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Abstract 16 

Multi-host bacteria must rapidly adapt to drastic environmental changes, relying on 17 

integration of multiple stimuli for an optimal genetic response. Erwinia spp. are 18 

phytopathogens that cause soft-rot disease in plants. Erwinia carotovora Ecc15 is used as 19 

a model for bacterial oral-route infection in Drosophila melanogaster as it harbors a gene, 20 

the Erwinia virulence factor (Evf), which has been previously shown to be a major 21 

determinant for infection of D. melanogaster gut. However, the factors involved in 22 

regulation of evf expression are poorly understood. We investigated whether evf could be 23 

controlled by quorum sensing since, in the Erwinia genus, quorum sensing regulates 24 

pectolytic enzymes, the major virulence factors needed to infect plants. Here, we show 25 

that transcription of evf is positively regulated by quorum sensing in Ecc15 via the acyl-26 

homoserine lactone (AHL) signal synthase ExpI, and the AHL receptors ExpR1 and ExpR2. 27 

Moreover, we demonstrate that the GacS/A two-component system is partially required 28 

for evf expression. We also show that the load of Ecc15 in the gut depends upon the 29 

quorum sensing-mediated regulation of evf. Furthermore, we demonstrate that larvae 30 

infected with Ecc15 suffer a developmental delay as a direct consequence of the 31 

regulation of evf via quorum sensing. Overall, our results show that Ecc15 relies on 32 

quorum sensing to control production of both pectolytic enzymes and Evf. This regulation 33 

influences the interaction of Ecc15 with its two known hosts, indicating that quorum 34 

sensing and GacS/A signaling systems may impact bacterial dissemination via insect 35 

vectors that feed on rotting plants.  36 

 37 
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Significance 38 

Integration of genetic networks allows bacteria to rapidly adapt to changing 39 

environments. This is particularly important in bacteria that interact with multiple hosts. 40 

Erwinia carotovora Ecc15 is a plant pathogen that uses Drosophila melanogaster as a 41 

vector. To interact with these two hosts, Ecc15 uses two different sets of virulence 42 

factors: plant cell wall-degrading enzymes to infect plants and the Erwinia virulence 43 

factor (evf) to infect Drosophila. Our work shows that, despite the virulence factors 44 

being different, both are regulated by homoserine lactone quorum sensing and the two 45 

component GacS/A system. Moreover, we show that these pathways are essential for 46 

Ecc15 loads in the gut of Drosophila and that this interaction carries a cost to the vector 47 

in the form of a developmental delay. Our findings provide evidence for the importance 48 

of quorum sensing regulation in the establishment of multi-host interactions.  49 

 50 

Introduction 51 

 Insects play an important role in the dissemination of microorganisms that cause 52 

both human and plant diseases. This dissemination may be an active process whereby 53 

microbes develop strategies to interact with insects and use them as vectors (1, 2). To do 54 

so, bacteria must have the ability to persist within the host (either lifelong or transiently), 55 

evading or resisting its immune system in order to abrogate their elimination (3, 4). The 56 

host vector will respond with a battery of innate defenses, such as production of 57 

antimicrobial peptides and reactive oxygen species as well as behavioral strategies (e.g. 58 

avoidance), and physiological responses (e.g. increased peristalsis) (5–9). The successful 59 
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establishment of these interactions, from the bacterial perspective, ultimately depends on 60 

maximizing the fitness of the microorganism and minimizing the impact on the fitness of 61 

the vector host (1). Phytopathogenic bacteria such as Phytoplasma sp.,  Xylella fastidiosa, 62 

Pantoea stewartii (formerly Erwinia stewartii), or Erwinia carotovora (also known as 63 

Pectobacterium carotovorum), are among those known to establish close associations 64 

with insects and to rely on these hosts as vectors, presumably to facilitate rapid 65 

dissemination among plants (10–13). Thus, understanding the molecular mechanisms 66 

governing the establishment of these interactions is crucial to prevent insect-borne 67 

diseases. 68 

 Bacteria from the Erwinia genus produce pectolytic enzymes that degrade plant 69 

tissue, causing soft root-disease (14). These bacteria survive poorly in soil, overwinter in 70 

decaying plant material (14), and use insects, including Drosophila species (12, 15) as 71 

vectors. Specifically, the non-lethal interaction between the phytopathogen Erwinia 72 

carotovora (strain Ecc15) and Drosophila melanogaster has been used as a model to study 73 

bacteria-host interactions. Oral infections with Ecc15 lead to a transient systemic 74 

induction of the immune system in D. melanogaster and consequent production of 75 

antimicrobial peptides (7, 16). These responses are strain-specific and highly dependent 76 

on the expression levels of the Erwinia virulence factor gene (evf)  (17), which promotes 77 

bacterial infection of the Drosophila gut (18). Additionally, expression of evf requires the 78 

transcriptional regulator Hor (17), but the signals required for the activation of this 79 

regulator remain unknown.  80 
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 Quorum sensing has recently been shown to be important in the regulation of 81 

bacterial traits that affect the persistence and/or virulence of bacteria in insects (19–22). 82 

Many bacteria use quorum sensing to regulate gene expression as a function of 83 

population density (23, 24). This cell-cell signaling mechanism relies on the production, 84 

secretion, and response to extracellular signaling molecules called autoinducers (24–26). 85 

Bacteria from the Erwinia genus produce a mixture of plant cell wall-degrading enzymes 86 

(PCWDE), which are the major virulence factors used to degrade plant tissues and 87 

potentiate bacterial invasion of the plant host (27–30). In these bacteria, expression of 88 

these PCWDE is tightly regulated by two main signaling pathways: the acyl-homoserine 89 

lactone (AHL) quorum sensing system, and the GacS/A two-component system (31–34). 90 

Typically, the AHL quorum sensing system present in Erwinia spp. includes the AHL 91 

synthase ExpI (35), and two AHL receptors, ExpR1 and ExpR2 (36), which are homologues 92 

to the canonical LuxI/R quorum sensing system first identified in Vibrio fischeri (37–39). 93 

The GacS/A two-component system is also activated at high cell density, and, like the AHL 94 

quorum sensing system, regulates virulence in many Gram-negative pathogenic bacteria 95 

(40–45). Given the importance of these two signal transduction pathways for the 96 

expression of the major plant virulence factors in Erwinia spp., we investigated whether 97 

quorum sensing and the GacS/A system also regulate evf expression in Ecc15. Additionally, 98 

we tested whether these signaling pathways are important for Ecc15 infection, and 99 

determined the consequences of this interaction for the insect host. Our results show that 100 

PCWDE and evf expression in Ecc15, which are required for the interactions with plants 101 

and insects, respectively, are both regulated by the same quorum sensing signaling 102 
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pathway. Moreover, we demonstrate that evf expression has a negative effect on the 103 

insect host as it leads to a developmental delay in larvae infected with Ecc15.  104 

 105 

Results 106 

The expression of evf is regulated by both AHL-dependent quorum sensing and the GAC 107 

system 108 

 We first investigated whether activation of the production of PCWDE in Ecc15 109 

requires both the AHL quorum sensing system and the GacS/A two-component system 110 

(GAC), as occurs in other members of the Erwinia (or Pectobacterium) genus (32, 35, 46). 111 

We constructed deletion mutants of expI and gacA, the genes encoding homologues of 112 

the AHL-synthase and the response regulator of the GAC system, respectively. We 113 

determined whether any of these mutations cause a growth defect in Ecc15, and observed 114 

no difference in growth compared to the WT strain (Fig. S1). We then measured pectate 115 

lyase activity in supernatants of cultures from Ecc15 WT, expI or gacA mutants, as this is 116 

one of the PCWDE typically secreted by Erwinia spp.. As shown in Fig. 1a (and replicate 117 

experiments in Fig. S2), both the expI and the gacA mutants exhibit pronounced 118 

reductions in pectate lyase activity when compared to the WT (TukeyHSD test, p<0.001, 119 

Fig. S2C). Addition of a mixture of exogenous 3-oxo-C6-HSL and 3-oxo-C8-HSL, the major 120 

AHLs produced by Erwinia carotovora (46), to an expI mutant culture was sufficient to 121 

restore production of this PCWDE to higher levels than the WT (Fig. 1A, TukeyHSD test 122 

p<0.001, Fig. S2C). In addition, both the expI and gacA mutants are impaired in virulence 123 

to the plant host, which we tested by measuring the mass of macerated tissue in potato 124 
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tubers inoculated with these genotypes (Fig. 1B, TukeyHSD test p<0.001, Fig. S2F). In 125 

contrast, the evf mutant shows no significant difference in maceration with respect to the 126 

WT (Fig. 1B and Fig. S2D-F). Altogether, these results show that production of pectate 127 

lyase, as well as plant host-virulence, are regulated by both the AHL and GAC systems in 128 

Ecc15, as occurs in other Erwinia spp., where expI and gacA mutants have been shown to 129 

be avirulent (34, 47, 48). Moreover, we show that evf is not necessary for plant infection 130 

(Fig. 1B and Fig. S2D-F).  131 

 To investigate whether evf expression is also regulated by these two systems, we 132 

analyzed the expression of a transcriptional reporter consisting of a Green Fluorescent 133 

Protein (GFP) fused to the promoter of evf (Pevf::gfp) in mutants of either AHL quorum 134 

sensing or GAC signaling systems. We observed that the expression of the Pevf::gfp is 135 

reduced in the expI mutant when compared to the WT (TukeyHSD test, p<0.001), and that 136 

this expression can be restored if exogenous AHLs are supplied to the culture (Fig. 1C, Fig. 137 

S2G-I). In the gacA mutant, expression of the evf promoter is also reduced compared to 138 

the WT, but not as much as in the expI mutant (Fig. 1C, TukeyHSD test p<0.001, Fig. S2G-I). 139 

Since it was previously shown that mutants in the GAC system produce less AHLs (34), we 140 

asked if the difference observed between the WT and the gacA mutant could be solely 141 

explained by the lower levels of AHLs produced by the latter. However, addition of 142 

exogenous AHLs to the cultures of a gacA mutant did not restore the levels of Pevf::gfp 143 

expression to WT levels (Fig. S3). Therefore, we conclude that the gacA phenotype 144 

regarding evf expression is mostly independent of AHLs. Overall, these results show that 145 
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full activation of both evf expression and PCWDE activity is dependent on quorum sensing 146 

regulation via AHLs, and, to a lesser extent, on activation of the GAC system.  147 

In the absence of AHLs, the AHL receptors ExpR1 and ExpR2 lead to repression of 148 

virulence traits such as PCWDE (35, 49). These receptors are DNA binding proteins that act 149 

as transcriptional activators of rsmA, which encodes a global repressor of quorum sensing-150 

regulated genes in Erwinia spp. (36, 49, 50). Upon AHL binding, these receptors lose their 151 

ability to bind DNA, resulting in decreased expression of rsmA and, consequently, 152 

increased expression of virulence traits (51, 52). To determine whether ExpR1 and ExpR2 153 

also mediate AHL-dependent regulation of evf expression, we constructed deletions of 154 

these two genes in the expI background. We measured expression of the Pevf::gfp reporter 155 

in this expI expR1 expR2 triple mutant, with or without exogenous AHLs. Because AHLs 156 

block activation of RsmA via ExpR1 and ExpR2 (51, 52), deletion of expR1 and expR2 in the 157 

expI background is expected to result in the de-repression of evf. Consistent with this 158 

prediction, Pevf::gfp expression is higher in the expI expR1 expR2 than in the expI single 159 

mutant (Fig. 2A, TukeyHSD test p<0.001, Fig. S4A-C). However, the expression levels of 160 

Pevf::gfp are lower in the expI expR1 expR2 than those of the WT (Fig. 2A, TukeyHSD test, 161 

p<0.001, Fig. S4A-C). The fact that deletion of these two receptors in the expI background 162 

is not sufficient to fully restore expression of evf to WT levels indicates that additional 163 

regulators control the expression of evf. Nonetheless, while addition of exogenous AHLs to 164 

a culture of an expI mutant increases Pevf::gfp expression, it remains unaltered in the triple 165 

expI expR1 expR2 mutant (Fig. 2A, TukeyHSD test p=1, Fig. S4A-C). Therefore, AHL-166 
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dependent regulation of evf expression is mediated by expR1 and expR2, as is also the 167 

case for the regulation of PCWDE in other Erwinia spp. (34, 36, 49).  168 

 169 

Regulation of evf by AHL quorum sensing is mediated by hor 170 

 It was previously shown that Hor, a global regulator of diverse physiological 171 

processes in many animal and plant bacterial pathogens (53), is a positive regulator of evf 172 

(17) and that, as in other Erwinia spp., hor is regulated by quorum sensing (54). Therefore, 173 

we asked if AHL-dependent regulation of evf is via hor. We analyzed the expression of the 174 

Pevf::gfp reporter in a hor mutant, and found that it is lower than in the WT, and as low as 175 

in the expI mutant (Fig. 2A). Moreover, we observed that addition of exogenous AHLs to a 176 

hor mutant does not restore the expression of evf (Fig. 2A, TukeyHSD test p=1, Fig. S4A-C). 177 

We next cloned the hor gene under the control of a lac promoter in the plasmid 178 

containing the Pevf::gfp fusion, and measured evf expression levels in the expI and gacA 179 

mutants expressing or not the hor gene. We observed that expression of hor in either the 180 

expI or the gacA mutants restores evf expression to levels similar to those of the WT (Fig. 181 

2B, TukeyHSD test p<0.001, Fig. S4D-F). Therefore, regulation of evf is mediated by both 182 

the AHL and the GAC systems and occurs via hor. Next, we asked whether these systems 183 

regulate hor itself by analyzing the expression of a hor promoter fusion (Phor::gfp) in expI 184 

and gacA mutants. As for the evf reporter, we observed that, Phor::gfp expression is lower 185 

in an expI mutant when compared to the WT (Fig. 2C, TukeyHSD test p<0.001, Fig. S4G-I). 186 

Moreover, this expression can be complemented to WT levels by the addition of 187 

exogenous AHLs to the growth medium of the expI mutant (Fig. 2C, TukeyHSD test p=0.08, 188 
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Fig. S4G-I). These data demonstrate that hor expression is regulated by AHLs and is 189 

necessary for the increase of evf expression mediated by AHLs. 190 

 191 

Infection by Ecc15 causes a developmental delay in D. melanogaster larvae dependent 192 

on quorum sensing and GAC regulation of evf expression 193 

 It is known that Evf promotes infection in the D. melanogaster gut (18, 19). To 194 

examine the effects of down-regulation of evf on quorum sensing and GAC mutants we 195 

measured Ecc15 loads upon oral infection. We inoculated Ecc15 WT, evf, expI or gacA into 196 

D. melanogaster L3 stage larvae, and assessed the dynamics of bacterial loads by counting 197 

the number of colony forming units (CFU) of Ecc15 over time. As previously reported, 198 

Ecc15 infection is transient and larvae are able to clear it after 24 hours (Fig. 3 and (18)). 199 

Additionally, we observed that the rate of elimination of the bacteria from the larval gut is 200 

not significantly different between the WT and the evf, gacA, and expI mutants (Fig3, lmm, 201 

Chi-square test p=0.27). However, we also observed that Ecc15 WT loads were 202 

approximately ten times higher compared to the loads of the evf mutant when 203 

considering the entire infection period (Fig. 3, TukeyHSD test p<0.001, Fig. S5), confirming 204 

that evf is required for optimal infection of the larval gut by Ecc15. Importantly, a similar 205 

trend was observed when comparing the WT to either of the two mutants impaired in evf 206 

expression: gacA or expI (Fig. 3. TukeyHSD test p<0.001, Fig. S5), revealing the importance 207 

of quorum sensing-regulation and the GAC system in the infection process. Taken 208 

together, our data show that evf provides Ecc15 with the ability to reach high loads in the 209 

insect gut, but does not increase its capacity to survive inside it. 210 
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Next, we asked if infection of D. melanogaster larvae by Ecc15 has an effect on 211 

larval development. To investigate this possibility, we infected D. melanogaster L3 stage 212 

larvae orally with Ecc15 WT or an evf mutant and followed their development over time. 213 

We found that infection by WT Ecc15 delays D. melanogaster larvae passage to pupal 214 

stage an average of 49 hours, when compared to non-infected larvae (Fig. 4A and FigS6, 215 

TukeyHSD test p<0.001, Fig. 4B). Moreover, we show that this strong delay is evf-216 

dependent, since larvae exposed to an evf mutant only show a delay of 8 hours when 217 

compared to non-infected larvae (TukeyHSD test, p<0.001, Fig4B). We then asked if the 218 

mutants in the quorum sensing pathway and GAC system, which have low expression of 219 

evf, would show a similar phenotype. We observed that larvae exposed to the expI 220 

mutant, which has very low expression of evf, also show only a 4 hour delay with respect 221 

to non-infected larvae, similar to the evf mutant (TukeyHSD test, p<0.001, Fig4B). 222 

Interestingly, larvae infected with the gacA mutant, which has intermediate levels of evf 223 

expression, show an intermediate developmental delay, taking an average of 26 hours 224 

longer than non-infected larvae to reach the pupal stage (TukeyHSD test, p<0.001, Fig4B). 225 

Since the developmental delay correlated with the levels of evf expression in the strains 226 

tested, we next examined whether constitutive overexpression of evf would exacerbate 227 

the phenotype. We observed that larvae infected with a WT Ecc15 overexpressing evf died 228 

before reaching the pupal stage (Fig. 4C-D). These results show that Ecc15 has a negative 229 

impact on larval development and this effect requires both evf and the quorum sensing 230 

and GAC regulatory systems.   231 

 232 
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DISCUSSION 233 

 Erwinia spp. are phytopathogenic bacteria thought to depend on insects to spread 234 

among plant hosts (1, 12, 13). To interact with both plants and insects, Ecc15 relies on 235 

different traits that seem to be specific for the interaction with each host. In this 236 

bacterium, PCWDE are the major virulence factors required for plant infection (40) and Evf 237 

is required to infect D. melanogaster, but not necessary to infect potato tubers (Fig. 1B 238 

and (16, 17)). It was not known whether Ecc15, which relies on multiple hosts for survival, 239 

regulates host-specific traits using the same or different signal transduction networks. 240 

Here we showed that the AHL-dependent ExpI/ExpR system, which regulates plant 241 

virulence factors (33, 35, 36, 49) is also essential for the expression of the insect virulence 242 

factor evf, suggesting that the signal transduction networks regulating traits required 243 

across hosts are the same. An expI mutant had lower levels of evf expression than the WT 244 

which could be restored by addition of exogenous AHLs to the growth medium. We also 245 

demonstrated that the GAC system, that is thought to respond to the physiological state 246 

of the cell (42) and is involved in regulation of plant virulence factors (41, 55) is also 247 

necessary for full expression of evf. Additionally, we showed that regulation by these two 248 

networks occurs through hor, a conserved transcriptional regulator of the SlyA family (56), 249 

previously found to be regulated by quorum sensing in another E. carotovora strain (54). 250 

ExpR1 and ExpR2 AHL receptors function as activators of rsmA, the global repressor of the 251 

AHL-regulon; therefore, we expected the expI expR1 expR2 mutant to have the same 252 

levels of evf expression as the expI mutant supplemented with AHLs. However, we found 253 

that the expI expR1 expR2 mutant has lower levels of evf expression than both the expI 254 
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supplemented with AHLs and the WT. Moreover, we showed that complementation of the 255 

expI expR1 expR2 mutant with AHLs does not change the level of evf expression. These 256 

results show that expR1 and expR2 are required for Ecc15’s response to AHLs, but also 257 

indicate that an additional AHL-independent regulator, is playing a role in the regulation of 258 

evf in this bacterium. One possibility is that Ecc15 has additional orphan luxR genes, DNA 259 

binding proteins homologous to LuxR that lack a cognate AHLs synthase. These orphan 260 

genes are divided in two categories, those that have both a LuxR DNA and an AHL binding 261 

domain, such as ExpR2, and those that have only the typical LuxR DNA binding domain 262 

(57), such as vqsR in Pseudomonas aeruginosa. In this bacterium, in response to an 263 

unknown signal, vqsR has been found to downregulate expression of virulence through 264 

binding to the promoter region of the quorum sensing receptor qscR, inhibiting its 265 

expression without responding to AHLs (58). Because addition of exogenous AHLs to the 266 

expI expR1 expR2 mutant does not change the level of evf expression, this unknown 267 

regulator is more likely to lie within the second category of orphan LuxR receptors. Our 268 

data also suggests that this unknown regulator could be repressed by rsmA, since the expI 269 

mutant shows lower levels of evf expression than expI expR1 expR2. In Erwinia spp. 270 

another layer of regulation required for PCWDE expression is the detection of external 271 

environmental signals like pectin, a component of the plant cell wall (34, 55, 59, 60, 35, 272 

51, 47, 48). In the absence of plant signals, transcription of PCWDE is repressed. Unlike in 273 

the regulation of PCWDE in Erwinia spp., in our experimental setting we have no evidence 274 

for the need of a host signal since we can detect evf expression in cells grown in LB 275 

without the need for other signals. However, this does not exclude the possibility that 276 
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environmental signals, perhaps related to insect derived compounds, have a role in the 277 

overall levels of evf expression.  278 

 It has been hypothesized that evf was horizontally acquired by Ecc15 and a few 279 

other Erwinia spp. As these phytopathogens often use insects as vectors, one hypothesis 280 

for the selective benefit of acquiring evf is that this gene might be important to favor 281 

bacterial transmission by strengthening the interaction of Ecc15 with Drosophila. This 282 

hypothesis is supported by our results showing that evf allows Ecc15 to have higher loads 283 

at the initial stage of Drosophila larval infection. However, the rate of Ecc15 elimination 284 

post-infection was the same in WT and an evf mutant. This suggests that evf is promoting 285 

transmission of Ecc15 by increasing the overall number of bacteria that reach the gut. 286 

Moreover, we show here that larvae infected with Ecc15 are developmentally impaired 287 

when compared to non-infected larvae, and this developmental delay is dependent on 288 

evf. These results are in agreement with previous reports showing that larvae infected 289 

with WT Ecc15 were smaller due to inhibition of the larval proteolytic activity promoted 290 

by Drosophila-associated Lactobacillus species (61). Additionally, infection of Drosophila 291 

adults and larvae with WT Ecc15 causes cell damage, which induces epithelial cell death, 292 

leading to activation of immunity, stem cell regeneration programs and 293 

differentiation/modification of the cellular structure of the gut, essential for its repair (7, 294 

16, 62). These studies, together with our results, show that evf expression in Ecc15 has an 295 

overall deleterious effect on the host, and thus acquisition of evf, which enables higher 296 

host loads and is presumably beneficial for bacterial transmission, seems to have resulted 297 

in a tradeoff for host fitness.  298 
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  Due to a lack of genetic information, tracing the evolutionary history of this protein 299 

is challenging. It was previously reported that, besides Ecc15, evf was only identified in 300 

strain Ecc1488 (16, 17). By comparing the amino acid sequence of Evf to recent genome 301 

databases, we found only a few more candidate ortholog proteins with amino acid 302 

sequence identity higher than 60% (Table S3). The highest sequence similarities found, 303 

besides those of other Erwinia spp., corresponded to proteins from Cedecea neteri, 304 

Enterobacter AG1, Rahnella sp., Klebsiella aerogenes and Escherichia coli (Table S3). K. 305 

aerogenes and E. coli are ubiquitous bacterial species that can colonize the gut of different 306 

animals, particularly mammals, but also insects (63–65). Similarly to Erwinia spp., Rahnella 307 

sp. and C. neteri are bacterial species often isolated from plants that also establish gut 308 

associations with insects (64, 66, 67).  Enterobacter AG1 is a bacterial species isolated 309 

from the gut of mosquitos that has been shown to decrease the ability of Plasmodium 310 

falciparum to colonize the gut (68, 69). Since the structural fold of Evf is unique (70) and 311 

that protein structure is more conserved than sequence identity (71), we predicted the 312 

secondary structures of these ORFs using phyre2 (72). We found that the predicted 313 

secondary structure of all five ORFs is identical to Evf (Table S3). Importantly, the cysteine 314 

residue (position 209), which in Ecc15 Evf is palmitoylated, a post-translational 315 

modification essential for its function (70), is conserved in all the five ORFs. Interestingly, 316 

evf-like genes with low amino acid sequence identity (lower than 40%), but with a 317 

predicted secondary structure highly similar to that of the Evf (72), can be found in other 318 

bacteria such as Vibrio sp. or the major insect pathogen Photorhabdus luminescens ((18) 319 

Locus PLU2433). P. luminescens colonizes the gut of Heterorhabditis bacteriophora, an 320 
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insect-preying nematode (73, 74). The nematode enters through the insect’s respiratory 321 

and/or digestive tract and regurgitates the bacteria into its hemolymph. Once in the 322 

hemolymph, Photorhabdus produces a battery of toxins that kills the insect allowing the 323 

nematode to feed on the corpse, favoring Photorhabdus recolonization (75–77). 324 

Photorhabdus possesses several genes possibly involved in the establishment of the 325 

interaction with the host, many of which are regulated by quorum sensing (78, 79). Thus, 326 

it is possible that the Evf ortholog from Photorhabdus is involved in the mechanisms 327 

required for colonization of the nematode, or in the pathogenicity towards the insect. Our 328 

results indicate that Evf orthologs can be found in bacteria with apparently different 329 

lifestyles. However, all of these bacteria encounter multiple hosts mainly through the gut, 330 

including insects, and undergo rapid environmental changes. It is possible that Evf has a 331 

conserved role in host transition mainly through insect colonization or pathogenesis.  332 

 Quorum sensing regulation is associated with tight control of density dependent 333 

activation of genes encoding functions that are often essential for the establishment of 334 

host-microbe interactions (26). For instance, in the interaction between the squid 335 

Euprymna scolopes and V. fischeri, mutants in the quorum sensing system are less 336 

efficient in persisting in the light organ, being outcompeted by other strains (80, 81). Here 337 

we show that in Ecc15, besides regulating PCWDE in plant infections, employs quorum 338 

sensing for the evf-mediated increased bacterial loads in Drosophila larvae. Our study also 339 

demonstrates that the quorum sensing and GAC regulatory pathways have a strong effect 340 

in the Evf-mediated developmental delay caused by Ecc15. Moreover, overexpression of 341 

evf leads to a complete developmental arrest of larvae, eventually killing them. Therefore, 342 
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one possible benefit of having evf expression under the control of these networks might 343 

be to minimize the detrimental effect that the evf-dependent infection has on the insect 344 

host while still enabling a transient infection. On the other hand, insects are attracted to 345 

rotten plant tissue, and if evf is important for promoting the interaction of Ecc15 with its 346 

insect vector (Drosophila), synchronization of the expression of evf and the PCWDE might 347 

have been selected as advantageous for bacterial dissemination. This phenomenon, called 348 

predictive behavior, is particularly common in symbiotic relationships where the microbe 349 

often experiences a predictable series of cyclic environments (82). In mammalian hosts, a 350 

very predictable change when transitioning from the outside environment to the oral 351 

cavity is the immediate increase in temperature followed by a decrease in oxygen. This 352 

phenomenon has been described for E. coli gut colonization where, coupled to an increase 353 

in temperature, downregulation of genes related to aerobic respiration is observed (83). 354 

In the case of Ecc15 it is possible that control of PCWDE and evf expression is intertwined 355 

so that following colonization of the plant, evf expression is triggered, anticipating the 356 

appearance of the insect vector which is attracted to rotten plant tissue, and thus 357 

maximizing the probability of establishing the interaction with this host vector.  358 

 Our results show that, in Ecc15, the regulatory networks responding to self-359 

produced quorum sensing signals and physiological cues sensed by the GAC system are 360 

used to control expression of traits required to infect different hosts. Thus, the signal 361 

transduction mechanisms are the same even though the functions involved in the 362 

interactions with each plant or insect host are largely different. Therefore, our findings 363 
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reinforce the central role of quorum sensing in the regulatory circuitry controlling the 364 

array of traits used by bacteria to interact with diverse hosts. 365 

  366 

Materials and Methods 367 

Bacterial strains, plasmids, and culture conditions.  368 

 The strains and plasmids used in this study are listed in Table S1 of the 369 

supplementary material. All bacterial strains used are derived from wild type (WT) Ecc15 370 

strain (7).  Ecc15 and mutants were grown at 30°C with aeration in Luria-Bertani medium 371 

(LB). When specified, medium was supplemented with 0.4% polygalacturonic acid (PGA; 372 

Sigma P3850), to induce the expression of PCWDEs.  E. coli DH5α was used for cloning 373 

procedures and was grown at 37°C with aeration in LB. When required, antibiotics were 374 

used at the following concentrations (mg liter−1): ampicillin (Amp), 100; kanamycin (Kan), 375 

50; spectinomycin (Spec), 50; chloramphenicol (Cm), 25. To assess bacterial growth, 376 

optical density at 600 nm (OD600) was determined in a Thermo Spectronic Helios delta 377 

spectrophotometer.  378 

 379 

Genetic and molecular techniques.  380 

 All primer sequences used in this study are listed in Table S2 in supplemental 381 

material. P. carotovorum Ecc15 deletion mutants listed in Table S1 were constructed by 382 

chromosomal gene replacement with an antibiotic marker using the λ-Red recombinase 383 

system (84). Plasmid pLIPS, able to replicate in Ecc15 and carrying the arabinose-inducible 384 

λ-Red recombinase system was used (34). Briefly, the DNA region of the target gene, 385 
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including approximately 500 bp upstream and downstream from the gene, was amplified 386 

by PCR and cloned into pUC18 (85) using restriction enzymes. These constructs, containing 387 

the target gene and its flanking regions, were divergently amplified by PCR, to introduce a 388 

XhoI restriction site in the 5′ and 3′ regions and to remove the native coding sequence of 389 

the target gene. The kanamycin cassette from pkD4 was amplified with primers also 390 

containing the XhoI restriction site. The fragment containing the kanamycin cassette was 391 

then digested with XhoI and was introduced into the XhoI-digested PCR fragment carrying 392 

the flanking regions of the target gene. The final construct, containing the kanamycin 393 

cassette flanked by the upstream and downstream regions of the target gene was then 394 

amplified by PCR, and approximately 2 micrograms of DNA were electroporated into the 395 

parental strain (FDV31) expressing the λ-Red recombinase system from pLIPS, to favour 396 

recombination. To construct the plasmid carrying the promoter evf fused to GFP 397 

(pFDV54), a fragment of 503 bp containing the evf promoter was amplified from WT Ecc15 398 

DNA with the primers P1194 and P1195. This fragment was then digested with HindIII and 399 

SphI and ligated to pUC18. GFP was amplified from the pCMW1(86) vector using primer 400 

P0576 and P0665. Both the GFP and pUC18-Pevf were digested with SphI and BamHI, 401 

ligated and 2 µl of the ligation reaction were used to transform Dh5α (pFDV54). The same 402 

procedure was used for the Phor::gfp fusion using primers P1351 and P1352 for promoter 403 

amplification (493 bp) and primers P1353 and P1354 for GFP amplification. Digestions 404 

were made with enzymes HindIII/PstI and PstI/XbaI (pFDV84). For hor overexpression, a 405 

NcoI site was introduced in pOM1-Pevf::gfp with primers P1309 and P1310. hor was 406 

amplified using primers P1311 and Primers 1312 from WT template DNA. Then both the 407 
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plasmid and the fragment carrying hor were digested with NcoI and SacI and subsequently 408 

ligated (pFDV104).  409 

PCR for cloning purposes was performed using the proofreading Bio-X-ACT 410 

(Bioline) enzyme. Other PCRs were performed using Dream Taq polymerase (Fermentas). 411 

Digestions were performed with Fast Digest Enzymes (Fermentas), and ligations were 412 

performed with T4 DNA ligase (New England Biolabs). All cloning steps were performed in 413 

either E. coli DH5α or WT Ecc15. All mutants and constructs were confirmed by PCR 414 

amplification and subsequent Sanger sequencing performed at the Instituto Gulbenkian 415 

de Ciência sequencing facility. 416 

 417 

Pectate lyase activity assay.  418 

 Ecc15 and mutants were grown overnight in LB with 0.4% PGA, inoculated into 419 

fresh media to a starting OD600 of 0.05 and incubated at 30°C with aeration. After 6 hours 420 

of incubation, aliquots were collected to evaluate growth and to analyse pectate lyase 421 

(Pel) activity in cell-free supernatants, using the previously described procedure (55) 422 

based on the thiobarbituric acid colorimetric method (87). Each experiment included at 423 

least 5 independent cultures per genotype, and was repeated on 3 independent days. 424 

 425 

Plant virulence assay.  426 

 Plant virulence was analysed by assessing the maceration of potato tubers with the 427 

protocol adapted from (34, 88). Potatoes were washed and surface sterilized by soaking 428 

for 10 min in 10% bleach, followed by 10 min in 70% ethanol. Overnight cultures in LB 429 
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broth were washed twice and diluted to an OD600 of 0.05 in phosphate-buffered saline 430 

(PBS). Thirty-microliter aliquots were then used to inoculate the previously punctured 431 

potatoes. Potato tubers were incubated at 28°C at a relative humidity above 90% for 48 h. 432 

After incubation, potatoes were sliced, and macerated tissue was collected and weighed.433 

  434 

Promoter expression assays.  435 

 Ecc15 carrying the different plasmid-borne promoter reporter fusions were grown 436 

overnight in LB supplemented with Spectinomycin (LB + Spec), inoculated into fresh 437 

medium at a starting OD600 of 0.05 and incubated at 30°C with aeration. At the indicated 438 

timepoints, aliquots were collected to assess growth and the expression of the reporter 439 

fusion. For the analyses of reporter expression, aliquots of the cultures were diluted 1:100 440 

in PBS and expression was measured by flow cytometry (LSRFortessa; BD) and analysed 441 

with Flowing Software v 2.5.1, as previously described (55). A minimum of 10,000 green 442 

fluorescent protein (GFP)-positive single cells were acquired per sample. Expression of the 443 

promoter-gfp fusions is reported as the median GFP expression of GFP-positive single cells 444 

in arbitrary units. Each experiment included at least 5 independent cultures per genotype, 445 

and was repeated on 3 independent days. 446 

 447 

Drosophila Stocks 448 

 DrosDel w1118 isogenic stock (w1118 iso) was used in all experiments (89, 90). Stocks 449 

were maintained at 25°C in standard corn meal fly medium composed of 1.1 L water, 45 g 450 

molasses, 75 g of sugar, 10 g agar, 70 g cornmeal, 20 g yeast. Food was autoclaved and 451 
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cooled to 45°C before adding 30 mL of a solution containing 0.2 g of carbendazim (Sigma) 452 

and 100 g of methylparaben (Sigma) in 1 L of absolute ethanol. Experiments were 453 

performed at 28°C 454 

 455 

Developmental delay and bacterial CFUs assays  456 

 Egg laying was performed in cages containing adult flies at a ratio of 3 females to 1 457 

male. To synchronize the embryo stage, flies were initially incubated for 1 hour at 25°C to 458 

lay prior fertilized eggs. After this initial incubation, flies were transferred to new cages 459 

where eggs were laid for 4 to 6 hours in the presence of standard corn meal fly medium. 460 

After this period, eggs were removed and incubated at 25°C for 72 hours to obtain L3-461 

stage larvae. For bacterial infections, third-instar larvae were placed in a 2 ml Eppendorf 462 

containing 200 µl of concentrated bacteria pellet (OD600 = 200) from an overnight culture 463 

and 400 µl of standard corn meal fly medium. Larvae, bacteria and food were then 464 

thoroughly mixed with a spoon, the Eppendorf was closed with a foam plug and incubated 465 

at room temperature for 30 min. The mix was then transferred to a 25 ml plastic tube 466 

containing 7.5 ml of standard corn-meal fly medium and incubated at 28°C. To assess 467 

development of the larvae post-infection pupa were count every 12 hours for 5 days. For 468 

CFU counts, larvae were inoculated as described above. At each time point, 5 larvae were 469 

randomly collected, surface sterilized for 10 seconds in ethanol 70% and washed with 470 

miliQ water. Individual larvae were then transferred to Eppendorfs containing 300µl of 1x 471 

PBS and homogenized with a blender. The homogenate was diluted 100-fold and serial 472 

dilutions were plated in LB. Plates were incubated overnight at 30°C.  473 
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 474 

Statistical analysis 475 

 Statistical analyses were performed in R(91) and graphs were generated using the 476 

package ggplot2(92) and GraphPad. All experiments were analysed using linear mixed-477 

effect models [package lme4(93)]. Significance of interactions between factors was tested 478 

by comparing models fitting the data with and without the interactions using analysis of 479 

variance (ANOVA). Models were simplified when interactions were not significant. 480 

Multiple comparisons of the estimates from fitted models were performed with a Tukey 481 

HSD (honestly significant difference) test (packages lmerTest(94) and multicomp(95)). To 482 

each statistical group a letter is attributed, different letters stand for significant statistical 483 

difference.    484 

 485 

Data availability 486 

 Data will be fully available and without restriction upon request. 487 
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 783 

Fig. 1 Production of pectate lyase and expression of evf is dependent on both quorum 784 

sensing and the GAC system. (A) Pectate lyase activity in cell-free supernatants of WT 785 

Ecc15, expI and gacA mutants at 6 hours of growth in LB + 0.4%PGA. n=10 (B) Potato 786 

maceration quantification (grams) in potatoes infected with WT Ecc15, expI, gacA and evf 787 

mutants, 48 hours post-infection. n=8 (C) Pevf::gfp expression in WT Ecc15, expI and gacA 788 

mutants at 6 hours of growth in LB + Spec. n=5 789 
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Growth curves of the strains used are shown in Fig.S1. Complementation with AHLs was 790 

performed with a mixture of 1uM 3-oxo-C6-HSL and 3-oxo-C8-HSL. Error bars represent 791 

standard deviation of the mean. For each panel a representative experiment from three 792 

independent experiments is shown (other two experiment are shown in Fig. S2). Statistical 793 

analysis taking the data of all the three experiments is shown in Fig. S2. 794 

  795 
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 796 
Fig. 2. evf regulation by quorum sensing is dependent on ExpR receptors and hor. (A) 797 

Pevf::gfp expression without (white bars) or with (grey bars) addition of exogenous AHLs in 798 

Ecc15, expI, expI expR1 expR2 and hor mutants at 6 hours of growth in LB + Spec. n=5 (B) 799 

Pevf::gfp expression in Ecc15 expI and gacA mutants containing a plasmid with the Pevf::gfp 800 

fusion (white bars)or with both Plac::hor and Pevf::gfp fusions (grey bars) at 6 hours of growth 801 

in LB + Spec. n=5 (C) Phor::gfp expression in WT Ecc15, expI and gacA mutants at 6 hours of 802 

growth in LB + Spec. n=5 Complementation with AHLs was performed with a mixture of 1µM 803 

3-oxo-C6-HSL and 3-oxo-C8-HSL. Error bars represent standard deviation of the mean. For 804 

each panel a representative experiment from three independent experiments is shown 805 
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(other two experiment are shown in Fig. S4). Statistical analysis taking the data of all the 806 

three experiments is shown in Fig. S4. 807 
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 809 

 810 

Fig. 3. Ecc15 loads are higher in D. melanogaster larvae orally infected with WT than with 811 

mutants impaired in evf expression. 812 

D. melanogaster L3 stage larvae were infected with WT Ecc15, evf, expI and gacA mutants 813 

for 30 min and then transferred to fresh media. Following the infection period Colony 814 

Forming Units (CFUs) of Ecc15 were measured at the specified time points. Each dot 815 

represents CFUs of one single larvae (5 larvae per time point). 0 hours after infection 816 

correspond to 30 min of confined exposure to 200µl of an OD600=200. Representative 817 

experiment from three independent experiments (other two experiment are shown in Fig. 818 

S5). Statistical analysis of the comparison of the entire infection period for each condition 819 

tested using the data of all the three experiments is shown in Fig. S5. 820 

 821 
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 822 

 823 

Fig. 4. Ecc15 causes a developmental delay in D. melanogaster larvae that is dependent 824 

on evf, quorum sensing and the GAC system. L3 stage Drosophila larvae pupariation time 825 

after exposure to (A) WT Ecc15, evf, expI and gacA mutants or (C) WT Ecc15 overexpressing 826 

Evf, compared with non-infected larvae. (B) and (D) Average developmental time in hours 827 

with standard deviation. Representative experiment from three independent experiments 828 

(other two experiment are shown in Fig. S6). Statistical groups shown in (B) and (D) were 829 

determined using a linear mixed effect model taking in consideration the data from the 830 
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three experiments. A Tukey HSD test was applied for multiple comparisons using the 831 

estimates obtain from the model.  832 
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SUPPEMENTAL FIGURES 834 
 835 

Table S1. Strains and plasmids used in this study 836 

Strain Parental strain Relevant Genotype Source 

E. carotovora 

Ecc15  Wild-type (WT) (16) 

FDV31 Ecc15 WT carrying pLIPS (34) 

FDV51 Ecc15 expI::cm This study 

FDV42 Ecc15 gacA::kan This study 

FDV163 Ecc15 expIexpR1::cm/expR2::kan This study 

FDV22 Ecc15 hor::kan This study 

FDV54 Ecc15 WT carrying pFDV54 This study 

FDV56 FDV51 expI::cm carrying pFDV54 This study 

FDV58 FDV42 gacA::kan carrying pFDV54 This study 

FDV165 FDV163 expIexpR1::cm/expR2::kan carrying pFDV54 This study 

FDV60 FDV22 hor::kan carrying pFDV54 This study 

FDV84 Ecc15 WT carrying pFDV84 This study 

FDV92 FDV51 expI::cm carrying pFDV84 This study 

FDV86 FDV42 gacA::kan carrying pFDV84 This study 

FDV104 Ecc15 WT carrying pFDV104 This study 

FDV114 FDV51 expI::cm carrying pFDV104 This study 

FDV127 FDV42 gacA::kan carrying pFDV104 This study 

    

Plasmids  Relevant genotype Source 

pOM1  Cloning vector, Specr 
 

pUC18  Cloning vector, Ampr 
 

pLIPS  pOM1 vector containing λ red recombinase system, Specr  (34) 

pFDV54  pOM1 vector containing promoter evf::gfp, Specr  This study 

pFDV104  pOM1 vector containing a promoter lac::hor and a promoter evf::gfp This study 

pFDV84  pOM1 vector containing a promoter hor::gfp, Specr This study 

 837 

 838 

 839 

 840 

 841 

 842 
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Table S2. Primers used in this study 843 

Primer Name Sequence 

1108-Redsystem(pKD46)FWsphI CCTTACGCATGCCATCGATTTATTATGACAA 

1109-Redsystem(pKD46)RVXbaI CGAGCTTCTAGATACCCATGGATTCTTCGTCT 

1127-500Hor500RVSalI CGAGCTGTCGACGCTAAACAGGTGCAGACCGT 

1128-500Hor500FWSalI CCTTACGTCGACTCAATAAATAGAGTTGTCGCGGG 

1130-500gacA500FwSalI CCTTACGTCGACTATGATGTTCACTATGGACG 

1131-500gacA500RvSalI CGAGCTGTCGACGATATTGCAGGCAGGGGCG 

1087-HorDelRVXhoI CGAGCTCTCGAGCACCTCTCCTTATTGTTAGC 

1088-HorDelFWXhoI CCTTACCTCGAGCTAAATTTGGGTTACGCAGA 

1132-DelGacARvXhoI CGAGCTCTCGAGGAATAATTCTCCAAAAAAGGG 

1133-DelGacAFwXhoI CCTTACCTCGAGGAGTTTCGATGCGTCGGCAT 

1134-DelExpIFwXhoI CCTTACCTCGACTTGCACAGGCTTGATGAGCTGTA 

1135-DelExpIRvXhoI CGAGCTCTCGAGCCTCCATTGAAAAGTTAATAC 

1136-500ExpI500FwSalI CCTTACGTCGACGAATACCGTGTCTGACAACC 

1137-500ExpI500RvSalI CGAGCTGTCGACATCGCCTTTCTCTTGGGAGA 

1186-HorDelFw AATCGTCAGTTATTACAATGGT 

1187-HorDelRv TATGATGAAGCGTTTGCTTGTG 

1190-ExpIDelFw TCAGGCGCTGATGCTGCGTGAT 

1191-ExpIDelRv TCCAGTTATCCCGATGAATGGG 

1192-GacADelFw GGGCGTTACCGCTGACGCGACA 

1193-GacADelRV CAGGCGAACATAGTCAACCTGC 

1309-NcoIsiteFW CCTTACCCATGGTTACGAATTCGAGCT 

1310-NcoIsiteRV CCTTACCCATGGTCATAGCTGTTTCCT 

1311-horNcoIFW CCTTACCCATGGAATTGCCATTAGGAT 

1312-horSacIRV CCTTACGAGCTCCTACGCTTGATTTTCATG 

1351-pHor(500bp)_FW CCTTACAAGCTTTAGAGTTGTCGCAGGAGGTG 

1352-pHor(500bp)_RV CCTTACCTGCAGCACCTCTCCTTATTGTTAGC 

1194-pEvfFw CCTTACAAGCTTTGCTTACAGGAAACCAACAA 

1195-pEvf_Rv CGAGCTGCATGCAATCACTCCTATTGTGGTGG 

1411-500evf500FwSalI CCTTACGTCGACTGCTTACAGGAAACCAACAA 

1412-500evf500RvSalI CGAGCTGTCGACGCATTACTCTACACTTTTCTGAC 

1413-EvfDelXhoIFw CCTTACCTCGAGTTCATAAAATATAGTCAGGG 

1414-EvfDelXhoIRv CGAGCTCTCGAGAATCACTCCTATTGTGGTGG 

1415-EvfDelConfFw CGTTCCCGTTGAAGTCATGG 

1416-EvfDelConfRv CTGGATCGCTGGCTCCAAAC 

1235-500-ExpR2-500SalIFw CCTTACGTCGACGGAGAAGGACGGGAAAGGTA 

1236-500-ExpR2-500SalIRv CGAGCTGTCGACTTGATGATTCGGTGCTGGCG 

1237-DelExpR2XhoIFw CCTTACCTCGAGTGTCATCACGTCTATTTCACT 

1238-DelExpR2XhoIRv CGAGCTCTCGAGGTAACGGCCTCAATAAAAAGCG 

1239-ExpR2DelConFw CTAAAACATTAGCCTCACCGCCG 

1240-ExpR2DelConRv CTAACATGGGCGCGTGTGTATCG 

1241-500-ExpR1-500SalIFw CCTTACGTCGACCACGATTGACGCCAGCTATGA 

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2019.12.13.876318doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.13.876318
http://creativecommons.org/licenses/by-nc-nd/4.0/


48 
 

1242-500-ExpR1-500SalIRv CGAGCTGTCGACGGCATCAAAGATAACACCGT 

1243-DelExpR1XhoIFw CCTTACCTCGAGAGTTACAGCTCATCAAGCCT 

1244-DelExpR1XhoIRv CGAGCTCTCGAGCCTCAGTCTGAAGAATCAAC 

1245-ExpR1DelConFw CGCCTGGGATCAGGGAGCAA 

1246-ExpR1DelConRv GAAACGAAATCAGAAGAGCT 

1353-GFP(noRBS)_FW CCTTACCTGCAGATGGCTAGCAAAGGAGAAGAACTCT 

1354-GFP(noRBS)_RV CCTTACTCTAGAACCGGATCCTCAGTTGTACAGTTCA 

0665-GFP(noRBS)_RV CCTTACGGATCCTCAGTTGTACAGTTCATCCATGCCA 

0576-GFP(noRBS)_FW CCTTACGCATGCATGGCTAGCAAAGGAGAAGAACTCT 

0531_pOM1seq_R ATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTC 

0752-pOM1_seq2_F CGCCCAATACGCAAACCGCCTCTCCCCGCGCGT 

0782- pKD3/4 XhoI Fw AGTCTCGAGTTGTGTAGGCTGGAGCTGCTTC 

0783- pKD3/4 XhoI Rv GCGCTCGAGCCATATGAATATCCTCCTTAG 

 844 

 845 

Table S3. Orthologues of the Evf protein from Erwinia carotovora Ecc15 present in the 846 

NCBI database (October 2019). 847 

 848 

The amino acid sequence from Ecc15 was used as template to identify orthologues. All 849 

Proteins are defined as a complete match in the bidirectional best hits. Alignment template 850 

stands for the PDB sequence with the highest confidence used by phyre2 to predict 851 

orthologs secondary structure, corresponding to Ecc15 Evf. All sequences were run in both 852 

phyre2 (72) and pfam database (96).  853 

 854 

 855 
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 856 

Fig. S1. Growth curves of WT Ecc15, expI and gacA mutants carrying a Pevf::gfp reporter 857 

fusion. 858 

 859 
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 860 

 861 

Fig. S2. Independent replicates of the experiments shown in Fig. 1 (Production of pectate 862 

lyase and expression of evf is dependent on both quorum sensing and the GAC system). 863 

(A, B) replicates of experiments shown in Fig. 1A, (C) Statistical groups of all three 864 

experiments from Fig. 1A, (D, E) replicates of experiments shown in Fig. 1B, (F) Statistical 865 

groups of all three experiments from Fig. 1B, (G, H) replicates of experiments shown in Fig. 866 
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1C, (I) Statistical groups of all three experiments from Fig. 1C. Statistical analysis was 867 

performed using a linear mixed effect model. A Tukey HSD test was applied for multiple 868 

comparisons using the estimates obtain from the model.  869 

  870 
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 871 

Fig. S3. AHLs cannot complement intermediate levels of Pevf::gfp expression in a gacA 872 

mutant. Pevf::gfp expression in WT Ecc15 and gacA mutant at 6 hours of growth in LB + Spec. 873 

n=3. Complementation with AHLs was performed with a mixture of 1uM 3-oxo-C6-HSL and 874 

3-oxo-C8-HSL. Error bars represent standard deviation of the mean. 875 

 876 

 877 
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 878 

 879 

Fig. S4. Independent replicates of the experiment shown in Fig. 2a (evf regulation by 880 

quorum sensing is dependent on ExpR receptors and hor). (A, B) replicates of experiments 881 

shown in Fig. 2A, (C) Statistical groups of all three experiments from Fig. 2A, (D, E) replicates 882 

of experiments shown in Fig. 2B, (F) Statistical groups of all three experiments from Fig. 2B, 883 

(G, H) replicates of experiments shown in Fig. 2C, (I) Statistical groups of all three 884 

experiments from Fig. 2C. Statistical analysis was performed using a linear mixed effect 885 
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model. A Tukey HSD test was applied for multiple comparisons using the estimates obtain 886 

from the model. 887 
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 889 

 890 

Fig. S5. Independent replicates of the experiment shown in Fig. 3 (Ecc15 loads are higher 891 

in D. melanogaster larvae orally infected with WT than with mutants impaired in evf 892 

expression.) (A, B) replicates of experiments shown in Fig. 3, (C) Statistical groups of all 893 

three experiments from Fig 3. Statistical analysis was performed using a linear mixed effect 894 

model. A Tukey HSD test was applied for multiple comparisons using the estimates obtain 895 

from the model.  896 
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 898 

 899 

Fig. S6. Independent replicates of the experiment shown in Fig. 4 (Ecc15 causes a 900 

developmental delay in D. melanogaster larvae that is dependent on evf, quorum sensing 901 

and the GAC system). (A, B) replicates of experiments shown in Fig. 4A, (C, D) replicates of 902 

experiments shown in Fig. 4C.  903 

 904 

 905 

 906 
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