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ABSTRACT

Logical models have been successfully used to describe regulatory and signaling networks without
requiring quantitative data. However, existing data is insufficient to adequately define a unique model,
rendering the parametrization of a given model a difficult task.
Here, we focus on the characterization of the set of Boolean functions compatible with a given
regulatory structure, i.e. the set of all monotone nondegenerate Boolean functions. We then propose
an original set of rules to locally explore the direct neighboring functions of any function in this set,
without explicitly generating the whole set. Also, we provide relationships between the regulatory
functions and their corresponding dynamics.
Finally, we illustrate the usefulness of this approach by revisiting Probabilistic Boolean Networks
with the model of T helper cell differentiation from Mendoza & Xenarios.

Keywords Boolean regulatory networks · Boolean functions · Partial order · Discrete dynamics

1 Introduction

Logical models (Boolean or multi-valued) have been successfully employed to assess dynamical properties of regulatory
and signalling networks [1]. While the definition of such models does not require quantitative kinetic parameters, it
still implies the specification of (logical) regulatory functions to describe the combined effects of regulators upon their
targets. Data on the mechanisms underlying regulatory mechanisms are still scarce, and modellers often rely on generic
regulatory functions; for instance, a component is activated if at least one activator is present and no inhibitor is present
[14], or if the weighted sum of its regulator activities is above a specific threshold (e.g., [3, 13]).

Here, we focus on Boolean gene networks, and we address two main questions: 1) given a gene network, how complex
is the parametrization of a Boolean model consistent with this topology? 2) and how the choices of regulatory functions
impact the dynamical properties of a Boolean model?
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To this end, given a gene g, we characterize the partially ordered set Fg of the Boolean regulatory functions compatible
with its regulatory structure, i.e., with the number and signs of its regulators. Generically, if a gene g has n regulators,
one can in principle define 22

n

potential Boolean regulatory functions. This number is then reduced when imposing the
functionality of all interactions (i.e., all the variables associated with the regulators appear in the function), and a fixed
sign of these interactions. We focus on monotone Boolean functions [19], i.e., each interaction has a fixed sign (positive
or negative). However, there is no closed expression of the number of monotone Boolean functions on n variables,
known as the Dedekind number [11, 18]. Actually, it is even unknown for n > 8. Moreover, even if the functionality
constraint further restricts the number of Boolean functions compatible with a given regulatory structure, this number
can still be astronomical. The set Fg thus encompasses all monotone, nondegenerate Boolean functions, which can be
visualized on a Hasse diagram. In this work, we propose an original algorithm to explore paths in this diagram, that is
to determine the local neighboring functions of any Boolean function in the set Fg .

Section 2 introduces some preliminaries on sets, partial orders, Boolean functions and Boolean networks. In Section 3,
we characterize the set Fg of regulatory functions consistent with the regulatory structure of a given gene g. The direct
neighbors of any function in Fg are characterized in Section 4. Relationships between the regulatory functions and the
model dynamics are investigated in Section 5. The usefulness of these characterizations is illustrated in Section 6, with
the consideration of commonly used regulatory functions, and by revisiting Probabilistic Boolean Networks (PBN) as
introduced by Shmulevich et al. [17]. The paper ends with some conclusions and prospects.

2 Background

This section introduces some basic concepts and notation that are used in the remainder of the paper.

2.1 Sets and Partial Orders

For further detail on the notions introduced here, we refer to relevant text books [4, 7]. Given a set A, a Partial Order
on A is a binary relation � on A that satisfies the reflexivity, antisymmetry and transitivity properties. The pair (A,�)
defines a Partially Ordered Set (PO-Set). A pair of elements a, b ∈ A is said to be comparable in (A,�) if either
(a, b) ∈� or (b, a) ∈�. Notation a � b is equally used for (a, b) ∈�.

A chain in a PO-Set (A,�) is a subset of A in which all the elements are pairwise comparable. The symmetrical notion
is an antichain, defined as a subset of A in which any two elements are incomparable. Also, an element a ∈ A is
independent of an antichain X ( A if X ∪ {a} remains an antichain, namely, a is incomparable to every element of X .

A PO-Set (A,�) can be graphically represented by a Hasse Diagram (HD), in which each element of A is a vertex in
the plane and an edge connects a vertex a ∈ A to a vertex b ∈ A placed above if a � b, and there is no such c ∈ A such
that a � c � b [4].

Given a subset X ⊆ A, an element u ∈ A is an upper bound of X in the PO-Set (A,�) if x � u for any x ∈ X .
Similarly, l ∈ A is a lower bound of X if l � x for any x ∈ X . The PO-Set (A,�) is a Complete Lattice if any X ⊆ A
has a (unique) least upper bound and a (unique) greatest lower bound.

For a given set S, 2S denotes the set of subsets of S. A set of elements of 2S whose union contains S is called a cover
of S.

2.2 Boolean Functions

Considering the setB = {0, 1} of the two elements of the Boolean algebra,Bn denotes the set of Boolean n-dimensional
vectors s = (s1, . . . , sn) with entries in B.

A Boolean function f : Bn → B is positive (resp. negative) in si if f |si=0 ≤ f |si=1 (resp. f |si=0 ≥ f |si=1), where
f |si=0 (resp. f |si=1) denotes the value of f(s1, . . . , si−1, 0, si+1, . . . , sn) (resp. f(s1, . . . , si−1, 1, si+1, . . . , sn)).
We say that f is monotone in si if it is either positive or negative in si. f is monotone if it is monotone in si for all
i ∈ {1, . . . , n} [6].

Monotone Boolean functions can always be represented in a Disjunctive Normal Form (DNF), a disjunction of clauses
defined by elementary conjunctions, where each variable appears either in the uncomplemented literal si if f is positive
in si, or in the complemented literal ¬si if f is negative in si. From such a representation, a (unique) canonical
representation called the Complete DNF of the monotone Boolean function f can be obtained by deleting all redundant
clauses, i.e., those that are absorbed by other clauses of the original DNF [6].
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Figure 1: Example of a Boolean Network with: (A) the regulatory graph, where normal (green) arrows represent
activations and hammerhead (red) arrows represent inhibitions; (B) the asynchronous STG, considering the following
Boolean regulatory functions f1 = s1 ∨ (s2 ∧ ¬s3), f2 = ¬s3 and f3 = ¬s2; (C) the synchronous STG, for the same
regulatory functions. Stable states in both STGs are denoted in red.

Determining the number M(n) of monotone Boolean functions for n variables is known as Dedekind’s problem. This
number, also called Dedekind number, is equivalent to the number of antichains in the PO-Set (2{1,...,n},⊆). M(n) as
been computed for values of n up to 8, while asymptotic estimations have been proposed for higher values [4].

A variable si is an essential variable of a Boolean function f if there is at least one s ∈ Bn such that f |si=0 6= f |si=1.
A Boolean function is said to be nondegenerate if it has no fictitious variables, i.e., all variables are essential [17].

Given a Boolean function f : Bn → B, T(f) denotes the set of vectors s ∈ Bn for which f(s) = 1; in other words,
T(f) is the set of true states of f [6, 11].

2.3 Boolean Networks

A Boolean Network (BN) is fully defined by a triplet R = (G,R,F), where:

• G = {gi}i=1,...,n is the set of n regulatory components, each gi being associated with a Boolean variable si in
B that denotes the activity state of gi, i.e., gi is active (resp. inactive) when si = 1 (resp. si = 0). The set Bn
defines the state space of R, and s = (s1, . . . , sn) ∈ Bn defines a state of the model;

• R ⊆ G × G × {+,−} is the set of interactions, (gi, gj ,+) denoting an activatory effect of gi on gj , and
(gi, gj ,−) an inhibitory effect of gi on gj ;
• F = {f

i
}i=1,...,n is the set of Boolean regulatory functions; fi : Bn → B defines the target level of component

gi for each state s ∈ Bn.

In the corresponding regulatory graph (G,R), nodes represent regulatory components (e.g. genes) and directed edges
represent signed regulatory interactions (positive for activations and negative for inhibitions). Figure 1-A shows an
example of a regulatory graph with 3 components: a mutual inhibition between g2 and g3, and a self-activation of g1,
which is further activated by g2 and repressed by g3.

The set of the regulators of a component gi is denoted Gi = {gj ∈ G, (gj , gi,+)∈R or (gj , gi,−)∈R}. Note that
the regulatory function of a component gi may be defined over the states of its regulators (rather than over the states of
the full set of components): ∀gi ∈ G, fi : B|Gi| → B; it thus specifies how regulatory interactions are combined to
affect the state of gi. In other words, one can define the regulatory functions over only their essential variables.

The dynamics of a BN is represented as a State Transition Graph (STG), where each node represents a state, and
directed edges represent transitions between states. The STG of a BN R = (G,R,F) can be formally defined by
E = (B|G|, T ), where:

• B|G| is the state space of R;

• T ⊆ B|G| × B|G| is a transition relation (or transition function), where (s, s′) ∈ T whenever state s is
connected to state s′.

Assuming an asynchronous update mode, in which components are updated independently [1, 12, 20], we have that
(s, s′) ∈ T async iff: {

∃i ∈ {1, . . . , n}, fi(s) = ¬si = s′i,
∀j ∈ {1, . . . , n}, j 6= i, fj(s) = s′j .

3
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Figure 2: The 3 independent transition graphs for the Boolean model presented in Figure 1: Ei = (B3, Ti), i = 1, 2, 3.

Hence, if in state s several components are such that fi(s) 6= si (i.e, are called to update their values), s has as many
outgoing transitions.

Under a synchronous update mode, all states have at most one outgoing transition, that is (s, s′) ∈ T sync iff:

∀i ∈ {1, . . . , n}, fi(s) = s′i.

Dynamics are affected by the choice of the (a/synchronous) update except stable states, which are states s such that
∀i, fi(s) = si, are conserved [1], see Figure 1. Those states are of biological interest as they often correspond to
specific phenotypes or cell fates. In the STG, stable states correspond to terminal strongly connected components
reduced to a single state. Other attractors refer to cyclic or oscillatory behaviors, which are terminal strongly connected
components encompassing multiple states in the STG. While cyclic attractors are also biologically relevant, they may
greatly differ depending on the update mode. In contrast to the synchronous update mode, which amounts to consider
that underlying mechanisms have exactly the same delays, it is generally acknowledged that the asynchronous update
mode is more realistic [1, 16, 20]. This is the update we will consider in the reminder of this paper.

3 Characterizing the set of consistent regulatory functions

Here, we thus focus on a generic component gi of a BN, and we show that the set Fi of the regulatory functions that
comply with the regulatory interactions targeting gi is a PO-Set. Properties of this PO-Set give an insight on how a
particular choice of a function affects the behavior of the sole gi (i.e. affect the transitions between states differing on
their ith components). Generalization to the complete STG then derives from the combinations of the transition graphs
of the individual components.

As mentioned in Section 2.3, the complete parametrization of a Boolean Network (BN) R = (G,R,F), with |G| = n,
involves selecting a regulatory (Boolean) function for each component in G. When considering an asynchronous
updating, the STG E = (Bn, T ) representing the complete dynamics of the BN results from the superposition of n
independent STGs {Ei = (Bn, Ti)}i=1,...,n defined on the same set of states Bn, but where each graph Ei encompasses
the sole transitions affecting the component gi as defined by its regulatory function (see Figure 2).

It is noteworthy that, while the total number of model components may be large, the cardinal of Gi, i.e. the set of
regulators of gi, is generally limited (rarely greater than 5). Moreover, the regulatory function fi of the component gi
has exactly |Gi| essential variables (conveying the values of the regulators of gi), and consequently Ei = (Bn, Ti) can
be completely characterized from another STG defined in a reduced state space B|Gi|+1.

For example, considering components g2 or g3, in our model of Figure 1, one could work in a 2-dimensional state space
and then project it on the whole 3-dimensional state space to obtain E2 or E3 as displayed in Figure 2.

3.1 Characterizing consistent regulatory functions

Let R = (G,R,F) be a BN and let us consider gi with Gi its set of p regulators. Without loss of generality, the
regulators of gi are assumed to be the first p components of G: Gi = {g1, . . . , gp}.

There are 22
p

Boolean functions over the p variables associated to the regulators of gi. However, this huge number can
be restricted to some extent, by retaining only the regulatory functions that comply with the regulatory structure of gi,
i.e. that reflect the signs and functionalities of the regulations affecting gi [1].

We recall that interaction (gj , gi) is functional and positive (i.e. gj ∈ Gi is functional and is an activator) iff:

∃s ∈ Bn such that sj = 0 and fi(s) = ¬fi(sj) = 1,

4
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where sj denotes the state that differs from s only in its jth component: ∀k = 1, . . . , p, k 6= j, sk = sjk and sj = ¬sjj .
Similarly, (gj , gi) is functional and negative (i.e. gj is functional and is an inhibitor) iff:

∃s ∈ Bn such that sj = 1 and fi(s) = ¬fi(sj) = 0.

In other words, if sj is an essential variable of fi, the interaction (gj , gj) is functional; its sign then depends on the
values of fi when switching the value of sj .

Note that we consider the restricted class of BN for which there are no dual regulations, i.e., all the regulators are either
activators or inhibitors:

@(s, s′) ∈ B2n such that


sj = s′j ,

fi(s) = ¬fi(sj) = 1,

fi(s
′) = ¬fi(s′

j
) = 0.

The set of regulators Gi can thus be partitioned as Gi = G+
i ∪G

−
i , where G+

i is the set of positive regulators of gi
(activators), while components in G−i are negative regulators of gi (inhibitors).

Considering the example in Figure 1, we have the following sets of regulators: G1 = {g1, g2, g3}, G+
1 = {g1, g2} and

G−1 = {g3}, G2 = G−2 = {g3}, G3 = G−3 = {g2} and G+
2 = G+

3 = ∅.
Given the component gi, let Fi be the set of all the consistent Boolean regulatory functions, i.e. the functions that
comply with the regulatory structure defined by (G+

i , G
−
i ). The following proposition characterizes Fi.

Proposition 1. The set Fi of consistent Boolean regulatory functions of component gi is the set of nondegenerate
monotone Boolean functions fi such that, fi is positive in sk for gk ∈ G+

i and negative in sk for gk ∈ G−i .

Monotonicity derives from the non-duality assumption (an interaction is either positive or negative), and the sign of the
interaction from a regulator gk enforces the positiveness (if gk ∈ G+

i ) or negativeness (if gk ∈ G−i ). Finally, regulatory
functions must be nondegenerate due to the requirement of the functionality of all gk ∈ Gi.
For the remainder of the paper, we assume that functions in Fi are represented in a Disjunctive Normal Form (DNF):

∀fi ∈ Fi, fi = C1 ∨ . . . ∨ Cm, (1)

with,
Cj =

∧
k∈Ej

uk j = {1, . . . ,m}, (2)

where Ej ⊆ {1, . . . , p} is the set of indices k such that sk appears in Cj (recall that p = |Gi|).
The Complete DNF (CDNF) representation of a consistent Boolean function fi satisfies the following conditions:

(i) ∀gk ∈ Gi,∃j for which k ∈ Ej ;

(ii) ∀Cj , ∀k ∈ Ej , uk =

{
sk, if gk ∈ G+

i ,
¬sk, if gk ∈ G−s .

Both conditions (i) and (ii) derive directly from Proposition 1: (i) stems from the functionality of all regulators in Gi;
(ii) guarantees the consistency of the function with the sign of the regulatory interaction (gk, gi) (recall that there are
no dual regulations); a third condition, which is implicit from the CDNF representation, is that there are no Ej , El
(j 6= l) such that Ej ⊂ El.
For the BN of Figure 1, the function f1(s) = s1 ∨ (s2 ∧ ¬s3) is an element of F1.

Given a (consistent) regulatory function fi ∈ Fi, its unique CDNF representation can be trivially computed from any
DNF representation of fi by appropriately erasing literals [2, 6].

Let Cj be a clause in the CDNF representation of fi. Then, the set of states satisfying Cj (true states of fi) can be
associated to a subspace of Bi, as in [10], where sk is a fixed (resp. free) variable iff k ∈ Ej (resp. k /∈ Ej). We call
dimension of the subspace associated to a clause Cj (as defined in Eq. 2), the number p − |Ej | of free variables of
Cj . The set T(f) of true states of f can then be seen as the union of m subspaces of Bp with dimensions p − |Ej |,
j = 1, . . . ,m.

Given the regulatory structure defined by Gi, any function fi ∈ Fi is unambiguously represented by its set-
representation, as defined below.

5
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Definition 1. Given a component gi withGi = G+
i ∪G

−
i its set of p regulators, the set-representation S(fi) ⊆ 2{1,...,p}

of a regulatory function fi ∈ Fi is such that Ej ∈ S(fi) if and only if Cj is a conjunctive clause of the CDNF
representation of fi (following notation of Eq. 2).

In the definition above, S(fi) represents the structure of fi as its elements indicate which variables (regulators)
are involved in each of the clauses defining fi. The literals (non-complemented and complemented variables) are
then unambiguously determined by G+

i and G−i . For example, the set-representation of f1 = s1 ∨ (s2 ∧ ¬s3) is
S(f1) = {{1}, {2, 3}}.
Since elements of S(fi) are pairwise incomparable subsets of {1, . . . , p}, for the ⊆ relation, it is easy to verify that
S(fi) is an antichain in the PO-Set (2{1,...,p},⊆). Moreover, S(fi) is also a cover of {1, . . . , p} since all indices in
{1, . . . , p} have to be present in at least one element of S(fi). Finally, any antichain in (2{1,...,p},⊆) which is a cover
of {1, . . . , p} is the set representation of a unique function in Fi. Therefore, Fi is isomorphic to the set Sp of antichains
in (2{1,...,p},⊆).

p M(p) N(p) = |Fg| = |Sp|
1 3 1
2 6 2
3 20 9
4 168 114
5 7 581 6 894
6 7 828 354 7 785 062
7 2 414 682 040 998 2 414 627 396 434
8 56 130 437 228 687 557 907 788 56 130 437 209 370 320 359 968
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Figure 3: Left: number of monotone Boolean functions (Dedekind number M(p)) and of nondegenerate monotone
Boolean functions (N(p)) of p = 1, . . . , 8 variables. N(p) is also the number of antichain covers of {1, . . . , p}. Right:
the plots illustrate the growth pattern of these numbers, including that of the total number of Boolean functions.

The cardinality N(p) of Fi, set of all nondegenerate monotone Boolean functions of p variables, is smaller than 22
p

,
the number of all Boolean functions of p variables and also than M(p), the Dedekind number of monotone Boolean
functions (including degenerate functions). Indeed, one can easily show that:

N(p) = M(p)− 2−
p−1∑
k=1

p!

k!(p− k)!
N(k).

Nevertheless, as illustrated in Figure 3, the cardinality of Fi dramatically increases with the number of variables
(regulators of gi) and thus constitutes a major computational challenge. Any approach relying on the exploration of the
full set Fi where gi has more than 5 regulators, would be intractable. In this context, the characterization of the structure
of Fi might be helpful to assess the impact of particular regulatory functions on the dynamics of the corresponding BN.

3.2 Structuring Fi as a Partially Ordered Set

In this section, we show that given a component gi, the set of its consistent regulatory functions Fi can be structured as
a PO-Set. To this end, let consider the binary relation � on Fi ×Fi defined by:

∀f, f ′ ∈ Fi, f � f ′ ⇐⇒ T(f) ⊆ T(f ′).

It is easy to verify that (Fi,�) is a PO-Set. Figure 4 shows the Hasse Diagram (HD) of the PO-Set (F1,�) of
g1, component of the model presented in Figure 1. This PO-Set has Supremum and Infimum elements given by
sup F1 = s1∨s2∨¬s3 and infF1 = (s1∧s2∧¬s3), respectively, with Ssup = {{1}, {2}, {3}} and Sinf = {{1, 2, 3}}
as set-representations.

Observe that, while the functions in Fi depend on the specific regulatory structure (i.e., the signs of the regulations), the
topology of the HD and the relation between its nodes, when seen as set-representations, only depend on p, the number

6
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{{1},{2},{3}}

{{3},{1,2}} {{2},{1,3}} {{1},{2,3}}

{{1,2},{1,3},{2,3}}

{{1,2},{2,3}} {{1,2},{1,3}} {{1,3},{2,3}}

{{1,2,3}}

R3 R3 R3

R2 R2 R2

R1 R1 R1

R3 R3 R3

sup Fg1 = s1 ∨ s2 ∨ ¬s3

inf Fg1 = s1 ∧ s2 ∧ ¬s3

f 1
g1

= s1 ∨ (s2 ∧ ¬s3)

Figure 4: Hasse Diagram representing the set of all possible functions composed of 3 regulators (e.g. functions in red of
the component g1 of the model in Figure 1). R1, R2 and R3 labels indicate the corresponding rule applied to compute
the neighboring parent/child node (see Section 4).

of regulators of gi. In other words, the HD shown in Figure 4 represents the set of consistent regulatory functions for
any component with 3 regulators.

In fact, one can consider the relation � on the set Sp of antichains in (2{1,...,p},⊆):
∀S, S′ ∈ Sp, S � S′ ⇐⇒ ∀σ ∈ S, ∃σ′ ∈ S′ such that σ′ ⊆ σ.

Recall that (Sp,�) is also a PO-Set. Its HD has the same strucure of the HD of (Fg,�), where its nodes are the
set-representations S(f) ∈ S. This is a because:

f � f ′ ⇐⇒ S(f) � S(f ′). (3)

Furthermore, the set-representation of a function f in Fi is sufficient to determine the number and signatures of its
true states (elements T(f)), independently of the signs of the p interactions targeting gi. We introduce the notion of
signature of a state s ∈ Bn as a p-tuple v composed of symbols in {o, o, ?} such that, ∀k = 1, . . . , p: vk = o means
that sk = 1 if gk ∈ G+

i and sk = 0 if gk ∈ G−i (i.e., the regulation from gk is operative); vk = o otherwise; the symbol
? means that both values (0 and 1) are admissible.

Given a function f in Fi and its set-representation S(f), the signatures of the true states of f are obtained from the
subsets of S(f) as follows: given σ ∈ S(f), if k ∈ σ then vk = o if gk ∈ G+

i , vk = o if gk ∈ G−i , and otherwise
vk = ?, which accounts for both o and o.

For example, in the HD of Figure 4, consider the set S(inf(F1)) = {{1, 2, 3}} and the regulatory structure given by
G+

1 = {g1, g2} and G−1 = {g3}. These altogether define the signature (o, o, o) of the elements of T(inf(F1)) that
in turn defines the sole state s = (1, 1, 0). For the function f = (s1 ∧ s2) ∨ (s1 ∧ ¬s3), its set-representation is
{{1, 2}, {1, 3}} defines the signatures (o, o, ?) and (o, ?, o) (or (o, o, o), (o, o, o) and (o, o, o)), which in turn specify
the set of true states T(f) = {(1, 1, 0), (1, 1, 1), (1, 0, 0)}.
Summarising, the PO-Set (Sp,�) can be used as a template for all PO-Sets (Fi,�) of regulatory functions of a
component gi with p regulators, considering any possible regulatory structures, i.e., all pairs (G+

i , G
−
i ) ∈ G. In what

follows, properties of PO-Sets (Fi,�) will thus be derived from those of (Sp,�).

It is easy to verify that the PO-Sets (Fg,�) and (Sp,�) are bounded PO-Sets, their Supremum being the regulatory
function presence of at least one activator or absence of at least one inhibitor, and their Infimum being the function
presence of all activators and absence of all inhibitors. On the other hand, although when |Gg| ≤ 3 both PO-
Sets are clearly Complete Lattices, in general this is not true for larger number of regulators. For example, for
p = 4, if one considers S1 = {{3}, {1, 2, 4}} and S2 = {{2, 3}, {1, 4}}, then S = {{1, 2}, {3}, {4}} and S′ =
{{3}, {2, 4}, {1, 4}} are both minimal upper bounds of {S1, S2} ⊂ S so that {S1, S2} has not a least upper bound in
(S4,�).

7
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4 Characterizing the vicinity of elements of the PO-Set(Fi,�)

Given a generic component gi with p regulators, we first introduce some terminology on the relationships between
elements in the HD of the PO-Set (Sp,�) (obviously, this terminology also applies to (Fi,�)). Given S, S′ ∈ Sp:

• S′ is a parent of S in (Sp,�) if and only if S � S′ and @S′′ ∈ S such that S � S′′ and S′′ � S′;
• S′ is a child of S if and only if S is a parent of S′;
• S′ is a sibling of S if and only if it shares a common parent with S;
• S′ is a direct neighbor of S if and only if it is either a parent or a child of S.

For example, the set {{1}, {2, 3}} in S3 has a unique parent {{1}, {2}, {3}}, a unique child {{1, 2}, {1, 3}, {2, 3}}
(the two are the direct neighbors of the set), and two siblings {{2}, {1, 3}} and {{3}, {1, 2}} (see Figure 4).

The following two sets of rules allow us to compute, for any element of the PO-Set (Sp,�), the set of its direct
neighbors (parents and children).
Rules to compute parents. Given an element S of the PO-Set (Sp,�), a parent S′ of S is obtained by applying one
of the following rules:

1. S′ = S ∪ {c}, with element c ∈ max({σ ⊆ {1, . . . p} such that σ is independent of S});

2. S′ = min(S ∪ {σ}) with σ ⊆ {1, . . . , p} such that:

(a) ∃σ′ ∈ S such that σ ⊂ σ′;
(b) @σ′ ⊆ {1, . . . , p} and σ′′ ∈ S such that σ ( σ′ ( σ′′;
(c) σ * c, ∀c satisfying rule 1;
(d) S′ is a cover of {1, . . . , p};

3. S′ = min(S ∪ {σ} ∪ {σ′}), with σ, σ′ subsets of {1, . . . , p} such that:

(a) σ and σ′ satisfy all the conditions of rule 2 but condition (c);
(b) S′ is a cover of {1, . . . , p}.

Rules to compute children. Given an element S of the PO-Set (Sp,�), a child S′ of S is obtained by applying one of
the following rules:

1. S′ = S \ {c} with c such that @σ independent of S \ {c} such that c ⊂ σ;

2. S′ = (S \ {c}) ∪ C, for any c and C such that:

(a) C = min({σ | σ independent of (S \ {c}) and σ ⊃ c})

3. S′ = (S \ {c, c′}) ∪ {c ∪ c′} for c, c′ not satisfying rules 1 or 2 and such that c ∩ c′ 6= ∅.

Theorem 1. Given an element S of the PO-Set (Sp,�), S′ is a parent (resp. a child) of S if and only if S′ is generated
by a Rule to compute parents (resp. a Rule to compute children).

Proof. We start by considering the Rules to compute parents.

Let S = {c1, . . . , cm} be any element of the PO-Set (Sp,�). Let us write S′ = {c′1, . . . , c′m′} for a parent of S. First,
by definition, S′ is a parent of S if and only if: (a) S′ 6= S, (b) for each ci, i ∈ {1, . . . ,m}, there exists at least one c′j ,
j ∈ {1, . . . ,m′}, with c′j ⊆ ci, and (c) there is no S′′ such that S � S′′ � S′.

(i) First, let us consider the case where there is no pair i, j such that c′j is a proper subset of ci. Then, it is
clear that for all i ∈ {1, . . . ,m} there is a j ∈ {1, . . . ,m′} such that ci = c′j and consequently, m < m′

and S′ can be written, without loss of generality, S′ = S ∪ {c′m+1, . . . , c
′
m′}. Now, it is easy to see that

the set {c′m+1, . . . , c
′
m′} must be a singleton, otherwise we could build S′′ with S � S′′ � S′ by setting

S′′ = S ∪ {c′j}, with j ∈ {m+ 1, . . . ,m′}. Thus S′ can be written S′ = S ∪ {c}.

We now show that in this case, the necessary and sufficient conditions for S′ to be a parent of S are those
stated in Rule-1 to compute parents. First, it is clear that c has to be independent of S, otherwise S′ would
not be an element of (Sp,�). Second, there cannot exist a σ′ independent of S such that σ′ ⊃ c, otherwise

8
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S′′ = S ∪ {σ′} would be such that S � S′′ � S′. Hence the condition for S′ to be a parent of S is that
c ∈Max({σ′ ⊆ N | σ′ is independent of S}).

(ii) Let us now consider the case where there is at least one pair i, j where c′j is a proper subset of ci. Then
statements of Rule 2-(b,c,d) are necessary and sufficient conditions for S′ to be a parent of S. In fact, Rule
2-(b,c) are conditions for not having S′′ with S � S′′ � S′. On the other hand, Rule 2-(d) is the condition for
S′ to be in (Sp,�).

(iii) Finally, case 3 corresponds to the situation where an additional subset has to be added such that S′ is a cover
of {1, . . . , p}.

The proof of the Rules to compute children case follows from the observation that those rules are counterparts of the
Rules to compute parents by simply changing the roles of S and S′.

The following proposition concerns the difference in the number of true states for two direct neighbors in (Fg,�).
Recall that |Gg| = p (g has p regulators).

Proposition 2. Let S, S′ ∈ S be such that S′ is a parent of S in (Sp,�), and let f, f ′ ∈ Fg be the corresponding
functions in (Fg,�). Thus, T(f) ⊂ T(f ′) and |T(f ′) \ T(f)| ∈ {1, 2}.

The proof of this proposition uses the following auxiliary result.

Lemma 1. Let σ ⊆ {1, . . . , p} and α = Min({β ⊆ {1, . . . , p} | β ⊃ σ}). Let fσ and fα be monotone Boolean
functions having respectively σ and α as set-representations. There is only one state s ∈ T(fσ) \ T(fα), namely, the
one with signature v = (v1, . . . , vp), where vk = o for k ∈ σ and vk = o for k /∈ σ.

Proof. The signature of the set of states T(fσ) is Vσ = {v ∈ {o, o}p | vk = o for k ∈ σ and vk = ∗ for k /∈
σ}. On the other hand, observe that α is the set of (p − |σ|) different subsets β ⊆ {1, . . . , p} with β ⊃ σ and
|β| = |σ| + 1. Each of those subsets represents a clause of the DNF of fβ . The signature of the set of states
T(fβ) is Vα = {v ∈ {o, o}p | vk = o for k ∈ σ and for one k /∈ σ}. Therefore the signature of T(fσ) \ T(fα) is
Vσ \ Vα = {v ∈ {o, o}p | vk = o for k ∈ σ and vk = o for all k /∈ σ}.

Proof of Proposition 2. We will consider the three different ways of generating a parent S′ for S.

• Using Rule 1, it is clear that the set of states in T(f ′) \ T(f) is composed by the states verifying the clause
represented by the subset c and not in T(f). Observe that this set is necessarily non-empty, otherwise c
would not be independent of S. Since c ∈ Max({σ′ ⊆ {1, . . . , p} | σ′ is independent of S}) it follows that
Min({β ⊆ {1, . . . , p} | β ⊃ c}) are all dependent of S, which means that all the states satisfying the clauses
represented by this set are already in T(f). Thus, by lemma 1, there is only one state in T(f ′) \ T(f).

• Using Rule 2, σ′ replaces all subsets Min({β ⊆ {1, . . . , p} | β ⊃ σ′}) in S. Thus, again by lemma 1, there is
only one state in T(f ′) \ T(f).

• Using Rule 3, the same reasoning shows that each σ′ and σ′′ introduce one state in T(f ′) \ T(f), leading in
this case to |T(f) \ T(f ′)| = 2.

Summarizing, |T(f ′) \T(f)| = 1 when Rules 1 or 2 to compute parents apply to relate S′ to S, and |T(f ′) \T(f)| = 2
when Rule 3 applies. The same holds when considering the number of true states of a function and that of one of its
child.
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5 Assessing how changing the regulatory function impacts the dynamics

5.1 Number of transitions over component g

In the following, some results are derived concerning the number of transitions in Eg = (Bp, Tfg ), depending on the
regulatory functions in Fg. The total number of transitions and the number of increasing (T +

fg
) and decreasing (T −fg )

transitions are considered.

For the sake of simplicity, it will be assumed in all cases that the set of n components G = {gk}k=1,...,n in the Boolean
network is equal to the set of p regulators of g, plus the component g (G = Gg ∪ {g}). Without loss of generality, it
will also be assumed that g is the last component in G (i.e., it has the greatest index). If g is auto-regulated (g ∈ Gg),
p = n otherwise n = p+ 1. Extending the results to the case where p < n would be straightforward.

The following Proposition 3 introduces bounds (or invariance) on the total numbers of transitions in Eg , for regulatory
functions in Fg .
Proposition 3. Let Gg be the set of regulators for g. For any regulatory function fg : Bn → B in Fg, the set of
transitions in the resulting STG Eg = (Bn, Tg) is such that:

1. |Tfg | = 2n−1 if g /∈ Gg;

2. 0 ≤ |Tfg | < 2(n−1) if g ∈ G+
g ;

3. 2(n−1) < |Tfg | ≤ 2n if g ∈ G−g .

Proof. For g /∈ Gg (g = gp+1 is not auto-regulated, and n = p + 1), a state s ∈ Bn can be written as s =
(s1, . . . , sp, sp+1) and such that any function fg : Bn → B is independent on the value of component sp+1 (recall
n = p + 1). Now, for s|g = (s1, . . . , sp) ∈ Bp, if fg(s|g) = 0 then [(s1, . . . , sp, 1), (s1, . . . , sp, 0)] ∈ Tfg is
the only transition with origin in states of the set {(s1, . . . , sn, ∗)}. The same reasoning applies to the case where
fg(s|g) = 1, and in this case [(s1, . . . , sn, 0), (s1, . . . , sn, 1)] ∈ Tfg is the only transition with origin in states of the
set. Thus, there is one and only one transition for each pair of states {(s1, . . . , sn, 0), (s1, . . . , sn, 1)} irrespectively of
its direction. This proves that when g /∈ Gg , the number of transitions in Eg is half of the size of the state space, namely,
|Tfg | = 2(p+1)/2 = 2p.

Let us now consider the case where g is auto-regulated (g ∈ Gg, and p = n). In this case, fg depends also on sn, the
state of g. There are several possibilities.

If g ∈ G+
g , for s = (s1, . . . , sn−1, 0), if fg(s) = 1 then [(s1, . . . , sn−1, 0), (s1, . . . , sn−1, 1)] ∈ Tfg ; besides, in this

case for s′ = (s1, . . . , sn−1, 0), fg(s′) cannot take value 0, because the only component that changes between s and s′

is sn, and g activates itself; thus fg(s′) = 1 and there is no outgoing transition from s′ = (s1, . . . , sn−1, 1).

Now, still for g ∈ G+
g , for s = (s1, . . . , sn−1, 0), if fg(s) = 0, there is no outgoing transition from s; in this case, for

s′ = (s1, . . . , sn−1, 1), fg(s′) can take values 0 or 1; in the latter case, there is no outgoing transition from s′, while in
the former case [(s1, . . . , sn−1, 1), (s1, . . . , sn−1, 0)] ∈ Tfg .

This shows that, if g ∈ G+
g , for each pair of states (s1, . . . , sn−1, ∗) there is at most one transition. This would impose

an upper bound of |Bn|/2 = 2n/2 = 2(n−1) for |Tfg |. Moreover, the only possibility to reach this limit would be if fg
did not change its value when sn changes, for all pairs of states (s1, . . . , sn−1, ∗). But this would imply a non-functional
auto-regulation, which contradicts the consistency condition imposed to Fg . Thus |Tfg | ≤ 2(n−1).

Let us now consider the case for g ∈ G−g . In this case, fg depends also on sn. For s = (s1, . . . , sn−1, 0), if fg(s) = 0
there is no outgoing transition from s; besides, for s′ = (s1, . . . , sn−1, 1), fg(s′) cannot take value 1 because g
represses itself; thus fg(s′) = 0 and [(s1, . . . , sn−1, 1), (s1, . . . , sn−1, 0)] ∈ Tfg .

Now, still for g ∈ G−g , for s = (s1, . . . , sn−1, 0), if fg(s) = 1 then [(s1, . . . , sn−1, 0), (s1, . . . , sn−1, 1)] ∈ Tfg ; in this
case, for s′ = (s1, . . . , sn−1, 1), fg(s′) can take values 1 or 0; in the latter case [(s1 . . . , sn−1, 1), (s1, . . . , sn−1, 0)] ∈
Tfg , while in the former case, there is no outgoing transition from s′ = (s1, . . . , sn−1, 1).

This shows that, if g ∈ G−g , for each pair of states (s1, . . . , sn−1, ∗), there is at least one and at most two transitions.
Thus |Bn|/2 and |Bn| are lower and upper bounds for |Tfg |, respectively. But, regarding the lower bound, the only
possibility to reach it would be, as previously, if fg did not change its value with sn, for all pairs (s1, . . . , sn−1, ∗), and
this would lead to the same contradiction in the consistency condition imposed to Fg .
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In summary, the number of transitions in Eg when g ∈ G−g is |Bn|/2 < |Tfg | ≤ |Bn|, that is 2(n−1) < |Tfg | ≤ 2n.

Some of the bounds established in Proposition 3 deserve further discussion. In principle, when g ∈ G+
g , the lower

bound for |Tfg | is 0. There are no transitions in Eg if and only if fg(s) = 1 for all s ∈ Bn such that sn = 1 and
fg(s) = 0 for all s such that sn = 0. The only Boolean function satisfying these conditions is f(s) = sn for all s ∈ Bn,
which is consistent only if g is its sole regulator, i.e., Gg = G+

g = {g}.

Furthermore, a similar reasoning allows to deduce that, when g ∈ G−g , the upper bound 2n of |Tfg | is reached only if g
is its sole regulator, i.e., Gg = G−g = {g}.
The next proposition establishes bounds for the numbers of increasing and decreasing transitions in Eg, considering
regulatory functions in Fg .

Proposition 4. The upper (Ug) and lower (Lg) bounds for the numbers of increasing and decreasing transitions in the
STG Eg are:

1. Ug = 2n−1 − 1 and Lg = 1 if g /∈ Gg;

2. Ug = 2n−1 − 1 and Lg = 0 if g ∈ G+
g ;

3. Ug = 2n−1 and Lg = 1 if g ∈ G−g .

The following lemma will be used to prove Proposition 4.

Lemma 2. For any function fg : Bn → B in the PO-Set (Fg,�), we have:

1. fg(s) = 1 for s ∈ Bn with signature v such that vk = o for all k ∈ {1, . . . , n};

2. fg(s) = 0 for s ∈ Bn with signature v such that vk = o for all k ∈ {1, . . . , n}.

Proof. Let inf Fg =
∧
k|gk∈G+

g
sk
∧
k|gk∈G−g ¬sk. The only state for which inf Fg = 1 is s such that sk = 1 if

gk ∈ G+
g and sk = 0 if gk ∈ G−g , in other words the state with signature v with vk = o for all k ∈ {1, . . . , n}. For all

fg ∈ Fg , inf Fg � fg and thus fg(s) = 1.

Let us now consider supFg =
∨
k|gk∈G+

g
sk
∨
k|gk∈G−g ¬sk. This function takes value 1 for all but one state in Bn,

namely s′ such that s′k = 0 if gk ∈ G+
g and s′k = 1 if gk ∈ G−g . This state has signature v with vk = o for all

k ∈ {1, . . . , n}. For all fg ∈ Fg , fg � sup Fg and thus fg(s′) = 1.

Proof of Proposition 4. First of all, observe that the size of the set of true states of fg (s such that fg(s) = 1) grows
as fg is localized upper in the HD of (Fg,�). Consequently, bounds for the numbers of increasing and decreasing
transitions in Eg are obtained for the top and bottom regulatory functions of (Fg,�).

For the case where g is not auto-regulated (g /∈ Gg), Proposition 3 states that the number of transitions in Eg
does not depend on fg and is equal to 2n−1. Moreover, from the proof of the proposition, we have that there is
exactly one transition linking each pair of states (s1, . . . , sn−1, 0), (s1, . . . , sn−1, 1), either an increasing transition if
fg(s1, . . . , sn) = 1 or a decreasing transition if fg(s1, . . . , sn) = 0. Thus, when changing fg, at most the orientation
of the transition between such pair of states changes. In particular, for the top regulatory function (presence of at least
one activator or absence of at least one inhibitor), the only state for which fg(s) = 0 is the state specified in Lemma
2. Thus Tfg encompasses all but one (2n−1 − 1) increasing transitions. On the other hand, for the bottom regulatory
function (presence of all activators and absence of all inhibitors) the only state for which fg(s) = 1 is the one defined
in Lemma 2. As a consequence, Tfg contains only 1 increasing transition and 2n − 1 decreasing transitions.

Examining now the case where g is positively auto-regulated (g ∈ G+
g ), Proposition 3 states that the number of

transitions in Eg is strictly lower than the number of transitions for a non auto-regulated component (|Tfg | < 2(n−1)).
For fg =sup Fg, the only state s for which fg(s) = 0 is the state specified in Lemma 2 such that sn = 0. Thus, Tfg
encompasses (2n−1)− 1 increasing transitions and no decreasing transitions. A similar reasoning for inf Fg shows
that, in this case, Tfg encompasses 2(n−1) − 1 decreasing transitions and no increasing transitions.

11



A PREPRINT - JANUARY 24, 2019

000 100

001 101

010 110

011 111

(a) fg1 = s1 ∨ s2 ∨ ¬s3
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(b) fg1 = s1 ∧ s2 ∧ ¬s3

Figure 5: STG of the regulatory graph of Figure 1 for (a) fg1 = sup Fg1 and (b) fg1 = inf Fg1 ; in both cases
fg2(s) = ¬s3 and fg3(s) = ¬s2.

Finally, when g is negatively auto-regulated (g ∈ G−g ), Proposition 3 states that 2(n−1) < |Tfg | ≤ 2n. For fg = sup Fg ,
fg(s) = 0 for only one state with sn = 1 and thus Tfg encompasses 2n−1 increasing and 1 decreasing transitions.
Similarly, for fg = inf Fg , Tfg encompasses 2(n−1) decreasing and 1 increasing transitions.

Figure 5(a) and 5(b) show the STG for fg1 = sup Fg1 and for fg1 = inf Fg1 , considering the regulatory graph
of Figure 1. In this example, fg1 is the only modifiable regulatory function, and since g1 corresponds to a positive
auto-regulated component, the contribution of fg1 to the transition structure of the STG can vary from Lg1 = 0 to
Ug1 = 3 increasing/decreasing transitions.

Observe that in the STG of Figure 1 corresponding to fg1(s) = s1 ∨ (s2 ∧ ¬s3), where inf Fg1 � fg1 � sup Fg1 ,
the number of increasing and decreasing transitions due to fg1 are |T +

fg1
| = 1 and |T −fg1 | = 0, while upper and lower

bounds of increasing and decreasing transitions are Ug1 = 3 and Lg1 = 0.

Thanks to the Rules to compute parents, it is possible to circulate along paths in the HD of (Fg,�), between inf Fg and
sup Fg , and assess the evolution of the numbers of transitions of each fg along those paths (i.e., by varying regulatory
functions). Figure 6 illustrates such variations for components with five and six regulators, considering the cases of non
auto-regulated and auto-regulated components.

5.2 Special reference regulatory functions

Here, we identify some Boolean regulatory functions fg in (Fg,�) that lead to specific relationships between |T +
fg
| and

|T −fg |, or to maximal or minimal total number of transitions in Eg .

Proposition 5. Let Gg be the set of regulators of a non auto-regulated component g (g /∈ Gg). For any fg ∈ Fg we
have:

1. |T +
fg
| = |T(fg)|; and

2. |T −fg | = 2n − |T(fg)|.

Proof. The result straightforwardly follows from the proof of Proposition 3: there is exactly one transition between any
pair of states (s1, . . . , sn−1, 0), (s1, . . . , sn−1, 1) that is an increasing transition if fg(s1, . . . , sn) = 1, or a decreasing
transition if fg(s1, . . . , sn) = 0.

Corollary 1. Let Gg be the set of regulators of a non auto-regulated component g (g /∈ Gg). If fg ∈ Fg is such that
|T(fg)| = 2n−1, then

1. |T +
fg
| = |T −fg | = 2n−1;

2. for all f ′g ∈ Fg ,

f ′g � fg =⇒ |T −f ′g | ≥ |T
+
f ′g
|

12
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Figure 6: Evolution of the number of transitions affecting a component regulated by 5 (left) or 6 (right) regulators, along
a random path of the HD (from inf Fg to sup Fg): A-B the component is not auto-regulated, i.e., the Boolean functions
are independent of its state; C-D the component activates itself, i.e., the Boolean functions depend on the corresponding
positive literal; E-F the component inhibits itself, i.e., the Boolean functions depend on the corresponding negative
literal.

fg � f ′g =⇒ |T −f ′g | ≤ |T
+
f ′g
|

Proof. The first item follows from Proposition 5. The second items directly follows from the fact that |T +
fg
| increases

and |T −fg | decreases as fg becomes greater in (Fg,�).

Proposition 6. Let Gg be the set of regulators of an auto-regulated component g (g ∈ Gg , and thus |Gg| > 1). For the
Boolean regulatory function

f∗g =
∨

gk∈G+
g

k 6=n

(u ∧ sk)
∨

gk∈G−g
k 6=n

(u ∧ ¬sk), (4)

1. if g ∈ G−g , with u = ¬sn, then

(a) |T −f∗g | = 2n−1, |T +
f∗g
| = 2n−1 − 1, and thus |Tf∗g | = 2n − 1;
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(b) for all fg ∈ Fg ,
fg � f∗g =⇒ |T −fg | = 2n−1, |T +

fg
| ≤ 2n−1 − 1

f∗g � fg =⇒ |T −fg | ≤ 2n−1, |T +
fg
| = 2n−1 − 1;

2. if g ∈ G+
g , with u = sn, then

(a) |Tf∗g | = |T
−
f∗g
| = 1;

(b) for all fg ∈ Fg ,
fg � f∗g =⇒ |T −fg | ≥ 1, |T +

fg
| = 0

f∗g � fg =⇒ |T −fg | ≤ 1, |T +
fg
| ≥ 0.

Proof. Let us first consider the case where g ∈ G−g . Then f∗g (s) = 0 for all states s ∈ Bn such that sn = 1 because all
the clauses in Equation 4 contain ¬sn. Therefore, in the STG Eg , there is a decreasing transition going out each of those
2n−1 states. Moreover, for the states such that sn = 0, the only state for which f∗g (s) = 0 is when all the activators
are absent (sk = 0 for sk ∈ G+

g ) and all the inhibitors but g are present (sk = 1 for gk ∈ G−g , k 6= n). In other words,
f∗g (s) = 1 in all but one state for which sn = 0. Therefore, in the STG Eg, there is an increasing transition going out
each of those 2n−1 − 1 states. The total number of transitions is thus |Tf∗g | = |T

+
f∗g
|+ |T −f∗g | = 2n − 1.

The case (1b) follows from the facts that |T +
fg
| increases and |T −fg | decreases when fg becomes greater in (Fg,�), that

|T −f∗g | = 2n−1 = Ug and that, if |Gg| > 1, the upper bound for |Tfg | is 2n−1 − 1.

If g ∈ G+
g , a similar reasoning shows that there are 2n−1 states s ∈ Bn for which f∗g (s) = 0 and sn = 0, and

only one state in which f∗g (s) = 0 and sn = 1. This implies that there is a single (decreasing) transition in Eg, i.e,
|Tfg | = |T −fg | = 1; (2b) also follows from arguments similar to those employed for (1b).

The numbers of transitions in Proposition 6 correspond to the maximal (resp. minimal) numbers reached for the case of
a component negatively (resp. positively) auto-regulated, and with multiple regulators. Those numbers are obtained
for the functions defining maximally functional auto-regulation. These functions enounce that the auto-regulated
component g is activated in the absence of g and the presence of at least one other inhibitor, or in the absence of g and
the presence of at least one activator, in the case of an inhibitory auto-regulation, and in the presence of g and of at
least one other activator, or the presence of g and the absence of at least one inhibitor, in the case of an activatory
auto-regulation.

5.3 Levels of Boolean regulatory functions in the PO-Set

In order to qualitatively evaluate the level of a particular regulatory function in the PO-Set (Fg,�) it is important to
define a measure of its distance to the boundary functions. In this sense, an index associated to any regulatory function
f ∈ Fg is introduced in what follows.
Definition 2. Let R be a Boolean network with n components regulating g ∈ G, and let fg = C1 ∨ . . . ∨ Cm
the CDNF representation of the regulatory function of g, in which the clauses are ordered so that, if lk denotes the
dimension of the subspace of the clause Ck, lk ≥ lj for k < j. The level l(fg) of fg is defined as the ordered m-tuple
(l1(fg), . . . , lm(fg)).

The level specified in Definition 2 associates to a regulatory function, the list of dimensions of the subspaces of its
clauses in a decreasing order.

Note that for a PO-Set (Fg,�) on {1, . . . , n}, l(sup Fg) = (n− 1, . . . , n− 1)︸ ︷︷ ︸
n times

, and l(inf Fg) = (0).

In the example of the PO-Set corresponding to (Fg1 ,�) for the Boolean network of Figure 1, l(sup Fg1) = (2, 2, 2),
l(inf Fg1) = (0), and l(s1 ∨ (s2 ∧ ¬s3)) = (2, 1).

A total order ≤ can be defined on LFg , set of the levels of the functions in (Fg,�) as follows: given f, f ′ ∈ Fg such
that f = C1 ∨ . . . ∨ Cm and f ′ = C ′1 ∨ . . . ∨ C ′m′ , l(f) ≤ l(f ′) if and only if one of the following conditions holds:

(i) there exists k ∈ {1, . . . ,min(m,m′)} for which lk(f) < lk(f ′), or
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{{1},{2},{3}}

{{3},{1,2}} {{2},{1,3}} {{1},{2,3}}

{{1,2},{1,3},{2,3}}

{{1,2},{2,3}} {{1,2},{1,3}} {{1,3},{2,3}}

{{1,2,3}}

(2,2,2)

(0)

(2,1)

(1,1,1)

(1,1)

Figure 7: Levels of the regulatory functions of g1 from the Boolean network of Figure 1 (and more generally of any
component with 3 regulators). The same level applies to all functions in the same layer of the Hasse Diagram.

(ii) lk(f) = lk(f ′) for all k ∈ {1, . . . ,m} and m ≤ m′.

It is straightforward to verify that given the PO-Set (Fg,�) on {1, . . . , n}, for any f ∈ Fg, l(inf Fg) ≤ l(f) ≤
l(sup Fg). The following proposition generalizes this relationship.

Proposition 7. For f, f ′ ∈ Fg , if f � f ′ then l(f) ≤ l(f ′).

Proof. It follows from Equation 3 that f � f ′ implies S � S′, where S and S′ are the set-representations of f and f ′
respectively. From the definition of S, and after an appropriate ordering of the elements in S, we have that, for each
clause Ck of f , there exists a σk ∈ S such that lk(f) = n− |σk|. The same applies to clauses of f ′ and elements of
S′. Now, from the definition of � on S , ∀σ ∈ S, ∃σ′ ∈ S′ such that σ ⊇ σ′, which in turn implies |σ| ≥ |σ′| and thus
n− |σ| ≤ n− |σ′|. The definition of the total order ≤ on LFg does the rest.

Figure 7 illustrates the levels of the regulatory functions in Fg1 for the Boolean network of Figure 1. It is clear from the
definition that these levels depend only on the set-representations of the functions and not on the signs of the regulatory
interactions.

The function levels in the PO-Set (Fg,�) provide a measure of the distances to the boundary functions, and consequently
a measure of the impact on the dynamics of the corresponding Boolean network.

6 Applications

6.1 Assessing some common regulatory functions

We first consider a particular case of Majority Rule (MRg), a specific type of threshold functions [5]. This MRg
function is stated in [5] as an inequality that corresponds to the difference between number of present activators plus
absent inhibitors and number of absent activators plus present inhibitors is greater or equal zero. In general, equality is
evaluated apart, with an associated probability pg. For the case pg = 1 (equality always accepted) the function can
be translated as number of present activators plus absent inhibitors is at least r = dn/2e. More generally, we could
consider the case where 1 ≤ r ≤ n. This MRg can be written in the MDNF as

MRg =
∨

i∈{1,...,(n
r)}

Cj

with |Ej | = r, for all j ∈ {1, . . . ,
(
n
r

)
}. The level of the MRg function is then l(MRg) = (n− r, . . . , n− r)︸ ︷︷ ︸

(n
r) times

.
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MRg function is such that the greater the threshold r is, the lower the level of the function, the limits being exactly
sup Fg (for r = 1) and inf Fg (for r = n). The special threshold case considered in [5] (r = dn/2e) for pg = 1
can be equivalently stated as the number of present activators plus absent inhibitors is at least the same as the
number of absent activators plus present inhibitors. For instance, in the case where n = 3, MRg set-representation is
Sg = {{1, 2}, {1, 3}, {2, 3}} with level l(MRg) = (1, 1, 1).

Another regulatory function of interest, when G+
g 6= ∅, is the one stated as presence of at least one activator and

absence of all inhibitors. This function denoted here as NIg (No Inhibitors), can be represented in its MDNF as

NIg =
∨

j∈{1,...,|G+
g |}

Cj

with |Ej | = |G−g | + 1 and such that k ∈ Ej for all gk ∈ G−g and for one gk ∈ G+
g , j ∈ {1, . . . , |G+

g |}. The
level of NIg is l(NIg) = (n− (|G−g |+ 1), . . . , n− (|G−g |+ 1))︸ ︷︷ ︸

|G+
g | times

. In the case of the example of Figure 1, NIg1 =

(q1 ∧ ¬q3) ∨ (q2 ∧ ¬q3) and l(NIg1) = (1, 1). For a fixed number of regulators |Gg|, the greater the number of
inhibitors, the lower the level of the NIg function. The upper limiting level for NIg is sup Fg when there is no inhibitor
in the set of regulators (G−g = ∅); the lowest possible level is for NIg = inf Fg when all but one regulatory components
are inhibitors.

6.2 Stochasticity in Boolean networks

In this section, we explore the use of the previous results to assess robustness of Boolean Networks (BN) by adding
some stochasticity in the regulatory functions.

To introduce stochasticity in Boolean Networks (BN), several authors considered associating ensembles of Boolean
functions to the model components with a probabilistic selection of one function at each simulation step [9, 17].
Furthermore, robustness of Boolean networks has been investigated by perturbating the functions of the components
[21].

Here, we consider the Probabilistic Boolean Networks (PBN) as introduced by Shmulevich et al. [17], where each node
is associated with a set of regulatory functions (at least one), each being attributed a probability. Note however that
these functions can be any Boolean function, including degenerate and non-monotone functions. At each simulation
step, a function is chosen for each component, and appropriate variable updates are performed synchronously to get the
successor of the current state. In a PBN R = (G,R,F ), where now F is a set {Fi = {(fki , pki )}k=1,...,|Fi|}i=1,...,|G|,
where each component gi is associated with a set of k Boolean regulatory functions, each associated with a probability
pki . At each step, the number of realizations of the PBN is Πi=1,...,|G||Fi|.
Here, we perform the simulation of these networks using the software tool BoolNet [15]. The local search of the set of
regulatory Boolean functions to revisit the experiments proposed in [9], is illustrated with the model of T helper cell
differentiation from Mendoza & Xenarios [14]. For this model, Table 1 provides the reference functions as well as their
neighbors.

Considering that the reference function is indeed chosen (or effective) with probability 0.8, we first start by distributing
the remaining probability to the direct parent/child functions. Doing so for a single component, allows to assess the
criticality of certain components, e.g. the function of IL4 is essential to maintain the expected behavior (differentiation
to Th1, possibly with some cells maintaining a Th0).

Starting from an initial state, in which all the components are inactive but IFNg, the simulations of the deterministic BN
(synchronous, no probability associated to the functions) leads to a Th1 phenotype (with Tbet active). Using BoolNet,
1000 simulation runs are launched for the PBN defined as follows (see Figure 8 for the resulting proportions of reached
phenotypes):

A) Associating random functions to each component: the reference function (with probability π = 0.8) and its
direct p parents/children (each with probability π = 0.2

p );

B) Associating random functions to each component: the reference function (with probability π = 0.8) and its
direct p parents/children and s siblings (each with probability π = 0.2

p+s );

C) Associating random functions to GATA3: the reference function with π = 0.8 and its parents/children, each
with π = 0.1 (p = 2);

D) Associating random functions to Tbet: the reference function with π = 0.8 and its parents/children, each with
π = 0.1 (p = 2);
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Node NbReg NbFun. Reference Function Neighbouring Functions
GATA3 3 9 (¬Tbet∧STAT6)∨(¬Tbet∧GATA3) ¬Tbet∧STAT6∧GATA3

(¬Tbet∧STAT6)∨(¬Tbet∧GATA3)∨(STAT6∧GATA3)
(¬Tbet∧STAT6)∨(STAT6∧GATA3)∗

(¬Tbet∧GATA3)∨(STAT6∧GATA3)∗

IFNbR 1 1 IFNb
IFNg 5 6894 (¬STAT3∧NFAT)∨(¬STAT3∧Tbet)∨

(¬STAT3∧IRAK)∨(¬STAT3∧NFAT)
(¬STAT3∧ IRAK)∨(¬STAT3∧NFAT)∨(¬STAT3∧Tbet)∨
(¬STAT3∧NFAT)
(¬STAT3∧IRAK∧Tbet)∨(¬STAT3∧NFAT)∨(¬STAT3∧STAT4)
(¬STAT3∧Tbet)∨(¬STAT3∧IRAK∧NFAT)∨(¬STAT3∧STAT4)
(¬STAT3∧Tbet)∨(¬STAT3∧NFAT)∨(¬STAT3∧IRAK∧STAT4)
(¬STAT3∧IRAK)∨(¬STAT3∧NFAT∧Tbet)∨(¬STAT3∧STAT4)
(¬STAT3∧IRAK)∨(¬STAT3∧NFAT)∨(¬STAT3∧STAT4∧Tbet)
(¬STAT3∧IRAK)∨(¬STAT3∧Tbet)∨(¬STAT3∧NFAT∧STAT4)
Plus 10 sibling functions∗

IFNgR 1 1 IFNg
IL10 1 1 GATA3

IL10R 1 1 IL10
IL12R 2 2 ¬STAT6∧IL12 ¬STAT6∨IL12
IL18R 2 2 ¬STAT6∧IL18 ¬STAT6∨IL18

IL4 2 2 GATA3∧¬STAT1 GATA3∨¬STAT1
IL4R 2 2 IL4∧¬SOCS1 IL4∨¬SOCS1
IRAK 1 1 IL18R
JAK1 2 2 IFNgR∧¬SOCS1 IFNgR∨¬SOCS1
NFAT 1 1 TCR

SOCS1 2 2 STAT1∨Tbet STAT1∧Tbet
STAT1 2 2 JAK1∨IFNbR JAK1∧IFNbR
STAT3 1 1 IL10R
STAT4 2 2 ¬GATA3∧IL12R ¬GATA3∨IL12R
STAT6 1 1 IL4R
Tbet 3 9 (¬GATA3∧STAT1)∨(¬GATA3∧Tbet) ¬GATA3∧STAT1∧Tbet

(¬GATA3∧STAT1)∨(¬GATA3∧Tbet)∨(STAT1∧Tbet)
(¬GATA3∧STAT1)∨(STAT1∧Tbet)∗
(¬GATA3∧Tbet)∨(STAT1∧Tbet)∗

IFNb 0 1 False
IL12 0 1 False
IL18 0 1 False
TCR 0 1 False

Table 1: Boolean model of the Mendoza & Xenarios’ T helper cell regulatory network [14] indicating, for each node,
the number of regulators (2nd column), the number of compliant functions (3rd column), its original reference function
(4th column) and the neighboring functions (last column). We consider direct parents and children, as well as siblings,
i.e., functions that share the same direct parents or children (indicated ∗).

E) Associating random functions to IL4: the reference function with π = 0.8 and its parent π = 0.2 (p=1);
F) Associating random functions to IL4R (the reference function with π = 0.8 and its parent π = 0.2 (p=1).

7 Conclusion and prospects

The choice of appropriate functions to adequately reproduce desired dynamics is inherently hard due to the lack of
regulatory data. In this work, we have characterized the complexity of defining these functions in Boolean regulatory
networks. In particular, we have specified the Partial Ordered set (PO-Set) of the Boolean functions compatible with a
given network topology.

Exploiting the PO-Set structure can be useful to tackle issues related to the definition and analysis of Boolean models.
We have established a set of rules to compute the direct neighbors of any monotone Boolean function, without having to
first generate the whole set of Boolean functions and subsequently compare them. We have illustrated the usefulness of
this procedure, which can be used to refine the definition of random functions in probabilistic Boolean networks.

As a prospect, in problems related to model revision, the knowledge of the direct neighborhoods of regulatory functions
would allow to perform local searches to improve model outcomes, with minimal impact on the regulatory structure.
Additionally, it would allow for the qualification of the set of models complying with certain requirements, such as:
models that have the same regulatory graphs, but different functions; or models capable of satisfying similar dynamical
restrictions.
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A: All random, no siblings: 0.6% Th0, 36.8% Th1, 62.6% Th2 B: All random, with siblings: 1% Th0, 38.4% Th1, 60.6% Th2

C: GATA3: 100% Th1 D: Tbet: 13.7% Th0, 86.3% Th1

E: IL4: 95.4% Th1, 4.6% Th2 F: IL4R: 73.3% Th1, 26.7% Th2

Figure 8: Simulation results of the PBN showing the proportions of reached phenotypes. Green cells denote Th0,
red denote Th1 and blue denote Th1 phenotypes. Panel A) shows that the consideration of random functions in the
set including the reference function and its (direct) parents for each components leads to the appearance of the three
phenotypes; Panel B) shows that the results remain similar when including the siblings of the reference functions;
Panel C) shows that, when random functions are considered only for GATA3, all the simulations lead to the sole Th1
phenotype; Panel D) shows that, when random functions are considered only for Tbet, most simulations lead to the
Th1 phenotype, with a few simulations reverting to the Th0 phenotype; Panel E) shows that, when considering random
functions for IL4, the Th0 phenotype does not show up, most simulations lead to Th1, with a few simulations leading to
Th2; Panel F) shows that, when considering random functions for IL4R, the Th0 phenotype does not show up, most
simulations lead to Th1, with simulations leading to Th2 in a higher proportion compared to Panel E.

Finally, although the proposed rules to uncover function neighbors apply to the case of Boolean functions, the extension
to multi-valued functions could be achieved through the Booleanization of the model [8].

Availability

The software implementing the rules to compute the parents and the children of a given Boolean function, is freely
available at https://github.com/ptgm/functionhood under a GNU General Public License v3.0 (GPL-3.0). This
software is expected to be made available as part of the set of software tools made available at http://github.com/
colomoto by the http://CoLoMoTo.org (Consortium for Logical Models and Tools) consortium, and integrated into
the GINsim modeling and simulation tool (http://ginsim.org).
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