

HOKKAIDO UNIVERSITY

Title	Birth cohorts in Asia : The importance, advantages, and disadvantages of different-sized cohorts
Author(s)	Kishi, Reiko; Araki, Atsuko; Minatoya, Machiko; Itoh, Sachiko; Goudarzi, Houman; Miyashita, Chihiro
Citation	Science of The Total Environment, 615, 1143-1154 https://doi.org/10.1016/j.scitotenv.2017.08.268
Issue Date	2018-02-15
Doc URL	http://hdl.handle.net/2115/76745
Rights	© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	http://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
File Information	Kishi_STOTEN_2018_final.pdf

1	Birth cohorts in Asia: The importance, advantages, and disadvantages of different-sized cohorts
2	
3	Reiko Kishi ^{a,*} , Atsuko Araki ^a , Machiko Minatoya ^a , Sachiko Itoh ^a , Houman Goudarzi ^{a,b} , Chihiro
4	Miyashita ^a
5	
6	^a Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
7	^b Department of Respiratory Medicine, Faculty of Medicine and Graduate
8	School of Medicine, Hokkaido University
9	
10	*Corresponding Author
11	Reiko Kishi, MD, PhD, MPH
12	Center for Environmental and Heatlh Sciences, Hokkaido University
13	Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812 Japan
14	Phone: +81-11-706-4746
15	Fax: +81-11-706-4725
16	E-mail: <u>rkishi@med.hokudai.ac.jp</u>
17	
18	Keywords (6): Asia, birth cohort, sample size; dioxins, perfluoroalkyl substances, health outcomes

Highlights

- Birth cohorts in Asia can range from 100 to over 100,000 participants.
- Even small-sized cohort indicates association of low level dioxin exposure and child health.
- Several Asian cohorts focus on prenatal exposure to PFASs and various health outcomes.
- Large cohorts can target rare diseases, although need enormous research funds.
- BiCCA require harmonization of the exposure assessment and meta-analysis.

19 Abstract

20	Asia contains half of the world's children, and the countries of Asia are the most rapidly
21	industrializing nations on the globe. Environmental threats to the health of children in Asia are myriad.
22	Several birth cohorts were started in Asia in early 2000, and currently more than 30 cohorts in 13
23	countries have been established for study. Cohorts can contain from approximately 100-200 to 20,000-
24	30,000 participants. Furthermore, national cohorts targeting over 100,000 participants have been
25	launched in Japan and Korea. The aim of this manuscript is to discuss the importance of Asian cohorts,
26	and the advantages and disadvantages of different-sized cohorts. As for case, one small-sized ($n = 514$)
27	cohort indicate that even relatively low level exposure to dioxin in utero could alter birth size,
28	neurodevelopment, and immune and hormonal functions. Several Asian cohorts focus prenatal
29	exposure to perfluoroalkyo substances and reported assocations with birth size, thyroid hormone levels,
30	allergies and neurodevelopment. Inconsistent findings may possibly be explained by the differences
31	in exposure levels and target chemicals, and by possible statistical errors. In a smaller cohort, novel
32	hypotheses or preliminary examinations are more easily verifiable. In larger cohorts, the etiology of
33	rare diseases, such as birth defects, can be analyzed; however, they require a large cost and significant
34	human resources. Therefore, conducting studies in only one large cohort may not always be the best
35	strategy. International collaborations, such as the Birth Cohort Consortium of Asia, would cover the
36	inherent limitation of sample size in addition to heterogeneity of exposure, ethnicity, and

37 socioeconomic conditions.

38 1. Introduction: Importance of birth cohorts in Asia

39 In 1997, Colborn et al. published the book "Our Stolen Future: Are We Threatening Our Fertility, 40 Intelligence, and Survival?" (Colborn et al. 1997), which warned of the dangers of environmental 41chemicals as endocrine disruptors. Since then, concern of the impact of environmental chemicals that 42could lead to impaired reproductive capacity has become a global interest. The World Health 43Organization (WHO) and International Programme on Chemical Safety published the report "Global Assessment of the State-of-the-Science of Endocrine Disruptors" in 2002 (IPCS 2002), which has 44been updated as "State of the Science of Endocrine Disrupting Chemicals - 2012" by the WHO and 4546United Nations Environment Programme (UNEP and WHO 2012). WHO Headquarters also published 47"Endocrine Disrupting Chemicals and child health: Possible developmental early effects of endocrine 48disrupters on child health," which compiles the existing evidence (WHO 2012). 49Historically, many epidemiological studies have been conducted in Europe. One of the 50oldest cohort, which examined environmental chemical exposure, is in Faeroe Island; they started their 51enrollment in mid-1980, and there were 1,022 singleton births (Weihe and Grandjean, 2012). In 2009, 52birth cohorts gathered and established projects such as the Environmental Health Risks in European Birth Cohorts within the European Union's 7th Framework Program. It aims to advance knowledge on 5354the relationships between specific environmental factors and health in pregnancy and birth cohorts by providing support to utilize the wealth of data generated by past and ongoing studies funded by the 55

56 European Union and national programs (Vrijheid et al. 2012).

57	On the other hand, Asia contains half of the world's children, and the countries of Asia are
58	the most rapidly industrializing nations on the globe. Environmental threats to the health of children
59	in Asia are myriad. In Asia, several birth cohorts were launched in early 2000. The Birth Cohort
60	Consortium of Asia (BiCCA) was co-established in 2011 by the principal investigators of three birth
61	cohorts in Asia: the Taiwan Birth Panel Study (TBPS), the Mothers and Children's Environmental
62	Health Study (MOCEH, Korea), and the Hokkaido Study on Environment and Children's Health (The
63	Hokkaido Study, Japan) (Kishi et al. 2017). The primary aims of BiCCA are 1) to facilitate exchange
64	of knowledge and collaboration between cohorts and researchers, and 2) exploration of the future
65	needs of children's environmental health research. As of April 2017, 27 cohorts in 13 countries have
66	joined the BiCCA project (Table 1), and they are quite diverse in study area. The number of participants
67	in each cohort ranges from small (100–3,000) to medium (more than 3,000 to 10,000), and large (more
68	than 10,000). Furthermore, the Ministry of Environment, Government of Japan launched the Japan
69	Environment and Children's Study (JECS) in 2011, and successfully recruited a large number of
70	participants consisting of 100,000 parent-child pairs (Kawamoto et al., 2014). The Korean Children's
71	Environmental Health Study (Ko-CHENS!) has been recruiting pregnant women since 2015, targeting
72	100,000 participants (Ha et al. 2016); therefore, larger cohorts may be paid more attention.
73	Birth cohorts that come from a local area issue are important. Environmental threats to the

 $\mathbf{5}$

74	health of children in Asia are diverse, and include classic infectious disease hazards. Several BiCCA
75	cohorts, including those in China, Korea, Mongolia, Singapore, and Taiwan, focus on outdoor air
76	pollution, such as smog, sandstorms, and haze, which are not only regional but trans-boundary threats
77	(B. M. Kim et al. 2009; Kishi et al. 2016; Kishi et al., 2017; Bae et al, 2017; Soh et al. 2014; Wen et
78	al. 2011; Yang et al. 2014). Heavy metals are also a local area issue. Fish consumption is a risk for
79	dioxins, PCBs, and methyl mercury that has been a focus in China, Japan, Korea, and Taiwan (Bae et
80	al. 2017; Gao et al. 2016; Hsieh et al. 2011; B. M. Kim et al. 2009; Kishi et al. 2017; Kishi et al., 2016;
81	Kishi et al. 2013; Kishi et al. 2011; Nakai et al. 2004; Y. Wang et al. 2014; Wen et al. 2011), whereas
82	high arsenic is an issue in Bangladesh (Kile et al. 2016). The increasing number of overweight and
83	obese individuals is another growing issue. The majority of studies have been conducted in measuring
84	birth size, although the Malaysia cohort has examined biomarkers together with anthropometric
85	measurements (Loy and Hamid Jan 2014). Although the sample size of these cohorts is smaller than
86	the large scale nation-wide cohorts, they have contributed both novel findings and preventive
87	measures; therefore, the significance of the small cohort should not be ignored.
88	The aim of this manuscript is to discuss the importance, the advantages and disadvantages
89	of different-sized cohorts in Asia, while showing representative findings. In this manuscript, we have
90	focused on and summarize the persistent organic pollutants, such as dioxins and perfluoroalkyl
91	substances (PFASs). Recently, environmental chemicals with short half-lives, such as phthalate esters,

and bisphenols have also been a concern, as humans are exposed to these chemicals ubiquitously.
These chemicals require exposure assessment; however, exposure to which chemicals or metabolites,
when, how many times, etc. should also be discussed in a separate manuscript.

95

96 2. Dioxin exposure in Asian countries

97 Dioxins are a group of chemical compounds that are persistent environmental pollutants. 98 Polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like 99 polychlorinated biphenyls (DL PCBs) have human health effects that have become distributed in 100environments worldwide (Kogevinas, 2001). Yusho and Yucheng are oil diseases that occurred 101because of ingestion of accidentally contaminated rice oil in the western part of Japan in 1968 102 (PCDD/PCDFs and dioxin-like PCBs in blood level: 215.4 pg/g TEQ lipid) (Yoshimura 2003) and in 103 Taiwan in 1978-1979 (PCDD/PCDFs in blood level: 6550 pg/g TEQ lipid) (Guo et al. 2004). During 104the Vietnam War from 1961 to 1972, herbicides contaminated with 2,3,7,8-Tetrachlorodibenzo-p-105dioxin (TCDD), the most toxic congener of dioxin, was sprayed in Southern Vietnam area. Because 106 of the extremely high levels of TCDD in the soil samples at military airbases formerly used for storing 107herbicides, these areas were characterized as "hot spots" of TCDD contamination (TCDD in breast 108 milk: 1,832 pg/g lipid) (A Schecter et al., 1995). The dioxin levels in breast milk of lactating mothers 109 in the hot spots were reported to be approximately 4-fold higher than those of lactating mothers

110	residing in unsprayed areas four decades after the herbicide spraying (PCDD/PCDFs in breast milk:
111	14.1 pg/g TEQ lipid in hot spot vs 4.1 in unsprayed areas) (Tai et al. 2011). Thus, several cohort studies
112	in Vietnam have focused on the residents around these hot spots and the second generation exposed to
113	high levels of dioxins (Kido et al. 2014; Nishijo et al. 2012).
114	The general population that had no history of accidental poisonings or currently live in a
115	non-contaminated area had relatively lower exposure levels compared to those who were exposed to
116	high levels due to accidental poisonings. Neverthless, the general population is continually exposed to
117	dioxins via consumption of daily food intake. Environmental exposure levels of dioxins were
118	compared with other countries and regions as shown in Figure 1. The median or mean concentrations
119	of PCDD, PCDF, and DL PCB) toxic equivalents (TEQs) in breast milk for the collection period from
120	1999 to 2004 in Asian countries such as Hokkaido and Tohoku in Japan, China, Korea, and Taiwan,
121	were relatively lower than those in Europe [the Netherlands, Italy, and Germany] or the US (Nakamura
122	et al. 2008; Nakatani et al. 2005; Todaka et al. 2010).
123	

2.1. Dioxins hazard assessment with a small-sized cohort: Sapporo Cohort

Alteration of even relatively low level dioxin exposure on infant health of the next generation was not
well understood. A few human studies have addressed prenatal exposure to low environmental levels
of PCDDs/PCDFs and DL-PCBs. The following is example of a small sample cohort, the Sapporo

128	cohort, examined the effects of dioxin exposure on adverse fetal health outcomes. The case shows how
129	novel hypotheses or trials are easily verifiable in a small cohort. The Sapporo cohort enrolled 514
130	pregnant women at one hospital in Sapporo, Japan in 2002-2005. Detailed information can be found
131	in our cohort profiles (Kishi et al. 2017; Kishi et al. 2013; Kishi et al. 2011). The cohort focused on
132	child neurodevelopment, allergies and infectious diseases, and endocrine and metabolism disorders.
133	They assessed rigorous and congener level measurements of dioxins, DL-PCBs, other PCBs, and
134	hydroxylated PCBs (Todaka et al. 2007, 2008a; Todaka et al. 2008b).
135	Although maternal exposure levels of dioxin like compounds (DLCs) in the Sapporo cohort
136	were relatively lower than that in Europe and the US, adverse effects of prenatal exposure to DLCs on
137	offspring health were observed in this cohort (Table 2). These effects include reduced birth weight
138	(Konishi et al. 2009), reduced IgE at birth (Washino et al. 2007), increased free thyroxine (T4) (Baba
139	et al., 2012), delay of neurodevelopment at 6 months (Nakajima et al. 2006), increased risk of
140	infections at 18 months of age (Miyashita et al. 2011), and increased risk of wheeze at 7 years old
141	(Miyashita et al. 2017). In specific congener analysis, maternal 2,3,4,7,8-pentachlorodibenzo-furan, a
142	PCDF congener, was associated with decreased child birth weight (per log 10 unit: β = -24.5 g; 95%
143	CI: -387.461.5) (Konishi et al 2009) and increased risk of otitis media (OR: 5.3; 95% CI: 1.5-19)
144	(Miyashita et al. 2011). The maternal PCDD isomer 1,2,3,4,6,7,8-HpCDD was negatively associated
145	with mental developmental index (MDI) in children at 6 months of age. Four maternal PCDD isomers

146	and one PCDF isomer were negatively associated with psychomotor developmental index (PDI) in
147	children at 6 months of age (Nakajima et al. 2006). On the other hand, at 18 months of age, the
148	associations observed at 6 months had almost disappeared (Nakajima et al. in press). At age 3.5 years,
149	the Mental Processing Composite Score of the Kaufman Assessment Battery for Children showed
150	almost no relationship with maternal levels of DLCs, but did show a significant negative relation with
151	one PCDF isomer, 2,3,4,6,7,8-HxCD (Ikeno et al. submitted to this STOTEN special issue). In the
152	Sapporo cohort, associations between higher levels of DLCs and any of the outcomes examined,
153	including birth weight, cord blood IgE, risk of infectious diseases, and delay of neurodevelopment at
154	early life, were all found in male infants, suggesting that boys were more susceptible to DLCs than
155	girls (Kishi et al., 2013). Their effects on steroid and reproductive hormones at birth and follow-up at
156	onset of puberty are now being examined. DLCs are highly resistant to biodegradation in the
157	environment; for example, the estimated half-life of TCDD is 7-8 years (Kogevinas, 2001). Although
158	the sample size is relatively small, results from the Sapporo cohort, clearly indicated that the effects
159	of prenatal exposure, even at the relatively low DLC levels in Sapporo, Japan compared to other areas
160	in the world, could cause various health outcomes in offspring.
161	

3. PFASs health hazard assessment from different-sized cohorts in Asia

Another class of persistent organic compound (POP) that has drawn focus worldwide is the

170	3.1. Exposure levels
169	
168	Tables 3 to 6 describe findings from Asian birth cohort studies till date.
167	acid (PFOS) have been included in Annex B of the Stockholm Convention on POPs (UNEP 2007).
166	range of consumer products because of their surface properties. Since 2009, perfluorooctanesulfonic
165	each cohort in Asia, here we focus on PFASs exposure and their effects. PFASs are used in a broad
164	PFASs. Although there have been a variety of environmental contaminant health hazard assessed in

171PFOS and perfluorooctanoate PFOA levels in maternal and cord samples of Asian, European 172and the North American countries are shown in Figure 2. Maternal levels of both PFOS and PFOA in 173Japan and Taiwan were at similar levels. (Okada et al. 2013; Washino et al. 2009, Wang et al. 2016). 174Maternal PFOS levels in Korea (Kim et al. 2011) were slightly lower compared to others. Cord levels 175of PFOS and PFOA measured in Korea (Y. J. Lee et al. 2013, Kim et al. 2011, Shah-Kulkarni et al. 1762016), and in China (Li et al. 2017, Shi et al. 2017) were at the same range. On the other hand, cord 177PFOS and PFOA levels reported in Taiwan (Chen et al. 2012) were much higher than levels in Korea 178and China. Cord levels were lower compared to maternal levels (Kim et al. 2011), which was 179reasonable because 35% of the PFOS and 85% of the PFOA in cord blood is transferred from the 180 maternal serum (Inoue et al. 2004; Y. J. Lee et al. 2013). The PFOS levels among Asian countries 181 were in the similar range. Compared to the European countries and North American countries, the

182	levels may slightly lower, however, this could be due to differences in sampling periods. PFOA levels
183	of Asian, Europe and the North Americans were in the similar range. The sources of exposure, such as
184	drinking water, inhalation of indoor air, ingestion of house dust, direct contact with consumer products,
185	increased time periods with continuous use, and emissions, may contribute to the variability in levels
186	between these study areas (Fromme et al. 2009; Gyllenhammar et al. 2015; Haug et al. 2011).
187	Previously, the trends of 11 types of PFAS in maternal blood during 2003-2011 were
188	reported. The decrease in PFOS and PFOA, which has also been shown in different countries, could
189	be explained by limited use of these chemicals in recent years (Calafat et al. 2007; Okada et al. 2013;
190	Olsen et al. 2012; Olsen et al. 2008). Levels of perfluorononanoic acid (PFNA) and perfluorodecanoic
191	acid (PFDA), which have longer chains, were increasing (Okada et al. 2013). Similar increasing trends
192	were also found in the serum samples in Korea (Harada et al., 2011), as well as in the US and Europe
193	(Calafat et al. 2007; Glynn et al. 2012). It is worth noting that the detection rate for PFASs with longer
194	than 11 chains, such as perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA),
195	and perfluorotridecanoic acid (PFTrDA), was higher than 90% in Japan studies (Goudarzi et al. 2017;
196	Okada et al. 2014). There are few human studies focusing on the effects of long-chain PFASs on human
197	health; therefore, additional studies are needed to clarify the effects of these newly emergent chemicals
198	on human health, especially in Asia, where these long-chain PFASs are still being produced.

200 **3.2. Birth weight and growth**

201In the past ten years, birth cohort studies have accumulated evidence on the associations 202between PFAS exposure and birth weight and birth size, as shown in Table 3. The majority of the 203 studies have investigated PFOA and PFOS, two of the most widely used PFASs. Three studies from 204Asian countries showed that prenatal PFOS exposure was associated with reduced birth weight (Chen 205et al. 2012; Li et al. 2017; Washino et al. 2009). Furthermore, recently Li et al. reported that branched 206PFOS has a more significant association with reduced birth weight than does linear PFOS (Li et al. 207 2017). In addition to PFOS and PFOA, a study from Taiwan (Wang et al. 2016) reported that PFNA, 208PFDA, PFUnDA, and PFDoDA were associated with reduced birth weight in girls, and a study from 209Korea Lee et al. 2013) reported a significant inverse association between cord perfluorohexane 210sulfonate (PFHxS) concentration and birth weight. On the other hand, a recent study from China 211reported no significant associations between PFASs exposure and birth weight, birth length and 212ponderal index (Shi et al. 2017). 213A meta-analysis of nine epidemiological studies worldwide showed that developmental

218	statistical significance (Bach et al. 2015). Similarly, maternal or cord blood PFOS levels were
219	inversely associated with birth weight in many studies, while some studies showed no association
220	(Bach et al. 2015). Of the Asian cohorts, the Sapporo cohort, the TBPS, and the Gyeongbuk province,
221	Korea are included in these systematic review, indicating that even small size cohorts had a significant
222	contribution.
223	In addition to PFOA and PFOS, other PFASs, including perfluoroheptanoic acid, PFNA,
224	PFDA, PFUnDA, and PFDoDA, have been investigated recently. We previously determined that
225	PFNA and PFDA levels increased between 2003 and 2011, while PFOS and PFOA concentrations
226	declined (Okada et al. 2013). Therefore, the association of birth weight and birth size with exposure
227	to these alternative PFASs should be examined.
228	Recently, not only birth weight, but also metabolic biomarkers such as adipokine levels in
229	cord blood samples have been investigated in association with PFAS exposure (Ashley-Martin et al.
230	2017; Fleisch et al. 2017; Minatoya et al. 2017a). Moreover, recent findings suggested that DNA
231	methylation related to fetal growth regulation (Kobayashi et al. 2016; Watkins et al. 2014) may be a
232	clue to fully elucidate the etiology of reduced birth weight and birth size via prenatal exposure to
233	PFASs. In these methylation studies, it has been suggested that large sample size is not necessarily
234	crucial.

3.3. Effects on thyroid hormones

237	There have been several reports in Asia from varied sample sizes (from 44 to 392) on the
238	relationship between prenatal exposure to PFASs and the thyroid hormone levels of mothers and
239	infants (Table 4). For maternal hormone analysis, the Taiwan Maternal and Infant Cohort Study
240	(TMICS) reported that maternal PFHxS was positively associated with thyroid stimulating hormone
241	(TSH), and PFNA, PFUnDA, and PFDoDA were inversely associated with free and total T4 levels in
242	the third trimester (Y. Wang et al. 2014). The Sapporo cohort reported that maternal PFOS levels
243	were inversely associated with maternal serum TSH during early gestation (Kato et al. 2016). Since
244	values of maternal TSH at early gestational stage are suppressed by the elevation of human chorionic
245	gonadotropin (hCG) levels, previous studies, including the TMICS, used the thyroid hormone data
246	after the second trimester of pregnancy to avoid the effect of hCG. However, the disruption of
247	maternal thyroid hormone levels at early gestational stages would be detrimental for not only
248	maternal but also fetal health, because the fetus completely depends on the maternal hormone supply
249	before fetal thyroid glands begin to secrete hormones.
250	Regarding the infants' thyroid hormones, the TBPS reported that cord blood PFOS was
251	associated with higher TSH levels in the cord blood, especially in boys (Tsai et al. 2017). The
252	TMICS found that PFNA, PFUnDA, PFDoDA, and PFDA in maternal serum were inversely
253	associated with cord blood triiodothyronine (T3) and/or total T4 (Wang et al. 2014). In South Korea,

254	cord blood perfluoropentanoic acid (PFPeA) and PFHxS were associated positively with T4 and T3,
255	while PFNA was inversely associated with TSH in girls (Shah-Kulkarni et al. 2016). Another Korean
256	study reported that maternal PFOS was inversely associated with T3 in the cord blood, and maternal
257	PFTrDA was positively associated with T3 and T4 in the cord blood ($n = 44$) (S. Kim et al. 2011). In
258	the Sapporo cohort, maternal PFOS levels were positively associated with TSH by heel-prick blood
259	in boys (Kato et al. 2016).
260	Some studies have been reported from European countries. The Northan Norway Mother-
261	and-Child contaminant Cohort Study (The MISA study) reported that exposure to maternal PFOS,
262	PFDA, and PFUnDA during pregnancy altered maternal and infant's thyroid hormone levels (Berg et
263	al. 2017). The Linking EDCs in maternal Nutrition to Child health (LINC) study in the Netherlands
264	found that high levels of PFOA were associated with high T4 in girls (de Cock et al. 2014).
265	These results are mainly consistent in Asia and Europe with those seen for PFASs,
266	particularly as exposure to PFASs with carbon chains longer than 7 alters thyroid hormone levels in
267	infants. In addition, these findings indicate that boys were more susceptible to longer chain PFAS
268	exposure, while girls were more susceptible to shorter chain PFASs. However, the mechanism
269	behind this gender difference is still unclear. Hormone values drastically change according to the
270	stage of gestation, postnatal days, and delivery stress, such as labor pain, the duration of labor, and
271	uterotonic agents. The somewhat inconsistent findings from previous studies may be because of

these differences; therefore, the accumulation of this vast evidence is a common concern worldwide,

273 including Asia.

274

275 **3.4.** Allergies and infectious diseases

276In Table 5, we have summarized the associations between PFASs and IgE, allergies, and infectious 277diseases. There are two cohorts in Asia examining the effect of PFOS and PFOA on IgE and allergies 278in similar small sample sizes. In the TBPS, Wang et al. (I. J. Wang et al. 2011) reported a positive 279correlation of PFOS and PFOA with cord blood IgE levels, and, after sex stratification, this 280correlation remained significant only in boys. Additionally, they did not observe an association 281between PFASs and atopic dermatitis. However, the Sapporo cohort reported that cord blood IgE level decreased significantly with high maternal PFOA, but not PFOS, levels in female infants. 282283Additionally, there was no relationship observed in the Sapporo cohort between maternal PFOS and 284PFOA levels and infant allergies and infectious diseases at 18 months (Okada et al. 2012). These two 285small Asian cohorts have almost the same sample sizes, but contrasting results of the effects of 286PFASs on cord blood IgE levels. In the Taiwanese study, exposure assessment was conducted in cord 287blood; however, in the Sapporo cohort, prenatal PFAS levels were assessed, indicating lower 288exposure levels than those in the TBPS. The contrasting results may be partly explained by different 289exposure levels and applications.

290	A cohort (the Hokkaido large sized Cohort) examined not only PFOS and PFOA, but also
291	included longer carbon-chain PFASs. It was found that lower prenatal exposure to PFTrDA may
292	decrease the risk of eczema in infants in the first 2 years of life (Okada et al. 2014). When this
293	population was followed up at age 4, in utero exposure to long-chain PFASs, such as PFDoDA and
294	PFTrDA, was inversely associated with eczema and total allergic diseases (Goudarzi et al. 2016a).
295	On the other hand, PFHxS and PFOS were associated with increased risk of infections up to 4 years
296	of age (Goudarzi et al. 2017). These findings from a large-sized cohort but sample size was under
297	2000 for the follow-up observation period suggest that prenatal PFASs may have immunotoxic and
298	immunosuppressive effects in the next generation.
299	On the other hand, in the Faroe Islands, 587 mother-child pairs were followed up until the
300	children were 7 years of age, and PFASs during pregnancy and in 5-year old children were
301	examined. As outcomes, they examined serum antibody concentrations against tetanus and
302	diphtheria vaccines in 5- and 7-year-olds. PFAS levels in this study were 3-4 times higher than those
303	in the Sapporo cohort. Although the sample size of this study was not very big, the measurement of
304	pre- and postnatal PFASs along with the long follow-up period provided novel insights into the
305	reduced humoral immune response in children exposed to high PFAS levels. PFASs and post-natal
306	exposure to PFOS and PFOA were negatively associated with tetanus and diphtheria antibody levels
307	in 5- and 7-year-old children (Grandjean et al. 2012). In Norway, Granum et al. (2013) reported an

308	inverse association between prenatal PFASs and serum anti-rubella antibody levels in children at age
309	3 (Granum et al. 2013). They also observed a positive association between PFAS levels and the
310	occurrence of the common cold and gastroenteritis in children. Furthermore, a Danish study showed
311	that higher prenatal concentrations of PFOS and PFOA were associated with prevalence of fever as a
312	marker of infections in early childhood (Dalsager et al. 2016).
919	

314 **3.5. Effects on neurodevelopment**

315Multiple studies have been conducted on prenatal exposure to PFASs and child 316 neurobehavioral development. These epidemiological studies used various assessment tools at 317different age points. Additionally, focused outcomes were varied, from mental or motor development 318 to IQ, or even symptoms such as Attention Deficit Hypertension Disorder (ADHD) or Autism 319 Spectrum Disorder (ASD). Thus, findings from these studies seem to be inconsistent and not quite 320 comparable to each other. Table 6 shows findings on PFAS exposure and child neurodevelopment and 321behavioral problems from Asian birth cohort studies. The concentrations of PFOS and PFOA were similar, with the exception of the TMICS, which showed a median PFOS concentration of 13.25 ng/mL 322 323(Y. Wang et al. 2015). The study populations were relatively small (< 300); however, three (Chen et 324al. 2013; Goudarzi et al. 2016a; Lien et al. 2016) out of four studies conducted face-to-face behavioral 325assessment of children by trained professionals, which provided more precise and detailed child

326	neurobehavioral developmental outcomes. From this point of view, small birth cohort studies seem to
327	be advantageous. In Europe, a nested case-control study in the Danish National Birth Cohort,
328	measurements of PFASs were conducted for 220 case of each ADHD and autism and matched controls
329	of 550, and found no consistent evidence to suggest that prenatal PFAS exposure increases the risk of
330	ADHD or childhood autism in children (Liew et al. 2015). Regarding ADHD, the prevalence in Asia
331	is below 5% according to the 15 pooled-study, which is not significantly different from the worldwide
332	prevalence of 5.29% (Polanczyk et al. 2007). It should be noted how each study define the case of
333	ADHD and ASD; e.g. medical record, diagnoses, questionnaires, etc. It is also important to keep
334	accumulating findings from not only the small but also the medium and large-sized cohorts, as well as
335	more detailed studies and studies with longer follow-up to provide evidence on child neurobehavioral
336	development in association with prenatal exposure to PFASs.
337	
338	4. Advantages and disadvantages of different-sized cohorts
339	A recent study assessed the research outcomes of the European birth cohorts, and it indicated
340	that general cohort with 10,000-15,000 sample size allows for a broader contextual interpretation and
341	results in publishing a high number of articles, whereas cohorts of 3,000-10,000 sample size with a
342	specific focus receives a higher number of citations (Piler et al., 2017). However, Piler et al. (2017)
343	included only studies with sample size more than 3,000. As we have discussed in this manuscript,

344	many of the cohorts in Asia are smaller than sample size of 3,000. However even cohorts smaller than
345	sample size of 3,000 were able to present significant findings as shown in the Table 2-6. Our
346	experiences based on both the small Sapporo cohort ($n = 514$) and large scale Hokkaido cohort ($n = 514$)
347	20,926), which was one of the models of the JECS, suggest that each cohort can provide significant
348	and novel results. In Sapporo cohort, even low level in utero dioxin exposure may alter children's
349	health status, such as birth weight, neurodevelopment, and immune function (Table 2). Moreover,
350	findings of drastic inverse association between PFOS levels and essential fatty acids in maternal blood
351	suggesting the importance of taking look at maternal metabolic resourses during pregnancy (Kishi et
352	al., 2015). Recent publicaions suggested that PFOS and PFOA expoures in utero may alter
353	reproductive and steroid hormone levels of infant at birth (Goudarzi et al., 2017b; Itoh et al., 2016).
354	Not only PFASs but also phthalate and bisphenol A were found to have associations with children's
355	reproductive and steroid hormones (Araki et al., 2014; Araki et al., 2016; Minatoya et al., in press).
356	However, there are also limitations. The most relevant limitation of the small-scale cohort
357	is the sample size and lack of statistical power. In addition, we should consider the effect size of
358	findings from small cohort studies. Small cohort studies listed in the Tables 3-6 could only detect small
359	to medium effect size (Cohen, 1988), even though these studies found statistical significance according
360	to the p-values. Therefore, medium or large cohort studies are needed. Some of the findings from the
361	PFASs investigations have been inconsistent. This could be due to the differences in dose-range and/or

362	composition of chemicals. Many of the environmental chemicals accompany various homologues and
363	congeners. Those chemicals might share similar exposure sources; therefore, a model with multiple
364	sources and differentiating their effects should be considered to avoid possible false-positive
365	conclusions (Kim et al., 2017). In addition, statistical errors should be taken into consideration. If there
366	is no true effect of PFAS on a certain outcome, then there might be type I error in some of the studies.
367	If the effect of PFASs on a certain outcome was true, then the direction of effect is supposed to be in
368	the same direction; in such a case, we should keep in mind that there might be type II errors in some
369	of the studies.
370	Compared to the small-sized Sapporo cohort, the strength of the Hokkaido cohort is that it
371	easier to detect relatively rare and/or low prevalence outcomes, such as stillbirth (0.32%, n=60),
372	preterm birth (4.9%, n=923), small for gestational age (7.0%, n=1,308), low birth weight (9.0%,
373	n=1,693), and birth defects (Hanaoka et al., 2017; Kishi et al., 2017). The prevalence of birth defects
374	in the-Hokkaido cohort is shown in Table 7. The total number of all birth defects was 623 in 19,282
375	(3.7%) live births. The most frequent birth defect was circulatory system defect, under Classification
376	of International Statistical Classification of Diseases and Related Health Problems 10th Revision,
377	which occurred in 192 infants (0.99%). According to the calculation of sample size by the JECS study
378	protocol (JECS study protocol ver. 1.4), under conditions of significant level of 5%, statistical power
379	80%, and relative risk of 2.0, a sample size of more than 100,000 is necessary to test a hypothesis of

380	a disease/health outcome with a prevalence of 0.1% or less. An extremely large population-based
381	cohort in Sweden included over 1.2 million participants with 20,074 (1.6%) cases of congenital heart
382	defects (Persson et al., 2017). For even more rare diseases such as acute leukemia, an exposure
383	affecting 5% of the population requires more than 1 million participants (Brown et al. 2007). In such
384	a case, one birth cohort might not be sufficient to cover all participants, so an international project,
385	such as The International Childhood Cancer Cohort Consortium, brings the various cohorts together
386	(Brown et al. 2007).
387	The reduction in sample size, along with lack of follow-up, is another limitation of smaller
388	cohorts. Although probability of loss-to-follow-up is a general disadvantage of a cohort study of any
389	size, the impact of loss-to-follow-up could be greater for a small study than a large study, in terms of
390	the possibility of lacking in occurrence of outcomes, e.g., ADHD and ASD. In addition, even longer
391	follow-up periods are required when examining effects at the onset of puberty, and the number of
392	participants might not be enough for analysis at that time point in a smaller cohort.
393	Moreover, potential biases may occur because of some study participants dropping out,
394	which may cause under or over estimations. In addition, there might be confounding with other
395	variables. We compared the basic characteristics of the participants in the Hokkaido cohort at baseline
396	segregating those with and without available data at delivery, and the participants who were lost to
397	follow up showed higher prevalence of nulliparity, drinking, smoking, and lower income during

398	pregnancy, and maternal lower education (Goudarzi et al. 2016a; Goudarzi et al., 2016b; Minatoya et
399	al., 2017b). Having only biased participants with lower socioeconomic status who do not smoke may
400	underestimate the potential risk of exposure. One of the reasons for inconsistent results between each
401	cohort in the Asian countries as shown in Tables 3-6 may be because of small sample size. Larger
402	sample size could provide statistical power and reliable results with smaller confidence intervals.
403	In a large cohort, such as a national cohort, the etiology and risk factors of rare diseases such
404	as birth defects could be analyzed. On the other hand, large sample size studies also have difficulties.
405	Among the most prominent is that large cohort studies include greater operating expenses, budgetary
406	cost, and human resources. Magnus reported that Denmark (DNBC) and Norway (MoBa) have
407	managed large population studies, partly because they have a unified public healthcare system and
408	very good health registries (Magnus 2017). In Japan, there is no such registration system. Thus, each
409	cohort has to send questionnaires to collect health data (Kawamoto et al., 2014; Kishi et al., 2017).
410	Making use of the Hokkaido study and Tohoku cohort's 10-year experiences were keys to success in
411	setting up JECS systematically. Similarly in Korea, experiences of several smaller cohorts are being
412	applied to Ko-chens!
413	

5. Future direction of Asian cohort

415 In conclusion-every cohort has importance; therefore, conducting studies in only one large scale cohort

416	in each country might not be always desirable. Even in a small cohort, a good design and original
417	hypothesis brought novel findings. In a larger cohort, even more diverse findings will be expected by
418	overcoming the limitation of small sample size. Nevertheless, International collaboration, such as the
419	BiCCA, can overcome the inherent limitation of sample size. In addition to heterogeneity of exposure,
420	ethnicity and socioeconomics, international comparison of nation-wide cohorts is warranted. As
421	pointed out in BiCCA's first manuscript (Kishi et al., in press), potential limitations of the comparison
422	of existing data among the studies are differences on basic demographic variables and questionnaires
423	definition, environmental exposure measurements derived from various analytic methods or specimen,
424	and heterogeneity of country or language-specific assessment tools. The potential bias could be
425	verified by inter- and intra- laboratory tests; furthermore, evaluation of new methods and technologies
426	would be enhanced by aggregating data from each cohort (Kishi et al., in press). Although there are
427	many challenges to be overcome, future projects of meta-analysis, combining and harmonizing cohort
428	data will enable researchers to improve statistical power and assess the exposure-outcome relationship,
429	even for relatively rare health outcomes. Strengthening further collaborations not in only within Asia
430	but also worldwide is essential to solve many global health issues.
431	

Funding: The Hokkaido Study on Children and Environmental Health was supported by the Grant-in 432

433Aid for Health Scientific Research from the Japan Ministry of Health, Labour and Welfare, the

- 434 Scientific Research from the Japan Society for the Promotion of Sciences, and the Environment
- 435 Research and Technology Development Fund from the Ministry of the Environment, Japan.

437 References

- Adair, L.S.; Popkin, B.M.; Akin, J.S.; Guilkey, D.K.; Gultiano, S.; Borja, J.; Perez, L.; Kuzawa, C.W.;
 McDade, T.; Hindin, M.J. Cohort profile: The CEBU longitudinal health and nutrition survey.
 Int J Epidemiol 2011;40:619-625.
- Araki, A.; Mitsui, T.; Goudarzi, H.; Nakajima, T.; Miyashita, C.; Itoh, S.; Sasaki, S.; Cho, K.; Moriya,
 K.; Shinohara, N.; Nonomura, K.; Kishi, R. Prenatal di(2-ethylhexyl) phthalate exposure and
 disruption of adrenal androgens and glucocorticoids levels in cord blood: The Hokkaido study.
 Sci Total Environ 2017;581-582:297-304.
- Araki, A.; Mitsui, T.; Miyashita, C.; Nakajima, T.; Naito, H.; Ito, S.; Sasaki, S.; Cho, K.; Ikeno, T.;
 Nonomura, K.; Kishi, R. Association between maternal exposure to di(2-ethylhexyl) phthalate
 and reproductive hormone levels in fetal blood: The Hokkaido study on environment and
 children's health. PLoS ONE 2014;9:e109039.
- Ashley-Martin J, Dodds L1, Arbuckle TE, Bouchard MF, Fisher M, Morriset AS, Monnier P, Shapiro
 GD, Ettinger AS, Dallaire R, Taback S, Fraser W, Platt RWMaternal Concentrations of
 Perfluoroalkyl Substances and Fetal Markers of Metabolic Function and Birth Weight. Am J
 Epidemiol. 2017; 185(3):185-193.
- Baba, T.; Yoshioka, E.; Sasaki, S.; Miyashita, C.; Yuasa, M.; Itoh, S.; Kajiwara, J.; Todaka, T.; Kato,
 S.; Kobayashi, S.; Okada, E.; Kashino, I.; Yila, T.A.; Brimoh, T.; Kishi, R. Levels of PCB
 congeners in maternal blood and their effect on maternal and neonatal thyroid hormonesresult from Hokkaido study on environment and children's health. The 6th International
 Congress of Asian Society of Toxicology (ASIATOX-VI) Sendai, Miyagi, Japan (July 17-20,
 2012); 2012.
- Bach, C.C.; Bech, B.H.; Brix, N.; Nohr, E.A.; Bonde, J.P.; Henriksen, T.B. Perfluoroalkyl and
 polyfluoroalkyl substances and human fetal growth: A systematic review. Crit Rev Toxicol
 2015;45:53-67.
- Bae, S.; Lim, Y.H.; Lee, Y.A.; Shin, C.H.; Oh, S.Y.; Hong, Y.C. Maternal urinary bisphenol a
 concentration during midterm pregnancy and children's blood pressure at age 4. Hypertension
 2017;69:367-374.
- Berg, V.; Nost, T.H.; Pettersen, R.D.; Hansen, S.; Veyhe, A.S.; Jorde, R.; Odland, J.O.; Sandanger, T.M.
 Persistent organic pollutants and the association with maternal and infant thyroid
 homeostasis: A multipollutant assessment. Environ Health Perspect 2017;125:127-133.
- Brown, R.C.; Dwyer, T.; Kasten, C.; Krotoski, D.; Li, Z.; Linet, M.S.; Olsen, J.; Scheidt, P.; Winn,
 D.M.; International Childhood Cancer Cohort, C. Cohort profile: The International Childhood
 Cancer Cohort Consortium (i4c). Int J Epidemiol 2007;36:724-730.
- 471 Calafat, A.M.; Wong, L.Y.; Kuklenyik, Z.; Reidy, J.A.; Needham, L.L. Polyfluoroalkyl chemicals in

- the u.S. Population: Data from the National Health and Nutrition Examination Survey
 (NHANES) 2003-2004 and comparisons with NHANES 1999-2000. Environ Health Perspect
 2007;115:1596-1602.
- Chen, M.-H.; Ha, E.-H.; Liao, H.-F.; Jeng, S.-F.; Su, Y.-N.; Wen, T.-W.; Lien, G.-W.; Chen, C.-Y.;
 Hsieh, W.-S.; Chen, P.-C. Perfluorinated compound levels in cord blood and
 neurodevelopment at 2 years of age. Epidemiology 2013;24:800-808
- Chen, M.-H.; Ha, E.-H.; Wen, T.-W.; Su, Y.-N.; Lien, G.-W.; Chen, C.-Y.; Chen, P.-C.; Hsieh, W.-S.
 Perfluorinated compounds in umbilical cord blood and adverse birth outcomes. PLoS One
 2012;7:e42474.
- 481 Cohen, J., 1988. Statistical power analysis for the behavioral sciences. Lawrence Earlbaum Associates,
 482 Hillsdale, NJ.
- 483 Colborn, T.; Dumanoski, D.; Myers, J. Our stolen future: Are we threating our fertility, intelligence,
 484 and survival? A scientific detective story. ed^eds. New York: Plume; 1997.
- Dalsager, L.; Christensen, N.; Husby, S.; Kyhl, H.; Nielsen, F.; Host, A.; Grandjean, P.; Jensen, T.K.
 Association between prenatal exposure to perfluorinated compounds and symptoms of
 infections at age 1-4 years among 359 children in the odense child cohort. Environ Int
 2016;96:58-64.
- de Cock, M.; de Boer, M.R.; Lamoree, M.; Legler, J.; van de Bor, M. Prenatal exposure to endocrine
 disrupting chemicals in relation to thyroid hormone levels in infants a Dutch prospective
 cohort study. Environ HealthE 2014;13:106.
- 492 Domingo, J.L.; Jogsten, I.E.; Eriksson, U.; Martorell, I.; Perello, G.; Nadal, M.; Bavel, B. Human
 493 dietary exposure to perfluoroalkyl substances in catalonia, spain. Temporal trend. Food Chem
 494 2012;135:1575-1582.
- Fleisch, A.F.; Rifas-Shiman, S.L.; Mora, A.M.; Calafat, A.M.; Ye, X.; Luttmann-Gibson, H.; Gillman,
 M.W.; Oken, E.; Sagiv, S.K. Early-life exposure to perfluoroalkyl substances and childhood
 metabolic function. Environ Health Perspect 2017;125:481-487.
- Fromme, H.; Tittlemier, S.A.; Volkel, W.; Wilhelm, M.; Twardella, D. Perfluorinated compounds-exposure assessment for the general population in western countries. Int J Hyg Environ Health
 2009;212:239-270.
- Gao, Y.; Chen, L.; Wang, C.; Zhou, Y.; Wang, Y.; Zhang, Y.; Hu, Y.; Ji, L.; Shi, R.; Cui, C.; Ding, G.;
 Jin, J.; Tian, Y. Exposure to polybrominated diphenyl ethers and female reproductive function:
 A study in the production area of Shandong, China. Sci Total Environ 2016;572:9-15.
- Glynn, A.; Berger, U.; Bignert, A.; Ullah, S.; Aune, M.; Lignell, S.; Darnerud, P.O. Perfluorinated alkyl
 acids in blood serum from primiparous women in sweden: Serial sampling during pregnancy
- and nursing, and temporal trends 1996-2010. Environ Sci Technol 2012;46:9071-9079.
- 507 Goudarzi, H.; Miyashita, C.; Okada, E.; Kashino, I.; Chen, C.-J.; Ito, S.; Araki, A.; Kobayashi, S.;

- 508 Matsuura, H.; Kishi, R. Prenatal exposure to perfluoroalkyl acids and prevalence of infectious
 509 diseases up to 4 years of age. Environ Int 2017a; 104:132-138.
- Goudarzi, H.; Araki, A.; Itoh, S.; Sasaki, S.; Miyashita, C.; Mitsui, T.; Nakazawa, H.; Nonomura, K.;
 Kishi, R. The association of prenatal exposure to perfluorinated chemicals with glucocorticoid
 and androgenic hormones in cord blood samples: The Hokkaido study. Environ Health
 Pespect 2017b;125:111-118.
- Goudarzi, H.; Miyashita, C.; Okada, E.; Kashino, I.; Kobayashi, S.; Chen, C.J.; Ito, S.; Araki, A.;
 Matsuura, H.; Ito, Y.M.; Kishi, R. Effects of prenatal exposure to perfluoroalkyl acids on
 prevalence of allergic diseases among 4-year-old children. Environ Int 2016a;94:124-132.
- Goudarzi, H.; Nakajima, S.; Ikeno, T.; Sasaki, S.; Kobayashi, S.; Miyashita, C.; Ito, S.; Araki, A.;
 Nakazawa, H.; Kishi, R. Prenatal exposure to perfluorinated chemicals and
 neurodevelopment in early infancy: The Hokkaido study. Sci Total Environ 2016b;541:10021010.
- Grandjean, P.; Andersen, E.W.; Budtz-Jorgensen, E.; Nielsen, F.; Molbak, K.; Weihe, P.; Heilmann, C.
 Serum vaccine antibody concentrations in children exposed to perfluorinated compounds.
 JAMA 2012;307:391-397.
- Granum, B.; Haug, L.S.; Namork, E.; Stolevik, S.B.; Thomsen, C.; Aaberge, I.S.; van Loveren, H.;
 Lovik, M.; Nygaard, U.C. Pre-natal exposure to perfluoroalkyl substances may be associated
 with altered vaccine antibody levels and immune-related health outcomes in early childhood.
 J Immunotoxicol 2013;10:373-379.
- Guo, Y.L.; Lambert, G.H.; Hsu, C.-C.; Hsu, M.M.L. Yucheng: Health effects of prenatal exposure to
 polychlorinated biphenyls and dibenzofurans. Int Arch Occup Environ Health 2004;77:153 158.
- Gyllenhammar, I.; Berger, U.; Sundstrom, M.; McCleaf, P.; Euren, K.; Eriksson, S.; Ahlgren, S.;
 Lignell, S.; Aune, M.; Kotova, N.; Glynn, A. Influence of contaminated drinking water on
 perfluoroalkyl acid levels in human serum--a case study from Uppsala, Sweden. Environ Res
 2015:140:673-683.
- Ha, M.; Ha, E.; Park, H.; Hong, Y.; Kim, Y.; Chang, N.; Kim, B.; Leem, J.; jeong, K.; Kim, H. From
 MOCHE to Ko-CHENS (Korean CHildren's Environmental Health Study): Past, present, and
 future for the national birth cohort study in Korea. ISEE-ISES AC2017. Sapporo, Japan; 2016.
- Hanaoka T;, Tamura N; Ito K; Sasaki S; Araki A; Ikeno T; Miyashita C; Itoh S; Minakami H; Cho K;
 Endo T; Baba T; Miyamoto T; Sengoku K; Kishi. Prevalence and risk of birth defects observed
 in a prospective cohort study; the Hokkaido Study on Environment and Children's Health. J
 Epidemiol. *in press*.

Harada KH, Hitomi T, Niisoe T, Takanaka K, Kamiyama S, Watanabe T, Moon CS, Yang HR, Hung, NN, Koizumi A. Odd-numbered perfluorocarboxylates predominate over perfluoroctanoic

- acid in serum samples from Japan, Korea and Vietnam. Environment International 2011; 37:1183-1189.
- Haug, L.S.; Huber, S.; Becher, G.; Thomsen, C. Characterization of human exposure pathways to
 perfluorinated compounds--comparing exposure estimates with biomarkers of exposure.
 Environ Int 2011;37:687-693.
- Hsieh, C.J.; Hsieh, W.S.; Su, Y.N.; Liao, H.F.; Jeng, S.F.; Taso, F.M.; Hwang, Y.H.; Wu, K.Y.; Chen,
 C.Y.; Guo, Y.L.; Chen, P.C. The Taiwan Birth Panel Study: A prospective cohort study for
 environmentally- related child health. BMC Res Notes 2011;4:291.
- Ikeno, T.; Kobayashi, S.; Nakajima, S.; Kita, T.; Sumitaka, K.; Baba, T.; Kishi, R. Effects of prenatal
 exposure to dioxins on development in Japanese children at 42 months: Journal of
 Epidemiology 2013;23(S1):149.
- Inoue, K.; Okada, F.; Ito, R.; Kato, S.; Sasaki, S.; Nakajima, S.; Uno, A.; Saijo, Y.; Sata, F.; Yoshimura,
 Y.; Kishi, R.; Nakazawa, H. Perfluorooctane sulfonate (pfos) and related perfluorinated
 compounds in human maternal and cord blood samples: Assessment of pfos exposure in a
 susceptible population during pregnancy. Environ Health Perspect 2004;112:1204-1207.
- International Programme on Chemical Safety and WHO. Global assessment of the state-of-the science
 of endocrine disruptors. Eds, Terri Damstra, Sue Barlow, Aake Bergman, Robert Kavlock,
 Glen Van Der Kraak. Geneva, Switzerland 2002;
- Itoh, S.; Araki, A.; Mitsui, T.; Miyashita, C.; Goudarzi, H.; Sasaki, S.; Cho, K.; Nakazawa, H.; Iwasaki,
 Y.; Shinohara, N.; Nonomura, K.; Kishi, R. Association of perfluoroalkyl substances exposure
 in utero with reproductive hormone levels in cord blood in the Hokkaido study on
 environment and children's health. Environ Int 2016;94:51-59.
- 566JECS(JapanEnvironmentandChildren'sStudy)studyprotocol(ver.1.4):567https://www.env.go.jp/en/chemi/hs/jecs/data/about/jecs-study_protocol_14_en.pdf
- Jiang, W.; Zhang, Y.; Zhu, L.; Deng, J. Serum levels of perfluoroalkyl acids (pfaas) with isomer
 analysis and their associations with medical parameters in Chinese pregnant women. Environ
 Int 2014;64:40-47.
- Johnson, P.I.; Sutton, P.; Atchley, D.S.; Koustas, E.; Lam, J.; Sen, S.; Robinson, K.A.; Axelrad, D.A.;
 Woodruff, T.J. The navigation guide evidence-based medicine meets environmental health:
 Systematic review of human evidence for pfoa effects on fetal growth. Environ Health
 Perspect 2014;122:1028-1039.
- Kato, S.; Itoh, S.; Yuasa, M.; Baba, T.; Miyashita, C.; Sasaki, S.; Nakajima, S.; Uno, A.; Nakazawa,
 H.; Iwasaki, Y.; Okada, E.; Kishi, R. Association of perfluorinated chemical exposure in utero
 with maternal and infant thyroid hormone levels in the Sapporo cohort of Hokkaido study on
 the environment and children's health. Environ Health Prev Med 2016;21:334-344.
- 579 Kawamoto, T.; Nitta, H.; Murata, K.; Toda, E.; Tsukamoto, N.; Hasegawa, M.; Yamagata, Z.; Kayama,

- 580 F.; Kishi, R.; Ohya, Y.; Saito, H.; Sago, H.; Okuyama, M.; Ogata, T.; Yokoya, S.; Koresawa,
 581 Y.; Shibata, Y.; Nakayama, S.; Michikawa, T.; Takeuchi, A.; Satoh, H.; Working Group of the
 582 Epidemiological Research for Children's Environmental, H. Rationale and study design of the
 583 Japan environment and children's study (JECS). BMC Public Health 2014;14:25.
- Kido, T.; Dao, T.V.; Ho, M.D.; Duc Dang, N.; Pham, N.T.; Okamoto, R.; Pham, T.T.; Maruzeni, S.;
 Nishijo, M.; Nakagawa, H.; Honma, S.; Le, S.K.; Nguyen, H.N. High cortisol and cortisone
 levels are associated with breast milk dioxin concentrations in Vietnamese women. Eur J
 Endocrinol 2014;170:131-139.
- Kile, M.L.; Cardenas, A.; Rodrigues, E.; Mazumdar, M.; Dobson, C.; Golam, M.; Quamruzzaman, Q.;
 Rahman, M.; Christiani, D.C. Estimating effects of arsenic exposure during pregnancy on
 perinatal outcomes in a Bangladeshi cohort. Epidemiology 2016;27:173-181.
- Kim, B.M.; Ha, M.; Park, H.S.; Lee, B.E.; Kim, Y.J.; Hong, Y.C.; Kim, Y.; Chang, N.; Roh, Y.M.; Kim,
 B.N.; Oh, S.Y.; Ha, E.H.; Grp, M.S. The mothers and children's environmental health (moceh)
 study. Eur J Epidemiol 2009;24:573-583.
- Kim, J.H.; Lee, S.J.; Kim, S.Y.; Choi, G.; Lee, J.J.; Kim, H.J.; Kim, S.; Park, J.; Moon, H.B.; Choi,
 K.; Kim, S.; Choi, S.R. Association of food consumption during pregnancy with mercury and
 lead levels in cord blood. Sci Total Environ 2016;563-564:118-124.
- Kim, S.; Choi, K.; Ji, K.; Seo, J.; Kho, Y.; Park, J.; Kim, S.; Park, S.; Hwang, I.; Jeon, J.; Yang, H.;
 Giesy, J.P. Trans-placental transfer of thirteen perfluorinated compounds and relations with
 fetal thyroid hormones. Environ Sci Technol 2011;45:7465-7472.
- Kim S, Kim S, Won S, Choi K. Considering common sources of exposure in association studies Urinary benzophenone-3 and DEHP metabolites are associated with altered thyroid hormone
 balance in the NHANES 2007–2008. Environment International 2017; 107: 25-32.
- Kishi, R.; Araki, A.; Minatoya, M.; Hanaoka, T.; Miyashita, C.; Itoh, S.; Kobayashi, S.; Ait Bamai, Y.;
 Yamazaki, K.; Miura, R.; Tamura, N.; Kumiko, I.; Goudarzi, H. The Hokkaido birth cohort
 study on environment and children's health: Cohort profile updated 2017. Environ Health
 Prev Med 2017; 22:46. DOI 10.1186/s12199-017-0654-3
- Kishi, R.; Kobayashi, S.; Ikeno, T.; Araki, A.; Miyashita, C.; Itoh, S.; Sasaki, S.; Okada, E.; Kobayashi,
 S.; Kashino, I.; Itoh, K.; Nakajima, S. Ten years of progress in the Hokkaido birth cohort
 study on environment and children's health: Cohort profile—updated 2013. Environ Health
 Prev Med 2013;18:429-450.
- Kishi, R.; Nakajima, T.; Goudarzi, H.; Kobayashi, S.; Sasaki, S.; Okada, E.; Miyashita, C.; Itoh, S.;
 Araki, A.; Ikeno, T.; Iwasaki, Y.; Nakazawa, H. The association of prenatal exposure to
 perfluorinated chemicals with maternal essential and long-chain polyunsaturated fatty acids
 during pregnancy and the birth weight of their offspring: The Hokkaido study. Environ Health
 Perspect 2015;123:1038-1045.

- Kishi, R.; Sasaki, S.; Yoshioka, E.; Yuasa, M.; Sata, F.; Saijo, Y.; Kurahashi, N.; Tamaki, J.; Endo, T.;
 Sengoku, K.; Nonomura, K.; Minakami, H.; Hokkaido Study Environm, C.s. Cohort profile:
 The Hokkaido study on environment and children's health in Japan. Int J Epidemiol
 2011;40:611-618.
- Kishi, R.; Zhang, J.; Ha, E.; Chen, P.; Tian, Y.; Xia, Y.; Tsuchiya, K.; Nakai, K.; Kim, S.; Hong, S.;
 Hong, Y.; Lee, J.; Mohamed, H.; Parajuli, R.; Adair, L.; Chong, Y.; Guo, Y.; Wang, S.; Nishijo,
 M.; Kido, T.; Tai, P.; Nandasena, S. Birth cohort consortium of Asia (BiCCA) current and
 future perspectives. Epidemiology 2016. *in press*.
- Kobayashi, S.; Azumi, K.; Goudarzi, H.; Araki, A.; Miyashita, C.; Kobayashi, S.; Itoh, S.; Sasaki, S.;
 Ishizuka, M.; Nakazawa, H.; Ikeno, T.; Kishi, R. Effects of prenatal perfluoroalkyl acid
 exposure on cord blood igf2/h19 methylation and ponderal index: The Hokkaido study. J Expo
 Sci Environ Epidemiol 2017;27:251-259.
- Kogevinas M. Human health effects of dioxins: cancer, reproductive and endocrine system effects.
 Hum Reprod Update 2001; 7: 331-339.
- Konishi, K.; Sasaki, S.; Kato, S.; Ban, S.; Washino, N.; Kajiwara, J.; Todaka, T.; Hirakawa, H.; Hori,
 T.; Yasutake, D.; Kishi, R. Prenatal exposure to pcdds/pcdfs and dioxin-like pcbs in relation
 to birth weight. Environ Res 2009;109:906-913.
- Lauritzen, H.B.; Larose, T.L.; Oien, T.; Odland, J.O.; van de Bor, M.; Jacobsen, G.W.; Sandanger, T.M.
 Factors associated with maternal serum levels of perfluoroalkyl substances and
 organochlorines: A descriptive study of parous women in Norway and Sweden. PLoS One
 2016;11:e0166127.
- Lee, J.R.; Kim, G.; Yi, Y.; Song, S.; Kim, J. Classifying korean children's behavioral problems and
 their influencing factors: A latent profile analysis. International Journal of Child Care and
 Education Policy 2017;11:6.
- Lee, Y.J.; Kim, M.K.; Bae, J.; Yang, J.H. Concentrations of perfluoroalkyl compounds in maternal and
 umbilical cord sera and birth outcomes in Korea. Chemosphere 2013;90:1603-1609.
- Li, M.; Zeng, X.W.; Qian, Z.M.; Vaughn, M.G.; Sauve, S.; Paul, G.; Lin, S.; Lu, L.; Hu, L.W.; Yang,
 B.Y.; Zhou, Y.; Qin, X.D.; Xu, S.L.; Bao, W.W.; Zhang, Y.Z.; Yuan, P.; Wang, J.; Zhang, C.;
 Tian, Y.P.; Nian, M.; Xiao, X.; Fu, C.; Dong, G.H. Isomers of perfluorooctanesulfonate (pfos)
 in cord serum and birth outcomes in China: Guangzhou birth cohort study. Environ Int
 2017;102:1-8.
- Lien, G.W.; Huang, C.C.; Shiu, J.S.; Chen, M.H.; Hsieh, W.S.; Guo, Y.L.; Chen, P.C. Perfluoroalkyl
 substances in cord blood and attention deficit/hyperactivity disorder symptoms in seven-yearold children. Chemosphere 2016;156:118-127.
- Liew, Z.; Ritz, B.; von Ehrenstein, O.S.; Bech, B.H.; Nohr, E.A.; Fei, C.; Bossi, R.; Henriksen, T.B.;
 Bonefeld-Jorgensen, E.C.; Olsen, J. Attention deficit/hyperactivity disorder and childhood

- 652autism in association with prenatal exposure to perfluoroalkyl substances: A nested case-653control study in the Danish national birth cohort. Environ Health Perspect 2015;123:367-373.
- Loy, S.; Hamid Jan, J. The Universiti Sains Malaysia pregnancy cohort study: Maternal-infant
 adiposity development until the first year of life Health and the Environment Journal
 2014;5:50-64
- Lundqvist, C.; Zuurbier, M.; Leijs, M.; Johansson, C.; Ceccatelli, S.; Saunders, M.; Schoeters, G.; ten
 Tusscher, G.; Koppe, J.G. The effects of pcbs and dioxins on child health. Acta Paediatr Suppl
 2006;95:55-64.
- Magnus, P., 2017. Why do we need large population studies?: https://www.fhi.no/en/studies/moba/for forskere-artikler/why-do-we-need-large-population-studies/ (accessed 17.05.13)
- Minatoya, M.; Itoh, S.; Miyashita, C.; Araki, A.; Sasaki, S.; Miura, R.; Goudarzi, H.; Iwasaki, Y.; Kishi,
 R. Association of prenatal exposure to perfluoroalkyl substances with cord blood adipokines
 and birth size: The Hokkaido study on environment and children's health. Environ Res
 2017a;156:175-182.
- Minatoya, M.; Itoh, S.; Araki, A.; Tamura, N.; Yamazaki, K.; Nishihara, S.; Miyashita C.; Kishi, R.;
 Associated factors of behavioural problems in children at preschool age: the Hokkaido study
 on environment and children's health., Child: care health and development, 2017b;43:385392
- Minatoya, M.; Sasaki, S.; Araki, A.; Miyashita, C.; Itoh, S.; Yamamoto, J.; Matsumura, T.; Mitsui, T.;
 Moriya, K.; Cho, K.; Morioka, K.; Minakami, H.; Shinohara, N.; Kishi, R.; Cord blood
 bisphenol A levels and reproductive and thyroid hormone levels of neonates: The Hokkaido
 Study on Environment and Children's Health., Epidemiology, *in press*
- Miyashita, C.; Araki, A.; Itoh, S.; Minatoya, M.; Kobayashi, S.; Ait Bamai, Y.; Kajiwara, J.; Todaka,
 T.; Kishi, R. Effect of prenatal exposure to dioxins on allergic diseases in childhood: The
 Hokkaido study. Sci Total Environ 2017 *in press*.
- Miyashita, C.; Sasaki, S.; Saijo, Y.; Washino, N.; Okada, E.; Kobayashi, S.; Konishi, K.; Kajiwara, J.;
 Todaka, T.; Kishi, R. Effects of prenatal exposure to dioxin-like compounds on allergies and
 infections during infancy. Environ Res 2011;111:551-558.
- Nakai, K.; Suzuki, K.; Oka, T.; Murata, K.; Sakamoto, M.; Okamura, K.; Hosokawa, T.; Sakai, T.;
 Nakamura, T.; Saito, Y.; Kurokawa, N.; Kameo, S.; Satoh, H. The tohoku study of child
 development: A cohort study of effects of perinatal exposures to methylmercury and
 environmentally persistent organic pollutants on neurobehavioral development in Japanese
 children. Tohoku J Exp Med 2004;202:227-237.
- Nakajima, S.; Saijo, Y.; Kato, S.; Sasaki, S.; Uno, A.; Kanagami, N.; Hirakawa, H.; Hori, T.; Tobiishi,
 K.; Todaka, T.; Nakamura, Y.; Yanagiya, S.; Sengoku, Y.; Iida, T.; Sata, F.; Kishi, R. Effects
 of prenatal exposure to polychlorinated biphenyls and dioxins on mental and motor

- development in Japanese children at 6 months of age. Environ Health Perspect 2006;114:773-778.
- Nakajima, S.; Saijo, Y.; Miyashita, C.; Ikeno, T.; Sasaki, S.; Kajiwara, J.; Kishi, R. Sex-specific
 differences in effect of prenatal exposure to dioxin-like compounds on neurodevelopment in
 Japanese children: Sapporo cohort study, Environ Res *in press*
- Nakatani, T.; Okazaki, K.; Ogaki, S.; Itano, K.; Fujita, T.; Kuroda, K.; Endo, G. Polychlorinated
 dibenzo-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls in
 human milk in Osaka City, Japan. Arch Environ Contam Toxicol 2005;49:131-140.
- Nishijo, M.; Tai, P.T.; Nakagawa, H.; Maruzeni, S.; Anh, N.T.; Luong, H.V.; Anh, T.H.; Honda, R.;
 Morikawa, Y.; Kido, T.; Nishijo, H. Impact of perinatal dioxin exposure on infant growth: A
 cross-sectional and longitudinal studies in dioxin-contaminated areas in Vietnam. PLoS One
 2012;7:e40273.
- Okada, E.; Kashino, I.; Matsuura, H.; Sasaki, S.; Miyashita, C.; Yamamoto, J.; Ikeno, T.; Ito, Y.M.;
 Matsumura, T.; Tamakoshi, A.; Kishi, R. Temporal trends of perfluoroalkyl acids in plasma
 samples of pregnant women in Hokkaido, Japan, 2003-2011. Environ Int 2013;60:89-96.
- Okada, E.; Sasaki, S.; Kashino, I.; Matsuura, H.; Miyashita, C.; Kobayashi, S.; Itoh, K.; Ikeno, T.;
 Tamakoshi, A.; Kishi, R. Prenatal exposure to perfluoroalkyl acids and allergic diseases in
 early childhood. Environ Int 2014;65:127-134.
- Okada, E.; Sasaki, S.; Saijo, Y.; Washino, N.; Miyashita, C.; Kobayashi, S.; Konishi, K.; Ito, Y.M.; Ito,
 R.; Nakata, A.; Iwasaki, Y.; Saito, K.; Nakazawa, H.; Kishi, R. Prenatal exposure to
 perfluorinated chemicals and relationship with allergies and infectious diseases in infants.
 Environ Res 2012;112:118-125.
- Olsen, G.W.; Lange, C.C.; Ellefson, M.E.; Mair, D.C.; Church, T.R.; Goldberg, C.L.; Herron, R.M.;
 Medhdizadehkashi, Z.; Nobiletti, J.B.; Rios, J.A.; Reagen, W.K.; Zobel, L.R. Temporal trends
 of perfluoroalkyl concentrations in American red cross adult blood donors, 2000-2010.
 Environ Sci Technol 2012;46:6330-6338.
- Olsen, G.W.; Mair, D.C.; Church, T.R.; Ellefson, M.E.; Reagen, W.K.; Boyd, T.M.; Herron, R.M.;
 Medhdizadehkashi, Z.; Nobiletti, J.B.; Rios, J.A.; Butenhoff, J.L.; Zobel, L.R. Decline in
 perfluorooctanesulfonate and other polyfluoroalkyl chemicals in american red cross adult
 blood donors, 2000-2006. Environ Sci Technol 2008;42:4989-4995.
- Parajuli, R.P.; Fujiwara, T.; Umezaki, M.; Furusawa, H.; Ser, P.H.; Watanabe, C. Cord blood levels of
 toxic and essential trace elements and their determinants in the terai region of nepal: A birth
 cohort study. Biol Trace Elem Res 2012;147:75-83.
- Persson, M.; Cnattingius, S.; Villamor, E.; Söderling, J.; Pasternak, B.; Stephansson, O.; Neovius, M.;
 Risk of major congenital malformations in relation to maternal overweight and obesity
 severity: cohort study of 1.2 million singletons. BMJ 2017; 357.

- Piler P, Kandrnal V., Blaha L. Critical assessment of the research outcomes of European birth cohorts:
 linking environmental factors with non-communicable diseases. Public Health 2017;145:136145.
- Polanczyk, G.; de Lima, M.S.; Horta, B.L.; Biederman, J.; Rohde, L.A. The worldwide prevalence of
 adhd: A systematic review and metaregression analysis. TAm J Psychiatry 2007;164:942-948.
- Schecter, A.; Dai, LC.; Thuy, LT.; Quynh, HT.; Minh, DQ.; Cau, HD.; Phiet, PH.; Nguyen, NT.;
 Constable, JD.; Baughman, R.; Agent Orange and the Vietnamese: the persistence of elevated
 dioxin levels in human tissues. Am J Public Health. 1995;85:516-22.
- Shah-Kulkarni, S.; Kim, B.M.; Hong, Y.C.; Kim, H.S.; Kwon, E.J.; Park, H.; Kim, Y.J.; Ha, E.H.
 Prenatal exposure to perfluorinated compounds affects thyroid hormone levels in newborn
 girls. Environ Int 2016;94:607-613.
- Shi, Y.; Yang, L.; Li, J.; Lai, J.; Wang, Y.; Zhao, Y.; Wu, Y. Occurrence of perfluoroalkyl substances in
 cord serum and association with growth indicators in newborns from beijing. Chemosphere
 2017;169:396-402.
- Soh, S.E.; Tint, M.T.; Gluckman, P.D.; Godfrey, K.M.; Rifkin-Graboi, A.; Chan, Y.H.; Stunkel, W.;
 Holbrook, J.D.; Kwek, K.; Chong, Y.S.; Saw, S.M.; Group, G.S. Cohort profile: Growing up
 in singapore towards healthy outcomes (gusto) birth cohort study. Int J Epidemiol
 2014;43:1401-1409.
- Tai, PT.; Nishijo, M.; Kido, T.; Nakagawa, H.; Maruzeni, S.; Naganuma, R.; Anh, NT.; Morikawa, Y.;
 Luong, HV.; Anh, TH.; Hung, NN.; Son le, K.; Tawara, K.; Nishijo H. Dioxin concentrations
 in breast milk of Vietnamese nursing mothers: a survey four decades after the herbicide
 spraying. Environ Sci Technol. 2011;45:6625-32.
- Takagai, S.; Tsuchiya, K.J.; Itoh, H.; Kanayama, N.; Mori, N.; Takei, N.; Team, H.B.C.S. Cohort
 profile: Hamamatsu birth cohort for mothers and children (hbc study). Int J Epidemiol
 2016;45:333-342.
- Takehara, K.; Dagvadorj, A.; Hikita, N.; Sumya, N.; Ganhuyag, S.; Bavuusuren, B.; Ota, E.; Haruna,
 M.; Yoshida, M.; Kita, S.; Noma, H.; Mori, R. Maternal and child health in mongolia at 3
 years after childbirth: A population-based cross-sectional descriptive study. Matern Child
 Health J 2016;20:1072-1081.
- Todaka, T.; Hirakawa, H.; Kajiwara, J.; Hori, T.; Tobiishi, K.; Onozuka, D.; Kato, S.; Sasaki, S.;
 Nakajima, S.; Saijo, Y.; Sata, F.; Kishi, R.; Iida, T.; Furue, M. Concentrations of
 polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and dioxin-like
 polychlorinated biphenyls in blood collected from 195 pregnant women in Sapporo city, Japan.
 Chemosphere 2007;69:1228-1237.
- Todaka, T.; Hirakawa, H.; Kajiwara, J.; Hori, T.; Tobiishi, K.; Onozuka, D.; Kato, S.; Sasaki, S.;
 Nakajima, S.; Saijo, Y.; Sata, F.; Kishi, R.; Iida, T.; Furue, M. Concentrations of

- polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and dioxin-like
 polychlorinated biphenyls in blood and breast milk collected from 60 mothers in Sapporo city,
 Japan. Chemosphere 2008a;72:1152-1158.
- Todaka, T.; Hirakawa, H.; Kajiwara, J.; Hori, T.; Tobiishi, K.; Yasutake, D.; Onozuka, D.; Sasaki, S.;
 Miyashita, C.; Yoshioka, E.; Yuasa, M.; Kishi, R.; Iida, T.; Furue, M. Relationship between
 the concentrations of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and
 polychlorinated biphenyls in maternal blood and those in breast milk. Chemosphere
 2010;78:185-192.
- Todaka, T.; Hori, T.; Hirakawa, H.; Kajiwara, J.; Yasutake, D.; Onozuka, D.; Kato, S.; Sasaki, S.;
 Nakajima, S.; Saijo, Y.; Sata, F.; Kishi, R.; Iida, T.; Furue, M. Congener-specific analysis of
 non-dioxin-like polychlorinated biphenyls in blood collected from 195 pregnant women in
 Sapporo city, Japan. Chemosphere 2008b;73:923-931.
- Tsai, M.S.; Lin, C.C.; Chen, M.H.; Hsieh, W.S.; Chen, P.C. Perfluoroalkyl substances and thyroid
 hormones in cord blood. Environ Pollut 2017;222:543-548.
- Tsuchiya, K.J.; Matsumoto, K.; Suda, S.; Miyachi, T.; Itoh, H.; Kanayama, N.; Hirano, K.; Ohzeki, T.;
 Takei, N.; Team, H.B.C.S. Searching for very early precursors of autism spectrum disorders:
 The Hamamatsu birth cohort for mothers and children (hbc). J Dev Orig Health Dis
 2010;1:158-173.

778 UNEP. Listing of pops in the Stockholm Convention.

779 <u>http://chm.pops.int/TheConvention/ThePOPs/ListingofPOPs</u> 2007

- UNEP and WHO. State of the science of endocrine disrupting chemicals-an assessment of the state of
 the science of endocrine disruptors prepared by a group of experts for the United Nations
 Environment Programme (UNEP) and WHO. Geneva, Switzerland 2012
- 783 Vrijheid, M.; Casas, M.; Bergstrom, A.; Carmichael, A.; Cordier, S.; Eggesbo, M.; Eller, E.; Fantini, 784M.P.; Fernandez, M.F.; Fernandez-Somoano, A.; Gehring, U.; Grazuleviciene, R.; Hohmann, 785C.; Karvonen, A.M.; Keil, T.; Kogevinas, M.; Koppen, G.; Kramer, U.; Kuehni, C.E.; Magnus, 786 P.; Majewska, R.; Andersen, A.M.; Patelarou, E.; Petersen, M.S.; Pierik, F.H.; Polanska, K.; 787 Porta, D.; Richiardi, L.; Santos, A.C.; Slama, R.; Sram, R.J.; Thijs, C.; Tischer, C.; Toft, G.; 788 Trnovec, T.; Vandentorren, S.; Vrijkotte, T.G.; Wilhelm, M.; Wright, J.; Nieuwenhuijsen, M. 789 European birth cohorts for environmental health research. Environ Health Perspect 790 2012;120:29-37.

Wang, I.J.; Hsieh, W.S.; Chen, C.Y.; Fletcher, T.; Lien, G.W.; Chiang, H.L.; Chiang, C.F.; Wu, T.N.; Chen, P.C. The effect of prenatal perfluorinated chemicals exposures on pediatric atopy. Environ Res 2011;111:785-791.

Wang, Y.; Adgent, M.; Su, P.H.; Chen, H.Y.; Chen, P.C.; Hsiung, C.A.; Wang, S.L. Prenatal exposure
to perfluorocarboxylic acids (pfcas) and fetal and postnatal growth in the Taiwan maternal

and infant cohort study. Environ Health Perspect 2016;124:1794-1800.

- Wang, Y.; Rogan, W.J.; Chen, H.Y.; Chen, P.C.; Su, P.H.; Chen, H.Y.; Wang, S.L. Prenatal exposure to
 perfluroalkyl substances and children's IQ: The Taiwan maternal and infant cohort study. Int
 J Hyg Environ Health 2015;218:639-644.
- Wang, Y.; Rogan, W.J.; Chen, P.C.; Lien, G.W.; Chen, H.Y.; Tseng, Y.C.; Longnecker, M.P.; Wang,
 S.L. Association between maternal serum perfluoroalkyl substances during pregnancy and
 maternal and cord thyroid hormones: Taiwan maternal and infant cohort study. Environ Health
 Perspect 2014;122:529-534.
- Washino, N.; Saijo, Y.; Konishi, K.; Kato, S.; Sasaki, S.; Ban, S.; Kajiwara, J.; Todaka, T.; Hirakawa,
 H.; Hori, T.; Inoue, S.; Kishi, R. The effect of prenatal exposure to dioxins on cord serum ige.
 Organohalogen Compounds 2007;69
- Washino, N.; Saijo, Y.; Sasaki, S.; Kato, S.; Ban, S.; Konishi, K.; Ito, R.; Nakata, A.; Iwasaki, Y.; Saito,
 K.; Nakazawa, H.; Kishi, R. Correlations between prenatal exposure to perfluorinated
 chemicals and reduced fetal growth. Environ Health Perspect 2009;117:660-667.
- Watkins, D.J.; Wellenius, G.A.; Butler, R.A.; Bartell, S.M.; Fletcher, T.; Kelsey, K.T. Associations
 between serum perfluoroalkyl acids and line-1 DNA methylation. Environ Int 2014;63:71-76.
- Weihe. P; Grandjean, P.; Cohort studies of Faroese children concerning potential adverse health effects
 after the mothers' exposure to marine contaminants during pregnancy. Acta Veterinaria
 Scandinavica 2012; 54: S7-S7.
- Wen, H.J.; Wang, Y.J.; Lin, Y.C.; Chang, C.C.; Shieh, C.C.; Lung, F.W.; Guo, Y.L. Prediction of atopic
 dermatitis in 2-yr-old children by cord blood ige, genetic polymorphisms in cytokine genes,
 and maternal mentality during pregnancy. Pediatr Allergy Immunol 2011;22:695-703.
- WHO. Endocrine disruptoers and child health: Possible developmental early effects of endocrine
 disrupters on child health ed^eds. Geneva, Switzerland; 2012.
- 820 Yang, H.J.; Lee, S.Y.; Suh, D.I.; Shin, Y.H.; Kim, B.J.; Seo, J.H.; Chang, H.Y.; Kim, K.W.; Ahn, K.;
- 821 Shin, Y.J.; Lee, K.S.; Lee, C.M.; Oh, S.Y.; Kim, H.; Leem, J.H.; Kim, H.C.; Kim, E.J.; Lee,
- J.S.; Hong, S.J. The cohort for childhood origin of asthma and allergic diseases (cocoa) study:
 Design, rationale and methods. BMC Pulm Med 2014;14.
- 824 Yoshimura, T. Yusho in Japan. Industrial Health 2003;41:139-148.
- 825

Table 1. Cohorts of Birth Cohort Consortium of Asia (BiCCA), alphabetical order of the country

	County	Name of cohort (abbreviation)	Study area	Recruitment period	Ν	Reference
1	Bangladesh	Harvard Reproductive and Birth Cohort (HRBC)	Pabna, Munshiganj	2008-2011	1613	(Kile et al. 2016)
2	China	Laizhou Wan Birth Cohort (LWBC)	South coast area of Laizhou Wan Handong province	2010-2013	773	(Gao et al. 2016)
3	China	Nanjing Medical University Birth Cohort (NJMUBC)	Nanjing, Suzhou, Wuxi, Huai'an, Changzhou	2014-2016	30,000 (targeted number)	-
4	China	Shanghai Birth Cohort (SBC)	Shanghai	2013-2018	3,000 (targeted number)	-
5	Japan	Hamamatsu Birth Cohort for Mothers and Children (HBC study)	Hamamatsu	2007-2011	1,138	(Takagai et al. 2016; Tsuchiya et al. 2010)
6	Japan	Hokkaido cohort: Hokkaido Study on Environment and Children's Health	Hokkaido	2003-2013	20,929	(Kishi et al. 2011; Kishi et al. 2013; Kishi et al. 2017)
7	Japan	Sapporo cohort: Hokkaido Study on Environment and Children's Health	Sapporo	2002-2005	514	(Kishi et al. 2011; Kishi et al. 2013; Kishi et al. 2017)
8	Japan	The Tohoku Study of Child Development (TSCD)	Sendai	2001-2006	1,323	(Nakai et al. 2004)
9	Korea	Children's Health and Environmental Chemicals in Korea (CHECK)	South Korea	2011-2013	352	(J. H. Kim et al. 2016)
10	Korea	COhort for Childhood Origin of Asthma and allergic diseases (COCOA)	Korea	2007-2028	1,734	(Yang et al. 2014)
11	Korea	Environment and Development of Children Study (EDC study)	Seoul	2008-2014	698	(Bae et al. 2017)
12	Korea	The Mothers and Children's Environmental Health study (MOCEH)	Seoul, Ulsan, and Cheonan	2006-2010	1,751	(B. M. Kim et al. 2009)
13	Korea	Panel Study on Korean Children (PSKC)	Korea	2008	2,150	(Jeong Rim Lee et al. 2017)
14	Malaysia	Universiti Sains Malaysia (USM) Pregnancy Cohort Study	Kubang Kerian	2010-2011	188	(Loy and Hamid Jan 2014)
15	Mongolia	Ulaanbaatar Gestation and Air Pollution Research (UGAAR)	Ulaanbaatar	2014-2015	540	-
16	Mongolia	Birth Cohort Study in Mongolia-Towards Solving Global Problems in the Maternal and Child Health	Borugan	2009-2010	Approx. 1000	(Takehara et al. 2016)
17	Nepal	Nepali Birth Cohort Study in Chitwan Valley	Chitwan	2008	100	(Parajuli et al. 2012)
18	Philippines	Cebu Longitudinal Health and Nutrition Survey (CLHNS)	Metro Cebu	1983-1984	3,327	(Adair et al. 2011)
19	Singapore	Growing Up in Singapore Towards healthy Outcomes (GUSTO)	Singapore	2009-2010	1,247	(Soh et al. 2014)
20	Sri Lanka	Kalutara Children's Health Study (KCHS)	Kalutara	2014-2015	315	-
21	Taiwan	Taiwan Birth Panel Study (TBPS)	Taipei, New Taipei	2004-2005	486	(Hsieh et al. 2011)
22	Taiwan	Taiwan Early-Life Cohort (TEC)	Hsinjuang, Jiayi, Yulin, Tainan, Kaohsiung, Taitung	2004-2005	1,589	(Wen et al. 2011)
23	Taiwan	Taiwan Maternal and Infant Cohort Study (TMICS)	Taipei, Hsinchu, Taichung, Changjua, Kaohsiung, Hualien	2000-2014	2577	(Y. Wang et al. 2014)
24	United Arab Emirates	Mother Infant Study Cohort (MISC)	Sharjah	2015-2016	259	-
25	Vietnam	BienHoa Dioxin Cohort study	Bien Hoa	2012	200	(Nishijo et al. 2012)
26	Vietnam	Dioxin and Development of Children in Vietnam	Hanoi, Phu, Cat, Bien Hoa	2008-2013	200	
27	Vietnam	DaNang Dioxin Cohort study	DaNang	2008-2010	241	-

Table 2. Prenatal dioxins exposure (TEQ pg/g lipid) and children's health, Sapporo cohort

I

Outcome	Ν	Findings	Reference
Birth weight	398	Significant decrease. Individual congener assessment found 2,3,4,7,8-PeCDF had a significant negative influence (per log 10 unit: $\beta = -224.5$ g; 95% CI: -387.461.5).	(Konishi et al. 2009)
Thyroid hormones (TSH, free T4)	358	Log 10 Σ dioxin (TEQ) was associated with increased infant free T4 ($\beta = 0.224 \text{ ng/dL}$; 95% CI: 0.016-0.433) overall, and the association was more significant in boys ($\beta = 0.299 \text{ ng/dL}$; 95% CI: 0.011-0.587).	(Baba et al. 2012)
IgE at birth	112	Total dioxin-like compounds were associated with decreased cord IgE in males (β = -1.01; 95% CI: -1.79, -0.23).	(Washino et al. 2007)
Neurodevelopment (BSID-II) 6 months	134	Several dioxin isomers showed adverse effects on motor development in 6-month-old male infants.	(Nakajima et al. 2006)
Neurodevelopment (BSID-II) 1.5 years	122	No association was observed between any of the dioxin isomers and neurodevelopment in males. In contrast, the levels of six dioxin isomers were significantly positively associated with mental development, and this unexpected finding might be attributable to residual confounding factors.	(Nakajima et al. <i>in press</i>)
Wheeze eczema Otitis media At 1.5 years	364	Polychlorinated dibenzofuran was associated with increased risk in male infants (OR: 2.5; 95% CI: 1.1–5.9). 2,3,4,7,8-PeCDF was associated with increased risk of otitis media (OR: 5.3; 95% CI: 1.5–19).	(Miyashita et al. 2011)
Intelligence (K-ABC) 3.5 years	144	K-ABC scores were not associated with prenatal exposure to dioxins.	(Ikeno et al. 2013)
Wheeze eczema Otitis media at 3.5 and 7 years	239	Total DLCs were associated with increased risk of wheeze in children up to aged 7 years (OR: 7.81; 95% CI: 1.4-43).	(Miyashita et al. 2017)

BSID-II, the Bayley Scales of Infant Development second edition; CI, confidence interval; DLCs, dioxin like compounds; K-ABC, Kaufman Assessment Battery for Children; OR, odds ratio; T4, thyroxine; PeCDF, penta-chlorinated dibenzofurans; TEQ, Toxicity equivalency quantity; TSH, thyroid stimulating hormone

Name of the	ame of the N Exposure Outcomes Findings		Ref.		
cohort,	ohort, sample				
country					
Sapporo cohort, Japan	428	2 nd -3 rd trimester Maternal blood	Birth weight and size	In utero exposure to relatively low levels of PFOS was negatively associated with birth weight.	(Washino et al. 2009)
	177	2 nd -3 rd trimester Maternal blood	Birth weight, Ponderal index, and IGF2 methylation	Increases in both PFOS and PFOA were associated with reduced ponderal index at birth. IGF2 methylation showed a significant negative association with increase in PFOA. Mediation analysis suggested that reduced IGF2 methylation explained around 21% of the observed association between PFOA exposure and reduced ponderal index.	(Kobayashi et al. 2016)
	168	2 nd -3 rd trimester Maternal blood	Ponderal index, adipokines	PFOS was positively associated with cord adiponectin, but negatively associated with ponderal index at birth.	(Minatoya et al. 2017a)
TBPS, Taiwan	429	Cord blood	Birth weight and size	PFOS levels were inversely associated with gestational age, birth weight, and head circumference. Odds ratio of preterm birth, low birth weight, and small for gestational age increased with PFOS exposure. PFOA, PFNA, and PFUnDA were not observed to have any significant impact on birth outcomes.	(Chen et al. 2012)
TMICS, Taiwan	223	3 rd trimester Maternal blood	Birth weight and size; childhood weight and height at approximately 2, 5, 8, and 11 years of age	In girls, prenatal PFNA, PFDA, PFUnDA, and PFDoDA concentrations were inversely associated with birth weight. Prenatal PFDA and PFUnDA were associated with elevated odds of small for gestational age. PFDA, PFUnDA, and PFDoDA were associated with lower average childhood height z-score. In boys, prenatal PFNA and PFDoDA were associated with reduction in height at certain ages in childhood, but not with size at birth.	(Y. Wang et al. 2016)
Gyeongbuk county, Korea	59	Cord blood	birth weight, birth length and Ponderal index	Umbilical cord PFHxS concentration showed a significant inverse association with birth weight (OR = 0.26; 95% CI, 0.08-0.85) and a marginally significant inverse association with birth length (OR = 0.33; 95% CI, 0.09-1.17).	(Y. J. Lee et al. 2013)
Guangzhou Birth Cohort Study, China	321	Cord blood	Birth weight	Higher cord serum PFOS, PFOA, and isomers of PFOS were associated with lower birth weight. The association between cord PFAS level and birth weight was more pronounced in male infants. Branched PFOS isomers show greater impact on infant birth weight than linear PFOS.	(Li et al. 2017)
Haidian Maternal and Child Health Hospital, Beijing. China	170	Cord blood	Birth weight, birth length and ponderal index	The exposure levels of PFASs had no statistically significant associations with birth weight, birth length or Ponderal index. For male infants, PFHxS positively correlated with birth length, but the levels of PFUnDA were negatively associated with birth length.	(Shi et al. 2017)

Table 3. PFASs exposure on birth size, cord adipokines, and children's growth.

CI; confidence interval, *IGF2*; *insulin-like growth factor 2*, OR, odds ratio; PFAS, Perfluoroalkyl substances; PFDoDA; perfluorododecanoic acid, PFHxS; perfluorohexane sulfonate, PFNA; perfluorononanoic acid, PFOA; perfluorooctanoate, PFOS; perfluorooctanesulfonic acid, PFUnDA; perfluoroundecanoic acid

Table 4. Perfluoroalkyl substances and thyroid hormones in mothers and infants

Name of the cohort, country	Ν	Exposure measures	Hormone samples	Findings	Ref.
TMICS, Taiwan	285	3 rd trimester Maternal blood	3 rd trimester Maternal blood Cord blood	Maternal PFHxS was positively associated with maternal TSH. Pregnant women with higher levels of PFNA, PFUnDA, and PFDoDA had lower free T4 and total T4. Maternal PFNA, PFUnDA, and PFDoDA were associated with lower cord total T3 and total T4, and PFDA with lower cord total T3.	(Y. Wang et al. 2014)
Sapporo cohort, Japan	392	2 nd - 3 rd trimester Maternal blood	1 st trimester Maternal blood Infant's heel-prick	Maternal PFOS levels were inversely correlated with maternal serum TSH and positively associated with infant serum TSH levels, whereas maternal PFOA showed no significant relationship with TSH or free T4 levels in mothers and infants.	(Kato et al. 2016)
Seoul, Korea	44	3 rd trimester Maternal blood Cord blood	Cord blood	Maternal PFOS was inversely associated with fetal T3, and maternal PFTrDA was inversely associated fetal T4 and T3.	(S. Kim et al. 2011)
EBGRC, Korea	279	Cord blood	Cord blood	Cord blood PFPeA was positively associated with cord blood T4. In girls, PFPeA and PFHxS significantly increased T4 and T3, while PFNA decreased TSH.	(Shah-Kulkarni et al. 2016)
TBPS, Taiwan	118	Cord blood	Cord blood	PFOS in cord blood was positively associated with cord blood TSH, and inversely associated with cord blood T4. Those associations were more significant in boys.	(Tsai et al. 2017)

PFAS, Perfluoroalkyl substances; PFDoDA; perfluorododecanoic acid, PFHxS; perfluorohexane sulfonate, PFNA; perfluoronanoic acid, PFOA; perfluorooctanoate, PFOS; perfluorooctanesulfonic acid, PFPeA; perfluoropentanoic acid, PFTrDA; perfluorotridecanoic acid, PFUnDA; perfluoroundecanoic acid, T3, triiodothyronine; T4, thyroxine; TSH, thyroid stimulating hormone

Table 5. Allergic disease and immune function

Name of the cohort, country	N	Exposure measures	Outcome measures	Age	Findings	Ref.	
TBPS, Taiwan	244	Cord serum	IgE	At birth, 2 years	Prenatal PFOA and PFOS exposure were positively correlated with cord blood IgE levels (when log increase of PFOA and PFOS, $\beta = 0.134$ and 0.161, respectively), but not associated with IgE at 2 years old.	(I. J. Wang et al. 2011)	
			atopic dermatitis	0-2 years	No association with atopic dermatitis.		
Sapporo 2 cohort, Japan	231	2 nd -3 rd trimester Maternal serum	IgE	at birth	Cord IgE levels decreased with high maternal PFOA concentration in females.	(Okada et al.	
	343		Wheeze eczema	1.5 years	No associations between maternal PFOS and PFOA levels and food allergy, eczema, wheezing, or otitis media in 18-month-old infants.	2012)	
Hokkaido cohort, Japan	2,063	3 rd trimester Maternal plasma	Wheeze, eczema and rhino-conjunctiv itis	0-2 years	At 24 months, reduced risk of eczema with higher maternal PFTrDA levels was found	(Okada et al. 2014)	
	1,558	3 rd trimester Maternal plasma	Wheeze, eczema and rhino-conjunctiv itis	4 years	Prenatal PFTrDA and PFDoDA showed negative association with risk of eczema and total allergic diseases.	(Goudarz i et al. 2016a)	
	1,558	3 rd trimester Maternal plasma	Common infectious diseases	0-4 years	PFHxS and PFOS were associated with higher risk of common infectious disease (Q1 vs. Q4 OR: 1.55; 95% CI: 0.976–2.45).	(Goudarz i et al. 2017a)	

CI; confidence interval, OR; odds ratio, PFDoDA; perfluorododecanoic acid, PFHxS; perfluorohexane sulfonate, PFOA;

perfluorooctanoate, PFOS; perfluorooctanesulfonic acid, PFTrDA; perfluorotridecanoic acid

Name of the cohort, country	N	Exposure measurements	outcomes	age	Findings	Ref.
TBPS, Taiwan	239	Cord blood	Neurodevelopment using Comprehensive Developmental Inventory for Infants and Toddlers	2 years	Prenatal exposure to PFOS, but not PFOA, may affect children's development, especially gross-motor development at 2 years of age.	(Chen et al. 2013)
TMICS, Taiwan	120	3 rd trimester maternal blood	full scale intelligence quotient (FSIQ), verbal IQ (VIQ) and performance IQ (PIQ)	5 and 8 years	Prenatal PFUnDA concentrations were inversely associated with children's performance IQs at age 5 years. Children with higher prenatal PFNA levels had lower verbal IQ at age 8 years.	(Y. Wang et al. 2015)
Hokkaido cohort, Japan	173	3 rd trimester maternal blood	Neurodevelopment using Bayley Scales of Infant Development (BSID II)	6 and 18 months	PFOA was negatively associated with mental development in girls at 6 months but not at 18 months.	(Goudarzi et al. 2016b)
TBPS & TEC, Taiwan	282	Cord blood	ADHD related neurobehavioral symptoms	7 years	Prenatal exposure to PFNA (but not PFOA, PFOS, or PFUnDA) was found to be associated with neurobehavioral symptoms related to ADHD in 7-year-old children.	(Lien et al. 2016)

Table 6. Perfluoroalkyl substances exposure on child neurodevelopment and behavioral problems

ADHD; Attention Deficit Hypertension Disorder, PFOA; perfluorooctanoate, PFNA; perfluorononanoic acid, PFOS; perfluorooctanesulfonic acid, PFUnDA; perfluoroundecanoic acid

	Number	percent	
Categories of birth defect	N=19282	(%)	
Any birth defect	623	3.23	
ICD 10th Codes			
Nervous system (Q00-07)	21	0.11	
Eye, ear, face, and neck (Q10-18)	39	0.20	
Circulatory system (Q20-28)	192	0.10	
Respiratory system (Q30-34)	4	0.02	
Cleft lip and cleft palate (Q35-37)	41	0.21	
Digestive system (Q38-45)	31	0.16	
Genital organs (Q50-56)	89	0.46	
Urinary system (Q60-64)	50	0.25	
Musculoskeletal system (Q65-79)	91	0.47	
Skin, unspecified (Q80-89)	32	0.17	
Other congenital malformations (Q80-89))	19	0.10	
Chromosomal abnormalities, not	40	0.22	
elsewhere classified (Q90-99)	42		
T-4-1	651	3.38	
	(28 cases overlap)		

Table 7. Prevalence of birth defects observed in the Hokkaido Study

Including data at birth and 1, 2, 4, and 7 years follow-up

Figure legends

Figure 1 Concentrations of dioxin in human milk between 1999-2005 (TEQ pg/g lipid) The bars show mean or median levels of PCDDs + PCDFs (+ Dioxin-like-PCB) (toxic equivalents (TEQ) pg/g lipid) in breast milk. The followings are country, sampling period, and reference.

Netherlands: 2001–2003 (Nakatani et al. 2005), Italy: 2001–2003 (Nakatani et al. 2005), Germany: 2001–2003 (Nakatani et al. 2005), the United States: 2001–2003 (Nakatani et al. 2005), Japan: Sapporo: 2002-2005 (Todala et al. 2010), Japan: Tohoku: 2001-2003 (Nakatani et al. 2008), Japan: Oosaka: 1999 (Nakatani et al. 2005), China: 2002 (Nakatani et al. 2005), Korea: 2002 (Nakatani et al. 2005), Taiwan: 2000-2001 (Nakatani et al. 2005).

Figure 2 Maternal/Cord blood levels of PFOS and PFOA in different studies (ng/mL)

The bars show either maternal or cord blood levels of PFOS (ng/ml) and PFOA (ng/ml). (m) stands for maternal blood, and (c) stands for cord blood, respectively. Values are mean, median or geometric mean. The followings are Country, Name of the study, sampling period, and reference.

Canada: MIREC, 2008-2011 (Ashley-Martin et al. 2017). USA: Project VIVA, 1999-2002 (Fleisch et al. 2017). Denmark: Odense Child Cohort, 2010-2012 (Dalsager et al. 2016). Norway: MoBa, 2003-2004 (Granum et al. 2013); MISA study, 2007-2009 (Berg et al. 2017). Netherland: LINK, 2011-2013 (de Cock et al. 2014).Japan: Hokkaido, 2003-2011 (Kishi et al. 2017); Sapporo, 2002-2005 (Okada et al., 2012). China: Beijing, 2012 (Shi et al. 2017); Gaungzhou Birth cohort, 2013 (Li et al. 2017). Korea: Gyeongbuk, 2011 (Lee et al. 2013); EBGRC, 2006-2012 (Shah-Kulkarn et al. 2016); Seoul, 2008-2009 (Kim et al. 2011).Taiwan: TMICS, 2000-2001 (Wang et al. 2016); TBPS, 2004-2005 (Chen et al. 2012).

Fig 1. Concentrations of dioxin in human milk between 2001-2005 (TEQ pg/g lipid)

Fig 2. Maternal/Cord blood levels of PFOS and PFOA in different studies (ng/mL)