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Moiré lattices consist of two identical periodic structures overlaid with a rel-

ative rotation angle. Present even in everyday life, moiré lattices have been

also produced, e.g., with coupled graphene-hexagonal boron nitride monolay-

ers [1, 2], graphene-graphene layers [3, 4], and layers on a silicon carbide sur-

face [5]. The recent surge of interest in moiré lattices arises from the possibility

to explore in such systems a rich variety of outstanding physical phenomena,

such as commensurable-incommensurable transitions and topological defects [2],

emergence of insulating states due to band flattening [3, 6], unconventional su-

perconductivity [4] controlled by the rotation angle [7, 8], quantum Hall ef-

fect [9], realization of non-Abelian gauge potentials [10], quasicrystals appearing

at special rotation angles [11], to name only a few examples. A fundamental

question that remains unexplored is the evolution of waves in the potentials

defined by the moiré lattices. Here we experimentally create two-dimensional

photonic moiré lattices, which, unlike their material predecessors, have readily

controllable parameters and symmetry allowing to explore transitions between

structures with fundamentally different geometries: periodic, general aperiodic,

and quasi-crystal ones. Equipped with such realization, we observe localization

of light in deterministic linear lattices. Such localization is based on flat-band

physics [6], in contrast to previous schemes based on light diffusion in opti-

cal quasicrystals [12], where disorder is required [13] for the onset of Anderson

localization [16]. Using commensurable and incommensurable moiré patterns,

we report the first experimental demonstration of two-dimensional localization-

delocalization-transition (LDT) of light. Moiré lattices may feature almost arbi-

trary geometry that is consistent with the crystallographic symmetry groups of

the sublattices, and therefore afford a powerful tool to control the properties of

light patterns, to explore the physics of transitions between periodic and ape-

riodic phases, and two-dimensional wavepacket phenomena relevant to several

areas of science.
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One of the most salient properties of an engineered optical system is its capability to affect

a light beam in a prescribed manner, such as to control its diffraction pattern or to local-

ize it. The importance of wavepacket localization extends far beyond optics and impacts

all branches of science dealing with wave phenomena. Homogeneous or strictly periodic

linear systems cannot result in wave localization, the latter requiring presence of structure

defects or nonlinearity. Wave localization in random media, or Anderson localization [17],

is a hallmark discovery of condensed-matter physics. All electronic states in one- and two-

dimensional potentials with uncorrelated disorder are localized. Three-dimensional systems

with disordered potentials are known to have both localized and delocalized eigenstates [16],

separated by an energy known as the mobility edge [18]. Coexistence of localized and delo-

calized eigenstates has been predicted also in regular quasiperiodic one-dimensional systems,

first in the discrete Aubry-André [19] model and later in continuous optical and matter-wave

systems [20–22]. Quasiperiodic (or aperiodic) structures, even those that possess long-range

order, fundamentally differ both from periodic systems, where all eigenmodes are delocal-

ized Bloch waves, and from disordered media, where all states are localized (in one or two

dimensions). Upon variation of the parameters of a quasiperiodic system, it is possible to

observe the transition between localized and delocalized states. Such LDT has been observed

in one-dimensional quasiperiodic optical [23] and in atomic systems [24, 25].

Wave localization is sensitive to the dimensionality of the physical setting. Anderson

localization and mobility edge in two-dimensional disordered systems were first reported in

experiments with bending waves [26] and later in optically induced disordered lattices [27].

In quasicrystals localization has been observed only under the action of nonlinearity [12] and

in the presence of strong disorder [13]. Although localization and delocalization of light in

two-dimensional systems without any type of disorder and nonlinearity have been predicted

theoretically for moiré lattices [14] and very recently for Vogel spirals [15], the phenomenon

has never been observed experimentally.

Here we report the first experimental realization of reconfigurable photonic moiré lattices

with controllable parameters and symmetry. The lattices are induced by two superimposed

periodic patterns [28, 29] (sublattices) with either square or hexagonal primitive cells. They
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have tunable amplitudes and twist angle. Depending on the twist angle, a photonic moiré lat-

tice may have different periodic (commensurable) structure or aperiodic (incommensurable)

structure without translational periodicity, but they always feature the rotational symmetry

of the sublattices. Moiré lattices can also transform into quasicrystals with higher rotational

symmetry [11]. The angles at which a commensurable phase (periodicity) of a moiré lattice

is achieved are determined by Pythagorean triples in the case of square sublattices [14], or

by another Diophantine equation when the primitive cell of the sublattices is not a square

(see Methods). For all other rotation angles the structure is aperiodic albeit regular (i.e., it

is not disordered). Changing the relative amplitudes of the sublattices allows to smoothly

tune the shape of the lattice without affecting its rotational symmetry.

In contrast to crystalline moiré lattices [1–5], optical patterns are monolayer structures,

i.e., both sublattices interfere in one plane. As a consequence, light propagating in such

media is described by a one-component field. In the paraxial approximation, the propagation

of an extraordinary polarized beam in a photorefractive medium with an optically induced

refractive index is governed by the Schrödinger equation for the dimensionless field amplitude

ψ(r, z) [30]:

i
∂ψ

∂z
= −1

2
∇2ψ +

E0

1 + I(r)
ψ. (1)

Here ∇ = (∂/∂x, ∂/∂y); r = (x, y) is the radius-vector in the transverse plane scaled to

the wavelength λ = 632.8 nm of the beam used in the experiments; z is the propagation

distance scaled to the diffraction length 2πneλ; ne is the refractive index of the homogeneous

crystal for extraordinary-polarized light; E0 > 0 is the dimensionless applied dc field; I(r) ≡

|p1V (r) + p2V (Sr)|2 is the moiré lattice induced by two ordinary-polarized mutually coherent

periodic sublattices V (r) and V (Sr) interfering in the (x, y) plane and rotated by the angle

θ with respect to each other (see Methods); S = S(θ) is the operator of the two-dimensional

rotation; p1 and p2 are the amplitudes of the first and second sublattices, respectively. The

number of laser beams creating each sublattice V (r) depends on the desired lattice geometry.

The form in which the lattice intensity I(r) enters Eq. (1) is determined by the mechanism

of the photorefractive response.

To visualize the formation of moiré lattices it is convenient to associate a continuous
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sublattice V (r) with a discrete one with lattice vectors determined by the locations of the

absolute maxima of V (r). The resulting moiré pattern inherits the rotational symmetry

of V (r). At specific angles some nodes of different sublattices may coincide thereby lead-

ing to translational symmetry of the moiré pattern in commensurable phase, see primitive

translation vectors illustrated by blue arrows in Fig. 1 (the first and third columns) and

Fig. 4 (the first and second columns) for square and honeycomb sublattices, respectively.

The rotation angles at which the periodicity of I(r) is achieved are determined by triples of

positive integers (a, b, c) ∈ Z+ related by a Diophantine equation characteristic for a given

sublattice [14] (see Extended Data Tab. I).

First, we consider a Pythagorean lattice created by two square sublattices. For the rotation

angles θ, such that cos θ = a/c and sin θ = b/c, where (a, b, c) is a Pythagorean triple, i.e.,

a2+b2 = c2, I(r) is a periodic moiré lattice. Such angle is referred below as Pythagorean. For

all other, non-Pythagorean, rotation angles θ, the lattice I(r) is aperiodic. Figures 1(a)-(c)

compare calculated I(r) patterns (first row) with lattices created experimentally [30] in a

biased SBN:61 photorefractive crystal with dimensions 5×5×20 mm3 (third row) for different

rotation angles. The second row shows the respective discrete moiré lattices. Columns (a)

and (c) show periodic lattices, while column (b) gives an example of an aperiodic lattice.

All results were obtained for E0 = 7, which corresponds to a 8 × 104 V/m dc electric field

applied to the crystal. The amplitude of the first sublattice was set to p1 = 1 in all cases,

which corresponds to an average intensity Iav ≈ 3.8 mW/cm2. For such parameters, the

refractive index modulation depth in the moiré lattice is of the order of δn ∼ 10−4.

Mathematically, incommensurable lattices are almost periodic functions [32]. Any non-

Pythagorean twist angle can be approached by a Pythagorean one with any prescribed accu-

racy (see Supplementary Information). Thus, any finite area of an incommensurable moiré

lattice can be approached by a primitive effective cell of some periodic Pythagorean lattice,

while a more accurate approximation requires a larger primitive cell of the Pythagorean

lattice. This property is illustrated in Fig. 1(d,e) by the quantitative similarities between

the densities of states (DOSs) calculated for an incommensurable lattice and its effective-cell

approximation. A remarkable property of Pythagorean lattices is the extreme flattening of
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FIG. 1: (a)-(c) Moiré lattices I (r) generated by two interfering square sublattices with p1 = p2,

whose axes are mutually rotated by the angle indicated in each panel. First row: calculated

patterns. Second row: schematic discrete representation of two rotated sublattices. Third row:

experimental patterns at the output face of the crystal. The scale is the same for all images.

Comparison of DOS calculated for moiré lattice (top) and its periodic approximation (bottom) at

p2 = 0.1 (d) and p2 = 0.2 (e). The approximate Pythagorean lattice has period b1 =
√

3361π (see

Supplementary Information). (f) Band structures for periodic lattice approximating moiré lattice

at p2 = 0.1 (top, 15 upper bands are shown) and p2 = 0.2 (bottom, 68 upper bands are shown). In

all cases p1 = 1.

the higher bands that occurs when the ratio p2/p1 exceeds a certain threshold [Fig. 1(f)]. The

number of flat bands grows with the size of the area of the primitive cell of the Pythagorean

lattice approximation. Thus, an incommensurable moiré lattice can be viewed as the large-

area limit of a periodic Pythagorean lattice with extremely flat higher bands. Note that

existence of flat bands for twisted bilayer graphene was earlier discussed in [7, 8, 31]. Since

flat bands support quasi-nondiffracting localized modes, an initially localized beam launched
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into such moiré lattice will remain localized. This flat-band physics of moiré lattices, funda-

mentally different from that of Anderson localization in random media, allows us to predict

light localization above a threshold value of the ratio p2/p1. Furthermore, flat bands support

states that are exponentially localized in the primitive cell and that can be well approxi-

mated by exponentially localized two-dimensional Wannier functions [33] (see Fig. 2(c) and

Supplementary Information).

To elucidate the impact of the sublattice amplitudes and rotation angle θ on the light local-

ization, we calculated the linear eigenmodes ψ(r, z) = w(r)eiβz, where β is the propagation

constant and w(r) is the mode profile, supported by the moiré lattices. To characterize their

localization we use the integral form-factor χ = [U−2
∫∫
|ψ|4d2r]1/2, where U =

∫∫
|ψ|2d2r is

the energy flow (the integration is over the transverse area of the crystal). The form-factor is

inversely proportional to the mode width: the larger the value of χ, the stronger the localiza-

tion. The dependence of the form-factor of the most localized mode (the mode with largest

β) on θ and p2 is shown in Fig. 2(a) (for modes with lower values of β the dependencies are

qualitatively similar). One observes a sharp LDT above a certain threshold depth pLDT
2 of

the second sublattice, at the amplitude of the first sublattice p1 = 1. Below pLDT
2 all modes

are extended [Fig. 2(b)] and above the threshold, some modes are localized [Fig. 2(c)]. This

is consistent with the extreme band flattening of the approximate Pythagorean lattice at

p2 > pLDT
2 [Fig. 1(f)]. The inset in Fig. 2(c) reveals exponential tails for p2 > pLDT

2 from

which the localization length for the most localized mode can be extracted.

Figure 2(a) shows delocalization for angles θ set by the Pythagorean triples, when all

modes are extended regardless of the value of p2. It also reveals that pLDT
2 is practically

independent of the non-Pythagorean rotation angle. This is explained by the fact that a

large fraction of the power in a localized mode resides in the vicinity of a lattice maximum

(i.e., at r = 0). In an incommensurable phase I(r) < I(0) for all r 6= 0 the optical

potential can be approximated by the Taylor expansion of E0/[1 + I(r)] with respect to r

near the origin. Such expansion includes the rotation angle θ only in the fourth order (see

Supplementary Information), and locally can be viewed as almost isotropic.

To study the guiding properties of the Pythagorean moiré lattices experimentally we mea-
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FIG. 2: (a) Form-factor (inverse width) of the eigenmodes with largest β versus rotation angle θ

and versus amplitude of the second sublattice p2 at p1 = 1. The horizontal dashed line indicates the

sublattice depth pLDT
2 at which LDT occurs. The vertical dashed line shows one of the Pythagorean

angles θp = arctan(3/4). Examples of mode profiles with largest β for p2 < pLDT
2 (b) and p2 > pLDT

2

(c). Insets show cuts of ln|ψ|2 distribution along the x and y axes.

sured the diffraction outputs for beams propagating in lattices corresponding to different

rotation angles θ for fixed input position of the beam, centered or off-center. The diameter

of the Gaussian beam focused on the input face of the crystal was about 23 µm. Such a

beam covers approximately one bright spot (channel) of the lattice profile. The intensity of

the input beam was about 10 times lower than the intensity of the lattice-creating beam,
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Iav, to guarantee that the beam does not distort the induced refractive index and that it

propagates in the linear regime.

FIG. 3: Observed output intensity distributions illustrating LDT with increasing amplitude p2

of the second sublattice for rotation angle θ = arctan 3−1/2 = π/6 (left and right columns) and

absence of LDT for the Pythagorean angle θ = arctan(3/4) (central column). The insets show the

location of the excitation, namely: central for the left and central columns, and off-center for the

right column.

Experimental evidence of LDT in the two-dimensional lattice is presented in Fig. 3,

where we compare output patterns for the low-power light beam in the incommensurable

(tan θ = 3−1/2, left and right columns for central and off-center excitations, respectively) and

commensurable (tan θ = 3/4, central column) moiré lattices, tuning in parallel the ampli-

tude p2 of the second sublattice. When p2 < pLDT
2 (in Fig. 3 pLDT

2 ≈ 0.15), the light beam in

the incommensurable lattice notably diffracts upon propagation and expands across multiple
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local maxima of I(r) in the vicinity of the excitation point. However, when p2 exceeds the

LDT threshold, it is readily visible that diffraction is arrested for both central (left column)

and off-center (right column) excitations and a localized spot is observed at the output over

a large range of p2 values. In clear contrast, localization is absent for any p2 value in the peri-

odic lattice associated with the Pythagorean triple (central column). Additional proof of the

LDT is reported in Extended Data Fig. 1. We compare experimental and theoretical results

for propagation at p1 = 1. In an incommensurable lattice at p2 < pLDT
2 one observes beam

broadening (top row). Localization takes place at p2 > pLDT
2 (middle row). At a Pythagorean

twist angle localization does not occur even for p2 = p1 = 1 (bottom row). Simulations of

the propagation up to much larger distances beyond the available sample length presented

in Extended Data Fig. 2 confirm localization of the beam in incommensurable lattice at any

distance at p2 > pLDT
2 and its expansion at p2 < pLDT

2 .

The mutual rotation of two identical sublattices allows generation of commensurable and

incommensurable moiré patterns with sublattices of any allowed symmetry. To illustrate the

universality of LDT, we induced hexagonal moiré lattices. The technique of induction is sim-

ilar to that used for single honeycomb photonic lattices [34]. For such lattices, the rotation

angles producing commensurable patterns are given by the relation tan θ = b
√

3/(2a + b),

where the integers a and b solve the Diophantine equation a2 + b2 + ab = c2. Two examples

are presented in the first and second columns of Fig. 4. In such periodic structures, the light

beam experiences considerable diffraction for any amplitude of the sublattices, as shown in

the bottom row. To observe LDT one has to induce aperiodic structures. To such end, we

set the rotation angle to 30o. In such incommensurable case we did observe LDT by in-

creasing the amplitude of the second sublattice, keeping the amplitude p1 fixed. Delocalized

and localized output beams are shown in the lower panels of the third and fourth columns

of Fig. 4. In the third column the ideal 6-fold rotation symmetry of the output pattern is

slightly distorted, presumably due to the intrinsic anisotropy of the photorefractive response.

At p2 = p1 the moiré pattern acquires a 12-fold rotational symmetry (shown in the fourth

column of Fig. 4) as proposed in [11] as a model of a quasicrystal and similar to the twisted

bilayer graphene quasicrystal reported in [5].
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FIG. 4: First row: Moiré lattices produced by interference of two hexagonal patterns rotated by

the angle θ: p2 = 1 in the first, second, and fourth columns, while in the third column p2 = 0.18.

Second row: Schematic discrete representation of two rotated hexagonal sublattices. Third row:

Measured output intensity distributions for signal beam at the output face of the crystal. In all

cases p1 = 1.

The moiré lattices can be created in practically any arbitrary configurations consistent

with two-dimensional symmetry groups, thus allowing the creation of potentials that may

not be easily produced in tunable form using material structures. In addition to the direct

applications to the control of light patterns availability of the photonic moiré patterns al-

lows the study of phenomena relevant to other areas of physics, particularly to condensed

matter, which are harder to explore directly. An outstanding example is the relation be-

tween conductivity/transport and symmetry of incommensurable patterns with long-range
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order. The concept can be also extended to atomic physics and in particular to Bose-Einstein

condensates, where potentials are created using similar geometries (and where Anderson lo-

calization was already observed [35]). Finally, we note that while most previous studies of

moiré lattices were focused on graphene and on quasicrystals, our results suggest that the

photonic counterpart affords a powerful platform for the creation of synthetic settings to

investigate wavepacket localization and flat-band phenomena in two-dimensional settings at

large.
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METHODS

Experimental setup. The experimental setup is illustrated in Extended Data Fig.

3. The lattice was created using optical induction, as described in [30] and first realized

experimentally in [29]. A cw frequency-doubled Nd:YAG laser at wavelength λ = 532 nm

is divided by a polarizing beam splitter into two polarization components, which are sent

to Path a and Path b separately. Light in Path a is extraordinarily polarized and it is

used to image the induced potential in the photorefractive crystal (see the third row of

Fig. 1 in the main text). Light in Path b is ordinarily polarized and it is used to write

the desirable potential landscape in the photorefractive SBN:61 crystal with dimensions

5× 5× 20 mm3 and extraordinary refractive index ne = 2.2817. Before entering the crystal

ordinarily polarized light beam in Path b is modulated by Masks 1 and 2 transforming this

beam into superposition of two rotated periodic patterns. Their relative strength p2/p1, or,
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more precisely, the strength of the second lattice, as well as the twist angle θ are controlled

by the polarizer-based Mask 1 and amplitude Mask 2. The He-Ne laser with wavelength

λ = 633 nm shown in path c provides extraordinarily polarized beam focused onto the front

facet of the crystal, that serves as a probe beam for studying light propagation in the induced

potential. We record the output light intensity pattern by a CCD at the exit facet of the

crystal after propagation distance of 20 mm.

Characteristics of moiré lattices used in experiment. In the experiments there have

been used two types of moiré lattices, whose characteristics are summarized in Extended Data

Table I. In all the cases the center of rotation in the (x, y) plane was chosen coincident with

a node of one of the sublattices.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding

author F. Y. upon reasonable request.

EXTENDED DATA

Moiré lattice I(r) Sublattice V (r) Diophantine equation tan θ

Pythagorean cos(2x) + cos(2y) a2 + b2 = c2 b/a

hexagonal
∑3

n=1 cos [2(x cos θn + y sin θn)] a2 + b2 + ab = c2
√

3b/(2a+ b)

Extended Data Tab. I: Characteristics of the moiré lattices used in experiments. For hexagonal

lattices θ1 = 0, θ2 = 2π/3, and θ3 = 4π/3.
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Extended Data Fig. 1: Experimentally observed intensity distributions of the probe beam (color-

surface plots) and corresponding theoretically calculated distributions (insets), at different prop-

agation distances z, for tan θ = 3−1/2, p2 = 0.1, which falls below the LDT point (top row),

tan θ = 3−1/2, p2 = 1, which falls above LDT point (middle row), and tan θ = 3/4, p2 = 1 (bottom

row). The first two rows correspond to the incommensurable Pythagorean lattice shown in the

central column of Fig. 1 of the main text. The third row corresponds to the commensurable lattice

shown in the last column of Fig. 1 of the main text.

17



Extended Data Fig. 2: (a),(b) Numerical simulations of the light beam propagation in the incom-

mensurable moiré lattice for central excitation, corresponding to top and middle rows of Extended

Data Fig. 1, but for larger distances, notably exceeding sample length. (c),(d) Similar numerical

results, but for off-center excitation position in moiré lattice. Parameter p2 = 0.1 for (a),(c) and

p2 = 1.0 for (b),(d), while rotation angle θ = π/6. In all cases Gaussian beam exciting a single site

of the potential is assumed.
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Extended Data Fig. 3: Experimental setup. λ/2, half-wave plate; PBS, polarizing beam splitter;

SF, spatial filter; L, lens; BS, beam splitter; ID, iris diaphragm; M, mirror; P, Polarizer; SBN,

strontium barium niobate crystal; CCD, charged-coupled device. Mask 2 is an amplitude mask to

produce two group of sub-lattices with a rotation angle θ, and Mask 1 is made of a polarizer film.
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