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Abstract A comprehensive study of the response of the ionosphere‐plasmasphere system at
mid‐latitudes to weak (Dstmin > −50 nT) magnetic storms is presented. For the first time, it is shown that
weak magnetic disturbances can lead to significant modulation of ionosphere‐plasmasphere H+ ion
fluxes. It is found that this modulation is caused by the enhancements/reductions of the topside O+ ion
density, which is induced by F2‐layer peak height rise and fall during the storms. The F2‐layer motion is
caused by thermospheric wind changes and by a penetration electric field. Both drivers are closely related to
the changes in the Bz component of interplanetary magnetic field. The most prominent manifestation of the
H+ ion flux modulation is strong changes in H+ ion fraction in the topside ionosphere. This study also
indicates that the NRLMSISE‐00 model provides the correct relative changes of neutral H density during
weak magnetic storms and also that there is a compelling need to include geomagnetic activity indices, in
addition to solar activity (F10.7), as input parameters to empirical topside ionosphere models.

1. Introduction

Although weak geomagnetic storms (Dstmin > −50 nT) occur much more frequently than strong ones
(Loewe & Prölss, 1997), there are few studies devoted to their effects on the near‐Earth plasma environment
because their effects have traditionally been considered minor. The few studies of weak storm related effects
at mid‐latitudes primarily investigate the behavior of the key parameters hmF2, NmF2, and TEC (Buresova
et al., 2014; Chen et al., 2014; Fedrizzi et al., 2008; Field et al., 1998; Goncharenko et al., 2006; Hajkowicz,
1999). They typically consider the interaction of the ionosphere with the thermosphere as the main cause
of the observed effects.

The interaction of the ionosphere with the plasmasphere is very important in determining the state and
behavior of both regions at mid‐latitudes (e.g., Fok et al., 2005; Singh et al., 2011). Consequently, numerous
studies have examined the effects of strong storms on the depletion of the plasmasphere and its refilling by
plasma from the ionosphere (e.g., Chi et al., 2000; Foster et al., 2014; Reinisch et al., 2004). Others have stu-
died the effects on the ionospheric electron temperature resulting from enhanced heat flows from ring cur-
rent heating in the plasmasphere (Fok et al., 2005; Prölss, 2006).

In contrast, there has not been much research on weak storm impacts on the ionosphere‐plasmasphere
interaction at mid‐latitudes. The statistical study of Förster and Jakowski (2000) revealed that weak mag-
netic storms in winter can cause a detectable (~20%) decrease of the night‐time total electron content
(TEC) at mid‐latitudes, which they attributed to plasmasphere depletion during storms. Satellite observa-
tions discussed by Kotova et al. (2008) and Verigin et al. (2011) showed that moderate storms can lead to par-
tial depletion of the plasmasphere. Kotov et al. (2018) studied the effects of the very weak storm of 24
December 2017 at Kharkiv (L = 2.1). They found that a significant reduction of the topside H+ ion
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density, TEC, and NmF2 at European mid‐latitudes on the following night was caused by a partial depletion
of the plasmasphere. Presumably, the root cause of such effects is the same as for strong storms. Several case
studies report the changes in plasma temperature and O+ and/or H+ ion densities/fractions in the topside
ionosphere during minor storms caused by high‐speed solar wind streams (HSS). Heelis and Sojka (2011)
and Hajra et al. (2017) suggested ionosphere expansion caused by HSS related heating of the thermosphere
and ionosphere to be the main driver of the observed variations. The authors did not consider the possible
role of changes in the ionosphere‐plasmasphere interaction. In analyzing ten equinoxes during the minima
of solar cycles 23/24, Kotov et al. (2015) found notable increases of the night‐time upper transition height HT

(O+/H+) that coincided with the occurrence of weak magnetic disturbances. They also noted a strong posi-
tive correlation between HT and hmF2. Such a correlation may be the result of the general expansion of the
ionosphere caused by storm‐time heating. On the other hand, because the topside ionosphere is the transi-
tion region between the ionosphere and plasmasphere (Banks et al., 1976), the effect may be a consequence
of the changes in the ionosphere‐plasmasphere interaction. This issue was not examined in the work of
Kotov et al. (2015).

This study considers two periods that cover both the magnetically quiet and disturbed conditions and
demonstrates that even weak magnetic storms are able to modulate the ionosphere‐plasmasphere interac-
tion, which may lead to important effects at mid‐latitudes in the absence of plasmasphere depletion or sig-
nificant heating of the thermosphere or ionosphere. We provide this confirmation by simulations with the
field line interhemispheric plasma (FLIP) physical model that are constrained by selected Kharkiv incoher-
ent scatter (IS) radar (Ukraine) data.

2. Research Tools
2.1. The Kharkiv IS Radar and Ionosonde

The Kharkiv IS radar (49.6°N, 36.3°E, L ≈ 2.1, solar apparent time LT ≈ UT + 2.4) uses a large zenith‐
directed 100‐m diameter parabolic antenna and operates at 158‐MHz carrier frequency. In the topside mode,
the radar is capable of observing light ion (H+ and He+) fractions in addition to ion/electron temperatures
and electron density. The observational data presented in this study were obtained with 20‐min temporal
resolution and with ~100‐km altitude resolution. Such altitude resolution is acceptable for investigating
the topside ionosphere (Kotov et al., 2015, Appendix). Data were obtained starting from an altitude of 200
km. To calibrate the electron density height profiles, foF2 data from ionosonde located at the same observa-
tory are used. The detailed descriptions on the radar mode and data analysis techniques are provided in the
works of Kotov et al. (2015) and Bogomaz et al. (2017).

2.2. Digisonde at Grahamstown

In this study, we used the diurnal variations of hmF2 deduced from a digisonde ionograms at Grahamstown
(33°S, 26°E), which is the station closest to Kharkiv's conjugate point. The digisonde data are taken at Global
ionospheric radio observatory (GIRO; Reinisch & Galkin, 2011) portal (http://spase.info/SMWG/
Observatory/GIRO). Before the inversion (Huang & Reinisch, 1996), the ionogram traces were checked
manually to provide maximal accuracy of the hmF2 estimation.

2.3. FLIP Model

The FLIP model is a one‐dimensional physical model of the coupled ionosphere and plasmasphere
(Richards, 2001; Richards et al., 2000, 2010). A number of previous simulations with the FLIP model and
the Kharkiv IS radar data revealed excellent model agreement with variations of the key ionospheric para-
meters over Kharkiv for all seasons at low solar activity (Kotov et al., 2015, 2016, 2018). In this study, we used
a distinctive feature of the model—its ability to follow the measured F2‐layer peak height (or horizontal
wind velocity) and topside electron temperature Te.

2.4. CTIPe Model

The Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) model is a global, three‐
dimensional coupled thermosphere‐ionosphere‐plasmasphere physics‐based model (Codrescu et al., 2012;
Fuller‐Rowell et al., 1996). Among others, CTIPe simulate the time‐dependent global structure of the wind
vector. In this study, we used meridional component of horizontal wind provided by CTIPe version 3.2
hosted at the Community Coordinated Modeling Center (Shim et al., 2018).
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2.5. TBT‐15 Model

The TBT‐15 model is an updated empirical model of the topside ion composition implemented in
International Reference Ionosphere model‐2016 (Bilitza et al., 2017; Truhlik et al., 2015). TBT‐15 is based
on the Atmosphere Explorer C&E, Intercosmos‐24, and C/NOFS satellite data. The model input is index
of solar activity F10.7, and it outputs H+, O+, He+, and N+ ion fractions. In this study, we explain possible
reasons for underestimation of the H+ fraction by TBT‐15 at mid‐latitudes under magnetically
quiet conditions.

3. Results and Discussions

For this study, we present two periods (23–25 September 2016 and 28–30 October 2004) during which there
were three or more days of very quiet magnetic conditions followed by a weak magnetic disturbance and for
which there were IS radar observational data for at least 24 hr before and after the beginning of the distur-
bance. The main solar wind parameters and indices of magnetic activity are shown in Figure 1. The solar
activity was stable during these two periods with daily F10.7 ~ 85–86 and 127–134, respectively. Unlike the
cases of HSS studied by Heelis and Sojka (2011) and Hajra et al. (2017), the solar wind velocity was not high
during the selected observation periods but there were some enhancements of the solar wind density. The
AE index and Bz component of interplanetary magnetic field (IMF) were well correlated during both events:
a southward turning of Bz precedes each of the enhancements in AE, and the northward turning of Bz pre-
cedes the decay of AE.

Comparison of the variations in the parameters of F2‐layer peak and the topside ionosphere for both events
(see Figures 2 and 3) during the disturbed periods with ones during the preceding 24 hr magnetically quiet
periods shows the following. The storms did not affect the topside plasma temperatures significantly: max-
imal deviations did not exceed ~10% for Ti and ~20% for Te. Changes of hmF2 were less than 15% and inNmF2
less than 45%. It is notable that the night‐time vertical TEC values were almost unchanged (within ~2–3% for
September 2016 and ~10% for October 2004); there was an increase on the second night of October 2004 per-
iod, most likely because of the increased NmF2. This implies that there were no significant depletions of the
plasmasphere during the storms. The same conclusion follows for September 2016 from the measurements
of the parameter which is more sensitive to the fullness/emptiness of the plasmasphere than the TEC—the
mean electron density inside the altitude region 790–1,430 km computed from global dual‐frequency GPS
measurements in the daily‐basis tomographic runs of UPC‐IonSAT (Hernández‐Pajares et al., 2017;
Hernández‐Pajares & Sanz, 1999). The density (not shown in the figures) obtained for the latitude of 46°N
and inside the longitudinal region of 30–42°E has very close values (differences do not exceed ~7%) for all
the three evenings and midnights of the considered September 2016 period. In contrast to the small changes
in TEC, there was a prominent increase of the topside O+ ion density (Figure 2) by factors of ~2–3.5 and a
decrease of the H+ ion fraction (Figure 4) by factors of ~1.8–2.5 during the nights following the beginning
of the storms.

To understand the causes of such notable changes, we made two simulations with the FLIP model con-
strained by key observations. Both simulations began 5 days before the period of interest to allow the plasma-
sphere to reach equilibrium. The model was constrained to follow the measured topside Te (Figure 3) in both
simulations (Richards et al., 2000). The actual F10.7 and 3‐hr Kp indices were used in the NRLMSISE‐00
model of neutral composition.

In the first simulation, the model was constrained to follow the observed hmF2 variations (Figure 2) to avoid
uncertainties from empirical windmodels. This calculation produced equivalent horizontal winds (Figure 4)
that were then used in the second simulation.

Because the conjugate ionosphere also influences the density and temperature of the plasmasphere, the
same procedure was applied to the southern hemisphere. The FLIP model followed the diurnal variations
of hmF2 from a digisonde observation at Grahamstown (33°S, 26°E) whose location is close enough to the
true conjugate point (38°S, 49°E).

Figure 2 shows the good agreement between the observed and simulated NmF2 for 23–25 September 2016,
which supports the reliability of the NRLMSISE‐00 O and N2 densities for this period. There is some
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underestimation of NmF2 by the FLIP model in October 2004 (up to ~30% during the quiet day and up to
~50% during the disturbed day) that likely implies that the actual O/N2 ratio is higher than that provided
by NRLMSISE‐00. Additional simulations (not shown) indicate that a ~50 K reduction of Tn in
NRLMSISE‐00 improves the FLIP NmF2 significantly. The required decrease of Tn leads to a comparable
decrease of the model Ti, which is within the error of the Ti measurements shown in Figure 3. It is important
that the simulation shows that the changes in the topside ion densities caused by the 50 K reduction of Tn are
negligible (~5%). Thus, the results in the topside and our conclusions will not be affected by this degree of
Tn uncertainty.

For both September 2016 and October 2004, the FLIP model reproduces the diurnal variations of the top-
side O+ and H+ densities, and H+ ion fraction very well when the H density in NRLMSISE‐00 model was
doubled (Figure 2). A multiplier of 2 was previously found to be needed for the equinoxes under low
solar activity of 2006–2010 (Kotov et al., 2015) and of September 2016 (Kotov et al., 2018). Here we see
that the same multiplier is adequate for October 2004 even though the solar activity was medium rather
than low. The important point is that the H+ density is reproduced well during both the quiet and dis-
turbed periods of September 2016 and October 2004. This implies that NRLMSISE‐00 model provided
the correct storm‐time relative changes of H density despite the actual absolute values being a factor of
2 higher during these periods.

In search of the causes of the strong H+ fraction variability, it is helpful to consider chemical equilibrium
where the H+ density would be proportional to [O+][H]/[O]. Our calculations (the results are plotted in
Figure 2) show that the H+ density obtained in this way differs significantly from the observations and
simulation with FLIP—both quantitatively and qualitatively. For example, the chemical equilibrium H
+ ion density at each UT midnight of the 23–25 September 2016 period is not only much less than the
actual H+ ion density, but its changes are relatively small from night to night (within ~20%) when the
actual change of H+ density by the last night is a factor of 1.7 decrease. The reason of such stability is
that despite the significant decrease in the [H]/[O] ratio from the first to the last night (by a factor of
3.8), this decrease is counterbalanced by a factor of 3.6 increase in [O+]. A similar pattern is seen for
the October 2004 period.

It is reasonable to attribute the difference between the observed and chemical equilibrium H+ ion density in
the topside ionosphere to the downward H+ flux from the plasmasphere at night, which is a well‐known
phenomenon under these equinox conditions. Figure 4 confirms that the FLIP model H+ flux at 1,000 km
is downward at night and supplying additional H+ ions to the topside ionosphere and increasing the H+ den-
sity (Figure 2). The opposite case is seen in the morning, just after sunrise H+ flux changes its direction to
upward and the large number of chemically produced H+ ions are taken out of the topside ionosphere
and transported to the plasmasphere.

Substantial changes (enhancements or reductions) of the simulated H+ flux are seen during the evenings of
24–25 September 2016 and 29 October 2004 (Figure 4) in comparison with the flux at the corresponding
times during the magnetically quiet periods. This implies that the H+ flux was modulated by the storms.
It is seen (Figure 4) that the sharp changes (increase or decrease) of the observed H+ ion fraction are coin-
cident with the flux changes, that is, short‐time H+ ion fraction variations are apparently the signature of the
modulation of ionosphere‐plasmasphere H+ flux.

The question becomes: what storm‐related mechanism causes such significant modulation of the flux? The
only plasma parameter that changes as much as the H+ fraction is the topside O+ density. It is seen that O+

density and H+ fraction changes are opposite and coincident in time (Figures 2 and 4). It is reasonable to
hypothesize that the enhancement/reduction of O+ density in the topside ionosphere reduces/enhances
downward H+ ion flux because the increasing/decreasing of the plasma pressure at the base of the
plasmaspheric reservoir.

Then the question is, why are the topside O+ density changes so strong during such weak storms? Thermal
expansion/contraction of the ionosphere does not seem to be the explanation because there are no signifi-
cant changes of Te from evening to evening and Ti changes are too small to lead to significant changes of
plasma scale height and to related notable changes of O+ density in the topside ionosphere. Figure 2

10.1029/2019JA027076Journal of Geophysical Research: Space Physics

KOTOV ET AL. 9668



Figure 1. Variations of solar wind velocity (VSW) and proton density (NSW), the Bz component of interplanetary magnetic field, and the AE and SYM/H indices
during 21–25 September 2016 (top panel) and 26–30 October 2004 (bottom panel). The Kharkiv IS radar measurement periods are indicated by the two shaded
areas with two types of stripes. The first 24 hr of measurement (green shading with stripes ‘/’) corresponds to magnetically quiet conditions. The rest of measure-
ment (pink shading with stripes ‘\’) corresponds to weakly disturbed conditions.
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shows that the O+ density increases and decreases accompany the rise and fall of hmF2. Both rise and fall
may be caused by changes of plasma transport due to changes in thermospheric winds or electric fields.
Rises may also be caused by increases in neutral density by storm‐induced heating of the thermosphere.
To understand the contributions of changes of neutral density and plasma transport, we conducted a
second simulation with the FLIP model.

In the second simulation, the FLIP model used the local time variations of the equivalent neutral winds
in northern and southern hemispheres that were deduced from the measured hmF2 variations from
the first 24 hr of observations, which had low magnetic activity. With the same quiet‐time
diurnal equivalent wind variation every day, any day‐to‐day changes in the topside ionosphere must
be caused by storm effects on the neutral composition only. The results of this simulation are shown
in Figures 2–4 by the thin blue line, and they clearly support the hypothesis on the role of O+

Figure 2. Observed (open circles) and FLIP model (lines) variations of F2‐layer peak height (hmF2), peak electron density (NmF2), and the topside O+ and H+ ion
densities during the quiet (first 24 hr) and enhanced (rest of the time) magnetic activity for 23–25 September 2016 (left panels) and 28–30 October 2004 (right
panels). The thick red line denotes the FLIP simulation when the IS hmF2 is used as input in the northern hemisphere and the digisonde hmF2 is used as input in the
southern hemisphere. The thin blue line shows the FLIP simulation when the quiet first day equivalent winds deduced from the measured hmF2 in both hemi-
spheres are used as input for all days. Black dots show the calculations of the chemical equilibrium H+ ion density.
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Figure 3. Diurnal variation of the topside Ti and Te, plasmaspheric equatorial density Neq, O
+/H+ transition height, and TEC at 35°E provided by UPC global

Ionospheric maps (Hernández‐Pajares et al., 2017) for 23–25 September 2016 (left panels) and 28–30 October 2004 (right panels). Open circles show the
observational results obtained with Kharkiv IS radar. The thick red line denotes the FLIP simulation when the IS hmF2 is used as input in the northern hemisphere
and the digisonde hmF2 is used as input in the southern hemisphere. The thin blue line shows the FLIP simulation when the quiet first day equivalent winds
deduced from the measured hmF2 in both hemispheres are used as input for all days. The dashed red line shows Tn from the NRLMSISE‐00 model. Green symbols
denote the Neq values based on the values obtained from whistler observations with the AWDA system (Lichtenberger et al., 2010) at Tihany (46.9°N, 17.9°E) at
00:00:06 UT (circle) and at Grahamstown (33.3°S, 26.5°E) at 02:38:27 UT (square) of September 23, 2016. Because the Neq at Tihany and Grahamstown were
obtained for L = 2.4 flux tubes, they were corrected for the Kharkiv's flux tube (L = 2.1) using Neq~L

−3.07 law (Ozhogin et al., 2012). The corrected Neq is plotted
with UT, which corresponds at Kharkiv to the same magnetic local times as for the whistler observatories.
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Figure 4. Diurnal variations of zonal component of magnetospheric electric field Ey, AE index, equivalent meridional horizontal wind velocity at 300 km, O+ ion
velocity at 400 km, and H+ ion velocity and flux at 1,000 km for 23–25 September 2016 (left panels) and 28–30 October 2004 (right panels). Open circles show
the observational results obtained with Kharkiv IS radar. The thick red line denotes the FLIP simulation when the IS hmF2 is used as input in the northern
hemisphere and the digisonde hmF2 is used as input in the southern hemisphere. The thin blue line shows the FLIP simulation when the quiet first day equivalent
winds deduced from the measured hmF2 in both hemispheres are used as input for all days. The dashed dark green line is the meridional horizontal wind
velocity at 300 km from the CTIPe model. Black dots show the H+ fraction calculated with the chemical equilibrium H+ ion density. The dash‐dotted pink lines
show theH+ fraction from the new TBT‐15 empiricalmodel of topside ion composition that is included in the International Reference Ionospheremodel (IRI‐2016).
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density impact on ionosphere‐plasmasphere H+ ion flux. It is seen that the changes of hmF2 are almost
fully caused by the plasma transport changes (seen in the equivalent wind velocity, Figure 4), and they
really lead to remarkable changes in the H+ flux. As a result, there are sharp changes of the observed H
+ ion fraction during the periods with weakly disturbed magnetic activity in both September 2016 and
October 2004. It is interesting also to note the strong similar effects for the morning and daytime hours
of 25 September 2016. These effects are not seen with the IS observations because of the low daytime H
+ fraction at the altitudes available for the measurements; however, the FLIP model shows ~250 km
increase and ~200 km decrease of the O+/H+ ion upper transition height coincident with modulation
of the upward H+ ion flux that was induced by the motion of F2‐layer and related changes of the top-
side O+ ion density. It should be noted also that comparison of the observed and simulated variations of
the vertical O+ ion velocity in the topside ionosphere additionally supports this conclusion very well
(Figure 4).

The final question is, how is the O+ ion motion driven by weak magnetic disturbances? Comparison of the
variations of equivalent wind, vertical O+ ion velocity, AE index, and the zonal component of magneto-
spheric electric field Ey (Figure 4) suggests two possible causes of O

+ ion motion for both events we consider.
First, an enhanced thermospheric wind is caused by enhanced auroral heating. Second, ExB drift caused by
penetration of the magnetospheric electric field just after the times when the field changes its direction or
value. We have made simulations of the horizontal thermospheric wind with the CTIPe model (Codrescu
et al., 2012; Fuller‐Rowell et al., 1996) to clarify the main driver. Variations of meridional component of
the horizontal thermospheric wind from the CTIPe model (Figure 4) follow the general changes of equiva-
lent wind deduced from the observations with the FLIP model very well starkly illustrating the dominant
role of changes in the thermospheric wind on the O+ ion vertical transport. The differences between the
CTIPe winds and FLIP model equivalent winds that are seen just before UT midnight of 25 September
and after 01:30 UT on 30 October may indicate the presence of a penetration magnetospheric electric field.
The changes of the FLIP equivalent wind during these time intervals agree with the changes of the Ey com-
ponent direction just before.

It should be emphasized that the simulated H+ ion velocity changes are much higher than ones for the O+

velocity (Figure 4). This means again that the H+ flux modulation is really governed by the F2‐layer motion
because ExB drift of the plasma as a whole would lead to the same velocities for both H+ and O+ ions.

Given that thermospheric winds are strongly affected by auroral activity and that there is high correlation
between the AE index and Bz component of IMF as noted above, variations in Bz can be considered the pri-
mary cause of the modulation of the plasmasphere‐ionosphere H+ flux. It is well known that Ey is also gov-
erned by the behavior of the IMF Bz.

Comparison of our H+ ion fraction results with the calculations from the new empirical model of the topside
ion composition TBT‐15 (Bilitza et al., 2017) reveals an interesting feature. Namely, the model H+ fraction is
underestimated by a factor of 2–3 (Figure 2) during the quiet periods, but it fits the observations very well
during the disturbances. This supports our previous hypothesis that the reason for the empirical model
HT being too high for solar minimum is that it is based on data collected during 1974 when there were fre-
quent minor geomagnetic disturbances (Kotov et al., 2015). The present work shows that such disturbances
do lead to significant reduction of the H+ ion fraction.

4. Conclusions

This comprehensive study of two weak storm events has revealed the following:

1. Sharp prominent changes of the observed H+ ion fraction in the topside ionosphere are a strong signature
of the modulation of ionosphere‐plasmasphere H+ flux.

2. Even weak magnetic disturbances lead to significant modulation of ionosphere‐plasmasphere H+ ion
fluxes. This modulation is caused by variations in the topside O+ ion density caused by the hmF2 motion
most likely induced by changes of the thermospheric horizontal wind, but also possibly by magneto-
spheric penetrated electric fields. Both mechanisms are closely related to the changes in the IMF Bz
component.
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3. The strong sensitivity of the topside H+ ion fraction to very weak magnetic disturbances indicates the
need to include geomagnetic activity indices as input parameters to empirical topside ionosphere compo-
sition models.

4. Comparison of the observed and simulated H+ ion density variations in the topside ionosphere indicates
that the NRLMSISE‐00 model provides the correct relative changes of neutral H density during these
storm events even though it underestimates the absolute density by a factor of 2 for both the considered
periods.
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are from the site of World Data Center for Geomagnetism, Kyoto (http://wdc. kugi.kyoto‐u.ac.jp/index.
html). Other indices are taken at Goddard Space Flight Center SPDF site (https://omniweb.gsfc.nasa.gov/).
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