis (PMF). Most PV patients and 
more than half of the patients with ET and PMF carry a somatic mutation of 
JAK2V617F in HSCs and their progeny [23, 24]. Myelofibrosis appears during 

the clinical course of MPNs, which is an unfavorable condition for disease 
control such as subsequent progression to massive splenomegaly and 
increased incidence of leukemic transformation. Myelofibrosis is characterized 

by the occupation of marrow cavity with spindle-shaped α-smooth muscle actin 
(α-SMA)-positive stromal cells (known as myofibroblasts) and with collagen 
fibers visualized by silver staining, together with a thickening and irregularity of 

the trabecular bone, so-called osteosclerosis [25]. The current common 
understanding of the pathogenesis of myelofibrosis is the strong stimulation of 
fibrosis-causing myofibroblasts, derived from their certain mesenchymal 

precursors such as Gli1-positive and leptin receptor-positive cells, by 
megakaryocyte-derived factors such as transforming growth factor-β1 (TGF-β1) 
and platelet-derived growth factor (PDGF) [26-28]. As a result of long-term 

stimulation, myofibroblasts may be thought to be a part of malignancy.  
Some part of this theory is supported by the accumulation of knowledge 

from clinical observations of increased megakaryocytes in the BM and 

experimental results of mouse models. However, in many basic studies, 
thrombopoietin (TPO)-overexpressing mice were used as a model of 
myelofibrosis, which leads to the possibility that this theory is somehow biased 

toward the megakaryocyte-dependent story for the explanation of myelofibrosis 
[29, 30]. In addition, it does not explain the cause of osteosclerosis. Although 
some studies have proposed that osteoprotegerin (OPG) may take part in the 

formation of osteosclerosis by the transplantation of TPO-overexpressing 
marrow into OPG-deficient mice [31], it does not reasonably explain how MPNs 
cause osteosclerosis because OPG-deficient mice are originally osteoporotic 

due to high osteoclast activity. Furthermore, it has been clinically proven that 
myelofibrosis can be cured by the replacement of the hematopoietic system by 
allogeneic BM transplantation, which suggests that myofibroblasts are not a part 

of malignancy.  
Thus, these irreconcilable factors prompted us to challenge a thought 
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that myelofibrosis in MPNs might develop depending on a novel pathway other 
than the megakaryocyte story. Following our previous study about HSC/HPC 
mobilization [12], we again identified VDR as a key molecule for this abnormal 

status of the BM in clinical hematology [32].  
 
 

A basic model of myelofibrosis in association with VDR 
During our previous study about the function of VDR in HSC/HPC mobilization, 
we found that chimeric mice generated by the transplantation of wild-type (WT) 

BM cells into lethally irradiated VDR-/- mice developed severe myelofibrosis with 
osteosclerosis in the trabecular bone area with a prior exhaustion of HSC activity 
in a few months after transplantation (referred to as the basic model hereafter). 

Transplantation of the BM from CAG-enhanced green fluorescent protein 
(EGFP) Tg mice into VDR-/- recipients in combination with 
immunohistochemical/immunofluorescence staining for F4/80 or osterix 

revealed that marrow fibrosis was composed of two different cell types, 
GFP+F4/80+ donor-derived macrophages and GFP-osterix+ recipient-derived 
pre-osteoblasts. Importantly, these two different cell types were distributed 

mutually with identical spindle-shaped morphology in hematoxylin-eosin staining. 
GFP-osterix+ pre-osteoblasts and bone-lining osteoblasts were positive for 
α-SMA and a collagen-specific molecular chaperone HSP47, which suggested 

that these cells cause myelofibrosis and osteosclerosis. In other words, 
so-called myofibroblasts in myelofibrosis were most likely pre-osteoblasts 
stimulated by donor-derived macrophages. 

It is well known that the plasma level of active vitamin D is extremely 
high in VDR-/- mice [11]. In addition, transplantation of VDR-/- BM, instead of WT 
BM, into VDR-/- recipients resulted in no myelofibrosis with normal hematopoietic 

recovery, and low vitamin D diet prevented the development of myelofibrosis in 
the basic model. Thus, we hypothesized that exposure of VDR-positive 
hematopoietic cells, perhaps immature HSCs/HPCs, in high vitamin D 

microenvironment triggered myelofibrosis. Indeed, we confirmed a high 
expression of VDR mRNA in HSC/HPC fraction (lineage-Sca-1+c-kit+) and also 
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found that a certain level of active vitamin D equivalent to the one observed in 
VDR-/- mice was potent enough for a skewed in vitro differentiation of the human 
progenitor cell line HL-60 toward macrophages. Consistently, macrophage 

depletion in the basic model with clodronate liposome effectively prevented 
myelofibrosis.  

Collectively, it was shown that VDR-positive HSCs/HPCs stimulated by 

a high level of vitamin D differentiated toward pathogenic macrophages, which 
strongly drove host osteoblast lineage cells. This is a novel theory for the 
pathogenesis of myelofibrosis with osteosclerosis based on the study with our 

original basic model.              
 
 

JAK2V617F-driven myelofibrosis in association with VDR 
We next tried to apply this VDR-macrophage platform to human-type 
myelofibrosis. JAK2V617F Tg mice nicely recapitulate the characteristic features 

of human MPNs such as myeloproliferation and myelofibrosis with 
osteosclerosis [33]. We confirmed that marrow fibrotic tissue was composed of 
CD169+ macrophages and osterix+ pre-osteoblasts. Low vitamin D diet 

prevented myelofibrosis also in JAK2V617F Tg mice. Transplantation of 
JAK2V617F Tg/VDR+/+ BM into WT mice resulted in severe myelofibrosis (JAK 
BM chimera), whereas it was significantly ameliorated by transplantation with 

JAK2V617F Tg/VDR-/- BM. Furthermore, macrophage depletion from JAK BM 
chimera using the MaFIA Tg system almost completely blocked myelofibrosis 
formation without affecting the number and morphology of megakaryocytes. 

Because MaFIA Tg can effectively deplete macrophages, OsteoMacs in 
particular, myelofibrosis may be due to an abnormal proliferation of activated 
OsteoMacs, which promote osteoblast lineage cells for collagen production. 

VDR signal in HSCs/HPCs is a driver for OsteoMacs in this pathogenesis (Fig. 
3).  

Several issues in VDR-mediated myelofibrosis remain unclear. First, 

unlike our basic model, the level of active vitamin D was not high in JAK2V617F 
Tg mice [32] and also in human MPN patients [34]. It is likely that activated 
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macrophages, which have the enzyme responsible for the final hydroxylation 
step of 25-hydroxyvitamin D [35], may self-produce 1,25(OH)2D3 for the 
stimulation of themselves as well as HSCs/HPCs. Second, the signals from 

pathogenic OsteoMacs to stimulate pre-osteoblasts/osteoblasts remain 
identified. Perhaps the factors with which normal OsteoMacs support 
osteoblasts, such as oncostatin M and TNF-α as mentioned before, may be 

strong candidates. However, OsteoMacs differentiated from JAK2V617F+ 
HSCs/HPCs by the stimulation via VDR might additionally acquire different ways 
to extremely drive osteoblast activity.         

 
          

 

Conclusive remarks 
Thus, bone metabolism is a key aspect to understand phenomena in clinical 
hematology. The mechanism of HSC/HPC mobilization and the true 

pathogenesis of myelofibrosis are indeed transient and irreversible/progressive 
distortion of inter-organ communication between skeletal and hematopoietic 
systems, respectively. In both cases, VDR plays critical roles as a bridging 

molecule for multiple organ network.  
 A simple fact is that the BM is a part of the bone in mammals. Although 
it is not common to deeply learn bone metabolism for hematologists, bone 

biology may be an unavoidable field for clinicians in hematology.         
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Figure legends 
 
Figure 1. VDR leads the sympathetic nerve signal to HSC/HPC mobilization. 

Catecholaminergic signal via β2-AR strongly induces the up-regulation of VDR 
in osteoblasts. Then, the vitamin D/VDR complex maintains the long-lasting 
signals for HSC/HPC mobilization. The nervous system can regulate signal 

transduction by the dynamic control of the receptor expression despite the stable 
level of the ligand.  
 

 
Figure 2. Two stem cell systems in the BM cooperate to form bone tissue. 
Myeloid (innate immune cell) differentiation toward 

neutrophils/OsteoMacs/osteoclasts from hematopoietic stem cells (HSCs) and 
osteoblast lineage differentiation toward osteoblasts/osteocytes from 
mesenchymal stem cells (MSCs) precisely cooperate to form bone tissue. Many 

of these cells are functionally modulated by the sympathetic nervous system 
(SNS).  
 

 
Figure 3. A novel pathogenesis of myelofibrosis. 
As a classical theory, megakaryocyte-derived growth factors such as TGF-β and 

PDGF have been thought to be critical stimulators for α-SMA-positive 
myofibroblasts. Our study added a novel pathway that macrophages, whose 
differentiation is skewed by the VDR signal in HSCs/HPCs, strongly stimulate 

the proliferation and activation of pre-osteoblasts and mature osteoblasts, which 
lead to myelofibrosis and osteosclerosis. In other words, abnormal OsteoMacs 
are the central pathogenesis of myelofibrosis. VDR is a key molecule to mediate 

this progressive distortion of inter-organ communication between skeletal and 
hematopoietic systems.   

HSP47: a collagen-specific molecular chaperone to show the actual 

producers of collagen fibers in the marrow cavity and at the endosteal bone 
surface for myelofibrosis and osteosclerosis, respectively.   
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