
applied  
sciences

Article

Restricted Boltzmann Machine Vectors for Speaker
Clustering and Tracking Tasks in TV
Broadcast Shows †

Umair Khan * , Pooyan Safari and Javier Hernando
TALP Research Center, Department of Signal Theory and Communications, Universitat Politecnica de
Catalunya—BarcelonaTech, 08034 Barcelona, Spain
* Correspondence: umair.khan@upc.edu; Tel.: +34-640-770-111
† This paper is an extended version of our paper published in IberSPEECH-2018.

Received: 21 May 2019; Accepted: 2 July 2019; Published: 9 July 2019
����������
�������

Abstract: Restricted Boltzmann Machines (RBMs) have shown success in both the front-end and
backend of speaker verification systems. In this paper, we propose applying RBMs to the front-end
for the tasks of speaker clustering and speaker tracking in TV broadcast shows. RBMs are trained
to transform utterances into a vector based representation. Because of the lack of data for a test
speaker, we propose RBM adaptation to a global model. First, the global model—which is referred to
as universal RBM—is trained with all the available background data. Then an adapted RBM model is
trained with the data of each test speaker. The visible to hidden weight matrices of the adapted models
are concatenated along with the bias vectors and are whitened to generate the vector representation
of speakers. These vectors, referred to as RBM vectors, were shown to preserve speaker-specific
information and are used in the tasks of speaker clustering and speaker tracking. The evaluation
was performed on the audio recordings of Catalan TV Broadcast shows. The experimental results
show that our proposed speaker clustering system gained up to 12% relative improvement, in terms
of Equal Impurity (EI), over the baseline system. On the other hand, in the task of speaker tracking,
our system has a relative improvement of 11% and 7% compared to the baseline system using cosine
and Probabilistic Linear Discriminant Analysis (PLDA) scoring, respectively.

Keywords: speaker tracking; speaker clustering; speaker segmentation; restricted boltzmann machine
adaptation; agglomerative hierarchical clustering

1. Introduction

Deep learning has been successfully applied to various tasks of image and speech technologies in
recent decades. Their success has influenced the research community to make use of these techniques
in speaker recognition tasks [1–5]. Deep learning has been applied to extracting bottle neck features
(BNF) and then compute Gaussian Mixture Models (GMM) posterior probabilities in a hybrid Deep
Neural Network–Hidden Markov Model (DNN-HMM) model [6,7]. At the front end, deep learning is
capable of learning deep features from acoustic features, which are used in several speaker recognition
tasks [5,8–11]. Deep learning has also been applied to learning a vector representation of a speaker for
speaker verification, such as in References [5,12–14]. There are some interesting works that address the
performance loss on degraded speech condition and acoustic mismatch between enrollment and test
phases of speaker recognition systems [15,16]. Also, there are several recent approaches to obtaining
fast training, for example, the Extreme Learning Machine (ELM), which has been extremely efficient in
representational learning and several other learning tasks [17–19].

Unsupervised deep learning architectures like Restricted Boltzmann Machines (RBMs), Deep
Belief Networks (DBNs) and Deep Autoencoders have the ability of representational learning power.
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A first attempt to use RBMs at the backend in a speaker verification task was made in Reference [20].
The authors put their efforts into the front end of a speaker verification system, in order to learn
a compact and fixed dimensional speaker representation in the form of a speaker vector by means
of RBM adaptation [21–24]. They also make use of DBNs in the i-vector/PLDA (Probabilistic Linear
Discriminant Analysis) framework for speaker verification at the backend [25]. The vector representation
of speakers in Reference [22], was referred to as an RBM vector. It has been shown that the RBM vectors
can extract speaker specific information that can be competitive as compared to i-vector based speaker
verification. This has led us to apply this kind of vector representation of speakers to the tasks of
speaker clustering and speaker tracking.

Speaker clustering refers to the task of grouping speech segments in order to have segments from the
same speaker in the same group. Ideally each group or cluster must contain speech segments that belong
to the same speaker. On the other hand, utterances from the same speakers must not be distributed among
multiple clusters. Several approaches to speaker clustering tasks exist, for example, cost optimization,
sequential and Agglomerative Hierarchical Clustering (AHC) [26–29]. Some approaches rely on
commonly used statistical speaker modeling like Gaussian Mixture Models (GMMs), while others
use features extracted using Deep Neural Networks (DNNs). For example, in Reference [9], BN features
extracted from different DNNs are used for speaker clustering using an AHC approach.

In certain applications, a person of interest (target) is tracked in an audio file, by using his
voice characteristics. To identify when the target speaker speaks in the audio, is a speaker tracking
task [30]. The main stages in speaker tracking are to determine the positions in the audio where the
speaker changes occur, that is, speaker segmentation, and to then identify the speaker, that is, speaker
identification. Based on these two stages, there can be a joint or a separate approach to a speaker
tracking task. In the past, several approaches to speaker tracking were proposed based on different
segmentation and speaker modeling strategies. In order to detect speaker changes, a fixed length
window is slid over the audio and a distance metric is computed between consecutive windows.
This distance is set to a threshold to decide whether there exists a speaker change. In Reference [31],
speaker change detection is performed using a Generalized Likelihood Ratio [32,33]. In Reference [34]
the Divergence Shape distance, described in Reference [35,36], is computed for speaker change
detection. After this, the audio is segmented using the speaker change detection. The conventional
GMMs are trained to represent the speakers and a speaker identification is performed in order to
decide which segment belongs to which speaker among the set of given target speakers.

In this paper, we propose the use of RBM vectors [22] for the above mentioned tasks, that is,
speaker clustering and speaker tracking. The RBM vector is extracted in several steps. First of all,
a global or Universal RBM—referred to as URBM—is trained with all the available background data.
Then, an adapted RBM model per test speaker is trained. In the case of speaker clustering, the test
speakers are the segments that are to be clustered. In the case of speaker tracking, the test speakers are
audio segments and target speakers. The visible to hidden weight matrices along with the visible and
hidden bias vectors of these adapted RBMs are concatenated to generate RBM supervectors. The RBM
supervectors are subjected to a Principal Component Analysis (PCA) whitening and dimensionality
reduction to extract the desired RBM vectors.

For the speaker clustering task, we extract RBM vectors using the method described above for the
test speakers. In this way, all the speaker segments that are to be clustered are represented by RBM
vectors. Then we cluster these RBM vectors by applying a bottom-up AHC approach using cosine and
Probabilistic Linear Discriminant Analysis (PLDA) scores. In Reference [24], we have concluded that
the RBM vector representation of speakers is successful in the task of speaker clustering. In this paper,
we investigate the same RBM vector representation of speakers in the task of speaker tracking.

For the speaker tracking task, we implement a two stage strategy. The first stage is based on
speaker change detection by using Divergence Shape distance as in Reference [34]. The audio is
segmented according to these speaker change points. In the second stage, the segments generated are
identified against all the target speakers, in order to specify which segment belongs to which target
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speaker. The target speakers are first enrolled in the system. We represent all the segments and target
speakers by RBM vectors. Then, the RBM vectors of all the segments are scored against the RBM
vectors of all the target speakers using cosine and PLDA scoring. We have found that the RBM vector
representation of speakers is successful in both these tasks as in speaker verification. The experimental
results show that the RBM vector outperforms the conventional i-vectors based systems using both the
cosine and PLDA scoring methods.

The rest of the paper is organized as follows: Section 2 explains the detailed procedure of the
proposed vector representation of speakers by using RBMs; Section 3 contains a brief description of the
speaker clustering system; Section 4 contains a detailed description of the fundamental stages of our
speaker tracking system; Section 5 describes the experimental setup, the database used and how the
experiments were carried out; the results obtained are discussed in Section 6; and finally, in Section 7,
some conclusions are drawn as the findings of this paper.

2. RBM Vector Representation

In this paper, we propose the use of a compact, vector based representation of speakers using
RBM adaptation for speaker tracking and speaker clustering tasks. Figure 1 shows a detailed block
diagram of the proposed RBM vector extraction. First, a global model—referred to as Universal RBM
(URBM)—is trained with a large amount of background data. The URBM is then adapted to the data of
every test speaker and thus an RBM is trained per test speaker. The visible to hidden weight matrices
of these adapted models are used to generate the desired vector representation for the corresponding
speaker. These vector representations of speakers are further used in the above-mentioned tasks using
cosine/PLDA scoring. The whole process of the vector representation of speakers has three main
steps, namely URBM training, RBM adaptation and RBM vector extraction using PCA whitening with
dimensionality reduction.

RBM Vector
Extraction

PCA 
Whitening

RBM
Adaptation

Feature
Extraction MVN

Given
Utterances

RBM
Vector

Feature
Extraction MVN URBM 

Training URBM
Background
Utterances

Figure 1. Block diagram showing different stages of the Resricted Botlzmann Machine (RBM)
vector extraction

2.1. URBM Training

To extract the desired RBM vector, the first step is to train a global or universal model with a
large amount of available background speakers’ utterances. This global model is referred to as URBM,
which is supposed to convey speaker-independent information. The URBM is trained as a single
model with the features extracted from all the background speakers’ data. For the real valued input
features, we have used Gaussian real-valued units for the visible layer of the RBM [37]. The training
is performed using the CD-1 algorithm [38,39] assuming that the inputs have zero mean and unit
variance. Thus, the features are Mean Variance Normalized (MVN) before the RBM training. Finally,
the universal model is trained with a large number of training samples generated from the feature
vectors of the background speakers’ utterances. This universal model is supposed to learn both speaker
and session variabilities from the large background data [22].
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2.2. RBM Adaptation

After the URBM training, we perform speaker adaptation for every test speaker. The adapted
RBM model is trained only with the data of the corresponding speaker, in order to capture
speaker-specific information. In this step, the RBM model of the speaker segment is initialized
with the parameters (weights and biases) of the URBM. In other words, the adaptation step drives the
URBM model in a speaker-specific direction. This kind of adaptation technique is successfully applied
in References [25,40–42]. The adaptation is also carried out by the CD-1 algorithm. As we have only
one weight matrix in an RBM, all the information learned by an RBM is in the weight matrix and it is
supposed to convey speaker-specific information of the corresponding speaker.

2.3. RBM Vector Extraction

An RBM model is assigned to each test speaker after the adaptation step. The visible to hidden
weight matrices along with their corresponding bias vectors of the adapted RBMs are concatenated
in order to generate a higher dimensional speaker vector. These are referred to as RBM supervectors.
After this, a PCA whitening with dimensionality reduction is applied to the RBM supervectors in order
to generate the lower dimensional RBM vectors. The PCA whitening transforms the original data to
the principal component space which de-correlates the data components. The PCA is trained with
the RBM supervectors extracted from the background speakers’ utterances and is applied to the RBM
supervectors of the test speakers. All the RBM supervectors are mean-normalized before subjecting to
PCA whitening and dimensionality reduction. The extracted RBM vectors are supposed to convey
enough speaker-specific information, which can discriminate different speakers.

Figure 2 shows a visualization of a pair of RBM vectors (top and bottom) extracted from different
utterances of two different speakers randomly selected from the test audios. From the Figure, it is clear
that the two RBM vectors extracted for Speaker 1 look similar but are different from those extracted
for Speaker 2. Similarly, the two RBM vectors extracted for Speaker 2 look similar but are different
from those extracted for Speaker 1. In our previous work [22], it has been shown that the RBM vector
extracted in this way is successful in learning speaker-specific information in a speaker verification
task. Thus, we make an effort to make use of the RBM vector in the tasks of speaker clustering and
speaker tracking.
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(a) Speaker 1

Figure 2. Cont.
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(b) Speaker 2

Figure 2. Examples of 400-dimensional RBM vectors. The figure shows two pairs of RBM vectors from
the test audios. Each pair belong to the same speaker. We rearrange the RBM vectors in the form
10× 40 for the convenience of visualization. The ordering of the RBM vector is the same for all.

3. Speaker Clustering

In order to evaluate the effect of RBM vectors in a speaker clustering task, we considered the
conventional bottom-up AHC clustering system with the options of single and average linkages.
We did not consider the model retraining approach because it is costly in terms of computations as
compared to the linkage approaches to clustering [28]. The system starts with an initial number of
clusters equal to the total number of speaker segments. Iteratively, the segments that are more likely to
be from the same speaker are clustered together until a stopping criterion has reached. The stopping
criterion can be thresholding the score in order to decide to merge clusters or it can be a desired (known)
number of clusters achieved. The clustering algorithm is based on computing a distance/similarity
matrix M(X) between all the speakers’ segments where X is the set of segments to be clustered. Hence,
the RBM vectors of all the segments are extracted, the matrix M(X) is computed by scoring all the
RBM vectors against all. Thus, for N RBM vectors, the matrix M(X) has dimensions N × N. In every
iteration, the segments with minimum/maximum distance/similarity scores are clustered together
and the matrix M(X) is updated. The corresponding rows and columns of the clustered segments
are removed from M(X) and a new row and column are added. The new row and column contain
the distance scores between the new and old clusters. The new scores are computed according to the
linkage algorithm used. For example, segments Sa and Sb are clustered in Sab. Then the scores between
new cluster (Sab) and old segment (Sn) are computed as follows:

(a) Average Linkage:

s(Sab, Sn) =
1
2
{s(Sa, Sn) + s(Sb, Sn)} (1)

(b) Single Linkage:
s(Sab, Sn) = max{s(Sa, Sn), s(Sb, Sn)} (2)

where s(Sab, Sn) is the score between new cluster Sab and old segment Sn while s(Sa, Sn) is the score
between old segments Sa and Sn.

In this way, the process is iterated until a stopping criterion is met. There are two methods to
control the iterations: (1) to fix a threshold and (2) to add an additional information to the system about
the desired (known) number of clusters. The system stops when this number is reached. In this work,
we did not let the system know any desired number of clusters and we have used the thresholding
method. We have tuned a threshold in order to see the performance of the system at different possible
working points. The system performance is measured with respect to a ground truth cluster label.
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4. Speaker Tracking

We extend our previous work in Reference [24] in order to investigate the effect of RBM vectors
on a speaker tracking task. We implemented a two stage speaker tracking system, that is, speaker
segmentation and speaker identification. Figure 3 shows the basic steps of speaker segmentation, RBM
vector extraction and identification. First of all, the audio is segmented according to the speaker change
points. The speaker change points are detected using ‘the sliding window and searching for speaker change’
approach. A fixed length window is slid over the audio with a very small shift and speaker change is
detected using some distance metric. We have used the Divergence Shape distance as a distance metric
in this paper. The distance is thresholded in order to decide if the neighboring windows are spoken
by the same speaker or whether there exists a speaker change. As a result of these speaker change
points, the audio is segmented. In the next stage, a speaker identification of the target speakers against
the segments is performed in order to know ‘to which target speaker the corresponding segment belongs?’
All the target speakers and segments are transformed into a vector based representation by means of
RBMs, that is, RBM vectors. These RBM vectors are scored using cosine and PLDA scoring methods.
In the following sections, the two stages of our speaker tracking system are discussed in detail.

Audio Speech	Activity
Detection

Segmentation

Feature
Extraction

Initial
Segmentation	

Speaker	Change
Detection

Final
Segmentation	

RBM	Vector
Extraction

Length
Normalization

PLDA
Training

PLDA
Scoring

Test	Segment	
or	

Target	Speaker

RBM	Vector

Cosine	
Scoring

Decision
Making

Time	
Stamps

Final
Hypothesis

Identification

PLDA

Figure 3. Architecture of Speaker Tracking using RBM vector Extraction.

4.1. Speaker Segmentation

As shown in Figure 3, first an energy-based Speech Activity Detection (SAD) is performed on
the audio. Then, the speech parts are segmented into small segments of d seconds with an overlap
of (d− ∆) seconds, where ∆ is the shift. This is referred to as initial segmentation in the segmentation
part of Figure 3. The segments generated in this step are reffered to as small segments. The shift ∆
defines the resolution of speaker change detection. Then, Mel-Frequency Cepstral Coefficients (MFCC)
features are extracted for every small segment. In order to detect speaker change points, the Divergence
Shape distance is computed between every adjacent small segments and is thresholded. We compute
the Divergence Shape distance as in References [34,36], using the following simplified expression:

D =
1
2

tr[(Ci − Cj)(C−1
j − C−1

i )] (3)

where tr is the trace function that sums the diagonal elements of a matrix, Ci is the covariance of the
features from small segment Si and Cj is the covariance of the features from small segment Sj. A speaker
change point is marked if the distance at that point is greater than the distances at the two neighboring
points (one before and one after) and a threshold at that point. For example, a speaker change point at
small segment Si occurs if:
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D(i, i + 1) > D(i, i + 2) (4)

and
D(i, i + 1) > D(i− 1, i) (5)

and
D(i, i + 1) > Thresholdi (6)

where D(i, i + 1), D(i, i + 2) and D(i− 1, i) are the Divergence Shape distances of small segment Si to
Si+1, Si to Si+2 and Si−1 to Si, respectively. Thresholdi is an adaptive threshold which is computed for
every small segment and is defined in [34] as:

Thresholdi =
α

N

N

∑
n=0

D(i− n− 1, i− n) (7)

where α is a scaling factor and needs to be tuned experimentally. We have evaluated the segmentation
with different values of α which we will discuss in Section 6. In Equation (7), N is the number of
previous distances used for predicting the threshold. Once we detect the speaker change points by
using this method, we segment the audio on these points. The segments generated will be used in
the next step, that is, speaker identification. It is worth noting that we did not perform any refining
algorithm for the speaker change points. Rather, we fixed the value of α so as to minimize the Miss
Detection error in order not to miss a speaker change. This is because a False Alarm error can possibly
be corrected in the speaker identification stage but a Miss Detection error cannot be corrected.

4.2. Speaker Identification

The second stage of our speaker tracking system performs a conventional speaker identification
test on the segments and target speakers as shown in Figure 3. The goal is to answer to which target
speaker, the segments belong? We propose the use of RBM vector representation for both the target
speakers and segments generated in the segmentation stage. The MFCC features are extracted both for
target speakers and segments. Then, RBM vectors are extracted and all the segments are tested against
target speakers using cosine and PLDA scoring. Assume that STm,Sn represents the cosine/PLDA
score for testing the target speaker Tm against the segment Sn. For a segment under test, first we
select a potential candidate among all the target speakers. The target speaker with the maximum
score is a potential candidate for the segment. Then, if the maximum score is greater than a threshold,
the identity of that target speaker is assigned to that segment. Generally, the identity of the target Tm is
assigned to the segment Sn according to:

IdSn = arg max
m

(STm,Sn) if max(STm,Sn) > λ (8)

where λ is a threshold to decide whether the segment under test does not belong to any of the target
speakers. If the score is less than λ, the segment is not assigned to any of the target speakers. This is
reflected as a Missed Speaker Time (MST) error for the target speaker which the segment actually
belongs to. There are no speakers that should be rejected by the system because we consider all the
speakers as possible target speakers. We have performed experiments with different values of λ in
order to analyze the effect of the proposed RBM vectors at all possible working points.

5. Experimental Setup and Database

5.1. Database

The experiments are performed on the AGORA database, which contains audio recordings of
34 TV shows from Catalan broadcast TV3 [43] (in total 68 audios of approximately 38 min each).
These audios contain segments from 871 adult Catalan and 157 adult Spanish speakers. For all the
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experiments in this work, we selected 38 audio files for testing and 30 audios are used as background
data. The background data were used to train the Universal Background Model (UBM) and Total
Variability (T) matrix for the baseline i-vector system. For the proposed system, the background
data were used to train the URBM and PCA. We manually extracted 2631 speaker segments from the
test audios, according to ground truth rich transcription. These segments were used in the speaker
clustering experiments. In the testing audios, 414 different speakers appear which were used as
target speakers for the tracking experiments. For an audio file, all the speakers are considered as
possible target speakers. A priori knowledge is required to enroll the target speakers in the system.
Thus, the target speakers are enrolled using i-vectors and RBM vector approaches for the baseline
and proposed systems, respectively. The target speakers are enrolled with 30 s of utterances. These
enrollment utterances of target speakers are manually selected from the corresponding audio file (in
which they appear) according to the ground truth rich transcription. It is worth noting that each target
speaker appears in at least one of the test segments.

5.2. Baseline and RBM Vector Setup

For all the experiments, 20 dimensional MFCC features were extracted, for both the baseline
and proposed systems, using a Hamming window of 25 ms with 10 ms shift. A 512 component
UBM was trained to extract i-vectors for the baseline system and the PLDA was trained with the
background i-vectors. A more recent and competitive features could have been used, for example
the BottleNeck Features (BNF). These features (either in the baseline or in the proposed approach)
would require a huge amount of labeled background data (for example phonetic labels). On the other
hand, MFCC features do not require labeled data for training our models. This is the strength of
our proposed RBM vectors, which were trained in a completely unsupervised manner. The UBM
training, i-vector extraction, i-vector testing and PLDA training were carried out using Alize, a free
open source toolkit [44].

For the proposed system, more than 3000 speaker segments were extracted from the background
audios according to the ground truth rich transcription. For each segment, the features of 4 neighboring
frames were concatenated in order to generate 80-dimensional feature inputs to the RBMs. With a shift
of one frame, we generated almost 10 million samples for the URBM training. All the RBMs used in
this paper consisted of 80 visible and 400 hidden units. The URBM was trained for 200 epochs with a
learning rate of 0.0005, weight decay of 0.0002 and a batch size of 100. All the adapted RBM models for
the segments and target speakers were trained with 200 epochs with a learning rate of 0.005, weight
decay of 0.000002 and a batch size of 64.

For the baseline i-vector system, the hyperparameters were set to the typical values that are
commonly used in speaker recognition tasks. For the proposed RBM vector system, the set of
hyperparameters, that is, the visible and hidden units in all the RBMs, the number of epochs and batch
size for the URBM, and learning rate for the adapted RBM models were adopted from our previous
work in Reference [22]. For the adapted RBM models, we used a higher value for the number of epochs
and a slightly lower value for batch size because the segments were very short as compared to our
previous work in Reference [22].

The PCA was trained with the background RBM supervectors and was applied to the background
RBM supervectors and test RBM supervectors, as discussed in Section 2.3. Finally, fixed dimensional
RBM vectors were extracted for the test speakers that were used in the speaker tracking and clustering
experiments. Different dimensions for the RBM vectors were evaluated in the experiments which is
discussed in Section 6.

5.3. Evaluation Metrics

The results of the speaker clustering system were evaluated in terms of Cluster Impurity (CI).
CI measures the quality of a cluster, to what extent a cluster contains segments from different speakers.
However, this metric has a trivial solution when there is only one segment per cluster. To deal with



Appl. Sci. 2019, 9, 2761 9 of 17

this, Speaker Impurity (SI) was measured at the same time. SI measures to what extent a speaker is
distributed among clusters. There is always a trade-off between these two metrics [45]. CI and SI were
plotted against each other in an Impurity Trade-off (IT) curve and an Equal Impurity (EI) point was
marked as a working point.

We evaluated the results for speaker segmentation in terms of False Alarm Rate (FAR) and
Miss Detection Rate (MDR), as discussed in Reference [46]. The overall speaker tracking system
was evaluated in terms of False Alarm (FA) and Missed Speaker Time (MST). In this case, FA is the
percentage of duration (in seconds) that is falsely accepted for a target speaker while MST is the
percentage of duration (in seconds) that is falsely rejected for a target speaker.

6. Results

6.1. Speaker Clustering

Different lengths for RBM vectors, as well as for i-vectors, were evaluated using cosine scoring
and the average linkage clustering algorithm. The results are shown in the second column of Table 1.
From the Table, it can be observed that if the dimension is increased, the performance is improved,
both in case of i-vectors and RBM vectors, in terms of Equal Impurity (EI). However, in the case of
i-vectors, the best choice is 800 dimension. In case of RBM vectors, the 2000 dimensional RBM vectors
perform better than the others. In this case, a relative improvement of 11% is achieved compared to
800 dimensional i-vectors. A further increase in the length of RBM vectors beyond 2000 degrades the
performance in terms of EI.

The third column of Table 1 compares the performance of the RBM vector with the baseline
i-vectors in the case of the single linkage algorithm for clustering using cosine scoring. From the table
it is seen that single linkage was a better choice for our experiments. In this case, a minimum EI of
37.14% is obtained with 2000 dimensional RBM vectors which has a relative improvement of 12% over
800 dimensional i-vectors.

Table 1. Comparison of speaker clustering results for the proposed RBM vectors with i-vectors,
in terms of Equal Impurity (EI) in %. The dimensions of vectors are given in parenthesis. Each column
shows EI in % for different scoring and linkage combinations.

Approach EI% (Cosine Average) EI% (Cosine Single) EI% (PLDA Single)

i-vector (400) 49.19 46.26 36.16
i-vector (800) 46.66 42.19 35.91

i-vector (2000) 46.79 42.83 35.89
RBM vector (400) 51.36 39.66 37.36
RBM vector (800) 47.20 40.02 32.36

RBM vector (2000) 41.53 37.14 31.68

Finally, we evaluated the proposed system using PLDA scoring as well. The PLDA was trained
using background RBM vectors for 15 iterations. The number of eigenvoices were set to 250, 450 and 500
for RBM vectors of dimensions 400, 800 and 2000, respectively. All the RBM vectors were subjected to
length normalization prior to PLDA training. As per the previous results, we performed this experiment
with the single linkage algorithm only. The results were compared with i-vectors in the fourth column
of Table 1. It was observed that 800 and 2000 dimensional RBM vectors have a better EI compared to
the respective similar dimensional i-vectors. In this case, the RBM vectors of dimension 2000 have a
minimum EI of 31.68% which results in a relative improvement of 11% over the 800 dimensional i-vectors.
However, in the case of 400 dimensions, the i-vectors outperform RBM vectors.

The Impurity Trade-off (IT) curves for the baseline, as well as the proposed system, are shown in
Figure 4. Figure 4a shows the evaluation of different dimensions of i-vectors and RBM vectors in the
average linkage clustering using cosine scoring. It can be seen that RBM vectors of length 2000 gives
a better performance than 800 dimensional i-vectors at all working points. On the other hand, RBM
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vectors of dimensions 400, 800, 2400 and 3000 perform worse than i-vectors. It is observed that 400 and
800 dimensional RBM vectors could not capture enough information about the speaker while 2400 and
3000 dimensional RBM vectors include unnecessary information which degrades the performance.
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Figure 4. Comparison of Impurity Trade-off (IT) curves for the proposed RBM vectors with i-vectors.
Different dimensions of RBM vectors are evaluated using different scoring and linkage algorithms for
clustering. The dimensions of i-vectors and RBM vectors are given in parenthesis.

In Figure 4b we show a comparison of 2000 dimensional RBM vectors with 800 dimensional
i-vectors using both cosine and PLDA scoring with the single linkage algorithm for clustering.
The choices of dimensions are based on the previous experiments as 2000 dimensional RBM vectors and
800 dimensional i-vectors give the best results with cosine scoring and average linkage. From Figure 4b,
it can be seen that the RBM vectors perform better at all working points as compared to i-vectors
using their respective cosine and PLDA scoring. However, at low Speaker Impurity regions, the RBM
vector with cosine scoring outperforms the baseline i-vector with PLDA scoring. Overall, the 2000
dimensional RBM vector has a consistent improved performance compared to i-vectors.

6.2. Speaker Tracking

The application of RBM vectors was further extended to a speaker tracking task. For speaker
change detection and segmentation, 20 MFCC features were extracted for all the small segments using
a Hamming window of 25 ms with 10 ms shift. We performed segmentation using different sizes of
small segments, that is, the d parameter discussed in Section 4.1 was equal to 2, 2.5 and 3 s. The value
of ∆ was set to 0.25 s. The speech parts smaller than d were not considered in these experiments and
were simply discarded. Figure 5 shows the graph of FAR against MDR for different values of d and α.
The results were computed, accepting a tolerance (collar) of ±0.25 s in the position of detected speaker
change points. We experimented with different values of d in order to see the behaviour at different
working points, that is, d = 2, 2.5 and 3 s. Then, we experimented with different values of α and the
results are plotted in Figure 5. From the Figure it is clear that the best choice for d is a 3 s window.

The MDR for this window is not very sensitive to alpha as compared to the other window sizes.
This is because in our experiments, the segments less than the selected window size were discarded.
Thus the segments have longer durations, which have strong boundaries with the neighbouring
segments as compared to a window size of 2 and 2.5 s. A strong boundary is not very likely to be
missed by the system. That is why, when we vary α, the MDR does not vary a lot and thus the MDR
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seems to be insensitive. On the other hand, if the window size is small, the segments have weak
boundaries with the neighbour segments and are relatively more likely to be missed by the system.

Our actual working point is marked as a black circle which is obtained for α = 2 (in Equation (7)).
We performed the final segmentation at this point which has less Miss Detection (MDR) as compared to
False Alarm (FAR). At this point, a FAR of 10% and MDR of 7.8% are achieved. There is a trade-off
between the two metrics (FAR and MDR). One can decrease one of the metrics at the cost of increasing
the other.

10 15 20 25 30 35 40
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)

Window size: 2.0 s

Window size: 2.5 s

Window size: 3.0 s

Figure 5. Speaker segmentation results in terms of False Alarm Rate (FAR) and Miss Detection Rate
(MDR) in %. Results are obtained using different Window sizes (d) and a constant shift i.e., ∆ = 0.25 s.
A collar of ±0.25 s is accepted around a speaker change point.

Table 2. Comparison of speaker tracking results for the proposed RBM vectors with 800 dimensional
i-vectors, in terms of EER in %. The lengths of RBM vectors and i-vectors are given in parenthesis.
Column 2 and 3 represents EER in % for cosine and PLDA Scoring respectively.

Approach EER% (Cosine) EER% (PLDA)

i-vector (800) 3.74 2.97
RBM vector (600) 4.33 3.57
RBM vector (800) 4.03 3.47

RBM vector (2000) 3.30 2.74

The segments generated in the speaker segmentation were then tested against the target speakers
for the tracking task. Table 2 shows the results of speaker tracking for different lengths of RBM
vector in terms of Equal Error Rate (EER). In this case EER was the coinciding point between FA and
MST. The second column of Table 2 shows the comparison of RBM vector with the baseline i-vectors
using cosine scoring. We fixed the length of i-vectors to 800 as a conclusion of the speaker clustering
experiments. It is observed that, as the length of the RBM vector is increased, the performance is
improved. The best EER of 3.30% was obtained using 2000 dimensional RBM vector, which gained
a relative improvement of 11.76% as compared to the baseline 800 dimensional i-vectors. Increasing
the dimensions of the RBM vectors does not affect the computational costs of training the models.
The dimensions of RBM vectors are only controlled by the number of components while applying PCA
to the RBM supervectors, as discussed in Section 2.3

The third column of Table 2 shows the comparison of the RBM vector with the baseline i-vectors
using the PLDA scoring method. For the RBM vector/PLDA framework, the PLDA is trained using
the background RBM vectors for 15 iterations. The number of eigenvoices are set to 350, 450 and
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500 for RBM vectors of lengths 600, 800 and 2000 respectively. All the RBM vectors are subjected to
length normalization prior to PLDA training. From the table, it is clear that the 2000 dimensional
RBM vector/PLDA system outperforms the 800 dimensional i-vector/PLDA system by a relative
improvement of 7.74%. In the case of PLDA post processing, increasing the dimensions of the RBM
vectors will increase the computational costs of PLDA training. This is because the PLDA model is
trained on higher dimensional background RBM vectors.

Figure 6 shows the comparison of Detection Error Trade-off (DET) curves for the baseline as
well as the proposed system. These graphs are obtained by tuning the λ parameter in Equation (8).
In Figure 6a we have evaluated different lengths of RBM vectors by comparing with i-vectors using
cosine scoring. It can be observed that RBM vector of lengths 800 and 2000 give a better performance
than the baseline i-vectors at low MST points only. An RBM vector of length 600 can be comparable
with baseline i-vectors in this region. On the other hand, at low FA points the baseline i-vectors
outperform RBM vectors of either length. However, at very few working points in low FA region,
the RBM vector of length 2400 can be comparable with the baseline i-vectors.
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Figure 6. Comparison of Detection Error Trade-off (DET) curves for the proposed RBM vectors with
800 dimensional i-vectors. Different lengths of RBM vectors are evaluated using cosine and PLDA
scoring. The lengths of RBM vectors and i-vectors are given in parenthesis.

In Figure 6b we have shown a comparison of 2000 dimensional RBM vector (which gives the best
results with the cosine scoring method) with baseline i-vectors using both cosine and PLDA scoring.
From the figure, a similar kind of behavior is observed for RBM vectors using PLDA scoring as well.
It can be seen that the 2000 dimensional RBM vector outperforms the baseline i-vectors in low MST
regions using both cosine and PLDA scoring. However, in the low FA regions, the i-vector/PLDA
framework still performs better which was also the case using the cosine scoring method.

The plots in Figure 6 are not very smooth and seem insensitive to λ. This is because the segments
are not necessarily of the same duration. As the error (FA and MST) depends on the duration of
segments, a false acceptance/rejection does not affect the error in a linear manner. Sometimes a certain
value of lambda will falsely accept/reject a long segment which will highly affect the error. While in
the case of a short segment a false acceptance/rejection will have a minimum reflection in the error.

We show the error variations of our experiments in Figure 7. The box plots in Figure 7 show the EER
distribution of 38 test shows for the proposed RBM vector and i-vector based speaker tracking systems.
Each box plot shows the minimum, lower quartile, mean, upper quartile, and maximum EER scores.
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(a) EER variation using cosine scoring (b) EER variation using PLDA scoring

Figure 7. EER variation comparison for the proposed RBM vectors with 800 dimensional i-vectors.
Different lengths of RBM vectors are evaluated.

Figure 7a,b depict the box plots for different lengths of RBM vectors and 800 dimensional i-vectors
using cosine and PLDA scoring, respectively. Figure 7a shows that RBM vectors reduce the EER
variations as compared to i-vectors. It is seen that when we increased the length of RBM vectors,
the EER variation was reduced further. The lowest EER variation is observed for 2000 dimensional
RBM vector. Similarly, Figure 7b shows the same behaviour in EER variation using PLDA scoring.
The EER variation was reduced in a similar manner for 800 and 2000 dimensional RBM vectors.
However the mean EER was lower for the 200 dimensional RBM vector. Overall, the respective mean
values of EER were lower for PLDA scoring as compared to cosine scoring.

7. Conclusions

In this paper, we have proposed the use of Restricted Boltzmann Machine (RBM) vectors for the
tasks of speaker tracking and speaker clustering in TV broadcast shows. RBM is applied for learning
a fixed dimensional vector representation of a speaker which is referred to as an RBM vector. First, a
Universal RBM model is trained with a large amount of available background data. Then an adapted
RBM model is trained per test speaker. The visible to hidden weight matrices along with the bias
vectors of these adapted models are concatenated to generate RBM supervectors. The RBM supervectors
are further subjected to a PCA whitening with dimensionality reduction to extract the desired RBM
vectors. These RBM vectors are used in the tasks of speaker clustering and speaker tracking. For speaker
clustering experiments, two linkage algorithms for an AHC approach are explored with RBM vectors
scored using cosine and PLDA. Using cosine scoring, the performance of the proposed system is better
for both the linkage algorithms as compared to i-vector based clustering. Overall, the single linkage
algorithm with 2000 dimensional RBM vectors is the best choice for our experiments, using both cosine
and PLDA scoring. For speaker tracking experiments, we performed speaker segmentation followed
by a speaker identification. We proposed the use of RBM vectors for the speaker identification stage.
In general, the proposed system is more effective in low MST regions. The experimental results have
shown that, in terms of EER, the proposed system outperforms the baseline i-vectors system using both
cosine and PLDA scoring methods. We conclude that the RBM vectors can be successfully used as a
speaker representation in speaker clustering and speaker tracking tasks.
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Abbreviations

The following abbreviations are used in this manuscript:

RBM Restricted Boltzmann Machines
EI Equal Impurity
PLDA Probabilistic Linear Discriminant Analysis
GMM Gaussian Mixture Models
HMM Hidden Markov Models
DNN Deep Neural Networks
DBN Deep Belief Networks
BNF Bottle Neck Features
AHC Agglomerative Hierarchical Clustering
PCA Principal Component Analysis
URBM Universal Restricted Boltzmann Machines
MVN Mean Variance Normalized
CD Contrastive Divergence
SAD Speech Activity Detection
MFCC Mel-Frequency Cepstral Coefficients
UBM Universal Background Model
TV Total Variability
CI Cluster Impurity
SI Speaker Impurity
IT Impurity Trade-off
FA False Alarm
MST Missed Speaker time
FAR False Alarm Rate
MDR Miss Detection Rate
DET Detection Error Trade-off

References

1. Lei, Y.; Scheffer, N.; Ferrer, L.; McLaren, M. A novel scheme for speaker recognition using a
phonetically-aware deep neural network. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 1695–1699.

2. Richardson, F.; Reynolds, D.; Dehak, N. Deep neural network approaches to speaker and language
recognition. IEEE Signal Process. Lett. 2015, 22, 1671–1675. [CrossRef]

3. Chen, K.; Salman, A. Learning speaker-specific characteristics with a deep neural architecture. IEEE Trans.
Neural Netw. 2011, 22, 1744–1756. [CrossRef] [PubMed]

4. Kenny, P.; Gupta, V.; Stafylakis, T.; Ouellet, P.; Alam, J. Deep neural networks for extracting baum-welch
statistics for speaker recognition. Proc. Odyssey, 2014, pp. 293–298. Available online: https://www.isca-
speech.org/archive/odyssey_2014/pdfs/28.pdf (accessed on 8 July 2019).

5. Liu, Y.; Qian, Y.; Chen, N.; Fu, T.; Zhang, Y.; Yu, K. Deep feature for text-dependent speaker verification.
Speech Commun. 2015, 73, 1–13. [CrossRef]

http://dx.doi.org/10.1109/LSP.2015.2420092
http://dx.doi.org/10.1109/TNN.2011.2167240
http://www.ncbi.nlm.nih.gov/pubmed/21954206
https://www.isca-speech.org/archive/odyssey_2014/pdfs/28.pdf
https://www.isca-speech.org/archive/odyssey_2014/pdfs/28.pdf
http://dx.doi.org/10.1016/j.specom.2015.07.003


Appl. Sci. 2019, 9, 2761 15 of 17

6. Deng, L.; Yu, D. Deep learning: Methods and applications. Found. Trends Signal Process. 2014, 7, 197–387.
[CrossRef]

7. Yamada, T.; Wang, L.; Kai, A. Improvement of distant-talking speaker identification using bottleneck features
of DNN. Interspeech, 2013, 3661–3664. Available online: https://www.isca-speech.org/archive/archive_
papers/interspeech_2013/i13_3661.pdf (accessed on 8 July 2019).

8. Lee, H.; Pham, P.; Largman, Y.; Ng, A.Y. Unsupervised feature learning for audio classification using
convolutional deep belief networks. In Advances in Neural Information Processing Systems; Curran Associates,
Inc., 2009; pp. 1096–1104. Available online: http://papers.nips.cc/paper/3674-unsupervised-feature-
learning-for-audio-classification-using-convolutional-deep-belief-networks.pdf (accessed on 8 July 2019).

9. Jorrín, J.; García, P.; Buera, L. DNN Bottleneck Features for Speaker Clustering. Proc. Interspeech 2017,
1024–1028. [CrossRef]

10. Jati, A.; Georgiou, P. Speaker2Vec: Unsupervised Learning and Adaptation of a Speaker Manifold using
Deep Neural Networks with an Evaluation on Speaker Segmentation. Proc. Interspeech 2017, 3567–3571.
[CrossRef]

11. Anna, S.; Lukáš, B.; Jan, C. Alternative Approaches to Neural Network Based Speaker Verification.
Proc. Interspeech 2017, 1572–1575. [CrossRef]

12. Variani, E.; Lei, X.; McDermott, E.; Moreno, I.L.; Gonzalez-Dominguez, J. Deep neural networks for small
footprint text-dependent speaker verification. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2014; pp. 4052–4056. Available online: https://ieeexplore-
ieee-org.recursos.biblioteca.upc.edu/stamp/stamp.jsp?tp=&arnumber=6854363 (accessed on 8 July 2019)

13. Isik, Y.Z.; Erdogan, H.; Sarikaya, R. S-vector: A discriminative representation derived from i-vector for
speaker verification. In Proceedings of the IEEE 23rd European Signal Processing Conference (EUSIPCO),
Nice, France, 31 August–4 September 2015; pp. 2097–2101.

14. Bhattacharya, G.; Alam, J.; Kenny, P. Deep Speaker Embeddings for Short-Duration Speaker Verification.
Proc. Interspeech 2017, 1517–1521. [CrossRef]

15. Gong, Y. Speech recognition in noisy environments: A survey. Speech Commun. 1995, 16, 261–291. [CrossRef]
16. Siniscalchi, S.M.; Salerno, V.M. Adaptation to new microphones using artificial neural networks with

trainable activation functions. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 1959–1965. [CrossRef]
17. Huang, G.; Huang, G.B.; Song, S.; You, K. Trends in extreme learning machines: A review. Neural Netw. 2015,

61, 32–48. [CrossRef] [PubMed]
18. Khoo, S.; Man, Z.; Cao, Z. Automatic han chinese folk song classification using extreme learning machines. In

Australasian Joint Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2012; pp. 49–60.
19. Salerno, V.; Rabbeni, G. An extreme learning machine approach to effective energy disaggregation. Electronics

2018, 7, 235. [CrossRef]
20. Senoussaoui, M.; Dehak, N.; Kenny, P.; Dehak, R.; Dumouchel, P. First attempt of boltzmann machines

for speaker verification. In Proceedings of the Odyssey 2012—The Speaker and Language Recognition
Workshop, 2012. Available online: https://www.isca-speech.org/archive/odyssey_2012/papers/od12_117.
pdf (accessed on 8 July 2019)

21. Ghahabi, O.; Hernando, J. Restricted Boltzmann machines for vector representation of speech in speaker
recognition. Comput. Speech Lang. 2018, 47, 16–29. [CrossRef]

22. Safari, P.; Ghahabi, O.; Hernando, J. From features to speaker vectors by means of restricted Boltzmann
machine adaptation. In Proceedings of the ODYSSEY 2016—The Speaker and Language Recognition
Workshop, 2016; pp. 366–371. Available online: https://www.isca-speech.org/archive/Odyssey_2016/
pdfs/15.pdf (accessed on 8 July 2019).

23. Ghahabi, O.; Hernando, J. Restricted Boltzmann machine supervectors for speaker recognition.
In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2015; pp. 4804–4808. Available online: https://ieeexplore-ieee-org.recursos.biblioteca.upc.edu/stamp/
stamp.jsp?tp=&arnumber=7178883 (accessed on 8 July 2019).

24. Khan, U.; Safari, P.; Hernando, J. Restricted Boltzmann Machine Vectors for Speaker Clustering. In Proceedings
of the IberSPEECH 2018, Barcelona, Spain, 21–23 November 2018; pp. 10–14, doi:10.21437/IberSPEECH.2018-3.
[CrossRef]

http://dx.doi.org/10.1561/2000000039
https://www.isca-speech.org/archive/archive_papers/interspeech_2013/i13_3661.pdf
https://www.isca-speech.org/archive/archive_papers/interspeech_2013/i13_3661.pdf
http://papers.nips.cc/paper/3674-unsupervised-feature-learning-for-audio-classification-using-convolutional-deep-belief-networks.pdf
http://papers.nips.cc/paper/3674-unsupervised-feature-learning-for-audio-classification-using-convolutional-deep-belief-networks.pdf
http://dx.doi.org/10.21437/Interspeech.2017-144
http://dx.doi.org/10.21437/Interspeech.2017-1650
http://dx.doi.org/10.21437/Interspeech.2017-1062
https://ieeexplore-ieee-org.recursos.biblioteca.upc.edu/stamp/stamp.jsp?tp=&arnumber=6854363
https://ieeexplore-ieee-org.recursos.biblioteca.upc.edu/stamp/stamp.jsp?tp=&arnumber=6854363
http://dx.doi.org/10.21437/Interspeech.2017-1575
http://dx.doi.org/10.1016/0167-6393(94)00059-J
http://dx.doi.org/10.1109/TNNLS.2016.2550532
http://dx.doi.org/10.1016/j.neunet.2014.10.001
http://www.ncbi.nlm.nih.gov/pubmed/25462632
http://dx.doi.org/10.3390/electronics7100235
https://www.isca-speech.org/archive/odyssey_2012/papers/od12_117.pdf
https://www.isca-speech.org/archive/odyssey_2012/papers/od12_117.pdf
http://dx.doi.org/10.1016/j.csl.2017.06.007
https://www.isca-speech.org/archive/Odyssey_2016/pdfs/15.pdf
https://www.isca-speech.org/archive/Odyssey_2016/pdfs/15.pdf
https://ieeexplore-ieee-org.recursos.biblioteca.upc.edu/stamp/stamp.jsp?tp=&arnumber=7178883
https://ieeexplore-ieee-org.recursos.biblioteca.upc.edu/stamp/stamp.jsp?tp=&arnumber=7178883
https://doi.org/10.21437/IberSPEECH.2018-3
http://dx.doi.org/10.21437/IberSPEECH.2018-3


Appl. Sci. 2019, 9, 2761 16 of 17

25. Ghahabi, O.; Hernando, J. Deep Learning Backend for Single and Multisession i-Vector Speaker Recognition.
IEEE/ACM Trans. Audio Speech Lang. Process. 2017, 25, 807–817. [CrossRef]

26. Sayoud, H.; Ouamour, S. Speaker clustering of stereo audio documents based on sequential gathering
process. J. Inf. Hiding Multimedia Signal Process. 2010, 4, 344–360.

27. Siegler, M.A.; Jain, U.; Raj, B.; Stern, R.M. Automatic segmentation, classification and clustering of broadcast
news audio. In Proceedings of the DARPA Speech Recognition Workshop, 1997; pp. 97–99. Available
online: https://pdfs.semanticscholar.org/219c/382f29b734d0be0bbf0426aab825b328b3c1.pdf (accessed on 8
July 2019).

28. Ghaemmaghami, H.; Dean, D.; Sridharan, S.; van Leeuwen, D.A. A study of speaker clustering for speaker
attribution in large telephone conversation datasets. Comput. Speech Lang. 2016, 40, 23–45. [CrossRef]

29. Tranter, S.E.; Reynolds, D.A. An overview of automatic speaker diarization systems. IEEE Trans. Audio
Speech Lang. Process. 2006, 14, 1557–1565. [CrossRef]

30. Luque, J. Speaker Diarization and Tracking in Multiple-Sensor Environments. Ph.D. Thesis, Department of
Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, Spain, 2012.

31. Bonastre, J.F.; Delacourt, P.; Fredouille, C.; Merlin, T.; Wellekens, C. A speaker tracking system based on
speaker turn detection for NIST evaluation. In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Istanbul, Turkey, 5–9 June 2000; Volume 2, pp. II1177–II1180.

32. Gish, H.; Siu, M.H.; Rohlicek, R. Segregation of speakers for speech recognition and speaker identification.
In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Toronto, ON, Canada, 14–17 May 1991; pp. 873–876.

33. Gish, H.; Schmidt, M. Text-independent speaker identification. IEEE Signal Process. Mag. 1994, 11, 18–32.
[CrossRef]

34. Lu, L.; Zhang, H.J. Speaker change detection and tracking in real-time news broadcasting analysis.
In Proceedings of the Tenth ACM International Conference on Multimedia, Miami, FL, USA,
4–6 January 2002; pp. 602–610.

35. Lu, L.; Jiang, H.; Zhang, H. A robust audio classification and segmentation method. In Proceedings of the
Ninth ACM International Conference on Multimedia, Ottawa, ON, Canada, 30 September–5 October 2001;
pp. 203–211.

36. Campbell, J.P. Speaker recognition: A tutorial. Proc. IEEE 1997, 85, 1437–1462. [CrossRef]
37. Hinton, G.E. A practical guide to training restricted Boltzmann machines. In Neural Networks: Tricks of the

Trade; Springer: Berlin/Heidelberg, Germnay, 2012; pp. 599–619.
38. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006,

313, 504–507. [CrossRef]
39. Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006,

18, 1527–1554. [CrossRef] [PubMed]
40. Safari, P.; Ghahabi, O.; Hernando, J. Feature classification by means of deep belief networks for speaker

recognition. In Proceedings of the 23rd European Signal Processing Conference (EUSIPCO), Aalborg,
Denmark, 23–27 August 2015; pp. 2117–2121.

41. Ghahabi, O.; Hernando, J. Deep belief networks for i-vector based speaker recognition. In Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Adelaide, Australia,
19–22 April 2014; pp. 1700–1704.

42. Ghahabi, O.; Hernando, J. I-vector modeling with deep belief networks for multi-session speaker recognition.
Network 2014, 20, 13.

43. Schulz, H.; Fonollosa, J.A.R. A Catalan broadcast conversational speech database. In Proceedings of the
Joint SIG-IL/Microsoft Workshop on Speech and Language Technologies for Iberian Languages, Sao Carlos,
Brazil, 7–11 September 2009; pp. 27–30.

44. Larcher, A.; Bonastre, J.F.; Fauve, B.G.B.; Lee, K.A.; Lévy, C.; Li, H.; Mason, J.S.D.; Parfait, J.Y. ALIZE
3.0-open source toolkit for state-of-the-art speaker recognition. Interspeech 2013, 2768–2772. Available
online: https://www.isca-speech.org/archive/archive_papers/interspeech_2013/i13_2768.pdf (accessed on
8 July 2019).

45. Van Leeuwen, D.A. Speaker inking in large data sets. In Proceedings of the Speaker and Language Recognition
Odyssey; 2010; pp. 202–208, Available online: https://www.isca-speech.org/archive_open/archive_papers/
odyssey_2010/papers/od10_035.pdf (accessed on 8 July 2019).

http://dx.doi.org/10.1109/TASLP.2017.2661705
https://pdfs.semanticscholar.org/219c/382f29b734d0be0bbf0426aab825b328b3c1.pdf
http://dx.doi.org/10.1016/j.csl.2016.03.005
http://dx.doi.org/10.1109/TASL.2006.878256
http://dx.doi.org/10.1109/79.317924
http://dx.doi.org/10.1109/5.628714
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513
https://www.isca-speech.org/archive/archive_papers/interspeech_2013/i13_2768.pdf
https://www.isca-speech.org/archive_open/archive_papers/odyssey_2010/papers/od10_035.pdf
https://www.isca-speech.org/archive_open/archive_papers/odyssey_2010/papers/od10_035.pdf


Appl. Sci. 2019, 9, 2761 17 of 17

46. Kotti, M.; Moschou, V.; Kotropoulos, C. Speaker segmentation and clustering. Signal Process. 2008,
88, 1091–1124. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.sigpro.2007.11.017
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	RBM Vector Representation
	URBM Training
	RBM Adaptation
	RBM Vector Extraction

	Speaker Clustering
	Speaker Tracking
	Speaker Segmentation
	Speaker Identification

	Experimental Setup and Database
	Database
	Baseline and RBM Vector Setup
	Evaluation Metrics

	Results
	Speaker Clustering
	Speaker Tracking

	Conclusions
	References

