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Abstract  

As elsewhere in the Tropics, the climate of Ethiopia is highly variable. Capturing its 

variability has been a major challenge for climate models and tools. Understanding 

teleconnections and predictors is, therefore, an important step towards improving the 

skill of seasonal and intra-seasonal climate forecasts, derivative products such as 

seasonal yield predictions, and climate services in general. This report presents a review 

of existing knowledge on teleconnections, climate predictability and seasonal to intra-

seasonal climate forecasting advances and challenges for Ethiopia. Literature reviewed 

indicates an association between the seasonal climate of Ethiopia and seas surface 

temperature (SST) forcings over the Atlantic, Indian Oceans and, to a greater extent, 

over the equatorial Pacific along with associated atmospheric circulations. The main 

(Kiremt) season’s climate is strongly influenced by teleconnections with SST anomalies 

and the El Nino Southern Oscillation (ENSO) in the Nino-3.4 region of the equatorial 

Pacific and can yield moderate skill forecasts with 1 to 2 month lead time, while the 

Indian Ocean Dipole (IOD) has relatively stronger influence on the climates of the dry 

season (Bega) and small rains season (Belg). Best climate predictors and prediction skill 

therefore vary for the different seasons of Ethiopia. The procedures and methods used 

by the National Meteorology Agency (NMA) of Ethiopia to forecast seasonal and intra-

seasonal climates and their pros and cons are discussed.  

Keywords 

Seasonal climate predictability; Forecasting skill; Teleconnections; Ethiopia. 
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Introduction 

Mankind recognized millennia ago the importance of climate variability for the 

sustenance of life, whether that variability was expressed in the form of droughts, 

floods, heat, cold, or wind. Coping strategies developed to handle the consequences of 

climate variability helped ensure the survival of mankind, although the historic record 

indicates that not all civilizations successfully overcame past challenges imposed by 

long-term droughts, extensive flooding, and the like. Much has changed in the modern 

era, with coping strategies such as migration, invasion and appropriation frequently 

constrained by international boundaries and laws. Included amongst the technological 

advances that have led to increased resilience against climate variability are remarkable 

achievements in the understanding, monitoring and prediction of climate variability 

itself (Troccoli, 2008). 

In principle, modern seasonal to inter-annual predictions are an answer to the needs of 

many whose activities are influenced in some manner by climate variability, whether 

in terms of creating profit through the marketing of an appropriate range of goods, or 

for critical decisions regarding agriculture and food security. From a practical 

perspective, there is only one reason for undertaking research and development to 

advance seasonal climate predictions and for investing in the infrastructure to produce 

and deliver them. That reason is to assist whatever decision processes are of concern to 

those who might make use of them. For that matter, prediction information must be 

reliable to be admissible into the decision processes of recipients (WMO, 2002).  
The idea that the climate may be predictable at seasonal timescales may seem 
counterintuitive, given that weather does not appear to be predictable with much 
accuracy beyond a few days. At seasonal scale, the errors become so large that there is 
no longer a forecast, but an accidental resemblance between the forecast and the 
observed conditions. However, it is possible to provide information, based on a 
different source of predictability (Hansen et al., 2011).  Changes in the earth’s surface, 
particularly sea surface temperatures (SST), can influence the atmosphere. Since ocean 
temperatures tend to change slowly relative to the atmosphere because of their high heat 
capacity, knowing the current state of the oceans may provide some degree of 
predictability on seasonal time scales. Thus, while it is harder to forecast the weather in 
the Tropics, it tends to be easier to predict the seasonal conditions, although 
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predictability at seasonal timescales is highly dependent on location and on the time of 
the year (Troccoli, 2008). 
It is important to note that average circulation in the tropics is, on the one hand, a major 

characteristic of the atmospheric variability and, on the other hand, strongly influenced 

by the large scale organized convection (notably the Walker-Hadley divergent 

circulation), the latter being strongly controlled by the evolutions of the conditions of 

oceanic and continental surfaces. That particularly explains why seasonal forecasting 

has enhanced scores and skills in tropical areas compared to the mid-latitude regions. 

In addition to solar forcing, the principal source of energy for the climatic system, one 

can distinguish between continental and oceanic forcings. SSTs are particularly used in 

both coupled and forced numerical models, but also in the majority of statistical models. 

This information coming from the oceanic surface allows us to get reasonable forecasts 

up to a lead time of 4 months. Beyond, information from coupled Ocean-Atmosphere 

dynamics is typically required, using general circulation models (GCM) including sub-

surface information. The best known of these forcings is related to the El Niño Southern 

Oscillation (ENSO), with planetary consequences (Clarke, 2008). 

Ethiopia, like many parts of the Tropics, is prone to extreme climate events such as 

droughts and floods. In an effort to minimize the negative impacts of extreme climate 

events, and to better exploit opportunities offered by climate, in 1980 the Government 

of Ethiopia established the National Meteorological Services Agency (currently, 

National Meteorological Agency; NMA). Today, NMA uses a statistical method based 

on analogue multivariate ENSO index years. The outputs of this method are 

probabilistic categorical forecasts of regional Ethiopian rainfall (Korecha and 

Sorteberg, 2013). The goal of this review is to review and discuss current knowledge 

concerning predictability and predictions of Ethiopian seasonal climate. In this review, 

we focus on assessing the current practices, methods and tools used to produce seasonal 

climate forecasts by NMA. 

The Seasonal Climate of Ethiopia  

Meteorologically, a season is a period when an air mass characterized by homogeneity 

in temperature, humidity, wind patterns, rainfall, etc., influences a region (Désalmand, 

1998). Ethiopia’s rainfall climatology is mainly determined by seasonal changes in 
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large-scale circulation, part of which involve the latitudinal movement of the 

intertropical convergence zone (ITCZ) as happens throughout the larger Sahel region 

from Sudan to Senegal (Nicholson 1989). In Ethiopia, seasons are unique and are 

classified mainly based on rainfall and its distribution. 

“Bega” is a generally dry season that covers the period from October to January. During 

this season, Ethiopia is predominately influenced by both warm and dry air masses 

originated from the Saharan Anticyclone as well as cool and dry air masses originated 

from the Siberia and Arabian Anticyclones. However, associated with occasional 

eastward movements of mid-latitude depressions, the Arabian high can displace and 

establish itself over the Arabian Sea. In such situations, the interaction between the 

southeast warm moist and mid latitude cool dry air masses, coupled with mid-

tropospheric deep troughs and with the Subtropical Jet (STJ) can produce substantial 

and untimely rains.  

The “Belg” season refers to a small rainy season that covers the period from Mid-

February to Mid-May. This season coincides with the dominance of the Arabian high 

as it moves toward the North Arabian Sea. In this season a thermal low develops over 

Sudan, an anticyclone forms over the Arabian Sea, and resulting easterly winds bring 

considerable amounts of moisture to the region under consideration. Sometimes the 

Northern part of the region is under the influence of the warm and dry Sahara and 

Arabian air masses. In general, the weather systems that are responsible for rainfall 

activities during the belg season are: 

▪ The development of high pressure over the Arabian Sea; 

▪ The generation and propagation of disturbances, sometimes coupled with Easterly 

Waves; 

▪ The interaction with mid- latitude depressions accompanied by trough and STJ, the 

tropical disturbances and ITCZ; and 

▪ The occasional development of Red Sea Convergence Zone (RSCZ), which 

produces substantial rainfall in the Northeast parts of the region. 

“Kiremt” refers to the main rainy season that covers the period from June to September. 

Airflow during this season is dominated by a zone of convergence in low-pressure 

systems accompanied by the oscillatory Inter-tropical convergence zone (here after 

ITCZ) extending from West Africa towards India through Ethiopia or North of it. The 

major rain-producing components during kiremt are: 
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▪ The northward Migration of ITCZ following the sun’s movement; 

▪ The development and persistence of the Arabian and Sudan thermal lows along 20o 

latitude; 

▪ The development of the Quasi-high-pressure system over the Southern Atlantic and 

Indian Ocean 

▪ The development and persistence of the Indian sub-continent’s depression and the 

associated Monsoon trough; and 

▪ The development of the tropical Easterly jet stream (TEJ) and its persistence for 

distribution and intensity of rain. 

The National Oceanic and Atmospheric Administration (NOAA) defines the ENSO 

state (e.g., El Niño or La Niña) as a departure of magnitude 0.5°C or more from normal 

SST in the Niño 3.4 region, lasting for at least five running three-month periods over 

the tropical Equatorial Pacific Ocean. The main ENSO signal is found during the 

northern summer  (Camberlin, 2009) at which time a negative correlation is found with 

the Niño 3.4 index, depicting lower than normal rainfall in the years of higher sea-

surface temperatures (SST) in the eastern equatorial Pacific (i.e., El Niño years). It is 

argued that each ENSO state (El Niño, neutral or La Niña) has its own influence on the 

rainy or dry season. 

The physical connection between these changes in the atmospheric general circulation 

and ENSO is complicated and not well understood. Other factors such as southern 

Atlantic and Indian ocean SSTs also influence the rain-bearing systems in Ethiopia. Not 

all ENSO events correlate directly with drought in Ethiopia. The 1982-83 El Niño, for 

example, did not cause failure during the (kiremt) main rainy season strictu senso 

although one of the worst droughts in Ethiopian history occurred over 1983-84 (NMSA, 

1996). Despite this complexity, Ethiopian researchers have developed a system for 

identifying when an El Niño event is likely to produce climatic variations in Ethiopia, 

and for forecasting ENSO-induced climate anomalies. The NMA of Ethiopia, based on 

criteria that define particular types of ENSO events, has concluded that negative SST 

anomalies are strongly associated with below-normal rainfall during belg; positive SST 

anomalies are often correlated with good rainfall during belg, while the effects are 

opposite for the main rainy season (kiremt).  

ENSO events are always associated with the overturning of the Walker cell, such that 

the descending limb of the cell rather than the ascending limb sits over Africa. 
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Atmospheric dynamics responsible appear to be causing cold air outbreaks from the 

Siberian High area. To the east of the Tibetan Plateau, over the western Pacific between 

Japan and Philippines at about 13E a quasi-stationary upper level westerly long wave 

trough with a length around 500km is maintained during bega. Through this trough, the 

short-wave disturbance in the form of cyclonic vortices travels. During ENSO the effect 

of this to start instance period of eastward moving of extra tropical systems across the 

Mediterranean areas and its trough move toward the equator at 40 oE. This indirectly 

makes warm and moist air to be pumped to the North and central part of the Ethiopia 

resulting in warmer and wetter condition than normal. In addition, during this season 

the Red Sea convergence zone (RSCZ) intensifies during ENSO years. This abnormal 

rain occurs during the harvesting season and may reduce annual crop yield product both 

in terms of harvest volume and quality.  El Niño affects the bega season in such a way 

that it makes the season wetter than normal. Hence, during bega, El Niño (positive 

SSTAs) is correlated with normal or above normal rainfall.  

The impact of La Niña over the bega season is negative. La Niña makes the bega season 

extremely dry. Depressed atmospheric water vapor hampers cloud formation, and due 

to enhanced nocturnal emissions (night-time long wave radiation) minimum 

temperatures tend to decrease, resulting in frost conditions over some highland areas. 

 

Potential Predictability of Ethiopia’s Seasonal Climate  

Predictability of Kiremt and Belg Season Climate  

Given that the atmosphere is predominantly heated from the earth’s surface rather than 

directly from the sun and given that the atmosphere receives its moisture from the 

earth’s surface, changes in the earth’s surface, particularly the SST distribution, can 

influence the atmosphere. There are significant interconnections between the surface 

temperature of the oceans and the associated atmospheric circulation due to heat 

transfers from oceans to the atmosphere. Any significant departure of the earth’s surface 

from its normal conditions can disrupt weather patterns over a prolonged period. These 

disruptions are likely to be strongest in the Tropics where sea surface temperatures are 

warmest. Since ocean temperatures tend to change slowly relative to the atmosphere 

because of their high heat capacity, knowing the current state of the oceans may provide 

some degree of predictability of how weather patterns may be disrupted. The basis of 
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this burgeoning industry is that slowly varying components of the geosystem, most 

significantly SST across tropical ocean basins can impart a ‘memory’ to the atmosphere 

in the vicinity of any such long-lived anomalies. To the extent that this ‘memory’ can 

be transmitted to parts of the globe remote from the originating sea surface temperature 

anomalies (SSTA), meteorologists refer to this phenomenon as teleconnections 

(Rosenzweig and Hillel, 2008). 

The inter-annual variability of the seasonal mean in the tropics is mainly determined by 

slowly varying components such as SST, albedo, sea ice, and soil moisture. Model 

experiments showed that the tropical circulation and precipitation are strongly 

determined by the underlying SST with very little sensitivity to the changes in the initial 

conditions of the atmosphere. The ENSO is the best-known example of a slowly varying 

phenomenon that results from ocean‐atmosphere interaction in the tropical Pacific. The 

prediction of conditions associated with ENSO has also seen more success in seasonal 

prediction by the climate forecasting community. 

Since Ethiopia is located within the Tropics, seasonal predictability is higher compared 

to mid-latitude countries. The Ethiopian seasonal climate shows significant year-to-

year variations. One of the important mechanisms that control this year-to-year 

variability is the ENSO state. Thus, the ENSO condition and the associated SST pattern 

is the primary source of predictability so far.  The impact of ENSO on Ethiopian 

seasonal climate and its potential for predictability is widely documented. Sir Gilbert 

Walker was the first to indicate indirectly the presence of a link between the Southern 

Oscillation and rainfall variability in parts of Ethiopia. In his calculations of the 

Southern Oscillation, one of the variables he used was the Nile flood level, whose major 

water source is the Ethiopian Highlands (Walker and Bliss, 1932). The first 

experimental seasonal forecast based on El Niño effects was made in 1987 by NMA. 

 

Previous studies have identified the role of remote SST forcings over the Atlantic, 

Indian, and to a greater extent, equatorial Pacific Oceans and the associated atmospheric 

circulation over the Ethiopian seasonal climate (Table 1). The Kiremt seasonal climate 

variability can be strongly influenced through teleconnection patterns originated by 

SST anomalies in the Nino-3.4 region of the equatorial Pacific.  For instance, (Gissila 

et al., 2004) used empirical methods to predict Kiremt rains, using the relationship 

between SST data for March, April and May in the Indian and Pacific Oceans. The most 
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extensive study of the predictability of the Kiremt rains is that of Korecha and Barnston  

(2007). This study investigates the strength of linear relationship between all Ethiopian 

Kiremt rainfall and the Niño-3.4 SST index derived from Extended Reconstructed Sea 

Surface Temperature version 2 (ERSSTv2). The association of summer rainfall with 

ENSO in early pre-summer months (January–April) is weak and increases as the ENSO 

state approaches the beginning of the rainfall season. The correlation is moderate (-

0.59) for the May Niño-3.4 SST, suggestive of some predictability based solely on the 

May ENSO state. 

The polarity of the ENSO teleconnection depends on the season in question with 

positive SST anomalies in the eastern Pacific (El Niño) being associated with rainfall 

deficits in the Kiremt season and excess rainfall in the Belg season. The ENSO signal 

on observed Belg rainfall anomalies over southern Ethiopia seems to be weaker than 

for Kiremt. (Diro et al., 2008) identifies various regions of SST anomalies over Atlantic, 

Indian and Pacific Ocean to predict the Belg rains (Annex Fig. 7.1). Because of the 

spatial variation across Ethiopia in both interannual variability and the annual cycle, 

Diro et al. (2008) identified five homogeneous rainfall zones within Ethiopia and 

produced separate forecast models for each zone. Both multiple linear regression and 

linear discriminant analysis were applied to four sets of predictors. It was also shown 

that the models had the most skill in the southern and eastern parts of Ethiopia and that 

the extreme years were more reliably forecasted than the average years. 

Predictability of Bega Season Climate  

Interannual variability of Bega rains over south-eastern Ethiopia is dominated by large-

scale changes in the Indian Ocean and its coupled atmosphere with a clear link to the 

Indian Ocean dipole (IOD).  Bega rainfall over south-eastern parts of Ethiopia is 

increased during positive IOD events. Bahaga et al. (2015) explored the predictability 

of Bega rains in their Atmospheric General Circulation Model (AGCM) ensemble 

experiments and found a substantial potential prediction skill associated with East 

African short rains, given the predictability of SST anomalies over the Indian Ocean. 

Besides, a temporally limited potential for the dynamical predictability of short rain has 

been indicated using a coupled ocean–atmosphere general circulation model (Behera et 

al., 2006). They showed that the July–August signal of the IOD in the SST dipole mode 

index has a high prediction skill for the variability in Bega rains. 
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Recent Developments on Climate Predictability  

More often, preceding month SSTA and ENSO state are the key operational predictors 

in Ethiopia. Yet, Nicholson (2015, 2014) argues that atmospheric variables (zonal and 

meridional wind and vertical motion) generally provide higher forecast skill compared 

to surface variables (SST and  season level pressure, SLP) on shorter lead forecasts (1-

month lead time). Hence, ENSO and IOD provide less forecast skill than atmospheric 

variables associated with them. Surface variables become somewhat more important 

for 2-month lead-time, longer-lead forecasts. 

A well improved ensemble-based multiple linear regression technique is developed to 

assess the predictability of regional and national Kiremt rainfall anomalies and local 

monthly rainfall totals for Ethiopia (Segele et al., 2015). The ensemble prediction 

approach captures potential predictive signals in regional circulations and global SSTs, 

two to three months in advance of the Kiremt season. This ensemble features an 

improvement in terms of skill and usability compared to previous studies. 
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Table 1. Sources of predictability for the seasonal climate of Ethiopia 

No. Predictand Predictors Location Prediction method 
and skill Reference 

1 

Kiremt rainfall 
totals over 
homogeneous 
zones 

Sea Surface 
Temperature  

▪ Tropical western Indian Ocean (10 °S - 10 
°N, 50 - 70 °E) and (10 °S -equator, 90 - 110 
°E). 

▪ The Niño-3.4 (5°S - 5 °N, 120 - 170 °W). 

Multiple linear regression 
[r =0.6]  

Gissila et al. 
(2004) 

2 
All Ethiopian 
Average Kiremt 
rainfall totals 

Sea Surface 
Temperature 

▪ The difference of May minus February to 
March SSTs over the south Atlantic (30° -
40°S, 15° - 30°W). 

▪ The difference of May minus the February to 
March Niño-3.4 SST 

▪ May Niño-3.4 SST 

Multiple linear regression 
and Canonical 
Correlation Analysis 
[r=0.73] 

Korecha and 
Barnston (2007) 

3 

Belg rainfall 
totals over 
homogeneous 
zones 

Sea Surface 
Temperature See Annex Fig.7.1 for details 

Multiple 
linear regression (MLR) 
and linear discriminant 
analysis (LDA) 

Diro et al. 
(2008) 

4 JAS rainfall Atmospheric and 
Oceanic Indices See Annex Table 7.1  for details 

Multiple 
linear regression (Annex 
Table 7.2 and 7.4) 

Nicholson 
(2015, 2014) 

5 MAM rainfall Atmospheric and 
Oceanic Indices See Annex Table 7.1 for details 

Multiple 
linear regression (Annex 
Table 7.3) 

Nicholson 
(2015, 2014) 

6 

September-
October-
November 
(SON) rains 

Coupled 
operational 
seasonal forecast 
models (GCMs)  

1-month lead IOD index Multi-model ensemble 
(MME) 

Bahaga et al. 
(2016, 2015) 
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Operational Seasonal Climate Forecasting at NMA 

Ethiopia started issuing seasonal forecasts in 1987, ten years before the first RCOF. The 

NMA issues seasonal forecasts 3 times a year targeting the Bega, Belg and Kiremt 

seasons, 1–2 weeks prior to the normal onset date of each season. During early stages, 

the methods of forecasting used by the NMA are based on analogue, trend analysis 

(short-term trends of SST), statistical assessments, and teleconnections (Bekele, 1997). 

However recently the agency adopted a consensus seasonal climate outlook based on 

guidance from various prediction methods and tools. The seasonal climate outlook 

includes forecast information beyond seasonal rainfall totals, such as outlooks on the 

start, end and duration of the rainfall season. In addition, the agency forecasts several 

additional agriculturally important variables such as moisture status, water requirement 

satisfaction index and vegetation condition.  The agency also issues outlooks on climate 

suitability for malaria transmission (Connor et al., n.d.). 

Although there are various attempts to include a number of methods and tools to 

produce the seasonal climate outlook, the main method includes a combination of the 

analogue method and regression based statistical forecasting tools. The procedures of 

producing consensus-based seasonal climate outlooks at NMA include:  

A. Diagnosis: involves examining temporal evolution and current status of oceanic 

and atmospheric synoptic scale regional and global meteorological features;  

B. Prognosis: involves examining outlooks produced by global forecasting centers of 

the status of oceanic and atmospheric meteorological features on synoptic, regional 

and global scales (Figure 1).  
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Figure 1. Schematic of the 

analytical steps in the 

preparation of seasonal 

rainfall forecasts by the 

National Meteorological 

Agency of Ethiopia (after 

Korecha and Sorteberg, 

2013) 
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NMA uses indices of sea surface temperatures (SSTs) over the tropical Pacific Ocean, 

the Southern Oscillation Index (SOI), the Multivariate ENSO Index (MEI: Wolter and 

Timlin, 1998) and the ENSO outlook obtained from NOAA/CPC. Historical and 

current Niño 3.4 SSTs (located in the central equatorial tropical Pacific Ocean) are 

used to select years with an ENSO evolution similar to the current year.  

NMA’s seasonal rainfall forecasts are then prepared as a probability of the regional 

seasonal rainfall being below, near, and above the climatological normal for eight 

homogeneous rainfall regions (Figure 2). The classification is based on typical rain-

producing systems affecting the region and on spatial and temporal response of each 

respective region to major atmospheric and oceanic circulation systems. Although some 

authors (Diro et al., 2010, 2008; Gissila et al., 2004; Tsidu, 2012) have proposed 

modifications to the NMA homogeneous rainfall regions, NMA still uses the originally 

defined eight rainfall zones for the preparation of seasonal forecasts. The tercile rainfall 

categories, which are more commonly known as the probabilities, refer to the likelihood 

that the region averaged rainfall will be below, near, or above average as the anomalies 

in seasonal (4-month) rainfall are often large in geographical scale. 

 

Figure 2. Homogeneous rainfall regions currently used for the preparation of seasonal 
rainfall forecasts in Ethiopia.  
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The Analogue Method 

The analogue forecast methodology is one of the major techniques operationally used 

by NMA to produce seasonal forecasts. This technique involve an analysis of historical 

data in search of previous periods that resemble the immediate past period, and 

predicting the following season’s rainfall anomalies on the basis of what happened on 

those previous occasions. In identifying the predictors for Ethiopia rainy seasons, 

previous research guides the selection of the most appropriate predictors from the 

historical archives. Various teleconnection patterns are linked to Indian, Atlantic, and 

Pacific Oceans, where they produce different climatic anomalies in various parts of 

Ethiopia (Gissila et al., 2004; Korecha and Barnston, 2007; Segele and Lamb, 2005; 

Shanko and Camberlin, 1998) . ENSO-indices have been well identified as the potential 

preseason indicators and thus have become the basis for analogue forecasting in 

Ethiopia. ENSO indices are being retained year round, but allowing these indices to be 

weighted differently from season to season as well as from region to region, depending 

on the direct linkage between regional rainfall pattern and SST anomalies. 

The analogue approach requires the selection of 3 to 5 analogues years with an ENSO 

evolution similar to the target year, by comparing historical and target years’ SSTAs in 

the Niño 3.4 region.  The seasonal rainfall forecast for the target season is then prepared 

based on rainfall observed in these analogue years. The seasonal rainfall total of each 

station is expressed as a seasonal rainfall percentile and used to calculate tercile 

categories (0–33, below; 34–66, near, and 67–100%, above the climatological normal) 

for each homogeneous rainfall region. 
The major advantage of the analogue forecasting technique currently used in NMA is 
that the climate information consists of past observations, so the implications can be 
readily connected with decision models and can be utilized in situations where the 
computing facility is very weak. Because of its conceptual simplicity, already identified 
various teleconnection patterns can be easily related to the observed climate to produce 
the seasonal forecast. This provides a unique opportunity for NMA to issue timely early 
warnings on the adverse effect of climatic anomalies within a reasonable lead-time.  
Although the analogue method is simple and computationally efficient, it is limited by 
observational data and mostly depend on linear relationships. Non-stationarity due to 
decadal/multi-decadal climate variability is thus not considered (Goddard et al., 2010). 
Changes in observed mean, variability, and trend due to the changing climate and the 
associated unprecedented situations severely limit the usefulness of analogue 
approaches. 
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The Climate Predictability Tool (CPT) 

The Climate Predictability Tool (CPT), developed by the International Research 
Institute on Climate and Society, provides a package for constructing a seasonal climate 
forecast model, performing model validation, and producing forecasts given updated 
data (Mason, 2011). Although the tool is specifically tailored for these applications, it 
can be used in more general settings to perform canonical correlation analysis (CCA), 
principal components regression (PCR), or multiple linear regression (MLR) on any 
data, and for any application. The Climate Predictability Tool (CPT) is an easy to use 
package for making tailored and downscaled seasonal climate forecasts. CPT is 
designed to produce statistical forecasts of seasonal climate using either the output from 
a GCM, or empirical predictors.  
The underlying goal in using the CPT has been to address the widespread creation and 

communication of quality-controlled seasonal climate forecasts that address specific 

needs of different user groups. There are two main approaches to generating seasonal 

forecasts: using large-scale models of the global atmosphere, known as general 

circulation models (GCMs), or using a statistical approach to relate seasonal climate to 

changes in sea-surface temperatures, such as those associated with El Niño, or to other 

predictors. In the former case, predictions are made for large-areas, and are often not 

very relevant for specific locations. In addition, because of the coarse scale at which the 

GCMs operate, the geography in the models is often distorted, and so geographical 

locations can be displaced. These GCM outputs therefore need to be adjusted so that 

they can be applied at the local level. The CPT tool is designed to perform both forms 

of prediction, namely downscaling of GCM output, and purely statistical predictions. 
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Figure 3. Methodological framework to produce seasonal forecasts using CPT 

The Geospatial Climate Outlook Forecasting Tool (GeoCOF) 

The Geospatial Climate Outlook Forecasting Tool (GeoCOF) is a statistical tool, 

developed by FEWS NET for producing probabilistic seasonal forecasts for rainfall and 

other climatic parameters. GeoCOF facilitates multiple-linear regression modeling, 

identification of potential predictors (e.g. regional sea surface temperatures) and 

forecast model skill assessments.  Graphical outputs are designed to support regional 

climate outlook forums, such as through presentation of forecasts using tercile 

categories and maps (Magadzire et al., 2016). 

GeoCOF uses observed SST data to forecast rainfall in a given homogeneous region. 

At the beginning, the datasets are summed up over the forecast period of interest, for 

example, monthly data can be summed up over Jun-July-August-September (JJAS) 
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period in order to generate a time-series of JJAS totals. The JJAS totals are then 

converted to a standard normal variable (Z-score). The predefined homogeneous 

rainfall zones are used to summarize the predictand (rainfall) variable, allowing the 

rainfall for each zone to be correlated to potential predictors, especially oceanic regions 

that display a high correlation between their SSTs and rainfall. This allows the 

correlations between rainfall and SST to be analyzed, and ultimately for a regression-

based forecast model to be developed for each climate zone.  

The SST data aggregated from the oceanic regions that are well correlated with rainfall 

is selected. In doing so, very small regions should be avoided as these are not robust in 

analysis. Oceanic regions whose correlation with the rainfall zone of interest is difficult 

to explain should also be avoided as predictors. Different combinations of potential 

predictors are then tested using a number of statistical tests to identify the best statistical 

models that can be used to predict the climate variable of interest.  

A linear regression model is produced using the NOAA Extended Reconstructed Sea 

Surface Temperature (ERSST) v4 monthly lagged SST values as predictor and the 

Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) dataset as 

predictand data. The regression model can be developed using either a single month 

SST, as available in the GeoCLIM ERSST database, or using multiple months, such as 

3-month averaged SSTs. The established regression model is trained using the data 

from 1981 to 2010. The regression model is refined with the remainder of the historical 

rainfall and SST fields using the error variance of the cross-validated forecasts over the 

training period. Once a satisfactory model is identified, the current observed SST value 

of the predictor then substituted into the regression equation to make a forecast.  



 25 

Conclusion/recommendations  

This review provides an overview of the current state of knowledge and operations with 

regard to seasonal climate forecasting in Ethiopia. Most of the studies reviewed agree 

that potential predictability with moderate skill is achievable by exploiting the 

equatorial Pacific SSTAs, particularly in the Niño-3.4 region and the associated ENSO 

state. For this oceanic region, the ENSO predictive skill is higher during May (the 

preceding month) for the Kiremt season. This is the approach followed by NMA. 

SSTAs over the Atlantic Ocean (Gulf of Guinea), the Indian Ocean, and the associated 

IOD could provide additional sources of predictability, particularly for the Bega and 

Belg seasons. Clearly, strategic and tactical decisions could benefit from seasonal 

predictions on longer time scales, such as 2 to 3 month lead forecasts which may be 

improved using multivariate indices combining oceanic and atmospheric predictors. 

Some recent studies proposed indeed that atmospheric variables such as low-level and 

upper level winds could provide greater predictability than surface variables. The merit 

of this idea stems from the association between patterns of tropospheric convergence, 

divergence and vertical motion (which provide the direct forcing) and the dominant 

stability mechanisms in the region. Finally, the demonstration of the predictability of 

climate by CGCMs using multi-model ensemble approaches brings optimism for better 

operational forecasts, notably for the seasonal prediction of high frequency variables 

and particular events. For the time being, the Nino-3.4 SST and ENSO state for the 

Kiremt season, supplemented by the IOD (for the Bega and Belg seasons) provide 

reliable moderate skill at 1 to 2 months lead time for the Ethiopian seasonal climate.
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Appendix  

Fig. 7.1. Location of SST predictors for Belg season, as described by (Diro et al., 
2008): (a) Zone I; (b) Zone II; (c) Zone III; (d) Zone IV; and(e) Zone V; (f) 
homogeneous rainfall zones for the Belg season. 
 

 

(f
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Table 7.1. Location of predictors for JAS (top) and MAM (bottom); as developed by 
(Nicholson, 2015) for 1-and 2-month lead times. 
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Table 7.2. Correlation between predictors and summer (Kiremt) rainfall regions for 1- 
and 2-month lead times  

 
Table 7.3. February predictors for the Belg (MAM) rainfall regions  

 
Table 7.4. May predictors for the summer (JAS) rainfall regions 

 
Source: Nicholson (2015) 
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