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ABSTRACT 

Mobile marine predators, such as seabirds, are frequently used as broad samplers of contaminants 
that are widespread in the marine environment. The Timor Sea off remote Western Australia is a 
poorly studied, yet rapidly expanding area of offshore development. To provide much needed data 
on contamination in this region, we quantified trace element concentrations in breast feathers of 
three seabird species breeding on Bedout Island. While adult Masked Boobies Sula dactylatra 
exhibited some of the highest concentrations, values for all species were below toxicology 
thresholds for seabirds and were comparable to those reported in other closely related species. The 
low concentrations detected in the birds provides a valuable baseline and suggests the local marine 
environment around Bedout is in relatively good condition. However, careful monitoring is 
warranted in light increasing anthropogenic activity in this region. 
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The introduction of pollution into the environment is a major feature of anthropogenic change to 
our planet (Khan, 2018). Some well-known pollutants, including some trace elements, also occur 
naturally as part of biogeochemical cycles and volcanism (Burger et al., 1994). However, the 
background concentrations of many trace elements are undergoing dramatic increases in the 
industrial age due in large part to fossil fuel extraction and combustion (Nriagu and Pacyna, 1988). 
For example, mercury (Hg) in the atmosphere and oceans has increased three-fold from pre-
industrial times (Lamborg et al., 2014).  

Trace elements are typically differentiated into two categories: essential elements required for 
important processes within organisms, and non-essential elements that are not required for any 
biological purpose and are therefore particularly toxic when they accumulate within organisms 
(Burger, 1993; Ceyca et al., 2016; Moura et al., 2018). Several trace elements are of particular 
concern due to the concentrations released into the environment, as well as the documented 
toxicological effects at relatively low concentrations. They include the essential elements copper 
(Cu), chromium (Cr), nickel (Ni), selenium (Se), tin (Sn) and zinc (Zn) along with non-essential 
elements including Hg, arsenic (As), cadmium (Cd) and lead (Pb; Burger, 1993; Moura et al., 2018).  

In the marine environment, three elements (Hg, Pb, and Cd) have been extensively studied 
because they bioaccumulate and biomagnify in aquatic food webs (Burger, 1993). Exposure can 
harm species in a variety of ways, including impaired biological function of proteins, enzymes, and 
cell damage (Burger, 1993; Ceyca et al., 2016). These impacts are often demonstrated using marine 
birds as sentinels, or bioindicators, as apex predators can also provide information on broader 
ecosystem health (Borghesi et al., 2016; Durant et al., 2009). Seabirds are also widespread, and 
unlike fish or marine mammals, are more readily sampled given they spend substantial time out of 
the water (Burger, 1993). Seabirds also display relatively predictable overwintering and breeding 
behaviours, allowing repeat sampling of individuals over time (Burger and Gochfeld, 2004; Mallory et 
al., 2010). 

Feathers are often the preferred sampling media in avian studies as collection is largely non-
invasive compared to sampling blood or other tissues (Monteiro and Furness, 1997). Being 
keratinous structures, feathers are chemically and physically stable, resistant to heat and 
deterioration, and are therefore easily stored over time (Burger et al., 1994; de Assis Padilha et al., 
2018; Monteiro and Furness, 1997). Many seabird species sequester trace elements within growing 
feathers and exhibit well defined relationships between feather concentration and prey items 
(Borghesi et al., 2016; de Assis Padilha et al., 2018; Dolci et al., 2017). Feathers can also be collected 
from museum specimens, providing long-term data sets to analyse changes in trace elements over 
time (Bond et al., 2015a; Monteiro and Furness, 1997; Vo et al., 2011).  

Here we investigate trace element concentrations within the breast feathers of three seabird 
species from Bedout Island, Western Australia (19.578°S, 119.094°E; Fig. 1): Brown Boobies (Sula 
leucogaster), Masked Boobies (S. dactylatra) and Lesser Frigatebirds (Fregata ariel). Generally, low 
concentrations of dissolved trace elements have been detected in the coastal and estuarine waters 
off north west Australia, indicating the region is in near pristine condition (Mackey, 1984; 
Munksgaard and Parry, 2001). However the Bedout, Browse, Canning, and northern Carnarvon 
Basins adjacent to Bedout Island hold economical deposits of oil and gas and are all undergoing 
varying degrees of exploration and extraction (DMIRS, 2014; Lavers et al., 2014; Thompson et al., 
2018). Therefore, there is an urgent need to assess pollution levels in the otherwise poorly-
documented seabirds breeding in this rapidly developing region. Thus, the aims of this study were to 
1) establish baseline trace element concentrations in three seabird species breeding in the region, 
and 2) assess whether current trace element concentrations may adversely affect the health of 
these species. 

 



Adult boobies were captured by hand from their nest at night using a net, while juvenile 
frigatebirds (nearly ready to fledge) were captured by hand from their nest pedestals during daylight 
from 22-24 November 2016 and 8-10 November 2017 on Bedout Island. Bedout Island is a 31 ha 
uninhabited island with low vegetation located in a remote, sparsely populated region of the north 
west coast of Australia (Johnson et al., 2013; Munksgaard and Parry, 2001), and is listed as an 
Important Bird and Biodiversity Area (BirdLife International, 2019). Four breast feathers were 
obtained from each bird and stored in sterile polyethylene bags at -20°C until analysis. Breast 
feathers were used as they are thought to be more representative of body metal burdens compared 
to flight feathers (Furness et al., 1986).  

Feather preparation and analysis was completed at the Natural History Museum Core Research 
Laboratories using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) across a range of trace 
elements. Two feathers from each individual were placed using ethanol cleaned plastic tweezers in 
separate clean 12 ml plastic vials and washed by submersing feathers in Suprapur® 0.25 M NaOH 
solution for 15 minutes, followed by two rinses with deionised water, and then dried at 60°C for 48 
hours. We used two feathers per individual to account for within-individual variability (Bond and 
Diamond, 2008), which gave sample weights between 9 mg and 27 mg 

Following decontamination, the feathers were digested in 15 mL PFA vials which had been pre-
cleaned using 2-3 repeated treatments of 8 M HNO3 at 120°C for a minimum of 48 hours. 
Approximately 1 mL of Romil® 8 M HNO3 was added to each sample vial which was then placed on a 
hotplate at 70°C. An additional 1.5 mL of 8 M HNO3 was added to each vial after 60 minutes. After 48 
hours, the hotplate was cooled from 70°C to 50°C. The sample vial caps were then removed and 1 
mL of Suprapur® 9.7 M H2O2 was added to each vial. Following any reaction, each vial was recapped 
and left on the hotplate for a further 12 hours at 70°C. Each solution was then transferred to a 
dedicated clean, sealed container, where deionised water was added to dilute the sample to a total 
volume of 15 mL. For inductively coupled plasma mass spectrometry (ICP-MS) analysis, a 2 mL 
aliquot of each sample solution was added into clean 12 mL tubes, with a further 2 mL of deionised 
water.  

The digests were analysed using ICP-MS to quantify trace metal concentrations (Table S1). ICP-MS 
analysis was conducted on an Agilent 7700x using a power of 1550W, 1.07 mL/min nebuliser gas 
flow, and He mode (5 ml/min, He 99.9995% purity) for all elements to reduce molecular 
interferences. Total procedural blanks were analysed and gave no detectable concentrations above 
the limit of quantification and certified reference materials were run every 10–15 samples using two 
reference materials from the Institut National de Santé Publique du Québec (INSPQ QM-H-Q1818, 
and QM-H-Q1827) and one from the Institute for Reference Material and Measurements, Joint 
Research Centre, European Commission (ERM-DB001; Table S1) certified for concentrations of As, 
Cd, Cu, Hg, Pb, Tl and V. 

To place our results in a broader context, we collated information on feather trace element 
concentrations in other sulids and frigatebirds from the literature (Table 1). In cases where summary 
statistics were not displayed in tables or the text, they were estimated from the plots provided in 
each paper using WebPlotDigitizer (Rohatgi, 2019).  

Some samples were below the level of quantification (<LOQ), and therefore left-censored (Table 
2; Helsel, 2012). Summary statistics were calculated using maximum likelihood estimation in cases 
where <10 samples were below the level of quantification (V, Hg), and regression on order statistics 
in the case of As, where 23/59 samples were below the level of quantification (Bond et al., 2015b; 
Helsel, 2012). This was done in the R package NADA (Lee, 2017). All analyses were conducted using R 
(R Core Team, 2019). 



We compared feather elemental concentrations in adult Brown and Masked Boobies using 
general linear models, and log-transformed data when it did not meet the assumptions of normality 
(Levene, 1960). Differences were considered significant when p < 0.05. 

A summary of elemental concentrations is provided for each of the three seabird species in Table 
2. There was a significant difference in concentrations of V, Cu, As, and Hg among species, and in all 
cases, Lesser Frigatebirds had the lowest concentrations; Brown Boobies had higher V 
concentrations in feathers than Masked Boobies (Table 3). There was no difference in trace element 
concentrations among years except for V, where feathers from 2017 had significantly higher 
concentrations. 

 Only one individual, an adult Masked Booby (5.04 µg/g), exceeded the lowest observed adverse 
effect level (LOAEL) for Pb (4.00 µg/g; Burger, 1993; Burger and Gochfeld, 2000), however an adult 
Brown Booby (3.28 µg/g) also approached this threshold. None of the birds tested approached the 
hypothesized LOAEL of 5.00 µg/g and 2.00 µg/g for Hg and Cd in seabird feathers, respectively 
(Burger, 1993; Burger and Gochfeld, 2000). 

The seabird community on Bedout Island provides a valuable opportunity to 
comprehensively sample the marine environment as the three species included in this study exhibit 
distinct foraging ecologies or seasonality while breeding at the same location. While adult Brown 
Boobies on Bedout Island exhibited some of the highest trace element concentrations of the three 
species considered in this study (Table 1), values were below toxicology thresholds for seabirds 
(Burger, 1993), and were comparable to those reported in other closely related species (Table 1). 
The data for juvenile Lesser Frigatebirds suggests spatial or temporal differences could be important, 
with notable differences in Hg concentrations across two locations in the Timor region (Bedout 
Island (mean): 0.22 ± 0.17 µg/g; Ashmore Reef (median): 4.50 µg/g; Table 1). Juvenile birds’ feathers 
also represent a shorter period over which Hg can accumulate (Monteiro and Furness, 2001), so 
their low concentrations compared to the two boobies is expected. Overall, the low concentration of 
elements in all three seabird species sampled (Tables 1 and 2) suggests the local marine 
environment around Bedout Island is in relatively good condition, particularly compared to other 
areas with more offshore development (Boersma, 1986; Fraser, 2014). 

For tropical sulids, numerous populations have undergone periods of rapid decline (Feare, 
1978; Schreiber, 2000). For example, only a few sulid colonies remain in Indonesia, the Philippines, 
the South China Sea, and Papua New Guinea (Cao et al., 2005; de Korte and Meltofte, 1997; de Korte 
and Silvius, 1994; Jensen, 2007). The Masked Booby is nationally extinct in the Philippines and likely 
Indonesia (Jensen, 2007) and Australian colonies have also experienced historical declines or 
extirpations (Nelson, 2005; Serventy, 1952). These declines have been primarily attributed to 
anthropogenic disturbance, but chemical and physical pollution is increasingly identified as an issue 
of concern (e.g., Gilmour et al., 2019; Grant et al., 2018). Increasingly, seabirds are facing multiple 
pressures which, alone, may have been tolerable, but together may have additive or multiplicative 
effects, further affecting populations (Dias et al., 2019; Wiese et al., 2004). On Bedout Island, low 
numbers of Masked Boobies recorded in recent years (<100 breeding pairs; Kingsley et al., 2019) and 
reductions in other seabirds in Australia and globally (Croxall et al., 2012; Dias et al., 2019; Gorta et 
al., 2019) suggests ongoing monitoring of this region is warranted. Furthermore, genetic analysis of 
Bedout’s tiny Masked Booby population (likely subspecies S. d. bedoutti) indicates it rarely 
exchanges genes with other colonies in the region, meaning it has limited capacity to cope with 
pressures and recover from perturbations through immigration (Kingsley et al., 2019).  

Along the north coast of Western Australia, seabirds increasingly overlap with offshore 
development (Lavers et al., 2014) as this is one of the most rapidly expanding regions of petroleum 
extraction (AERA, 2018; USGS, 2012). Drilling commenced in the Bedout Sub-basin, immediately 
adjacent to the island, in 2018 (Thompson et al., 2018). Risk of contamination or other harm to 



seabirds as a result of petrochemical activities is not insignificant, with Western Australia 
experiencing at least 13 offshore spillage events during 1988–2009 (May, 1992; Watson et al., 2009). 
When exposed to petroleum, seabirds exhibit elevated concentrations of trace elements and other 
pollutants in their tissues (Moreno et al., 2011; Pérez et al., 2008). Species that are resident year-
round in areas of high development are at increased risk of exposure to spillage events, including 
members of the Sulidae which typically remain within 250-500 km of the nest site throughout the 
year (Huyvaert and Anderson, 2004; Kohno and Yoda, 2011; Weimerskirch et al., 2008). 

The results of this study provide much-needed baseline data on trace element 
contamination for seabirds breeding on Bedout Island. While this is an important outcome, these 
data unfortunately resemble the majority of ecological studies, which focus on a single stressors due 
to time or funding limitations (O'Brien et al., 2019). In reality, >70% of seabird species face multiple 
threats that often occur simultaneously at-sea and on their breeding islands (Dias et al., 2019). Thus, 
it’s increasingly important to consider cumulative impacts on seabird populations and their habitats 
if we are to ensure research outcomes have meaningful application to the real world.  
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Fig. 1. Top panel: map showing the location of Bedout Island. Bottom panel: the Lesser Frigatebird 
colony (center of image; looking north) and the main Masked Booby colony (unvegetated area on 
left) on Bedout Island. Brown boobies breed along the shoreline, especially on the eastern side. 
 



Table 1 
Trace element concentrations (µg/g) in breast feathers of adult Sulidae and juvenile Fregatidae, reported as mean ± SD. N/A = information not available. 

Species Site Year Sample 
size (n) 

Hg Cd Pb Se Cu V Zn As Mn Sn Cr Source 

Sula 
dactylatra 

Bedout Is., 
Timor Sea 

2016-
2017 

20 3.20 ± 
0.62 

0.03 ± 
0.03 

0.48 ± 
0.36 

 2.92 ± 
0.81 

0.02 ± 
0.01 

 0.01 ± 
0.01 

   This study 

Sula 
leucogaster 

Bedout Is., 
Timor Sea 

2016-
2017 

16 1.55 ± 
0.89 

0.04 ± 
0.07 

0.59 ± 
0.36 

 2.86 ± 
0.92 

0.04 ± 
0.03 

 0.01 ± 
0.01 

   This study 

North Pacific 1990 12 1.90 ± 
0.33 

0.14 ± 
0.02 

2.33 ± 
0.30 

3.68 ± 
0.48 

       Burger et al. 
(1992) 

Ryukyu Is., 
Japan 

1992 11 2.9 ± 
1.0 

          Kim et al. 
(1996) 

Sula sula North Pacific 1990 12 3.57 ± 
0.28 

0.13 ± 
0.03 

2.08 ± 
0.32 

2.28 ± 
0.34 

    
 

   Burger et al. 
(1992) 

North Pacific N/A 12 3.85 ± 
0.09 

0.05 ± 
0.01 

0.975 ± 
0.04 

2.34 ± 
0.05 

   0.12 ± 
0.01 

1.46 ± 
0.14 

2.28 ± 
0.12 

2.53 ± 
0.26 

Burger and 
Gochfeld 
(2000) 

Morus 
serrator 

Pakiri Beach, 
New Zealand 

N/A 11 4.47 ± 
0.18 

0.09 ± 
0.01 

0.82 ± 
0.09 

1.03 ± 
0.06 

    1.08 ± 
0.05 

 1.78 ± 
0.05 

Burger et al. 
(1994) 

Muriwai Beach, 
New Zealand 

N/A 12 3.89 ± 
0.21 

0.22 ± 
0.02 

3.13 ± 
0.28 

1.85 ± 
0.09 

    2.65 ± 
0.18 

 3.43 ± 
0.19 

Ninety Beach, 
New Zealand 

N/A 21 3.8 ± 
0.10 

0.20 ± 
0.01 

1.13 ± 
0.08 

2.04 ± 
0.04 

    3.98 ± 
0.13 

 6.25 ± 
0.25 

 N/A N/A 1 4.5  0.9  19.9  102.0     Lock et al. 
(1992) 

Fregata ariel Bedout Is., 
Timor Sea 

2016-
2017 

23 0.22 ± 
0.17 

0.03 ± 
0.02 

0.82 ± 
1.26 

 1.32 ± 
0.32 

0.01 ± 
0.03 

 <0.01 ± 
0.01 

   This study 

Ashmore Reef, 
Timor Sea 

2013-
2014 

38 4.41a           Mott et al. 
(2017) 

Fregata minor Ashmore Reef, 
Timor Sea 

2013-
2014 

6 2.6a           Mott et al. 
(2017) 

Fregata 
magnificens 
 

Cispata Bay, 
Colombia 

2010-
2011 

7 2.10 ± 
1.36 
 

0.34 ± 
0.32 
 

0.19 ± 
0.09 

 3.65 ± 
4.99 

 61.64 ± 
42.39 

    Burgos-Núñez 
et al. (2017) 

a Median values extracted from plots (see Methods for details) 
 



Table 2 
Trace element concentrations (µg/g) in seabird breast feathers from Bedout Island. 

Element # <LOQ Min Median Max Mean (SD) 

Brown Booby (Sula leucogaster) – adults 

2016 (n = 11) 
V 0 0.03 0.04 0.09 0.06 (0.03) 
Cu 0 2.27 2.56 5.94 2.93 (1.03) 
As 2 (18%) <0.03 NA 0.10 NA 
Cd 0 0.02 0.04 0.30 0.06 (0.08) 
Hg 1 (9%) <0.10 NA 1.67 NA 
Tl 11 (100%) NA NA NA NA 
Pb 0 0.23 0.54 3.28 0.76 (0.88) 
2017 (n = 5) 
V 0 0.06 0.07 0.18 0.09 (0.05) 
Cu 0 2.50 2.87 3.26 2.88 (0.33) 
As 0 0.04 NA 0.07 NA 
Cd 0 0.02 0.03 0.04 0.03 (0.01) 
Hg 0 0.84 NA 2.15 NA 
Tl 5 (100%) NA NA NA NA 
Pb 0 0.12 0.15 0.17 0.15 (0.02) 
Masked Booby (Sula dactylatra) – adults 

2016 (n = 16) 
V 0 0.01 0.04 0.07 0.04 (0.01) 
Cu 0 2.35 2.77 5.52 3.08 (0.80) 
As 4 (25%) <0.03 NA 0.13 NA 
Cd 0 0.01 0.03 0.13 0.03 (0.03) 
Hg 0 1.69 2.02 2.83 2.18 (0.38) 
Tl 16 (100%) NA NA NA NA 
Pb 0 0.32 0.54 5.04 0.85 (1.14) 
2017 (n = 4) 
V 0 0.30 0.05 0.07 0.05 (0.02) 
Cu 0 2.24 2.50 3.03 2.57 (0.34) 
As 1 (25%) <0.03 NA 0.10 NA 
Cd 0 0.02 0.03 0.09 0.04 (0.03) 
Hg 0 1.58 1.84 2.66 1.98 (0.47) 
Tl 4 (100%) NA NA NA NA 
Pb 0 0.15 0.68 1.74 0.81 (0.73) 
Lesser Frigatebird (Fregata ariel) - juveniles 

2016 (n = 14) 
V 0 0.01 0.02 0.04 0.02 (0.01) 
Cu 0 1.09 1.50 2.17 1.50 (0.27) 
As 8 (57%) <0.03 NA 0.06 NA 
Cd 0 0.01 0.03 0.07 0.03 (0.01) 
Hg 0 0.14 0.27 0.37 NA 
Tl 14 (100%) NA NA NA NA 
Pb 0 0.23 0.56 1.48 0.66 (0.38) 
2017 (n = 9) 
V 0 0.02 0.03 0.18 0.05 (0.05) 
Cu 0 1.15 1.36 2.27 1.45 (0.34) 
As 8 (89%) <0.03 NA 0.05 NA 
Cd 0 0.02 0.04 0.10 0.06 (0.03) 



Hg 6 (67%) <0.10 NA 0.39 NA 
Tl 9 (100%) NA NA NA NA 
Pb 0 0.15 0.33 0.60 0.33 (0.14) 

 
  



Table 3 
Summary of linear models testing the effects of species and year on feather trace element 
concentrations. 

Trace element Factor F1 p-value Post-hoc test Log-transformed 

V Species 15.18  <0.001 BB > MB > LF Y 
 Year 12.84  <0.001 2017 > 2016 Y 
 Species × Year 0.64  0.53 NA Y 
Cu Species 79.65 <0.001 MB = BB > LF Y 
 Year 0.92 0.34 NA Y 
 Species × Year 0.61 0.55 NA Y 
As Species 14.11 <0.001 BB = MB > LF N 
 Year 0.07 0.80 NA N 
 Species × Year 0.80 0.46 NA N 
Cd Species 1.17 0.32 NA Y 
 Year 1.61 0.21 NA Y 
 Species × Year 1.43 0.25 NA Y 
Hg Species 149.64 < 0.001 BB = MB > LF N 
 Year 0.23 0.63 NA N 
 Species × Year 4.20 0.020 NA N 
Pb Species 0.41 0.67 NA Y 
 Year 0.01 0.99 NA Y 
 Species × Year 2.53 0.09 NA Y 

 1 Degrees of freedom are 2 & 53 for “Species” and “Species × Year”, and 1, 53 for “Year” 
 


