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Abstract
In the last years, i-vectors followed by cosine or PLDA scoring
techniques were the state-of-the-art approach in speaker veri-
fication. PLDA requires labeled background data, and there
exists a significant performance gap between the two scoring
techniques. In this work, we propose to reduce this gap by us-
ing an autoencoder to transform i-vector into a new speaker vec-
tor representation, which will be referred to as ae-vector. The
autoencoder will be trained to reconstruct neighbor i-vectors in-
stead of the same training i-vectors, as usual. These neighbor
i-vectors will be selected in an unsupervised manner according
to the highest cosine scores to the training i-vectors. The evalua-
tion is performed on the speaker verification trials of VoxCeleb-
1 database. The experiments show that our proposed ae-vectors
gain a relative improvement of 42% in terms of EER compared
to the conventional i-vectors using cosine scoring, which fills
the performance gap between cosine and PLDA scoring tech-
niques by 92%, but without using speaker labels.
Index Terms: deep learning, autoencoders, i-vectors, speaker
verification

1. Introduction
Deep learning approaches have been applied in speaker recog-
nition after showing their success in image and speech technolo-
gies [1, 2, 3, 4]. As a front-end, deep learning approaches are
capable of learning deep features [5, 6, 7] and, the so-called bot-
tle neck features (BNF) [8, 9]. These features are further used
within a conventional GMM-UBM framework or in i-vector
extraction process for speaker recognition. Deep learning ap-
proaches are applicable to learn a compact representation of
speech utterances, which is commonly referred to as speaker
embeddings, such as in [10, 11, 12, 13, 14]. As a backend,
it has been successfully applied in combination with i-vectors
such as in [15, 16, 17].

The compact representation of speech utterances known as
i-vector [18] has been the state-of-the-art approach in speaker
recognition, over the last years. Cosine and Probabilistic Linear
Discriminant Analysis (PLDA) scoring are the two commonly
used techniques to decide if two i-vectors belong to the same
speaker. PLDA leads to a superior performance as it requires
labeled background data. However, in practice, it is difficult to
access large amount of labeled data. In i-vector based speaker
verification, the lack of labeled data results in a significant per-
formance gap between cosine and PLDA scoring techniques. In
[19, 20], some unsupervised automatic labeling techniques are
proposed but they cannot appropriately estimate the true labels.
These approaches perform reasonably well but the results are
still far from that of PLDA with actual labels [21].

In [22, 23, 24], several attempts have been made to im-
prove the performance of speaker verification, using unsuper-
vised learning such as Restricted Boltzmann Machines (RBMs)

and Deep Belief Networks (DBNs). As an example of front-
end, in [22, 25], a vector representation of speakers was pro-
posed by means of RBM adaptation. As a backend, in [26],
various imposter selection algorithms are proposed, in order to
reduce the performance gap between cosine and PLDA scoring
techniques without the use of labeled data. They applied DBN
adaptation as a backend for i-vector based speaker verification.
These algorithms rely on training a separate model for each tar-
get speaker which is costly in terms of computations. However,
the results are still far from i-vector/PLDA approach with actual
speaker labels.

In this work, we put an effort to reduce the demand of la-
beled background data for i-vector based speaker verification.
The goal is to reduce the performance gap between cosine and
PLDA scoring techniques without using speaker labels. Un-
like the conventional PLDA backend for i-vectors, and DNN
based classifiers, autoencoder training is an unsupervised pro-
cess which does not require labeled data. We propose to train an
autoencoder in a new framework, in order to compensate ses-
sion variability among i-vectors when no labeled background
data is available. We train the autoencoder to reconstruct neigh-
bor i-vectors, rather than to reconstruct the same training i-
vectors. After the training, we extract speaker vectors for the
testing i-vectors, which are referred to as autoencoder vectors or
shortly ae-vectors. For the experimental trials, we score the ae-
vectors using cosine scoring. The ae-vectors have shown high
discriminative power compared to i-vectors. The experimental
results show that while training the autoencoder in the proposed
manner, a relative improvement of 42% is gained, over the base-
line system using cosine scoring technique. This has reduced
the performance gap between cosine and PLDA scoring tech-
niques, by 92%.

The rest of the paper is organized as follows. Section 2 ex-
plains the proposed method for training the autoencoder and the
selection process of neighbor i-vectors. Section 3 describes the
experimental setup and the database. The results obtained are
discussed in Section 4. Finally in section 5, some conclusions
are drawn as the findings of this paper.

2. Proposed method
Probabilistic Linear Discriminant Analysis (PLDA) scoring
technique for i-vectors requires speaker labels, which is diffi-
cult to access in reality. On the other hand, cosine scoring tech-
nique avoids speaker labels at the cost of degrading the perfor-
mance. In order to reduce the performance gap between these
two scoring techniques when no labels are available for back-
ground data, we propose a new framework of autoencoder train-
ing which is fully unsupervised unlike the conventional DNN
classifiers and PLDA. Furthermore, we propose to train the au-
toencoder in order to reconstruct similar i-vectors instead of the
same training i-vectors. In this way, the autoencoder trained in
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Figure 1: Block diagram of the proposed training and testing
phases of the autoencoder.

such unsupervised manner is capable of compensating session
variability among i-vectors without using speaker labels.

Figure 1a shows the block diagram of the training phase of
our proposed system. For an input i-vector w a similar i-vector
v is set at the output and the training is carried out in this man-
ner. The similar i-vectors are selected in an unsupervised man-
ner according to the cosine scores to the training i-vector. Af-
ter training, we extract speaker vectors for the testing i-vectors,
which are used in the experiments as shown in Figure 1b. The
main steps involved in extracting ae-vectors are explained as
follows.

2.1. Autoencoder training

The conventional architecture of an autoencoder consists of an
encoder and a decoder as shown in the enclosed block of Fig-
ure 1a. The encoder is a function that encodes the input i-
vector w into a shorter dimensional space, and the decoder
is a function that decodes it back in order to reconstruct w.
The conventional training is carried out by minimizing the
Mean Square Error (MSE) between the input w and the recon-
structed wˆ. Thus the loss function is : MSE(wˆ, w), where
wˆ = decoder(encoder(w)).

In this paper, we propose to train the autoencoder by
minimizing the loss function : MSE(wˆ, v), as shown in
Figure 1a, where v is a similar i-vector to w and wˆ =
decoder(encoder(w)). We propose an automatic selection of
similar i-vectors. Multiple similar i-vectors can be considered
for every training i-vector w. In section 4, we will compare
the results of our proposed training with that of a conventional
training i.e., reconstructing the same training i-vectors.
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Figure 2: Algorithm for selection of neighbor i-vectors.

2.2. Selection of neighbor i-vectors

All the training i-vectors are scored among each other using co-
sine scoring technique. For every i-vector we select a set of sim-
ilar i-vectors as neighbor i-vectors. A straightforward approach
to select the neighbor i-vectors, is to apply a threshold to the
cosine scores between the training i-vectors. The i-vectors with
scores higher than the threshold are selected as neighbor i-
vectors. This may lead to a variable number of neighbor i-
vectors for every training i-vector.

Another approach is to consider a constant value k, and se-
lect k number of neighbor i-vectors for every training i-vector.
This approach selects a uniform number of neighbors for every
training i-vector which will lead to a balanced training.

Figure 2 shows a visualization of the selection process of
the neighbor i-vectors for a constant k number of neighbors.
Suppose wi is a training i-vector, where i = (1, . . . , n) and n
is the total number of training i-vectors. First, we score all the
training i-vectors among each other using cosine scoring tech-
nique. Then, we select the top k i-vectors with highest scores as
neighbor i-vectors for every wi. The selected neighbor i-vectors
are denoted by vij , where vij is the jth neighbor of ith train-
ing i-vector. Algorithm 1 summarizes how the selection of the
neighbor i-vectors is carried out:

Algorithm 1: Proposed neighbor i-vectors selection al-
gorithm for a constant k

Input : Training i-vectors wi, 1 < i < n
Output: Neighbor i-vectors vij , 1 < i < n and

1 < j < k
1 for each training i-vector wi do
2 for each training i-vector wt, 1 < t < n do
3 if i 6= t then
4 Compute scorei,t = cosine(wi, wt)
5 end
6 end
7 Select the corresponding k i-vectors with the highest

scores as vi,j
8 end

Thus, we have a total of n×(k−1) samples for the autoencoder
training. The values of threshold and k are determined exper-
imentally and will be discussed in section 4. Thus, the autoen-
coder is able to learn information about the session variability
of i-vectors, without necessarily using actual speaker labels.
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Table 1: EER and minDCF for the proposed ae-vectors and i-
vectors evaluated for different values of threshold using cosine
scoring.

Approach threshold EER(%) minDCF
[1] i-vector - 17.61 0.8390

[2] ae-vector - 16.84 0.8569
[3] ae-vector 0.4 14.92 0.8376
[4] ae-vector 0.3 12.91 0.8594
[5] ae-vector 0.2 11.65 0.8420
[6] ae-vector 0.1 11.19 0.8527

Fusion of [1] & [6] - 10.17 0.7568

2.3. Autoencoder vector extraction

Once the autoencoder is trained with the selected neighbor i-
vectors, we transform the testing i-vectors into a new speaker
vector representation, using the autoencoder as shown in Figure
1b. We extract the desired speaker vectors at the output of the
autoencoder. These are referred to as autoencoder vectors or
shortly ae-vectors. In the experiments, ae-vectors have shown
to increase the discriminative quality of i-vectors without using
speaker labels. Using ae-vectors, we perform the trials of the
experiments with cosine scoring technique.

3. Experimental setup and database
The experiments were performed on VoxCeleb-1 database [27].
It contains 148,642 development and 4,874 test utterances,
which belong to 1211 and 40 speakers, respectively. The de-
velopment set was used to train the autoencoder using Keras
deep learning library [28]. For the baseline i-vector/PLDA sys-
tem, the development set was used to train the Universal Back-
ground Model (UBM), the Total Variability (TV) matrix and the
PLDA parameters. MFCC features of 20 dimensions, appended
by delta coefficients, were extracted for all the utterances in the
development and test sets. A 1024 component UBM was trained
to extract i-vectors of length 400. The PLDA was trained with
20 iterations and the number of eigenvoices was empirically set
to 200. The UBM training, TV matrix training and i-vector ex-
traction process were carried out using Alize toolkit [29]. From
the test set, 37,720 experimental trials were scored. Half of
them are client trials while the other half are impostor trials. The
performance was evaluated using the Equal Error Rate (EER)
and the minimum of the Decision Cost Function (minDCF) cal-
culated using CM = CFA = 1, and PT = 0.01, as in [27].

The autoencoder, used in this paper, is a fully connected
feed forward network which consists of 3 hidden layers. The
encoder and decoder parts are symmetrical as shown in Fig-
ure 1. The hidden layer 1 and 3 have 300 neurons each, while
hidden layer 2 consists of 200 neurons. The input and output
layers consist of 400 neurons each. The autoencoder training
was carried out with 100 epochs using Stochastic Gradient De-
scent (SGD) optimizer. All the layers of the autoencoder used
ReLU activation except the last layer which used linear activa-
tion. The learning rate was set to 0.01 with a decay of 0.0002
and the batch size was set to 100.
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Figure 3: DET curves for the proposed ae-vectors and i-vectors
evaluated for different values of threshold using cosine scoring.

4. Results
We have compared our proposed ae-vectors with baseline i-
vectors and ae-vectors extracted using a conventionally trained
autoencoder i.e., same output as input. In Tables 1 & 2, and in
Figures 3 & 4, approach [2] corresponds to ae-vectors extracted
using a conventionally trained autoencoder. Table 1 compares
the performance of our proposed ae-vectors with the baseline
i-vectors by setting a threshold to select number of neighbor
i-vectors. All the vectors are scored using cosine scoring tech-
nique. Different values of threshold were evaluated in order
to tune the system for obtaining best results. From the table
it is clear that our proposed ae-vectors has outperformed the
baseline system. As we decrease the value of threshold, the
performance of the system improves. The best EER of 11.19%
was obtained for a threshold equal to 0.1 which gains a rel-
ative improvement of 36% over the baseline i-vectors. This
leads to fill the performance gap between cosine and PLDA
scoring techniques by 80%. The best minDCF was obtained
for a threshold equal to 0.4.

A score level fusion of i-vectors and the ae-vectors with
threshold equal to 0.1, has further improved the performance,
both in terms of EER and minDCF. An EER of 10.17% was ob-
tained for the fusion. The optimum weights for the fusion were
obtained empirically, and were set to 0.55 and 0.45 for i-vectors
and ae-vectors, respectively. Figure 3 shows a comparison of
the Detection Error Trade-off (DET) curves for the baseline and
the proposed system. Different plots are shown for different
ae-vectors obtained with different values of the threshold pa-
rameter. It can be observed that all the ae-vectors, show better
performance in all working regions, compared to the baseline
i-vectors.

In Table 2, we have shown a performance comparison of
our proposed ae-vectors with the baseline i-vectors using a con-
stant k for the selection of neighbor i-vectors. We have exper-
imented with different values of k in order to tune the system
for obtaining best results. From the table it is clear that a fix
value of k has shown improvement compared to the threshold
approach as well as to the baseline. Starting with k equal to
1, an EER of 15.32% was obtained. Thus, by considering only
one nearest neighbor for every i-vector, a relative improvement
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Figure 4: DET curves for the proposed ae-vectors and i-vectors
with different values of k using cosine scoring.

Table 2: EER and minDCF for the proposed ae-vectors and i-
vectors for different values of k using cosine scoring.

Approach k EER(%) minDCF
[1] i-vector - 17.61 0.8390

[2] ae-vector - 16.84 0.8569
[3] ae-vector 1 15.32 0.9218
[4] ae-vector 2 12.36 0.8382
[5] ae-vector 5 10.62 0.8053
[6] ae-vector 15 10.20 0.8066

Fusion of [1] & [6] - 9.82 0.7625

of 13% is gained, compared to the baseline system. As we in-
crease the value of k, the performance of the system improves.
The best EER of 10.20% was obtained for k equal to 15 which
gains a relative improvement of 42% over the baseline i-vectors.
This has filled the performance gap between cosine and PLDA
scoring techniques by 92%. The best result in terms of minDCF,
was obtained with k equal to 5. This approach allows a balanced
training which improved the performance of the system. A fur-
ther increase in the value of k may include very far neighbors,
which degraded the performance.

A score level fusion of i-vectors and ae-vectors with k equal
to 15, has further improved the performance, both in terms of
EER and minDCF. An EER of 9.82% was obtained for the fu-
sion, which is very close to the results for i-vector/PLDA using
actual speaker labels. The optimum weights for the fusion were
tuned experimentally and were set to 0.49 and 0.51 for i-vectors
and ae-vectors, respectively. The DET curves for the baseline
and the proposed system, using the second method, are shown in
Figure 4. Different plots are shown for different ae-vectors ob-
tained with different values of k. It can be observed that all the
ae-vectors, have shown better performance than the i-vectors in
all working regions.

If we perform a score level fusion between i-vector/PLDA
and the ae-vectors with k equal to 15, which gives the best re-
sults, an EER of 9.0% is obtained. This gains a relative im-
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Figure 5: DET curves for score level fusion between i-
vector/PLDA and the proposed ae-vectors with k equal to 15.

Table 3: EER and minDCF for score level fusion between i-
vector/PLDA and the proposed ae-vectors with k equal to 15.

Approach Scoring EER(%) minDCF
[1] i-vector PLDA 9.54 0.7768

[2] ae-vector (k = 15) Cosine 10.20 0.8066
Fusion of [1] & [2] - 9.00 0.7338

provement of almost 6% over i-vector/PLDA. The fusion has
improved the system in terms of minDCF as well. The optimum
weights for the fusion were set to 0.04 and 0.96 for i-vectors and
ae-vectors, respectively. The EER comparison and DET curves
for the fusion are shown in Table 3 and Figure 5, respectively.

5. Conclusions
A new framework of autoencoder training has been proposed
in this work to increase the discriminative power of i-vectors
for speaker verification. The main objective was to fill the per-
formance gap between the cosine and the PLDA scoring tech-
niques when no labeled background data is available. We have
trained an autoencoder in order to reconstruct a set of neighbor
i-vectors, instead of reconstructing the same training i-vectors.
The neighbor i-vectors were selected as the closest to the train-
ing i-vector according to the cosine scores. After the training,
speaker vectors were extracted for the test i-vectors as the out-
put of the autoencoder. These speaker vectors were referred
to as ae-vectors. For the experimental trials, ae-vectors were
scored using the cosine scoring. The evaluation was performed
on the speaker verification trials of VoxCeleb-1 database. The
results have shown that our proposed ae-vectors gain a relative
improvement of 42% in terms of EER over the baseline sys-
tem. This has filled the gap between cosine and PLDA scoring
systems by 92%.
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