1 Title:

2	Quorum sensing regulation in Erwinia carotovora affects development of Drosophila
3	melanogaster infected larvae
4	Filipe J. D. Vieira ^a , Pol Nadal-Jimenez ^{a*} , Luis Teixeira ^{ab} , Karina B. Xavier ^a #
5	
6	^a Instituto Gulbenkian de Ciência, Oeiras, Portugal
7	^b Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
8	
9	Running Title: Quorum sensing regulates evf in Drosophila
10	
11	#Address correspondence to: Karina B. Xavier, Email: <u>kxavier@igc.gulbenkian.pt</u>
12	
13	*Present address: University of Liverpool, Institute of Integrative Biology, Liverpool, UK
14	
15	

16 Abstract

17	Multi-host bacteria must rapidly adapt to drastic environmental changes, relying on
18	integration of multiple stimuli for an optimal genetic response. Erwinia spp. are
19	phytopathogens that cause soft-rot disease in plants. Erwinia carotovora Ecc15 is used as
20	a model for bacterial oral-route infection in Drosophila melanogaster as it harbors a gene,
21	the Erwinia virulence factor (Evf), which has been previously shown to be a major
22	determinant for infection of <i>D. melanogaster</i> gut. However, the factors involved in
23	regulation of <i>evf</i> expression are poorly understood. We investigated whether <i>evf</i> could be
24	controlled by quorum sensing since, in the Erwinia genus, quorum sensing regulates
25	pectolytic enzymes, the major virulence factors needed to infect plants. Here, we show
26	that transcription of <i>evf</i> is positively regulated by quorum sensing in <i>Ecc15 via</i> the acyl-
27	homoserine lactone (AHL) signal synthase Expl, and the AHL receptors ExpR1 and ExpR2.
28	Moreover, we demonstrate that the GacS/A two-component system is partially required
29	for <i>evf</i> expression. We also show that the load of <i>Ecc15</i> in the gut depends upon the
30	quorum sensing-mediated regulation of <i>evf</i> . Furthermore, we demonstrate that larvae
31	infected with <i>Ecc15</i> suffer a developmental delay as a direct consequence of the
32	regulation of evf via quorum sensing. Overall, our results show that Ecc15 relies on
33	quorum sensing to control production of both pectolytic enzymes and Evf. This regulation
34	influences the interaction of <i>Ecc15</i> with its two known hosts, indicating that quorum
35	sensing and GacS/A signaling systems may impact bacterial dissemination via insect
36	vectors that feed on rotting plants.

37

38 Significance

39	Integration of genetic networks allows bacteria to rapidly adapt to changing
40	environments. This is particularly important in bacteria that interact with multiple hosts.
41	Erwinia carotovora Ecc15 is a plant pathogen that uses Drosophila melanogaster as a
42	vector. To interact with these two hosts, <i>Ecc15</i> uses two different sets of virulence
43	factors: plant cell wall-degrading enzymes to infect plants and the Erwinia virulence
44	factor (<i>evf</i>) to infect <i>Drosophila</i> . Our work shows that, despite the virulence factors
45	being different, both are regulated by homoserine lactone quorum sensing and the two
46	component GacS/A system. Moreover, we show that these pathways are essential for
47	Ecc15 loads in the gut of Drosophila and that this interaction carries a cost to the vector
48	in the form of a developmental delay. Our findings provide evidence for the importance
49	of quorum sensing regulation in the establishment of multi-host interactions.
50	

51 Introduction

Insects play an important role in the dissemination of microorganisms that cause 52 53 both human and plant diseases. This dissemination may be an active process whereby 54 microbes develop strategies to interact with insects and use them as vectors (1, 2). To do 55 so, bacteria must have the ability to persist within the host (either lifelong or transiently), 56 evading or resisting its immune system in order to abrogate their elimination (3, 4). The host vector will respond with a battery of innate defenses, such as production of 57 58 antimicrobial peptides and reactive oxygen species as well as behavioral strategies (e.g. 59 avoidance), and physiological responses (e.g. increased peristalsis) (5–9). The successful

60	establishment of these interactions, from the bacterial perspective, ultimately depends on
61	maximizing the fitness of the microorganism and minimizing the impact on the fitness of
62	the vector host (1). Phytopathogenic bacteria such as Phytoplasma sp., Xylella fastidiosa,
63	Pantoea stewartii (formerly Erwinia stewartii), or Erwinia carotovora (also known as
64	Pectobacterium carotovorum), are among those known to establish close associations
65	with insects and to rely on these hosts as vectors, presumably to facilitate rapid
66	dissemination among plants (10–13). Thus, understanding the molecular mechanisms
67	governing the establishment of these interactions is crucial to prevent insect-borne
68	diseases.
69	Bacteria from the Erwinia genus produce pectolytic enzymes that degrade plant
70	tissue, causing soft root-disease (14). These bacteria survive poorly in soil, overwinter in
71	decaying plant material (14), and use insects, including Drosophila species (12, 15) as
72	vectors. Specifically, the non-lethal interaction between the phytopathogen Erwinia
73	carotovora (strain Ecc15) and Drosophila melanogaster has been used as a model to study
74	bacteria-host interactions. Oral infections with <i>Ecc15</i> lead to a transient systemic
75	induction of the immune system in <i>D. melanogaster</i> and consequent production of
76	antimicrobial peptides (7, 16). These responses are strain-specific and highly dependent
77	on the expression levels of the <i>Erwinia</i> virulence factor gene (<i>evf</i>) (17), which promotes
78	bacterial infection of the <i>Drosophila</i> gut (18). Additionally, expression of <i>evf</i> requires the
79	transcriptional regulator Hor (17), but the signals required for the activation of this
80	regulator remain unknown.

81	Quorum sensing has recently been shown to be important in the regulation of
82	bacterial traits that affect the persistence and/or virulence of bacteria in insects (19–22).
83	Many bacteria use quorum sensing to regulate gene expression as a function of
84	population density (23, 24). This cell-cell signaling mechanism relies on the production,
85	secretion, and response to extracellular signaling molecules called autoinducers (24–26).
86	Bacteria from the Erwinia genus produce a mixture of plant cell wall-degrading enzymes
87	(PCWDE), which are the major virulence factors used to degrade plant tissues and
88	potentiate bacterial invasion of the plant host (27–30). In these bacteria, expression of
89	these PCWDE is tightly regulated by two main signaling pathways: the acyl-homoserine
90	lactone (AHL) quorum sensing system, and the GacS/A two-component system (31–34).
91	Typically, the AHL quorum sensing system present in Erwinia spp. includes the AHL
92	synthase Expl (35), and two AHL receptors, ExpR1 and ExpR2 (36), which are homologues
93	to the canonical LuxI/R quorum sensing system first identified in Vibrio fischeri (37–39).
94	The GacS/A two-component system is also activated at high cell density, and, like the AHL
95	quorum sensing system, regulates virulence in many Gram-negative pathogenic bacteria
96	(40–45). Given the importance of these two signal transduction pathways for the
97	expression of the major plant virulence factors in Erwinia spp., we investigated whether
98	quorum sensing and the GacS/A system also regulate <i>evf</i> expression in <i>Ecc15</i> . Additionally,
99	we tested whether these signaling pathways are important for <i>Ecc15</i> infection, and
100	determined the consequences of this interaction for the insect host. Our results show that
101	PCWDE and <i>evf</i> expression in <i>Ecc15</i> , which are required for the interactions with plants
102	and insects, respectively, are both regulated by the same quorum sensing signaling

103	pathway. Moreover, we demonstrate that <i>evf</i> expression has a negative effect on the
104	insect host as it leads to a developmental delay in larvae infected with <i>Ecc15</i> .
105	
106	Results
107	The expression of <i>evf</i> is regulated by both AHL-dependent quorum sensing and the GAC
108	system
109	We first investigated whether activation of the production of PCWDE in <i>Ecc15</i>
110	requires both the AHL quorum sensing system and the GacS/A two-component system
111	(GAC), as occurs in other members of the <i>Erwinia</i> (or <i>Pectobacterium</i>) genus (32, 35, 46).
112	We constructed deletion mutants of <i>expl</i> and <i>gacA</i> , the genes encoding homologues of
113	the AHL-synthase and the response regulator of the GAC system, respectively. We
114	determined whether any of these mutations cause a growth defect in <i>Ecc15</i> , and observed
115	no difference in growth compared to the WT strain (Fig. S1). We then measured pectate
116	lyase activity in supernatants of cultures from <i>Ecc15</i> WT, <i>expl</i> or <i>gacA</i> mutants, as this is
117	one of the PCWDE typically secreted by Erwinia spp As shown in Fig. 1a (and replicate
118	experiments in Fig. S2), both the <i>expl</i> and the <i>gacA</i> mutants exhibit pronounced
119	reductions in pectate lyase activity when compared to the WT (TukeyHSD test, p <0.001,
120	Fig. S2C). Addition of a mixture of exogenous 3-oxo-C6-HSL and 3-oxo-C8-HSL, the major
121	AHLs produced by Erwinia carotovora (46), to an expl mutant culture was sufficient to
122	restore production of this PCWDE to higher levels than the WT (Fig. 1A, TukeyHSD test
123	<i>p</i> <0.001, Fig. S2C). In addition, both the <i>expl and gacA</i> mutants are impaired in virulence
124	to the plant host, which we tested by measuring the mass of macerated tissue in potato

tubers inoculated with these genotypes (Fig. 1B, TukeyHSD test *p*<0.001, Fig. S2F). In
contrast, the *evf* mutant shows no significant difference in maceration with respect to the
WT (Fig. 1B and Fig. S2D-F). Altogether, these results show that production of pectate
lyase, as well as plant host-virulence, are regulated by both the AHL and GAC systems in *Ecc15*, as occurs in other *Erwinia spp.*, where *expl* and *gacA* mutants have been shown to
be avirulent (34, 47, 48). Moreover, we show that *evf* is not necessary for plant infection
(Fig. 1B and Fig. S2D-F).

132 To investigate whether *evf* expression is also regulated by these two systems, we 133 analyzed the expression of a transcriptional reporter consisting of a Green Fluorescent 134 Protein (GFP) fused to the promoter of $evf(P_{evf}:afp)$ in mutants of either AHL quorum 135 sensing or GAC signaling systems. We observed that the expression of the P_{evf}::qfp is 136 reduced in the expl mutant when compared to the WT (TukeyHSD test, p<0.001), and that 137 this expression can be restored if exogenous AHLs are supplied to the culture (Fig. 1C, Fig. 138 S2G-I). In the *gacA* mutant, expression of the *evf* promoter is also reduced compared to 139 the WT, but not as much as in the *expl* mutant (Fig. 1C, TukeyHSD test *p*<0.001, Fig. S2G-I). 140 Since it was previously shown that mutants in the GAC system produce less AHLs (34), we 141 asked if the difference observed between the WT and the *qacA* mutant could be solely 142 explained by the lower levels of AHLs produced by the latter. However, addition of exogenous AHLs to the cultures of a *qacA* mutant did not restore the levels of P_{evf}::*qfp* 143 144 expression to WT levels (Fig. S3). Therefore, we conclude that the *qacA* phenotype 145 regarding evf expression is mostly independent of AHLs. Overall, these results show that

146	full activation of both <i>evf</i> expression and PCWDE activity is dependent on quorum sensing
147	regulation via AHLs, and, to a lesser extent, on activation of the GAC system.

148 In the absence of AHLs, the AHL receptors ExpR1 and ExpR2 lead to repression of 149 virulence traits such as PCWDE (35, 49). These receptors are DNA binding proteins that act 150 as transcriptional activators of rsmA, which encodes a global repressor of quorum sensing-151 regulated genes in *Erwinia spp.* (36, 49, 50). Upon AHL binding, these receptors lose their 152 ability to bind DNA, resulting in decreased expression of *rsmA* and, consequently, 153 increased expression of virulence traits (51, 52). To determine whether ExpR1 and ExpR2 154 also mediate AHL-dependent regulation of *evf* expression, we constructed deletions of 155 these two genes in the *expl* background. We measured expression of the P_{evf} : *afp* reporter 156 in this *expl expR1 expR2* triple mutant, with or without exogenous AHLs. Because AHLs 157 block activation of RsmA via ExpR1 and ExpR2 (51, 52), deletion of expR1 and expR2 in the 158 *expl* background is expected to result in the de-repression of *evf*. Consistent with this 159 prediction, P_{evf}::qfp expression is higher in the expl expR1 expR2 than in the expl single 160 mutant (Fig. 2A, TukeyHSD test p<0.001, Fig. S4A-C). However, the expression levels of 161 Pevf:: qfp are lower in the expl expR1 expR2 than those of the WT (Fig. 2A, TukeyHSD test, 162 p<0.001, Fig. S4A-C). The fact that deletion of these two receptors in the *expl* background 163 is not sufficient to fully restore expression of *evf* to WT levels indicates that additional 164 regulators control the expression of *evf*. Nonetheless, while addition of exogenous AHLs to 165 a culture of an *expl* mutant increases P_{evf} ::*qfp* expression, it remains unaltered in the triple expl expR1 expR2 mutant (Fig. 2A, TukeyHSD test p=1, Fig. S4A-C). Therefore, AHL-166

- dependent regulation of *evf* expression is mediated by *expR1* and *expR2*, as is also the
- 168 case for the regulation of PCWDE in other *Erwinia spp.* (34, 36, 49).
- 169

170 Regulation of *evf* by AHL quorum sensing is mediated by *hor*

171 It was previously shown that Hor, a global regulator of diverse physiological

processes in many animal and plant bacterial pathogens (53), is a positive regulator of *evf*

173 (17) and that, as in other *Erwinia spp., hor* is regulated by quorum sensing (54). Therefore,

174 we asked if AHL-dependent regulation of *evf* is *via hor*. We analyzed the expression of the

175 P_{evf}::gfp reporter in a hor mutant, and found that it is lower than in the WT, and as low as

in the *expl* mutant (Fig. 2A). Moreover, we observed that addition of exogenous AHLs to a

177 *hor* mutant does not restore the expression of *evf* (Fig. 2A, TukeyHSD test *p*=1, Fig. S4A-C).

178 We next cloned the *hor* gene under the control of a *lac* promoter in the plasmid

179 containing the P_{evf}::gfp fusion, and measured evf expression levels in the expl and gacA

180 mutants expressing or not the *hor* gene. We observed that expression of *hor* in either the

181 *expl* or the *gacA* mutants restores *evf* expression to levels similar to those of the WT (Fig.

182 2B, TukeyHSD test *p*<0.001, Fig. S4D-F). Therefore, regulation of *evf* is mediated by both

the AHL and the GAC systems and occurs via *hor*. Next, we asked whether these systems

regulate *hor* itself by analyzing the expression of a *hor* promoter fusion (P_{hor}::*gfp*) in *expl*

and *gacA* mutants. As for the *evf* reporter, we observed that, P_{hor}::*gfp* expression is lower

in an *expl* mutant when compared to the WT (Fig. 2C, TukeyHSD test *p*<0.001, Fig. S4G-I).

187 Moreover, this expression can be complemented to WT levels by the addition of

exogenous AHLs to the growth medium of the *expl* mutant (Fig. 2C, TukeyHSD test *p*=0.08,

- 189 Fig. S4G-I). These data demonstrate that *hor* expression is regulated by AHLs and is
- 190 necessary for the increase of *evf* expression mediated by AHLs.
- 191

192 Infection by *Ecc15* causes a developmental delay in *D. melanogaster* larvae dependent

- 193 on quorum sensing and GAC regulation of *evf* expression
- 194 It is known that Evf promotes infection in the D. melanogaster gut (18, 19). To 195 examine the effects of down-regulation of evf on quorum sensing and GAC mutants we 196 measured Ecc15 loads upon oral infection. We inoculated Ecc15 WT, evf, expl or gacA into 197 D. melanogaster L3 stage larvae, and assessed the dynamics of bacterial loads by counting 198 the number of colony forming units (CFU) of *Ecc15* over time. As previously reported, 199 Ecc15 infection is transient and larvae are able to clear it after 24 hours (Fig. 3 and (18)). 200 Additionally, we observed that the rate of elimination of the bacteria from the larval gut is 201 not significantly different between the WT and the *evf*, *qacA*, and *expl* mutants (Fig3, Imm, 202 Chi-square test p=0.27). However, we also observed that *Ecc15* WT loads were 203 approximately ten times higher compared to the loads of the *evf* mutant when 204 considering the entire infection period (Fig. 3, TukeyHSD test p<0.001, Fig. S5), confirming 205 that evf is required for optimal infection of the larval gut by Ecc15. Importantly, a similar 206 trend was observed when comparing the WT to either of the two mutants impaired in *evf* 207 expression: gacA or expl (Fig. 3. TukeyHSD test p<0.001, Fig. S5), revealing the importance 208 of quorum sensing-regulation and the GAC system in the infection process. Taken 209 together, our data show that evf provides Ecc15 with the ability to reach high loads in the 210 insect gut, but does not increase its capacity to survive inside it.

211	Next, we asked if infection of <i>D. melanogaster</i> larvae by <i>Ecc15</i> has an effect on
212	larval development. To investigate this possibility, we infected D. melanogaster L3 stage
213	larvae orally with <i>Ecc15</i> WT or an <i>evf</i> mutant and followed their development over time.
214	We found that infection by WT Ecc15 delays D. melanogaster larvae passage to pupal
215	stage an average of 49 hours, when compared to non-infected larvae (Fig. 4A and FigS6,
216	TukeyHSD test <i>p</i> <0.001, Fig. 4B). Moreover, we show that this strong delay is <i>evf</i> -
217	dependent, since larvae exposed to an <i>evf</i> mutant only show a delay of 8 hours when
218	compared to non-infected larvae (TukeyHSD test, <i>p</i> <0.001, Fig4B). We then asked if the
219	mutants in the quorum sensing pathway and GAC system, which have low expression of
220	<i>evf</i> , would show a similar phenotype. We observed that larvae exposed to the <i>expl</i>
221	mutant, which has very low expression of <i>evf</i> , also show only a 4 hour delay with respect
222	to non-infected larvae, similar to the <i>evf</i> mutant (TukeyHSD test, <i>p</i> <0.001, Fig4B).
223	Interestingly, larvae infected with the gacA mutant, which has intermediate levels of evf
224	expression, show an intermediate developmental delay, taking an average of 26 hours
225	longer than non-infected larvae to reach the pupal stage (TukeyHSD test, <i>p</i> <0.001, Fig4B).
226	Since the developmental delay correlated with the levels of <i>evf</i> expression in the strains
227	tested, we next examined whether constitutive overexpression of <i>evf</i> would exacerbate
228	the phenotype. We observed that larvae infected with a WT <i>Ecc15</i> overexpressing <i>evf</i> died
229	before reaching the pupal stage (Fig. 4C-D). These results show that <i>Ecc15</i> has a negative
230	impact on larval development and this effect requires both <i>evf</i> and the quorum sensing
231	and GAC regulatory systems.

233 DISCUSSION

234 *Erwinia spp.* are phytopathogenic bacteria thought to depend on insects to spread 235 among plant hosts (1, 12, 13). To interact with both plants and insects, *Ecc15* relies on 236 different traits that seem to be specific for the interaction with each host. In this 237 bacterium, PCWDE are the major virulence factors required for plant infection (40) and Evf 238 is required to infect D. melanogaster, but not necessary to infect potato tubers (Fig. 1B 239 and (16, 17)). It was not known whether *Ecc15*, which relies on multiple hosts for survival, 240 regulates host-specific traits using the same or different signal transduction networks. 241 Here we showed that the AHL-dependent Expl/ExpR system, which regulates plant 242 virulence factors (33, 35, 36, 49) is also essential for the expression of the insect virulence 243 factor *evf*, suggesting that the signal transduction networks regulating traits required 244 across hosts are the same. An *expl* mutant had lower levels of *evf* expression than the WT 245 which could be restored by addition of exogenous AHLs to the growth medium. We also 246 demonstrated that the GAC system, that is thought to respond to the physiological state 247 of the cell (42) and is involved in regulation of plant virulence factors (41, 55) is also 248 necessary for full expression of *evf*. Additionally, we showed that regulation by these two 249 networks occurs through hor, a conserved transcriptional regulator of the SlyA family (56), 250 previously found to be regulated by quorum sensing in another *E. carotovora* strain (54). 251 ExpR1 and ExpR2 AHL receptors function as activators of *rsmA*, the global repressor of the 252 AHL-regulon; therefore, we expected the *expl expR1 expR2* mutant to have the same 253 levels of *evf* expression as the *expl* mutant supplemented with AHLs. However, we found 254 that the expl expR1 expR2 mutant has lower levels of evf expression than both the expl

255 supplemented with AHLs and the WT. Moreover, we showed that complementation of the 256 *expl expR1 expR2* mutant with AHLs does not change the level of *evf* expression. These 257 results show that *expR1* and *expR2* are required for *Ecc15's* response to AHLs, but also 258 indicate that an additional AHL-independent regulator, is playing a role in the regulation of 259 evf in this bacterium. One possibility is that Ecc15 has additional orphan luxR genes, DNA 260 binding proteins homologous to LuxR that lack a cognate AHLs synthase. These orphan 261 genes are divided in two categories, those that have both a LuxR DNA and an AHL binding 262 domain, such as ExpR2, and those that have only the typical LuxR DNA binding domain 263 (57), such as vqsR in Pseudomonas aeruginosa. In this bacterium, in response to an 264 unknown signal, vasR has been found to downregulate expression of virulence through 265 binding to the promoter region of the quorum sensing receptor *qscR*, inhibiting its expression without responding to AHLs (58). Because addition of exogenous AHLs to the 266 267 expl expR1 expR2 mutant does not change the level of expression, this unknown 268 regulator is more likely to lie within the second category of orphan LuxR receptors. Our 269 data also suggests that this unknown regulator could be repressed by rsmA, since the expl 270 mutant shows lower levels of evf expression than expl expR1 expR2. In Erwinia spp. 271 another layer of regulation required for PCWDE expression is the detection of external 272 environmental signals like pectin, a component of the plant cell wall (34, 55, 59, 60, 35, 51, 47, 48). In the absence of plant signals, transcription of PCWDE is repressed. Unlike in 273 274 the regulation of PCWDE in *Erwinia spp.*, in our experimental setting we have no evidence 275 for the need of a host signal since we can detect *evf* expression in cells grown in LB 276 without the need for other signals. However, this does not exclude the possibility that

environmental signals, perhaps related to insect derived compounds, have a role in the
overall levels of *evf* expression.

279 It has been hypothesized that *evf* was horizontally acquired by *Ecc15* and a few 280 other Erwinia spp. As these phytopathogens often use insects as vectors, one hypothesis 281 for the selective benefit of acquiring *evf* is that this gene might be important to favor 282 bacterial transmission by strengthening the interaction of *Ecc15* with *Drosophila*. This 283 hypothesis is supported by our results showing that *evf* allows *Ecc15* to have higher loads 284 at the initial stage of *Drosophila* larval infection. However, the rate of *Ecc15* elimination 285 post-infection was the same in WT and an *evf* mutant. This suggests that *evf* is promoting 286 transmission of *Ecc15* by increasing the overall number of bacteria that reach the gut. 287 Moreover, we show here that larvae infected with Ecc15 are developmentally impaired 288 when compared to non-infected larvae, and this developmental delay is dependent on 289 evf. These results are in agreement with previous reports showing that larvae infected 290 with WT Ecc15 were smaller due to inhibition of the larval proteolytic activity promoted 291 by Drosophila-associated Lactobacillus species (61). Additionally, infection of Drosophila 292 adults and larvae with WT Ecc15 causes cell damage, which induces epithelial cell death, 293 leading to activation of immunity, stem cell regeneration programs and 294 differentiation/modification of the cellular structure of the gut, essential for its repair (7, 16, 62). These studies, together with our results, show that *evf* expression in *Ecc15* has an 295 296 overall deleterious effect on the host, and thus acquisition of *evf*, which enables higher 297 host loads and is presumably beneficial for bacterial transmission, seems to have resulted in a tradeoff for host fitness. 298

299	Due to a lack of genetic information, tracing the evolutionary history of this protein
300	is challenging. It was previously reported that, besides <i>Ecc15, evf</i> was only identified in
301	strain <i>Ecc1488</i> (16, 17). By comparing the amino acid sequence of Evf to recent genome
302	databases, we found only a few more candidate ortholog proteins with amino acid
303	sequence identity higher than 60% (Table S3). The highest sequence similarities found,
304	besides those of other Erwinia spp., corresponded to proteins from Cedecea neteri,
305	Enterobacter AG1, Rahnella sp., Klebsiella aerogenes and Escherichia coli (Table S3). K.
306	aerogenes and E. coli are ubiquitous bacterial species that can colonize the gut of different
307	animals, particularly mammals, but also insects (63–65). Similarly to Erwinia spp., Rahnella
308	sp. and C. neteri are bacterial species often isolated from plants that also establish gut
309	associations with insects (64, 66, 67). Enterobacter AG1 is a bacterial species isolated
310	from the gut of mosquitos that has been shown to decrease the ability of Plasmodium
311	falciparum to colonize the gut (68, 69). Since the structural fold of Evf is unique (70) and
312	that protein structure is more conserved than sequence identity (71), we predicted the
313	secondary structures of these ORFs using phyre2 (72). We found that the predicted
314	secondary structure of all five ORFs is identical to Evf (Table S3). Importantly, the cysteine
315	residue (position 209), which in <i>Ecc15</i> Evf is palmitoylated, a post-translational
316	modification essential for its function (70), is conserved in all the five ORFs. Interestingly,
317	<i>evf</i> -like genes with low amino acid sequence identity (lower than 40%), but with a
318	predicted secondary structure highly similar to that of the Evf (72), can be found in other
319	bacteria such as Vibrio sp. or the major insect pathogen Photorhabdus luminescens ((18)
320	Locus PLU2433). P. luminescens colonizes the gut of Heterorhabditis bacteriophora, an

321	insect-preying nematode (73, 74). The nematode enters through the insect's respiratory
322	and/or digestive tract and regurgitates the bacteria into its hemolymph. Once in the
323	hemolymph, Photorhabdus produces a battery of toxins that kills the insect allowing the
324	nematode to feed on the corpse, favoring <i>Photorhabdus</i> recolonization (75–77).
325	Photorhabdus possesses several genes possibly involved in the establishment of the
326	interaction with the host, many of which are regulated by quorum sensing (78, 79). Thus,
327	it is possible that the Evf ortholog from <i>Photorhabdus</i> is involved in the mechanisms
328	required for colonization of the nematode, or in the pathogenicity towards the insect. Our
329	results indicate that Evf orthologs can be found in bacteria with apparently different
330	lifestyles. However, all of these bacteria encounter multiple hosts mainly through the gut,
331	including insects, and undergo rapid environmental changes. It is possible that Evf has a
332	conserved role in host transition mainly through insect colonization or pathogenesis.
333	Quorum sensing regulation is associated with tight control of density dependent
334	activation of genes encoding functions that are often essential for the establishment of
335	host-microbe interactions (26). For instance, in the interaction between the squid
336	Euprymna scolopes and V. fischeri, mutants in the quorum sensing system are less
337	efficient in persisting in the light organ, being outcompeted by other strains (80, 81). Here
338	we show that in <i>Ecc15</i> , besides regulating PCWDE in plant infections, employs quorum
339	sensing for the <i>evf</i> -mediated increased bacterial loads in <i>Drosophila</i> larvae. Our study also
340	demonstrates that the quorum sensing and GAC regulatory pathways have a strong effect
341	in the Evf-mediated developmental delay caused by <i>Ecc15</i> . Moreover, overexpression of
342	evf leads to a complete developmental arrest of larvae, eventually killing them. Therefore,

343 one possible benefit of having *evf* expression under the control of these networks might be to minimize the detrimental effect that the *evf*-dependent infection has on the insect 344 345 host while still enabling a transient infection. On the other hand, insects are attracted to 346 rotten plant tissue, and if evf is important for promoting the interaction of Ecc15 with its 347 insect vector (*Drosophila*), synchronization of the expression of *evf* and the PCWDE might 348 have been selected as advantageous for bacterial dissemination. This phenomenon, called 349 predictive behavior, is particularly common in symbiotic relationships where the microbe 350 often experiences a predictable series of cyclic environments (82). In mammalian hosts, a 351 very predictable change when transitioning from the outside environment to the oral 352 cavity is the immediate increase in temperature followed by a decrease in oxygen. This 353 phenomenon has been described for *E. coli* gut colonization where, coupled to an increase in temperature, downregulation of genes related to aerobic respiration is observed (83). 354 355 In the case of *Ecc15* it is possible that control of PCWDE and *evf* expression is intertwined 356 so that following colonization of the plant, evf expression is triggered, anticipating the 357 appearance of the insect vector which is attracted to rotten plant tissue, and thus 358 maximizing the probability of establishing the interaction with this host vector. 359 Our results show that, in *Ecc15*, the regulatory networks responding to self-360 produced quorum sensing signals and physiological cues sensed by the GAC system are 361 used to control expression of traits required to infect different hosts. Thus, the signal 362 transduction mechanisms are the same even though the functions involved in the interactions with each plant or insect host are largely different. Therefore, our findings 363

364	reinforce the central role of	auorum sensing in the	regulatory circuitr	v controlling the
504		quorum sensing in the	i cguiutoi y cii cuiti	y controlling the

- 365 array of traits used by bacteria to interact with diverse hosts.
- 366

367 Materials and Methods

368 Bacterial strains, plasmids, and culture conditions.

369 The strains and plasmids used in this study are listed in Table S1 of the 370 supplementary material. All bacterial strains used are derived from wild type (WT) Ecc15 371 strain (7). Ecc15 and mutants were grown at 30°C with aeration in Luria-Bertani medium 372 (LB). When specified, medium was supplemented with 0.4% polygalacturonic acid (PGA; 373 Sigma P3850), to induce the expression of PCWDEs. *E. coli* DH5 α was used for cloning 374 procedures and was grown at 37°C with aeration in LB. When required, antibiotics were used at the following concentrations (mg liter⁻¹): ampicillin (Amp), 100; kanamycin (Kan), 375 376 50; spectinomycin (Spec), 50; chloramphenicol (Cm), 25. To assess bacterial growth, 377 optical density at 600 nm (OD₆₀₀) was determined in a Thermo Spectronic Helios delta 378 spectrophotometer. 379

380 Genetic and molecular techniques.

All primer sequences used in this study are listed in Table S2 in supplemental material. *P. carotovorum Ecc15* deletion mutants listed in Table S1 were constructed by chromosomal gene replacement with an antibiotic marker using the λ -Red recombinase system (84). Plasmid pLIPS, able to replicate in *Ecc15* and carrying the arabinose-inducible λ -Red recombinase system was used (34). Briefly, the DNA region of the target gene,

386 including approximately 500 bp upstream and downstream from the gene, was amplified 387 by PCR and cloned into pUC18 (85) using restriction enzymes. These constructs, containing 388 the target gene and its flanking regions, were divergently amplified by PCR, to introduce a 389 *Xhol* restriction site in the 5' and 3' regions and to remove the native coding sequence of 390 the target gene. The kanamycin cassette from pkD4 was amplified with primers also 391 containing the *Xho*I restriction site. The fragment containing the kanamycin cassette was 392 then digested with Xhol and was introduced into the Xhol-digested PCR fragment carrying 393 the flanking regions of the target gene. The final construct, containing the kanamycin 394 cassette flanked by the upstream and downstream regions of the target gene was then 395 amplified by PCR, and approximately 2 micrograms of DNA were electroporated into the parental strain (FDV31) expressing the λ -Red recombinase system from pLIPS, to favour 396 397 recombination. To construct the plasmid carrying the promoter *evf* fused to GFP 398 (pFDV54), a fragment of 503 bp containing the *evf* promoter was amplified from WT *Ecc15* 399 DNA with the primers P1194 and P1195. This fragment was then digested with HindIII and 400 SphI and ligated to pUC18. GFP was amplified from the pCMW1(86) vector using primer 401 P0576 and P0665. Both the GFP and pUC18-Pevf were digested with SphI and BamHI, 402 ligated and 2 μ l of the ligation reaction were used to transform Dh5 α (pFDV54). The same 403 procedure was used for the Phor::gfp fusion using primers P1351 and P1352 for promoter 404 amplification (493 bp) and primers P1353 and P1354 for GFP amplification. Digestions 405 were made with enzymes *HindIII/PstI* and *PstI/XbaI* (pFDV84). For *hor* overexpression, a *Nco*l site was introduced in pOM1-P_{evf}::*gfp* with primers P1309 and P1310. *hor* was 406 407 amplified using primers P1311 and Primers 1312 from WT template DNA. Then both the

408	plasmid and the fragment carrying hor were digested with Ncol and Sacl and subsequently
409	ligated (pFDV104).

410	PCR for cloning purposes was performed using the proofreading Bio-X-ACT
411	(Bioline) enzyme. Other PCRs were performed using Dream Taq polymerase (Fermentas).
412	Digestions were performed with Fast Digest Enzymes (Fermentas), and ligations were
413	performed with T4 DNA ligase (New England Biolabs). All cloning steps were performed in
414	either <i>E. coli</i> DH5 α or WT <i>Ecc15</i> . All mutants and constructs were confirmed by PCR
415	amplification and subsequent Sanger sequencing performed at the Instituto Gulbenkian
416	de Ciência sequencing facility.
417	
418	Pectate lyase activity assay.
419	<i>Ecc15</i> and mutants were grown overnight in LB with 0.4% PGA, inoculated into
420	fresh media to a starting OD_{600} of 0.05 and incubated at 30°C with aeration. After 6 hours
421	of incubation, aliquots were collected to evaluate growth and to analyse pectate lyase
422	(Pel) activity in cell-free supernatants, using the previously described procedure (55)
423	based on the thiobarbituric acid colorimetric method (87). Each experiment included at
424	least 5 independent cultures per genotype, and was repeated on 3 independent days.
425	
426	Plant virulence assay.
427	Plant virulence was analysed by assessing the maceration of potato tubers with the
428	protocol adapted from (34, 88). Potatoes were washed and surface sterilized by soaking
429	for 10 min in 10% bleach, followed by 10 min in 70% ethanol. Overnight cultures in LB

430	broth were washed twice and diluted to an OD600 of 0.05 in phosphate-buffered saline
431	(PBS). Thirty-microliter aliquots were then used to inoculate the previously punctured
432	potatoes. Potato tubers were incubated at 28°C at a relative humidity above 90% for 48 h.
433	After incubation, potatoes were sliced, and macerated tissue was collected and weighed.
434	
435	Promoter expression assays.
436	<i>Ecc15</i> carrying the different plasmid-borne promoter reporter fusions were grown
437	overnight in LB supplemented with Spectinomycin (LB + Spec), inoculated into fresh
438	medium at a starting OD ₆₀₀ of 0.05 and incubated at 30°C with aeration. At the indicated

439 timepoints, aliquots were collected to assess growth and the expression of the reporter 440 fusion. For the analyses of reporter expression, aliquots of the cultures were diluted 1:100 441 in PBS and expression was measured by flow cytometry (LSRFortessa; BD) and analysed 442 with Flowing Software v 2.5.1, as previously described (55). A minimum of 10,000 green 443 fluorescent protein (GFP)-positive single cells were acquired per sample. Expression of the 444 promoter-gfp fusions is reported as the median GFP expression of GFP-positive single cells 445 in arbitrary units. Each experiment included at least 5 independent cultures per genotype, 446 and was repeated on 3 independent days.

447

Drosophila Stocks 448

DrosDel w^{1118} isogenic stock (w^{1118} iso) was used in all experiments (89, 90). Stocks 449 450 were maintained at 25°C in standard corn meal fly medium composed of 1.1 L water, 45 g molasses, 75 g of sugar, 10 g agar, 70 g cornmeal, 20 g yeast. Food was autoclaved and 451

452 cooled to 45°C before adding 30 mL of a solution containing 0.2 g of carbendazim (Sigma)
453 and 100 g of methylparaben (Sigma) in 1 L of absolute ethanol. Experiments were

454 performed at 28°C

- 455
- 456

6 **Developmental delay and bacterial CFUs assays**

457 Egg laying was performed in cages containing adult flies at a ratio of 3 females to 1 458 male. To synchronize the embryo stage, flies were initially incubated for 1 hour at 25°C to lay prior fertilized eggs. After this initial incubation, flies were transferred to new cages 459 460 where eggs were laid for 4 to 6 hours in the presence of standard corn meal fly medium. 461 After this period, eggs were removed and incubated at 25°C for 72 hours to obtain L3-462 stage larvae. For bacterial infections, third-instar larvae were placed in a 2 ml Eppendorf 463 containing 200 μ l of concentrated bacteria pellet (OD₆₀₀ = 200) from an overnight culture 464 and 400 µl of standard corn meal fly medium. Larvae, bacteria and food were then 465 thoroughly mixed with a spoon, the Eppendorf was closed with a foam plug and incubated 466 at room temperature for 30 min. The mix was then transferred to a 25 ml plastic tube 467 containing 7.5 ml of standard corn-meal fly medium and incubated at 28°C. To assess 468 development of the larvae post-infection pupa were count every 12 hours for 5 days. For 469 CFU counts, larvae were inoculated as described above. At each time point, 5 larvae were 470 randomly collected, surface sterilized for 10 seconds in ethanol 70% and washed with 471 miliQ water. Individual larvae were then transferred to Eppendorfs containing 300μ l of 1x PBS and homogenized with a blender. The homogenate was diluted 100-fold and serial 472 473 dilutions were plated in LB. Plates were incubated overnight at 30°C.

474

475 Statistical analysis

476	Statistical analyses were performed in R(91) and graphs were generated using the
477	package ggplot2(92) and GraphPad. All experiments were analysed using linear mixed-
478	effect models [package Ime4(93)]. Significance of interactions between factors was tested
479	by comparing models fitting the data with and without the interactions using analysis of
480	variance (ANOVA). Models were simplified when interactions were not significant.
481	Multiple comparisons of the estimates from fitted models were performed with a Tukey
482	HSD (honestly significant difference) test (packages ImerTest(94) and multicomp(95)). To
483	each statistical group a letter is attributed, different letters stand for significant statistical
484	difference.
485	
486	Data availability
487	Data will be fully available and without restriction upon request.
488	
489	Acknowledgments
490	We thank Joana Amaro for technical assistance, Rita Valente, Vitor Cabral, Roberto
491	Balbontín, Tanja Dapa and André Carvalho for suggestions and helpful comments on the
492	manuscript. We are very grateful to Bruno Lemaitre (EPFL) for sharing protocols and Ecc15
493	strain.
494	
495	Funding

496		K.B.X., L.T. and F.J.D.V. acknowledge support from Portuguese national funding	
497	age	ncy Fundação para a Ciência e Tecnologia (FCT) for individual grants IF/00831/2015,	
498	IF/0	0839/2015 and SRFH/BD/113986/2015 within the scope of the PhD program	
499	Mol	ecular Biosciences PD/00133/2012, respectively. This work was supported by the	
500	rese	earch infrastructure ONEIDA and CONGENTO projects (LISBOA-01-0145-FEDER-016417	
501	and	LISBOA-01-0145-FEDER-022170) co-financed by Lisboa Regional Operational	
502	Pro	gramme (Lisboa2020), under the PORTUGAL 2020 Partnership Agreement, through the	
503	European Regional Development Fund (ERDF) and FCTto K.B.X and L.T., the Fundação para		
504	a Ciência e Tecnologia grant PTDC/BIA-MIC/31984/2017, to L.T. and Marie Curie (PIEF-GA-		
505	2011-301365) to P.N.J		
506 507	Ref	erences	
508	1.	Eigenbrode SD, Bosque-Pérez NA, Davis TS. 2018. Insect-Borne Plant Pathogens and	
510		Their Vectors: Ecology, Evolution, and Complex Interactions. Annu Rev Entomol	
511		63:169–191.	
512	2.	Nadarasah G, Stavrinides J. 2011. Insects as alternative hosts for phytopathogenic	
513		bacteria. FEMS Microbiol Rev 35:555–575.	
514	3.	Vallet-Gely I, Lemaitre B, Boccard F. 2008. Bacterial strategies to overcome insect	
515		defences. Nat Rev Microbiol 6:302–313.	
516	4.	Matthews KR. 2011. Controlling and Coordinating Development in Vector-	
517		Transmitted Parasites. Science 331:1149–1153.	

518	5.	Lemaitre B, Hoffmann J. 2007. The host defense of Drosophila melanogaster. Annu
519		Rev Immunol 25:697–743.
520	6.	Buchon N, Broderick NA, Lemaitre B. 2013. Gut homeostasis in a microbial world:
521		insights from <i>Drosophila melanogaster</i> . Nat Rev Microbiol 11:615–626.
522	7.	Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B. 2009. Drosophila
523		Intestinal Response to Bacterial Infection: Activation of Host Defense and Stem Cell
524		Proliferation. Cell Host Microbe 5:200–211.
525	8.	Leulier F, Parquet C, Pili-Floury S, Ryu J-H, Caroff M, Lee W-J, Mengin-Lecreulx D,
526		Lemaitre B. 2003. The Drosophila immune system detects bacteria through specific
527		peptidoglycan recognition. Nat Immunol 4:478–484.
528	9.	Bae YS, Choi MK, Lee W-J. 2010. Dual oxidase in mucosal immunity and host-microbe
529		homeostasis. Trends Immunol 31:278–287.
530	10.	Redak RA, Purcell AH, Lopes JRS, Blua MJ, Mizell RF, Andersen PC. 2004. The biology
531		of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease
532		epidemiology. Annu Rev Entomol 49:243–270.
533	11.	Menelas B, Block CC, Esker PD, Nutter FW. 2006. Quantifying the Feeding Periods
534		Required by Corn Flea Beetles to Acquire and Transmit Pantoea stewartii. Plant Dis
535		90:319–324.

536	12.	Kloepper JW, Brewer JW, Harrison MD. 1981. Insect transmission of Erwinia
537		carotovora var.carotovora and Erwinia carotovora var.atroseptica to potato plants in
538		the field. Am Potato J 58:165–175.
539	13.	Molina JJ, Harrison MD, Brewer JW. 1974. Transmission of Erwinia carotovora
540		var.atroseptica byDrosophila melanogaster Meig. I. Acquisition and transmission of
541		the bacterium. Am Potato J 51:245–250.
542	14.	Perombelon MCM, Kelman A. 1980. Ecology of the Soft Rot Erwinias. Annu Rev
543		Phytopathol 18:361–387.
544	15.	Shapiro L, De Moraes CM, Stephenson AG, Mescher MC. 2012. Pathogen effects on
545		vegetative and floral odours mediate vector attraction and host exposure in a
546		complex pathosystem. Ecol Lett 15:1430–1438.
547	16.	Basset A. 2000. The phytopathogenic bacteria Erwinia carotovora infects Drosophila
548		and activates an immune response. Proc Natl Acad Sci 97:3376–3381.
549	17.	Basset A, Tzou P, Lemaitre B, Boccard F. 2003. A single gene that promotes
550		interaction of a phytopathogenic bacterium with its insect vector, Drosophila
551		<i>melanogaster</i> . EMBO Rep 4:205–209.
552	18.	Muniz CA, Jaillard D, Lemaitre B, Boccard F. 2007. Erwinia carotovora Evf antagonizes
553		the elimination of bacteria in the gut of Drosophila larvae. Cell Microbiol 9:106–119.

554	19.	Kamareddine L, Wong ACN, Vanhove AS, Hang S, Purdy AE, Kierek-Pearson K, Asara
555		JM, Ali A, Morris Jr JG, Watnick PI. 2018. Activation of Vibrio cholerae quorum
556		sensing promotes survival of an arthropod host. Nat Microbiol 3:243–252.
557	20.	Enomoto S, Chari A, Clayton AL, Dale C. 2017. Quorum Sensing Attenuates Virulence
558		in Sodalis praecaptivus. Cell Host Microbe 21:629–636.e5.
559	21.	Perchat S, Talagas A, Poncet S, Lazar N, Li de la Sierra-Gallay I, Gohar M, Lereclus D,
560		Nessler S. 2016. How Quorum Sensing Connects Sporulation to Necrotrophism in
561		Bacillus thuringiensis. PLOS Pathog 12:e1005779.
562	22.	Park S-J, Kim S-K, So Y-I, Park H-Y, Li X-H, Yeom DH, Lee M-N, Lee B-L, Lee J-H. 2014.
563		Protease IV, a quorum sensing-dependent protease of Pseudomonas aeruginosa
564		modulates insect innate immunity. Mol Microbiol 94:1298–1314.
565	23.	Fuqua WC, Winans SC, Greenberg EP. 1994. Quorum sensing in bacteria: the LuxR-
566		LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–
567		275.
568	24.	Bassler BL. 1999. How bacteria talk to each other: regulation of gene expression by
569		quorum sensing. Curr Opin Microbiol 2:582–587.
570	25.	Waters CM, Bassler BL. 2005. Quorum sensing: cell-to-cell communication in
571		bacteria. Annu Rev Cell Dev Biol 21:319–346.

572	26.	Mukherjee S, Bassler BL. 2019. Bacterial quorum sensing in complex and dynamically
573		changing environments. Nat Rev Microbiol 17:371–382.
574	27.	Mattinen L, Tshuikina M, Mäe A, Pirhonen M. 2004. Identification and
575		Characterization of Nip, Necrosis-Inducing Virulence Protein of Erwinia carotovora
576		subsp. <i>carotovora</i> . Mol Plant Microbe Interact 17:1366–1375.
577	28.	Saarilahti HT, Henrissat B, Tapio Palva E. 1990. CelS: a novel endoglucanase identified
578		from Erwinia carotovora subsp. carotovora. Gene 90:9–14.
579	29.	Marits R, Koiv V, Laasik E, Mae A. 1999. Isolation of an extracellular protease gene of
580		Erwinia carotovora subsp. carotovora strain SCC3193 by transposon mutagenesis and
581		the role of protease in phytopathogenicity. Microbiology 145:1959–1966.
582	30.	Mäe A, Heikinheimo R, Palva ET. 1995. Structure and regulation of the Erwinia
583		carotovora subspecies carotovora SCC3193 cellulase gene celV1 and the role of
584		cellulase in phytopathogenicity. Mol Gen Genet MGG 247:17–26.
585	31.	Pirhonen M. 1991. Identification of Pathogenicity Determinants of Erwinia
586		carotovora subsp. carotovora by Transposon Mutagenesis. Mol Plant Microbe
587		Interact 4:276.
588	32.	Eriksson ARB, Andersson RA, Pirhonen M, Palva ET. 1998. Two-Component
589		Regulators Involved in the Global Control of Virulence in Erwinia carotovora subsp.
590		carotovora. Mol Plant Microbe Interact 11:743–752.

591	33.	Andersson RA, Eriksson AR, Heikinheimo R, Mäe A, Pirhonen M, Kõiv V, Hyytiäinen H,
592		Tuikkala A, Palva ET. 2000. Quorum sensing in the plant pathogen Erwinia carotovora
593		subsp. carotovora: the role of expR(Ecc). Mol Plant-Microbe Interact MPMI 13:384–
594		393.
595	34.	Valente RS, Nadal-Jimenez P, Carvalho AFP, Vieira FJD, Xavier KB. 2017. Signal
596		Integration in Quorum Sensing Enables Cross-Species Induction of Virulence in
597		Pectobacterium wasabiae. mBio 8.
598	35.	Pirhonen M, Flego D, Heikinheimo R, Palva ET. 1993. A small diffusible signal
599		molecule is responsible for the global control of virulence and exoenzyme production
600		in the plant pathogen Erwinia carotovora. EMBO J 12:2467–2476.
601	36.	von Bodman SB, Ball JK, Faini MA, Herrera CM, Minogue TD, Urbanowski ML, Stevens
602		AM. 2003. The quorum sensing negative regulators EsaR and ExpR(Ecc), homologues
603		within the LuxR family, retain the ability to function as activators of transcription. J
604		Bacteriol 185:7001–7007.
605	37.	Nealson KH. 1977. Autoinduction of bacterial luciferase. Occurrence, mechanism and
606		significance. Arch Microbiol 112:73–79.
607	38.	Nealson KH, Platt T, Hastings JW. 1970. Cellular control of the synthesis and activity
608		of the bacterial luminescent system. J Bacteriol 104:313–322.
609	39.	Tsai C-S, Winans SC. 2010. LuxR-type quorum-sensing regulators that are detached
610		from common scents. Mol Microbiol 77:1072–1082.

611	40.	Rutherford ST, Bassler BL. 2012. Bacterial Quorum Sensing: Its Role in Virulence and
612		Possibilities for Its Control. Cold Spring Harb Perspect Med 2:a012427–a012427.
613	41.	Heeb S, Haas D. 2001. Regulatory roles of the GacS/GacA two-component system in
614		plant-associated and other gram-negative bacteria. Mol Plant-Microbe Interact
615		MPMI 14:1351–1363.
616	42.	Lapouge K, Schubert M, Allain FH-T, Haas D. 2007. Gac/Rsm signal transduction
617		pathway of γ -proteobacteria: from RNA recognition to regulation of social behaviour:
618		Regulation of RsmA/CsrA binding to RNA. Mol Microbiol 67:241–253.
619	43.	Hrabak EM, Willis DK. 1992. The lemA gene required for pathogenicity of
620		Pseudomonas syringae pv. syringae on bean is a member of a family of two-
621		component regulators. J Bacteriol 174:3011–3020.
622	44.	Babitzke P, Romeo T. 2007. CsrB sRNA family: sequestration of RNA-binding
623		regulatory proteins. Curr Opin Microbiol 10:156–163.
624	45.	Bejerano-Sagie M, Xavier KB. 2007. The role of small RNAs in quorum sensing. Curr
625		Opin Microbiol 10:189–198.
626	46.	Chatterjee A, Cui Y, Hasegawa H, Leigh N, Dixit V, Chatterjee AK. 2005. Comparative
627		Analysis of Two Classes of Quorum-Sensing Signaling Systems That Control
628		Production of Extracellular Proteins and Secondary Metabolites in Erwinia carotovora
629		Subspecies. J Bacteriol 187:8026–8038.

630	47.	Praillet T, Nasser W, Robert-Baudouy J, Reverchon S. 1996. Purification and
631		functional characterization of PecS, a regulator of virulence-factor synthesis in
632		Erwinia chrysanthemi. Mol Microbiol 20:391–402.
633	48.	Liu Y, Cui Y, Mukherjee A, Chatterjee AK. 1998. Characterization of a novel RNA
634		regulator of Erwinia carotovora ssp. carotovora that controls production of
635		extracellular enzymes and secondary metabolites. Mol Microbiol 29:219–234.
636	49.	Cui Y, Chatterjee A, Hasegawa H, Dixit V, Leigh N, Chatterjee AK. 2005. ExpR, a LuxR
637		homolog of Erwinia carotovora subsp. carotovora, activates transcription of rsmA,
638		which specifies a global regulatory RNA-binding protein. J Bacteriol 187:4792–4803.
639	50.	Sjöblom S, Brader G, Koch G, Palva ET. 2006. Cooperation of two distinct ExpR
640		regulators controls quorum sensing specificity and virulence in the plant pathogen
641		<i>Erwinia carotovora</i> . Mol Microbiol 60:1474–1489.
642	51.	Cui Y, Chatterjee A, Liu Y, Dumenyo CK, Chatterjee AK. 1995. Identification of a global
643		repressor gene, rsmA, of Erwinia carotovora subsp. carotovora that controls
644		extracellular enzymes, N-(3-oxohexanoyl)-L-homoserine lactone, and pathogenicity
645		in soft-rotting Erwinia spp. J Bacteriol 177:5108–5115.
646	52.	Chatterjee A, Cui Y, Liu Y, Dumenyo CK, Chatterjee AK. 1995. Inactivation of RsmA
647		leads to overproduction of extracellular pectinases, cellulases, and proteases in
648		Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-

649	sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone. Appl Environ Micro	
650	61:1959–1967.	

- 53. Thomson NR, Cox A, Bycroft BW, Stewart GS, Williams P, Salmond GP. 1997. The rap
- and hor proteins of Erwinia, Serratia and Yersinia: a novel subgroup in a growing
- 653 superfamily of proteins regulating diverse physiological processes in bacterial
- 654 pathogens. Mol Microbiol 26:531–544.
- 55 54. Sjöblom S, Harjunpää H, Brader G, Palva ET. 2008. A novel plant ferredoxin-like
- protein and the regulator Hor are quorum-sensing targets in the plant pathogen

657 Erwinia carotovora. Mol Plant-Microbe Interact MPMI 21:967–978.

55. Valente RS, Xavier KB. 2016. The Trk Potassium Transporter Is Required for RsmB-

659 Mediated Activation of Virulence in the Phytopathogen Pectobacterium wasabiae. J

- 660 Bacteriol 198:248–255.
- 661 56. Ludwig A, Tengel C, Bauer S, Bubert A, Benz R, Mollenkopf HJ, Goebel W. 1995. SlyA,
- a regulatory protein from *Salmonella typhimurium*, induces a haemolytic and pore-
- forming protein in *Escherichia coli*. Mol Gen Genet MGG 249:474–486.
- 664 57. Patankar AV, González JE. 2009. Orphan LuxR regulators of quorum sensing. FEMS
 665 Microbiol Rev 33:739–756.
- 58. Liang H, Deng X, Ji Q, Sun F, Shen T, He C. 2012. The Pseudomonas aeruginosa Global

667 Regulator VqsR Directly Inhibits QscR To Control Quorum-Sensing and Virulence

668 Gene Expression. J Bacteriol 194:3098–3108.

669	59.	Reverchon S, Nasser W, Robert-Baudouy J. 1991. Characterization of <i>kdgR</i> , a gene of
670		Erwinia chrysanthemi that regulates pectin degradation. Mol Microbiol 5:2203–2216.
671	60.	Reverchon S, Expert D, Robert-Baudouy J, Nasser W. 1997. The cyclic AMP receptor
672		protein is the main activator of pectinolysis genes in Erwinia chrysanthemi. J
673		Bacteriol 179:3500–3508.
674	61.	Erkosar B, Storelli G, Mitchell M, Bozonnet L, Bozonnet N, Leulier F. 2015. Pathogen
675		Virulence Impedes Mutualist-Mediated Enhancement of Host Juvenile Growth via
676		Inhibition of Protein Digestion. Cell Host Microbe 18:445–455.
677	62.	Houtz P, Bonfini A, Bing X, Buchon N. 2019. Recruitment of Adult Precursor Cells
678		Underlies Limited Repair of the Infected Larval Midgut in Drosophila. Cell Host
679		Microbe 26:412–425.e5.
680	63.	Murphy KM, Teakle DS, Macrae IC. 1994. Kinetics of Colonization of Adult
681		Queensland Fruit Flies (Bactrocera tryoni) by Dinitrogen-Fixing Alimentary Tract
682		Bacteria. Appl Environ Microbiol 60:2508–2517.
683	64.	Morales-Jiménez J, Zúñiga G, Ramírez-Saad HC, Hernández-Rodríguez C. 2012. Gut-
684		Associated Bacteria Throughout the Life Cycle of the Bark Beetle Dendroctonus
685		rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and Their Cellulolytic
686		Activities. Microb Ecol 64:268–278.
687	65.	Solà-Ginés M, González-López JJ, Cameron-Veas K, Piedra-Carrasco N, Cerdà-Cuéllar
688		M, Migura-Garcia L. 2015. Houseflies (Musca domestica) as Vectors for Extended-

689	Spectrum β-Lactamase-Producing Escherichia coli on Spanish Broiler Farms. App	l
-----	---	---

- 690 Environ Microbiol 81:3604–3611.
- 691 66. Park D-S, Oh H-W, Jeong W-J, Kim H, Park H-Y, Bae KS. 2007. A culture-based study of
- the bacterial communities within the guts of nine longicorn beetle species and their
- 693 exo-enzyme producing properties for degrading xylan and pectin. J Microbiol Seoul
- 694 Korea 45:394–401.
- 695 67. Jang EB, Nishijima KA. 1990. Identification and Attractancy of Bacteria Associated
- 696 with Dacus dorsalis (Diptera: Tephritidae). Environ Entomol 19:1726–1731.
- 697 68. Jiang J, Alvarez C, Kukutla P, Yu W, Xu J. 2012. Draft genome sequences of
- 698 Enterobacter sp. isolate Ag1 from the midgut of the malaria mosquito Anopheles699 gambiae. J Bacteriol 194:5481.
- 700 69. Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M,
- 701 Dimopoulos G. 2011. Natural Microbe-Mediated Refractoriness to Plasmodium
- 702 Infection in Anopheles gambiae. Science 332:855–858.
- 703 70. Quevillon-Cheruel S, Leulliot N, Muniz CA, Vincent M, Gallay J, Argentini M, Cornu D,
- 704 Boccard F, Lemaître B, van Tilbeurgh H. 2009. Evf, a Virulence Factor Produced by the
- 705 Drosophila Pathogen Erwinia carotovora, Is an S-Palmitoylated Protein with a New
- Fold That Binds to Lipid Vesicles. J Biol Chem 284:3552–3562.
- 707 71. Gibrat J-F, Madej T, Bryant SH. 1996. Surprising similarities in structure comparison.
- 708 Curr Opin Struct Biol 6:377–385.

709	72.	Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The Phyre2 web
710		portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858.
711	73.	Ciche TA, Kim K -s., Kaufmann-Daszczuk B, Nguyen KCQ, Hall DH. 2008. Cell Invasion
712		and Matricide during Photorhabdus luminescens Transmission by Heterorhabditis
713		bacteriophora Nematodes. Appl Environ Microbiol 74:2275–2287.
714	74.	Waterfield NR, Ciche T, Clarke D. 2009. Photorhabdus and a host of hosts. Annu Rev
715		Microbiol 63:557–574.
716	75.	Blackburn null, Golubeva null, Bowen null, Ffrench-Constant null. 1998. A novel
717		insecticidal toxin from Photorhabdus luminescens, toxin complex a (Tca), and its
718		histopathological effects on the midgut of Manduca sexta. Appl Environ Microbiol
719		64:3036–3041.
720	76.	Daborn PJ, Waterfield N, Silva CP, Au CPY, Sharma S, Ffrench-Constant RH. 2002. A
721		single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to
722		persist within and kill insects. Proc Natl Acad Sci U S A 99:10742–10747.
723	77.	Dowling AJ, Daborn PJ, Waterfield NR, Wang P, Streuli CH, ffrench-Constant RH.
724		2004. The insecticidal toxin Makes caterpillars floppy (Mcf) promotes apoptosis in
725		mammalian cells. Cell Microbiol 6:345–353.
726	78.	Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, Bocs S,
727		Boursaux-Eude C, Chandler M, Charles J-F, Dassa E, Derose R, Derzelle S, Freyssinet
728		G, Gaudriault S, Médigue C, Lanois A, Powell K, Siguier P, Vincent R, Wingate V,

729		Zouine M, Glaser P, Boemare N, Danchin A, Kunst F. 2003. The genome sequence of
730		the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol
731		21:1307–1313.
732	79.	Brameyer S, Kresovic D, Bode HB, Heermann R. 2015. Dialkylresorcinols as bacterial
733		signaling molecules. Proc Natl Acad Sci 112:572–577.
734	80.	Visick KL, Foster J, Doino J, McFall-Ngai M, Ruby EG. 2000. Vibrio fischeri lux Genes
735		Play an Important Role in Colonization and Development of the Host Light Organ. J
736		Bacteriol 182:4578–4586.
737	81.	Sun Y, LaSota ED, Cecere AG, LaPenna KB, Larios-Valencia J, Wollenberg MS,
738		Miyashiro T. 2016. Intraspecific Competition Impacts Vibrio fischeri Strain Diversity
739		during Initial Colonization of the Squid Light Organ. Appl Environ Microbiol 82:3082–
740		3091.
741	82.	Cao M, Goodrich-Blair H. 2017. Ready or Not: Microbial Adaptive Responses in
742		Dynamic Symbiosis Environments. J Bacteriol 199.
743	83.	Tagkopoulos I, Liu Y-C, Tavazoie S. 2008. Predictive Behavior Within Microbial
744		Genetic Networks. Science 320:1313–1317.
745	84.	Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in
746		Escherichia coli K-12 using PCR products. Proc Natl Acad Sci 97:6640–6645.

747	85.	Yanisch-Perron C, Vieira J, Messing J. 1985. Improved M13 phage cloning vectors and
748		host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene
749		33:103–119.
750	86.	Waters CM, Bassler BL. 2006. The Vibrio harveyi quorum-sensing system uses shared
751		regulatory components to discriminate between multiple autoinducers. Genes Dev
752		20:2754–2767.
753	87.	Sherwood R. 1966. Pectin lyase and polygalacturonase production by Rhizoctonia
754		solani and other fungi. Phytopathology 56:279
755	88.	McMillan GP, Hedley D, Fyffe L, Pérombelon MCM. 1993. Potato resistance to soft-
756		rot erwinias is related to cell wall pectin esterification. Physiol Mol Plant Pathol
757		42:279–289.
758	89.	Ryder E, Blows F, Ashburner M, Bautista-Llacer R, Coulson D, Drummond J, Webster
759		J, Gubb D, Gunton N, Johnson G, O'Kane CJ, Huen D, Sharma P, Asztalos Z, Baisch H,
760		Schulze J, Kube M, Kittlaus K, Reuter G, Maroy P, Szidonya J, Rasmuson-Lestander A,
761		Ekström K, Dickson B, Hugentobler C, Stocker H, Hafen E, Lepesant JA, Pflugfelder G,
762		Heisenberg M, Mechler B, Serras F, Corominas M, Schneuwly S, Preat T, Roote J,
763		Russell S. 2004. The DrosDel collection: a set of P-element insertions for generating
764		custom chromosomal aberrations in Drosophila melanogaster. Genetics 167:797–
765		813.

766	90.	Chrostek E, Marialva MSP, Esteves SS, Weinert LA, Martinez J, Jiggins FM, Teixeira L.
767		2013. Wolbachia Variants Induce Differential Protection to Viruses in Drosophila
768		melanogaster: A Phenotypic and Phylogenomic Analysis. PLoS Genet 9:e1003896.
769	91.	Team RC . R: A language and environment for statistical computing [Internet]. R
770		Foundation for Statistical Computing. Vienna Austria 2012 Cited 2018 Apr 23
771		Available from: http://www.R-project.org/.
772	92.	Wickham H. ggplot2—Elegant Graphics for Data Analysis Aug 2009. 2009: 1–222.
773	93.	Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting Linear Mixed-Effects Models
774		Using Ime4 . J Stat Softw 67.
775	94.	Kuznetsova A, Brockhoff PB, Christensen RHB. 2017. ImerTest Package: Tests in
776		Linear Mixed Effects Models. J Stat Softw 82.
777	95.	Hothorn T, Bretz F, Westfall P. 2008. Simultaneous inference in general parametric
778		models. Biom J Biom Z 50:346–363.
779	96.	El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson
780		LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE,
781		Finn RD. 2019. The Pfam protein families database in 2019. Nucleic Acids Res
782		47:D427–D432.

Fig. 1 Production of pectate lyase and expression of *evf* is dependent on both quorum sensing and the GAC system. (A) Pectate lyase activity in cell-free supernatants of WT *Ecc15, expl* and *gacA* mutants at 6 hours of growth in LB + 0.4%PGA. n=10 (B) Potato maceration quantification (grams) in potatoes infected with WT *Ecc15, expl, gacA* and *evf* mutants, 48 hours post-infection. n=8 (C) Pevf::*gfp* expression in WT *Ecc15, expl* and *gacA* mutants at 6 hours of growth in LB + Spec. n=5

790	Growth curves of the strains used are shown in Fig.S1. Complementation with AHLs was
791	performed with a mixture of 1uM 3-oxo-C6-HSL and 3-oxo-C8-HSL. Error bars represent
792	standard deviation of the mean. For each panel a representative experiment from three
793	independent experiments is shown (other two experiment are shown in Fig. S2). Statistical
794	analysis taking the data of all the three experiments is shown in Fig. S2.
795	

796

797 Fig. 2. evf regulation by quorum sensing is dependent on ExpR receptors and hor. (A) 798 P_{evf}::gfp expression without (white bars) or with (grey bars) addition of exogenous AHLs in 799 Ecc15, expl, expl expR1 expR2 and hor mutants at 6 hours of growth in LB + Spec. n=5 (B) 800 P_{evf}::gfp expression in Ecc15 expl and gacA mutants containing a plasmid with the P_{evf}::gfp 801 fusion (white bars)or with both P_{lac}::hor and P_{evf}::gfp fusions (grey bars) at 6 hours of growth in LB + Spec. n=5 (C) P_{hor}:: *qfp* expression in WT *Ecc15*, *expl* and *qacA* mutants at 6 hours of 802 803 growth in LB + Spec. n=5 Complementation with AHLs was performed with a mixture of 1µM 804 3-oxo-C6-HSL and 3-oxo-C8-HSL. Error bars represent standard deviation of the mean. For 805 each panel a representative experiment from three independent experiments is shown

- 806 (other two experiment are shown in Fig. S4). Statistical analysis taking the data of all the
- 807 three experiments is shown in Fig. S4.

- 809
- 810

813 D. melanogaster L3 stage larvae were infected with WT Ecc15, evf, expl and gacA mutants 814 for 30 min and then transferred to fresh media. Following the infection period Colony 815 Forming Units (CFUs) of Ecc15 were measured at the specified time points. Each dot 816 represents CFUs of one single larvae (5 larvae per time point). 0 hours after infection 817 correspond to 30 min of confined exposure to 200µl of an OD₆₀₀=200. Representative 818 experiment from three independent experiments (other two experiment are shown in Fig. 819 S5). Statistical analysis of the comparison of the entire infection period for each condition 820 tested using the data of all the three experiments is shown in Fig. S5.

- 831 three experiments. A Tukey HSD test was applied for multiple comparisons using the
- 832 estimates obtain from the model.

834 SUPPEMENTAL FIGURES

835

836 **Table S1.** Strains and plasmids used in this study

Strain	Parental strain	Parental strain Relevant Genotype S				
E. carotovora	1					
Ecc15		Wild-type (WT)	(16)			
FDV31	Ecc15	WT carrying pLIPS	(34)			
FDV51	Ecc15	expl::cm	This study			
FDV42	Ecc15	gacA::kan	This study			
FDV163	Ecc15	explexpR1::cm/expR2::kan	This study			
FDV22	Ecc15	hor::kan	This study			
FDV54	Ecc15	WT carrying pFDV54	This study			
FDV56	FDV51	expl::cm carrying pFDV54	This study			
FDV58	FDV42	gacA::kan carrying pFDV54	This study			
FDV165	FDV163	explexpR1::cm/expR2::kan carrying pFDV54	This study			
FDV60	FDV22	hor::kan carrying pFDV54	This study			
FDV84	Ecc15	WT carrying pFDV84	This study			
FDV92	FDV51	expl::cm carrying pFDV84	This study			
FDV86	FDV42	gacA::kan carrying pFDV84	This study			
FDV104	<i>Ecc15</i> WT carrying pFDV104 This					
FDV114	FDV51	expl::cm carrying pFDV104	This study			
FDV127	FDV42	gacA::kan carrying pFDV104	This study			
Plasmids		Relevant genotype	Source			
pOM1		Cloning vector, Spec ^r				
pUC18		Cloning vector, Amp ^r				
pLIPS	pOt	M1 vector containing λ red recombinase system, Spec ^r	(34)			
pFDV54		pOM1 vector containing promoter <i>evf::gfp, Spec</i> ^r				
pFDV104	pOM1 ve	pOM1 vector containing a promoter lac:: <i>hor</i> and a promoter <i>evf::gfp</i>				
pFDV84	I	pOM1 vector containing a promoter <i>hor::gfp, Spec</i> ^r	This study			

843 Table S2. Primers used in this study

Primer Name	Sequence
1108-Redsystem(pKD46)FWsphI	CCTTACGCATGCCATCGATTTATTATGACAA
1109-Redsystem(pKD46)RVXbal	CGAGCTTCTAGATACCCATGGATTCTTCGTCT
1127-500Hor500RVSall	CGAGCTGTCGACGCTAAACAGGTGCAGACCGT
1128-500Hor500FWSall	CCTTACGTCGACTCAATAAATAGAGTTGTCGCGGG
1130-500gacA500FwSall	CCTTACGTCGACTATGATGTTCACTATGGACG
1131-500gacA500RvSall	CGAGCTGTCGACGATATTGCAGGCAGGGGCG
1087-HorDelRVXhol	CGAGCTCTCGAGCACCTCTCCTTATTGTTAGC
1088-HorDelFWXhoI	CCTTACCTCGAGCTAAATTTGGGTTACGCAGA
1132-DelGacARvXhol	CGAGCTCTCGAGGAATAATTCTCCAAAAAAGGG
1133-DelGacAFwXhol	CCTTACCTCGAGGAGTTTCGATGCGTCGGCAT
1134-DelExpIFwXhoI	CCTTACCTCGACTTGCACAGGCTTGATGAGCTGTA
1135-DelExplRvXhol	CGAGCTCTCGAGCCTCCATTGAAAAGTTAATAC
1136-500ExpI500FwSall	CCTTACGTCGACGAATACCGTGTCTGACAACC
1137-500ExpI500RvSall	CGAGCTGTCGACATCGCCTTTCTCTTGGGAGA
1186-HorDelFw	AATCGTCAGTTATTACAATGGT
1187-HorDelRv	TATGATGAAGCGTTTGCTTGTG
1190-ExpIDelFw	TCAGGCGCTGATGCTGCGTGAT
1191-ExpIDelRv	TCCAGTTATCCCGATGAATGGG
1192-GacADelFw	GGGCGTTACCGCTGACGCGACA
1193-GacADelRV	CAGGCGAACATAGTCAACCTGC
1309-NcolsiteFW	CCTTACCCATGGTTACGAATTCGAGCT
1310-NcoIsiteRV	CCTTACCCATGGTCATAGCTGTTTCCT
1311-horNcoIFW	CCTTACCCATGGAATTGCCATTAGGAT
1312-horSacIRV	CCTTACGAGCTCCTACGCTTGATTTTCATG
1351-pHor(500bp)_FW	CCTTACAAGCTTTAGAGTTGTCGCAGGAGGTG
1352-pHor(500bp)_RV	CCTTACCTGCAGCACCTCTCCTTATTGTTAGC
1194-pEvfFw	CCTTACAAGCTTTGCTTACAGGAAACCAACAA
1195-pEvf_Rv	CGAGCTGCATGCAATCACTCCTATTGTGGTGG
1411-500evf500FwSall	CCTTACGTCGACTGCTTACAGGAAACCAACAA
1412-500evf500RvSall	CGAGCTGTCGACGCATTACTCTACACTTTTCTGAC
1413-EvfDelXhoIFw	CCTTACCTCGAGTTCATAAAATATAGTCAGGG
1414-EvfDelXholRv	CGAGCTCTCGAGAATCACTCCTATTGTGGTGG
1415-EvfDelConfFw	CGTTCCCGTTGAAGTCATGG
1416-EvfDelConfRv	CTGGATCGCTGGCTCCAAAC
1235-500-ExpR2-500SallFw	CCTTACGTCGACGGAGAAGGACGGGAAAGGTA
1236-500-ExpR2-500SallRv	CGAGCTGTCGACTTGATGATTCGGTGCTGGCG
1237-DelExpR2XholFw	CCTTACCTCGAGTGTCATCACGTCTATTTCACT
1238-DelExpR2XholRv	CGAGCTCTCGAGGTAACGGCCTCAATAAAAAGCG
1239-ExpR2DelConFw	CTAAAACATTAGCCTCACCGCCG
1240-ExpR2DelConRv	CTAACATGGGCGCGTGTGTATCG
1241-500-ExpR1-500SallFw	CCTTACGTCGACCACGATTGACGCCAGCTATGA

1242-500-ExpR1-500SallRv	CGAGCTGTCGACGGCATCAAAGATAACACCGT
1243-DelExpR1XholFw	CCTTACCTCGAGAGTTACAGCTCATCAAGCCT
1244-DelExpR1XholRv	CGAGCTCTCGAGCCTCAGTCTGAAGAATCAAC
1245-ExpR1DelConFw	CGCCTGGGATCAGGGAGCAA
1246-ExpR1DelConRv	GAAACGAAATCAGAAGAGCT
1353-GFP(noRBS)_FW	CCTTACCTGCAGATGGCTAGCAAAGGAGAAGAACTCT
1354-GFP(noRBS)_RV	CCTTACTCTAGAACCGGATCCTCAGTTGTACAGTTCA
0665-GFP(noRBS)_RV	CCTTACGGATCCTCAGTTGTACAGTTCATCCATGCCA
0576-GFP(noRBS)_FW	CCTTACGCATGCATGGCTAGCAAAGGAGAAGAACTCT
0531_pOM1seq_R	ATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTC
0752-pOM1_seq2_F	CGCCCAATACGCAAACCGCCTCTCCCCGCGCGT
0782- pKD3/4 Xhol Fw	AGTCTCGAGTTGTGTAGGCTGGAGCTGCTTC
0783- pKD3/4 Xhol Rv	GCGCTCGAGCCATATGAATATCCTCCTTAG

844

845

Table S3. Orthologues of the Evf protein from *Erwinia carotovora Ecc15* present in the

847 NCBI database (October 2019).

Organism	Sequence ID	Locus Tag	Protein annotated function	% of amino acid query cover	% of amino acid identity	Alignment Template	% of confidence in the predicted structure
P. carotovorum Strain 14A	CP034276.1	EIP93_02725	Hypothetical protein	100	100	c2w3yB	100
P. carotovorum Strain Scc1	CP021894.1	SCC1_3840	virulence factor	100	100	c2w3yB	100
P. carotovorum Strain 3-2	CP024842.1	OA04_05770	virulence factor	100	100	c2w3yB	100
Cedecea neteri	WP_039302011	LH86_RS13095	Hypothetical protein	100	70	c2w3yB	100
Enterobacter sp. AG1	WP_008453376	A936_RS00125	Hypothetical protein	99	69	c2w3yB	100
Rahnella sp. AA	WP_101079538	CWS43_23475	Hypothetical protein	100	68	c2w3yB	100
Klebsiella aerogenes	WP_087858097	B9037_RS05845	Hypothetical protein	100	66	c2w3yB	100
Escherichia coli	WP_113374258	DUL12_RS15125	Hypothetical protein	100	66	c2w3yB	100

848

The amino acid sequence from *Ecc15* was used as template to identify orthologues. All Proteins are defined as a complete match in the bidirectional best hits. Alignment template stands for the PDB sequence with the highest confidence used by phyre2 to predict orthologs secondary structure, corresponding to *Ecc15* Evf. All sequences were run in both phyre2 (72) and pfam database (96).

854

Fig. S1. Growth curves of WT *Ecc15, expl* and *gacA* mutants carrying a P_{evf}::*gfp* reporter

fusion.

861

862 Fig. S2. Independent replicates of the experiments shown in Fig. 1 (Production of pectate 863 lyase and expression of *evf* is dependent on both quorum sensing and the GAC system). 864 (A, B) replicates of experiments shown in Fig. 1A, (C) Statistical groups of all three 865 experiments from Fig. 1A, (D, E) replicates of experiments shown in Fig. 1B, (F) Statistical 866 groups of all three experiments from Fig. 1B, (G, H) replicates of experiments shown in Fig.

- 867 1C, (I) Statistical groups of all three experiments from Fig. 1C. Statistical analysis was
- 868 performed using a linear mixed effect model. A Tukey HSD test was applied for multiple
- 869 comparisons using the estimates obtain from the model.

871

872 Fig. S3. AHLs cannot complement intermediate levels of Pevf::gfp expression in a gacA

873 **mutant.** P_{evf}::gfp expression in WT Ecc15 and gacA mutant at 6 hours of growth in LB + Spec.

874 n=3. Complementation with AHLs was performed with a mixture of 1uM 3-oxo-C6-HSL and

875 3-oxo-C8-HSL. Error bars represent standard deviation of the mean.

876

Fig. S4. Independent replicates of the experiment shown in Fig. 2a (*evf* regulation by
quorum sensing is dependent on ExpR receptors and *hor*). (A, B) replicates of experiments
shown in Fig. 2A, (C) Statistical groups of all three experiments from Fig. 2A, (D, E) replicates
of experiments shown in Fig. 2B, (F) Statistical groups of all three experiments from Fig. 2B,
(G, H) replicates of experiments shown in Fig. 2C, (I) Statistical groups of all three
experiments from Fig. 2C. Statistical analysis was performed using a linear mixed effect

- 886 model. A Tukey HSD test was applied for multiple comparisons using the estimates obtain
- from the model.

889

890

Fig. S5. Independent replicates of the experiment shown in Fig. 3 (*Ecc15* loads are higher in *D. melanogaster* larvae orally infected with WT than with mutants impaired in *evf* expression.) (A, B) replicates of experiments shown in Fig. 3, (C) Statistical groups of all three experiments from Fig 3. Statistical analysis was performed using a linear mixed effect model. A Tukey HSD test was applied for multiple comparisons using the estimates obtain from the model.

Fig. S6. Independent replicates of the experiment shown in Fig. 4 (*Ecc15* causes a
developmental delay in *D. melanogaster* larvae that is dependent on *evf*, quorum sensing
and the GAC system). (A, B) replicates of experiments shown in Fig. 4A, (C, D) replicates of
experiments shown in Fig. 4C.