
Facultat d’Informàtica de Barcelona
Facultat de
Matemàtiques

Escola Tècnica
Superior d’Enginyeria

An Evolutionary Algorithm for Solving the

Two-Dimensional Irregular Shape Packing Problem

Combined with the Knapsack Problem

Albert Esṕın Román

Advisor: René Alquézar Mancho
Department of Computer Science, UPC

Master Thesis
Master in Artificial Intelligence

January 31, 2020

Abstract

The Packing Problem and the Knapsack Problem are two well-known optimiza-
tion problems focused on placing items in a container. In this work, a Joint Problem
was defined to combine the geometric shapes associated to the items and the con-
tainer in the Packing Problem, with the value and weight notions of the Knapsack
Problem. In the Joint Problem, the objective is the maximization of the value sum
of items placed in the container, respecting a maximum weight constraint imposed
by the container, and without causing any geometric intersection. In particular,
this work is focused on the two-dimensional version of the Joint Problem, with the
potential applicability of refining the way in which objectives and constraints are
expressed when packing and cutting objects in the textile and furniture industries,
among others. Motivated by the ability of evolutionary algorithms to obtain high-
quality results for both the Packing Problem and the Knapsack Problem in the
literature, a novel evolutionary algorithm was designed for the Joint Problem. The
method is characterized by a mutation operator that can add items to the container,
move or rotate placed items using multiple strategies, and remove them on certain
occasions. A crossover strategy was also designed, but it did not lead to better so-
lutions; it swaps in the offspring the items located in randomly determined regions
of the container of the progenitors. The elitism strategy is used to preserve the best
individuals, while parent selection and population update employ the tournament
mechanism to favour the survival of the fittest chromosomes, where the fitness is
equivalent to the value of the items in the container. The evolutionary algorithm
was compared with two other methods: a greedy approach that prioritizes profitable
placements, and a reversible algorithm that can occasionally remove items, modify
placements and revert a solution to a previous state. The three methods were tested
on the Joint Problem Dataset, a new collection of problems with manually obtained
optimal solutions, to asses the solution quality of the algorithms, as well as their
computational efficiency. The evolutionary algorithm significantly outperformed the
other methods in terms of solution quality, obtaining optimal solutions in 7 of the
10 problems, and close-to-optimal solutions in other 2, although the greedy and re-
versible algorithms proved to be much faster. The implemented algorithms were also
tested in an existing variant of the Packing Problem that aims to maximize the num-
ber of items placed in the container. It was observed that the evolutionary algorithm
was the most effective of the three for this task too, obtaining optimal solutions in 5
of the 9 tested problems, without any modification of its original formulation, devised
for the Joint Problem. The flexibility of the evolutionary algorithm leads to think
that it would be possible to adapt it to solve the three-dimensional version of the
Joint Problem, applicable in logistics to improve the optimization and prioritization
of transportation processes.

Keywords: Packing Problem, Irregular Shape Packing Problem, Two-Dimensional Packing
Problem, Knapsack Problem, 0/1 Knapsack Problem, Packing Knapsack Problem, Knapsack
Packing Problem, Joint Problem, Optimization, Evolutionary algorithm, Genetic algorithm

3

Acknowledgements

I would like to thank Professor René Alquézar for his suggestions and the insightful discussions.

4

Contents

1 Introduction 10

2 Previous Work 13
2.1 Evolutionary algorithms to solve the 0/1 Knapsack Problem 13
2.2 Evolutionary algorithms to solve the Two-Dimensional Irregular Shape Packing

Problem . 13
2.3 Combination of discrete and continuous variables in evolutionary algorithms . . . 15

3 Proposed Methods 17
3.1 Greedy algorithm . 17
3.2 Reversible algorithm . 18
3.3 Evolutionary algorithm . 20

3.3.1 Chromosome representation . 20
3.3.2 Fitness function . 21
3.3.3 Solution feasibility . 22
3.3.4 Generation of the initial population . 23
3.3.5 Parent selection and offspring generation 25
3.3.6 Crossover . 25
3.3.7 Mutation . 31
3.3.8 Population update . 33
3.3.9 Termination criteria . 33

4 Implementation 37
4.1 Technology and geometric checks . 37
4.2 Visualization . 38
4.3 Code availability . 41

5 Joint Problem Dataset 42
5.1 Context, Goals and Design Principles . 42
5.2 Description and Analysis of the problems . 44

6 Parameter Configuration and Optimization 57
6.1 Motivation and Goals . 57
6.2 Greedy algorithm . 57

6.2.1 Experimental Methodology . 57
6.2.2 Results and Discussion . 58

6.3 Reversible algorithm . 60
6.3.1 Experimental Methodology . 60
6.3.2 Results and Discussion . 61

6.4 Evolutionary algorithm . 62
6.4.1 Experimental Methodology . 62

6.4.1.1 General comments . 62
6.4.1.2 Generation of the initial population 63
6.4.1.3 Parent selection and offspring generation 64
6.4.1.4 Crossover . 65
6.4.1.5 Mutation . 65
6.4.1.6 Population update . 66
6.4.1.7 Termination criteria . 66

5

6.4.2 Results and Discussion . 67

7 Experimental Comparative Analysis of the Proposed Methods with the Joint
Problem Dataset 70
7.1 Experimental Methodology . 70
7.2 Results and Discussion . 70

7.2.1 Solution Quality Analysis . 70
7.2.2 Time Analysis . 73

8 Experimental Analysis of the Applicability of the Proposed Methods to solve
a traditional Packing Problem 78
8.1 Contextualization and Experimental Methodology 78
8.2 Analysis of the Packing Problem Dataset . 79
8.3 Results and Discussion . 79

9 Conclusions and Future Work 85
9.1 Main Conclusions . 85
9.2 Possible modifications for the evolutionary algorithm applied to the Joint Problem 86

9.2.1 Multi-item placement specialization in the generation of the initial popu-
lation . 86

9.2.2 Nested movement and rotation of compound polygons and the items placed
in their holes . 87

9.2.3 Self-evolution of parameters . 88
9.3 Possible modifications for the evolutionary algorithm to apply it to other problems 88

9.3.1 Area Minimization Packing Problem . 88
9.3.2 Three-Dimensional Irregular Shape Packing Problem combined with the

Knapsack Problem . 89
9.4 The Optimality Goal . 90

A Appendix 96
A.1 Pseudo-code of the reversible algorithm . 96
A.2 List of parameters of the evolutionary algorithm 99
A.3 Secondary tables of Parameter Optimization . 100

A.3.1 Greedy algorithm . 100
A.3.2 Reversible algorithm . 103
A.3.3 Evolutionary algorithm . 105

A.4 Visualization of the best solutions of the evolutionary algorithm for the Joint
Problem Dataset . 107

A.5 Visualization of the best solutions of the algorithms for the Packing Problem
Dataset . 112

6

List of Algorithms

Greedy algorithm 17
1 Greedy algorithm . 19

Evolutionary algorithm 20
2 Initial population generation . 24
3 Parent selection . 26
4 Offspring generation . 27
5 Crossover . 30
6 Mutation . 34
7 Surviving population selection . 35
8 Evolutionary algorithm . 36

Reversible algorithm 96
9 Reversible algorithm . 96

List of Figures

Implementation 37
1 Example problem in its initial state. 39
2 Possible solution for an example problem. 40

Joint Problem Dataset 42
3 Initial state of Problem 1. 45
4 Optimal solution of Problem 1. 45
5 Initial state of Problem 2. 46
6 Optimal solution of Problem 2. 46
7 Initial state of Problem 3. 47
8 Optimal solution of Problem 3. 47
9 Initial state of Problem 4. 48
10 Optimal solution of Problem 4. 48
11 Initial state of Problem 5. 49
12 Optimal solution of Problem 5. 49
13 Initial state of Problem 6. 50
14 Optimal solution of Problem 6. 50
15 Initial state of Problem 7. 51
16 Optimal solution of Problem 7. 51
17 Initial state of Problem 8. 52
18 Optimal solution of Problem 8. 52
19 Initial state of Problem 9. 53
20 Optimal solution of Problem 9. 54
21 Initial state of Problem 10. 54
22 Optimal solution of Problem 10. 55

7

Experimental Comparative Analysis of the Proposed Methods with the Joint
Problem Dataset 70
23 Fitness evolution in the evolutionary algorithm. 73
24 Value evolution in the greedy algorithm. 74
25 Value evolution in the reversible algorithm. 75
26 Task time division in the evolutionary algorithm. 76
27 Task time division in the greedy algorithm. 76
28 Task time division in the reversible algorithm. 77

Experimental Analysis of the Applicability of the Proposed Methods to solve a
traditional Packing Problem 78
29 Task time division in the greedy algorithm. 82
30 Task time division in the reversible algorithm. 83

Appendix 96
31 Best algorithmic solution for Problem 1. 107
32 Best algorithmic solution for Problem 2. 107
33 Best algorithmic solution for Problem 3. 108
34 Best algorithmic solution for Problem 4. 108
35 Best algorithmic solution for Problem 5. 109
36 Best algorithmic solution for Problem 6. 109
37 Best algorithmic solution for Problem 7. 110
38 Best algorithmic solution for Problem 8. 110
39 Best algorithmic solution for Problem 9. 111
40 Best algorithmic solution for Problem 10. 111
41 Best algorithmic solution for “Circles in circle”. 112
42 Best algorithmic solution for “Triangles in circle”. 112
43 Best algorithmic solution for “Squares in circle”. 113
44 Best algorithmic solution for “Circles in triangle”. 113
45 Best algorithmic solution for “Triangles in triangle”. 114
46 Best algorithmic solution for “Squares in triangle”. 114
47 Best algorithmic solution for “Circles in square”. 115
48 Best algorithmic solution for “Triangles in square”. 115
49 Best algorithmic solution for “Squares in square”. 116

List of Tables

Joint Problem Dataset 42
1 Statistics of the Joint Problem Dataset. 56

Parameter Configuration and Optimization 57
2 Solution value of the iteration configurations of the greedy algorithm. 60
3 Solution value of the iteration configurations of the reversible algorithm. 62
4 Solution value of the evolutionary algorithm variants. 69
5 Execution time of the evolutionary algorithm variants. 69

8

Experimental Comparative Analysis of the Proposed Methods with the Joint
Problem Dataset 70
6 Solution value of algorithms in the Joint Problem Dataset. 71
7 Execution time of algorithms in the Joint Problem Dataset. 74

Experimental Analysis of the Applicability of the Proposed Methods to solve a
traditional Packing Problem 78
8 Statistics of the Packing Problem Dataset. 79
9 Solution value of algorithms in the Packing Problem Dataset. 80
10 Execution time of algorithms in the Packing Problem Dataset. 82

Appendix 96
11 Solution value of the weight configurations of the greedy algorithm. 101
12 Execution time of the weight configurations of the greedy algorithm. 102
13 Execution time of the iteration configurations of the greedy algorithm. 103
14 Solution value of the probability configurations of the reversible algorithm. . . . 103
15 Execution time of the probability configurations of the reversible algorithm. . . . 104
16 Execution time of the iteration configurations of the reversible algorithm. 104
17 Solution value of the population size configurations of the evolutionary algorithm. 105
18 Execution time of the population size configurations of the evolutionary algorithm.105
19 Solution value of the offspring size configurations of the evolutionary algorithm. . 106
20 Execution time of the offspring size configurations of the evolutionary algorithm. 106

9

1 Introduction

The Knapsack Problem and the Packing Problem are two well-known optimization problems
(BV04). In both cases, different objects (also called items) must be selected to be placed in a
container, among a set of possible objects. In the Knapsack Problem, each item is described by
its weight and value, and the objective is to maximize the value of the objects placed inside the
container, without exceeding its weight capacity. The most common version of the problem is
the 0/1 Knapsack Problem (MPT99), in which each object can be added to the container just
one time or none, as opposed to the Bounded Knapsack Problem (Pis00) and the Unbounded
Knapsack Problem (APR00), that allow items to have, respectively, a fixed maximum or un-
limited number of occurrences in the container. In the Packing Problem, both the objects and
the container are defined by their geometric shape, and the goal can differ depending on the
particular application, with the common constraint that objects should not overlap with each
other nor with the container. In some cases, the objective is to place the items maximizing the
percentage of the area (or volume) of the container covered with objects (JG98). Alternatively,
fitting a certain set of objects in the smallest possible area or volume can be the intended goal
(HK13). Theoretically, the objective can also be the maximization of the number of items placed
in the container.

In real world situations, for instance in the field of logistics, it can be very useful to consider all
the characteristics of the two problems (value, weight and shape of the objects and the container)
in a single problem. The following example illustrates a feasible scenario in which the constraints
and objectives of both problems intersect in a natural way. Consider a transportation company
which needs to freight a set of objects from one location to another inside the container of a lorry.
The container has a particular shape that cannot be altered, and a maximum weight; surpassing
this limit would make the vehicle’s movement more difficult or even impossible. The objects to
transport are solid, and therefore cannot be placed in the container overlapping with each other,
nor with the container’s bounds. Each item has a measurable weight and can be assigned a value
using a certain function chosen by the company, e.g. considering only the monetary value of
the item, adding a weight based on the scheduled delivery quickness, or taking into account any
other strategic variables. The objective of the company is to fill the container with objects to
maximize the transported value, respecting all the mentioned conditions. In this context the
items are defined with three-dimensional shapes, and gravity is an additional constraint, since
objects cannot float. Further constraints may be considered, such as vehicle stability or object
fragility, e.g. limiting the weight that can be placed on top of an object. When attempting to
solve this problem, and particularly to check if object overlapping takes place in a candidate
solution (which would make it invalid) it is required to apply an intersection check between three-
dimensional models (Ros08), considering that models are represented as polygon meshes, usually
as triangle meshes for efficiency. This operation is substantially complex in computational terms,
especially if there are many objects made up of many polygons, and this calculation may need
to be repeated many times when attempting to solve the Three-Dimensional Packing Problem,
and any variation that introduces weight and value constraints from the Knapsack Problem.
For simplicity, many attempts to solve the Packing Problem simplify the shapes of the objects
and the container to some that allow trivial intersection checks, such as rectangular cuboids
(MPV00) or spheres (SWM08).

In other scenarios, the objects can be treated as two-dimensional shapes. Some works assume
regular shaped objects for simplicity or domain-specific convenience, such as rectangles (HK13)
and circles (CS03). A less restrictive subclass of the Packing Problem is the Two-Dimensional
Irregular Shape Packing Problem (CFLR03), in which both the objects and the container are
two-dimensional geometric shapes, which may comprise not only regular shaped objects, but

10

also polygons of arbitrary shape, either convex or concave. There are many applications of this
problem (Gom13), such as layout design and marker making in the textile and garment industry
(DM96; DRG19), furniture and shoe designs robust to defective outlines of pieces (HL95), or
the design of high precision tools (GO02; MOGF07). In fields of application including but not
limited to the mentioned ones, it seems reasonable to think that being able to add a notion
of weight and value to the packed objects may allow to enrich the definition of the optimal
objectives to be satisfied. For instance, when designing a tool in a factory, some of the pieces
that compose the tool may be essential to make it functional, and therefore they would deserve
higher value than other pieces. At the same time, each piece contributes with its weight to the
total weight of the tool, that should be upper-limited to make feasible its intended use, e.g. in
hands of a human or manipulated by a machine.

A modified version of the Packing Problem which incorporates the weight constraints and
value maximization objective of the Knapsack Problem seems to have potential applicability
to help refine some industrial processes, as explained in the previous paragraph. These cir-
cumstances have motivated to explore the problem in this work, where it is referred to as the
joint problem of the Packing Problem and the 0/1 Knapsack Problem. Particularly, this work
is focused on solving the variant of the joint problem in which the shapes of the objects are
two-dimensional and irregular polygons are admitted, that is, the joint problem of the Two-
Dimensional Irregular Shape Packing Problem and the 0/1 Knapsack Problem (Joint Problem
hereinafter). Nevertheless, the aim of this work is not limited to design and implement an al-
gorithm for solving the problem, but also to analyze the time performance and the quality of
the solutions produced by the new methods, in a set of meaningful problem instances partially
extracted from real-world challenges. An initial hypothesis of this work was that being able to
solve the two-dimensional version of the joint problem may facilitate, in future work, the design
of a solution for three-dimensional variant, which is potentially much more computationally
expensive, but would add applications of use, e.g. in the aforementioned logistics scenarios.

The Joint Problem is defined as follows. Consider a set of n objects, each of them defined by
their geometric shape s, weight w and value v. The objective is to place a subset of those objects
in a position p with a rotation angle r within a container, defined by its shape S and highest
acceptable weight W, maximizing the container’s value V (defined as the sum of the value of the
contained objects) and without any overlap (geometric intersection between different objects
or items and the container). Let x be binary variable representing the presence (1) or absence
(0) of an item in the container, and consider intersect to be a binary function that returns 1 if
two items intersect and 0 otherwise, given the parameter values of shape, position and rotation
angle (an unspecified position value is treated as a (0, 0) coordinate while an omitted angle is
replaced with 0; both circumstances are applied for the container, that does not ever need to
move or rotate). The value function V to maximize and the problem constraints are formalized
as follows:

maximizeV(x, p, r)=

n∑
i=1

vixi :

n∑
i=1

wixi ≤W,xi ∈ {0, 1},
n∑

i=1

xi · intersect(si, pi, ri, S) = 0,

n∑
i=1

n∑
j=1,j 6=i

xi · xj · intersect(si, pi, ri, sj , pj , rj) = 0

(1)

Since the objective function does not have a derivative (neither in the two separate problems
nor in the joint one), gradient-based approaches should be discarded for solving the Joint Prob-
lem. Instead, a black-box function optimization method can be useful (BB13), and evolutionary
algorithms (ES+03), e.g. genetic algorithms, are well-known to be very competitive in derivative-
free optimization problems (OD94; HQL94), with greater capabilities to surpass local optima

11

than alternative methods (SD08). Therefore, the goal of this work is to define an evolutionary
algorithm for solving the Two-Dimensional Irregular Shape Packing Problem combined with the
0/1 Knapsack Problem (the Joint Problem). Previous works have shown that promising results
can be obtained when using evolutionary algorithms, especially genetic algorithms, in both the
Packing Problem (CFLR03; JPSP14) and the Knapsack Problem (ZT98; Jas02) separately, but
to the knowledge of the author of this work there is no existing approach that solves the Joint
Problem. The new problem should not be confused with the Two-Dimensional 0/1 Knapsack
Problem (DVDQMX12), solved with a greedy algorithm with local search, where objects defined
by certain irregular shape and value need to be placed into a container, to maximize the total
value. Such problem does not present a notion of weight for the container or the items, while
the Joint Problem incorporates weights and the container’s capacity constraint. Furthermore,
the value of objects in the preexisting problem is simply the area of the items, while in the
Joint Problem the value is a completely independent variable. Combining both the Knapsack
Problem and the Packing Problem leads to a rather uncommon situation in evolutionary algo-
rithms: there are both discrete and continuous variables in the same problem. The discrete data
is the binary presence or absence of items in the container, whilst their position coordinates and
rotation angle are real-valued, continuous data, represented with limited-precision floating-point
numbers.

Prior to proposing an algorithm to solve the Joint Problem, previous works were studied,
namely those using evolutionary algorithms to solve each problem separately, i.e. the Two-
Dimensional Packing Problem and the 0/1 Knapsack Problem. The approaches used by other
works to handle the presence of both discrete and continuous variables in evolutionary algorithms
were also analyzed. The study of previous work is presented in Chapter 2. Since the Joint
Problem contains variables that operate non-trivially in the continuous space (position and
rotation of non-overlapping geometric shapes), finding a global optimum solution of the problem
seems computationally unfeasible. Based on this fact, and considering the lack of literature about
the Joint Problem, other algorithms were designed to be able to assess the solution quality
and the time efficiency of the evolutionary algorithm, in a comparative way. In particular,
the additional methods are are a greedy algorithm, formulated with the will to approximate
solutions easily following a best-first approach, and a reversible algorithm, which combines
random decisions with the possibility to restore the solution to a previous state if experimental
changes do not lead to improving the quality of the solution after some time. These techniques
constitute, with the evolutionary algorithm, the proposed methods analyzed in Chapter 3, while
an overview of the implementation can be found in Chapter 4. The techniques are applied to
solve a set of problem instances that constitute the Joint Problem Dataset, described in Chapter
5, and used to optimize the configuration of parameters of the algorithms, as detailed in Chapter
6. The final configuration of each algorithm is applied to the problems of the created dataset,
and the quality of the solution produced by each algorithm, as well as the execution time, is
compared for each problem. The methodology and results of the experiments are explained in
Chapter 7. Chapter 8 studies the applicability of the designed algorithms to solve a traditional
Packing Problem. Chapter 9 expounds the conclusions of the work, and outlines the directions
in which future work could be undertaken. The Appendix contains a list with the numerous
parameters of the evolutionary algorithm, the pseudo-code for the reversible algorithm (due to its
considerable length), secondary tables of the parameter optimization phases and visualizations
of the best solutions obtained for both the Joint Problem and the Packing Problem.

12

2 Previous Work

2.1 Evolutionary algorithms to solve the 0/1 Knapsack Problem

Many evolutionary algorithms have been designed to solve the 0/1 Knapsack Problem. One of
the most extensively used approaches is a genetic algorithm where each chromosome is encoded
as a bit string that has as many bits as items in the problem, representing the presence of
an item in the container with 1 and its absence with 0 (MA94). This approach can lead to
unfeasible solutions that exceed the capacity of the container. Therefore, it is common to use
a repair operator to correct solutions after mutation or crossover, discarding items that were
added to the container, usually by means of a greedy algorithm, until the sum of item weights is
equal to or lower than the capacity bound. Normally, the items are removed in opposite order
of profitability ratio, which is the result of dividing the item’s value by its weight (ZT98). The
objective of the 0/1 Knapsack Problem is to maximize the sum of values of the items in the
knapsack (subject to the container’s weight limit), and this can precisely be used as the fitness
function to solve the standard version of the problem (HLM96). Alternative problems with
multiple knapsacks to fill belong to the multi-objective optimization problems, as opposed to
the original 0/1 Knapsack Problem. In such cases, Pareto dominance-based fitness functions are
commonplace, with the interpretation that items belong to different knapsack niches (ZT98).

Multiple approaches use standard versions of the crossover operator, especially one-point
crossover (HLM96; ZT98; Jas02), where a random split point is selected and offspring is produced
by combining the part before the split point of the first parent with the section after the split
of the second progenitor. Two-point crossover operates in a similar way with two split points,
and has also some precedents of use for this problem (HK02). When it comes to the mutation
operator, is it usual to apply the standard binomial formulation that states that, for every bit
of the bit string, there is a certain probability that the value of the bit will be mutated, i.e.
changed from 0 to 1 or vice versa (ZT98; HK02). Some other approaches select a single bit
randomly and perform a mutation on it (HLM96), i.e. they always change one bit, instead of
performing a variable number of bit modifications (following probabilities). The technique can
be easily extended to selecting any number or proportion of bits.

The selection of parent chromosomes for recombination is usually performed using a tour-
nament strategy (ZT98), where two individuals are chosen as progenitors for new offspring,
being the ones with the highest fitness value of two pools (one per parent) of a fixed number of
randomly checked individuals of the population. In conjunction with tournament selection, it is
commonplace to use a partial replacement strategy to update the population (ZT98), in which
part of the old population is replaced by some of the new offspring, making the survival chance
proportional to fitness, e.g. by performing inverse tournament selection to discard the worst
individuals gathered in a pool, considering both the whole old population and the offspring for
selection. Regardless of the method, the fittest individual is commonly preserved by default,
applying the elitism strategy (DPAM02). A typical termination criterion in evolutionary algo-
rithms is to stop after a certain number of iterations (ZZZ06), but other criteria can be used,
such as a maximum number of recombinations (Jas02).

2.2 Evolutionary algorithms to solve the Two-Dimensional Irregular
Shape Packing Problem

In the Two-Dimensional Irregular Shape Packing Problem, items can have very different shapes
(JG98), ranging from regular-shaped objects (including but not limited to squares, rectangles,
circles and ellipses) to polygons of any convex or concave shape, and in some occasions even
compound shapes with holes. Using the original shapes in the packing solver algorithm would

13

require to define geometric intersection functions for every pair of shape types (e.g. circle with
circle, circle with rectangle, circle with polygon, and many others). The operations with the
most complex shapes are much more computationally expensive than those involving only simple
regular shapes, and for this reason it is commonplace to transform all items to an approximate
simple shape, such as a rectangle (FS75), or a set of adjacent shapes of a simple type, such
as nested rectangles (AA76), or equidistributed equal-size squares (JG98). Following the latter
scheme, if the container shape is also discretized into squares, a chromosome can be encoded
as a two-dimensional grid or matrix, where a certain value can indicate that a cell is out of the
bounds of the container (e.g. -1), another value can represent that a square is empty within the
container (e.g. 0), and other integer values, from 1 up to the number of items, can represent that
a cell is occupied by an item with a given index (JG98). This approach eliminates the continuous
nature of the position and the shape of the items, and in some scenarios a limited number of
orientations is used, e.g. 4, by allowing only 90-degree rotations (JG98), so that the problem does
not depend on any real-valued variables and is instead simplified as a combinatorial optimization
problem with finite sets of states and solutions. An alternative option is to represent shapes
with a boundary polygon (CFLR03), with the drawback that holes contained in complex shapes
will not be filled. Other approaches avoid discretizing the shapes of objects altogether, but
still discretize the position space (DRG19), by generating a set of equidistributed grid points
in the container’s space, that can be set as an object’s reference position at placement time.
The density of the grid, i.e. the distance between the points, can be dynamic, as part of the
representation of the individual. Instead of being represented by the coordinates and rotations
of objects, a chromosome can also be represented by the order in which a latter algorithm
will place the objects (JPSP14), in occasions also including as a variable the specific type of
the placement algorithm (DRG19). It is relevant to note how in these latter scenarios, the
algorithms do not explicitly describe the actual placement in the chromosome encoding, which
can anyway be processed and taken into account at a later step, e.g. during fitness evaluation.

The crossover and mutation operators can be adapted to be effective in the packing context.
When it comes to crossover, if the container space and shapes have been discretized into grid
cells (squares), a common policy is to preserve in the children the common placements of the
parents and swap the remaining regions (CFLR03), believing that the coincidence of information
in both progenitors, especially in advanced generations, is a sign of potentially useful genetic
data that should be passed to the offspring. This technique requires further adjustments to
preserve solution feasibility, such as changing the position of items that are cut in the process,
removing duplicate items and placing back the removed ones, if possible. Another possible
approach for the grid-based chromosome scenario is to randomly choose a rectangular region
for swapping (JG98), expanded to cover the area of shapes that would be cut by the initial
rectangle. Then, one of the offspring inherits the items contained in the swap region in the first
parent, and the items lying in the external zone and the second parent (except those that would
cause an overlap). Afterwards, the opposite procedure is done to generate a second offspring.
As in the previous case, this technique also requires to check for duplicate and missing items.
For chromosome representations that encode the order in which another algorithm will place
items, the usage of discrete recombination (choosing the value of one parent or another for every
gene of an offspring) has been reported (DRG19), after being used in evolutionary techniques
such as the Breeder genetic algorithm (SVM93).

Explored options for mutation, in those cases in which chromosomes directly encode place-
ment information, include randomly selecting a placed item and moving it to an arbitrary
position (JG98; CFLR03), randomly altering the rotation of an item (JG98), or swapping the
positions of two randomly selected items (JG98). In some cases, mutations are only applied
(confirmed) after ensuring that the new configuration does not cause any overlap, and attempt-

14

ing to solve intersecting cases with further changes in the position or rotation angle of items
(JG98). Some works which use a representation of chromosomes that encode the order of item
placement instead of actual positions report the usage of integer mutation (DRG19) to change
the order of items, i.e. modify the integer index of a gene.

New operators have been designed in the context of the Packing Problem to attempt to
make algorithms converge faster to high-quality solutions. A noteworthy case is the compaction
operator (JG98), that aims to reduce the empty space between objects by moving all of them
towards a corner of the container, until they become in contact with one another. In discrete,
e.g. grid-based representations, there are a finite number of displacements of an object, but
when the position space is continuous some optimizations are used, such as using binary search
to check intervals of displacement when moving an item in a direction (CFLR03), to delimit the
zone in which the moved object would intersect with other items; both ends of the interval need
to be checked to overcome situations in which there is an intersection at one of them, but not
in the other one.

The usage of fitness proportional parent selection and tournament-based population update is
widespread (JG98; JPSP14), as in the case of the Knapsack Problem, and many other problems
approached with evolutionary algorithms, mainly genetic algorithms. Elitism is commonly used
(JG98; JPSP14), to guarantee that the best solution (in terms of the fitness function) found up
to any time is preserved until a better one is found, promoting exploitation. The algorithm is
stopped at a termination condition, e.g. after a maximum running time (JPSP14) or a certain
number of generations without improvement in the fittest individual (CFLR03).

2.3 Combination of discrete and continuous variables in evolutionary
algorithms

In most scenarios covered in the literature, evolutionary algorithms are applied to problems
where all the variables, codified as genes of the population’s chromosomes, belong to the same
data type. Some of the most common data types used to represent genetic information are
sequences of binary values (also known as bit strings), discrete (integer, ordinal or nominal)
values, or continuous (real, floating-point) numbers. Nevertheless, some problems solved with
evolutionary algorithms have been reported to contain variables of different data types. There
are two main ways in which this situation has been handled. The first option is to convert all
data into a common representation type prior to using the evolutionary algorithm, whilst the
second option is to design an evolutionary algorithm that is capable of processing a genome with
multiple data types, using the appropriate (different) operators and adjustments in a specialized
way for every variable type.

In the data conversion scenario, the more complex types are usually transformed into the
simplest type among all the data types in the problem, or even the simplest possible represen-
tation, that of bit strings (For93). Nominal data is usually converted into one-hot-encoding bit
strings, with the same length as possible categories, having a single bit with the 1 value, in the
index associated to a specific category. Ordinal data is usually converted into integers. Integer
values are often transformed into bit strings by shifting from the decimal to the binary base.
Such method can increase the range of values in the binary version of the number, which may
require additional validation checks and a repair operator to ensure that a candidate solution
is feasible (MBM03). It is common to see how real-valued variables are discretized into inte-
ger values or directly transformed into bit strings. A range mapping operation is applied to
floating-point values, such as fixed-point integer encoding (BGB10), that defines a lower and
higher bound of the floating point range and an exponent that determines the number of bits to
use and the maximum attainable precision, which should be chosen carefully to ensure that the

15

algorithm is able to successfully obtain an optimal solution, or an approximation that is very
close. Another issue related with the conversion of numeric values into bit strings is that the
difference between adjacent numeric values is magnified or reduced in a non-linear way in their
bit representation, which can make mutation less effective, by causing much larger or smaller
changes than desired. Instead of converting numeric values to their standard bit representa-
tion, many approaches use Gray coding (Wri91) instead, a technique that produces bit strings
with the property that a single variation in one bit yields a 1-unit integer difference. Alter-
natively, direct truncation or rounding of real values can be applied to obtain integers, which
imply an obvious loss of precision, but it has been shown that it can be effective to use the
output individuals of the genetic algorithm that used the rough discretization of variables as a
starting (initialization) point for the population of a second variation of the algorithm that only
considers the real-valued variables, and can eventually find a more precise, closer-to-optimal
solution (SNB98). Of course, such an approach implies the execution of two algorithm runs,
which may increase the total computation time, even though the overhead is mitigated by the
fact that only some variables are used in each of the two runs. When real-valued variables are
discretized into integers, or when variables are integers themselves, some approaches use local
search to explore in more detail areas of the search space that seem promising according to the
fitness function value, simulating Lamarck’s evolution ideas (Ros99). Other approaches, also for
numeric variables, use binary trees as a memory that stores past results that may be expensive
to obtain (e.g. some fitness function calculations), so that each newly generated chromosome
is compared with those in the memory tree (in a very inexpensive way due to tree balancing);
if a very similar individual is found (according to a threshold of difference), its calculations are
reused or extrapolated for the new chromosome (GACGW03).

When the different variable types are kept at genome level, it is the task of the evolutionary
algorithm to process each type of variable in the appropriate way, by defining operators that
are specific for each of them. For instance, when evolving a population of fuzzy rule-based
systems, two different crossover operator should be applied for the recombination of membership
functions and that of fuzzy rules (RGP+01), since their data representation is potentially very
different; while the former can be stored as a function type with some real-valued parameters,
the latter may be defined as a matrix structure. Other works contain a great variety of variable
types as genes and perform different mutations for each of them (CJW00), including uniform
random variation for binary variables, single-unit or multi-unit displacement for integers and
Gaussian noise addition for continuous variables. Nevertheless, the possibility of using different
versions of an operator, e.g. mutation, is not limited to the multi-type genome scenario. Even
with genes of the same data type, multiple mutations, recombinations or other operators can be
considered. A very intuitive case is that of having a different probability distribution or strength
(magnitude) of mutation for different variables, depending on their domain. Other approaches
consider different versions of an operator for a same gene, or artificially lead to modify the worst
gene (from the point of view of the fitness function or another specific evaluation) with higher
likelihood, in some cases estimating which is the best mutation among different alternatives
(HAAN+16).

16

3 Proposed Methods

3.1 Greedy algorithm

The greedy algorithm adds items to the container, one by one, until any of the following termi-
nation conditions are met:

• All the items have been placed, if that is feasible.

• The capacity of the container has been exactly reached, or all the remaining items would
lead to exceeding the capacity.

• It has not been possible to place any item (without overlapping) for a certain number of
consecutive iterations.

• A maximum total number of iterations have been performed.

In each iteration, the algorithm selects an item from outside the container in a stochastic way.
In particular, the selection probability of an item is proportional to a function that takes as
parameters the value, weight and area of the item, to calculate a numeric score representing
the suitability of choosing the item for placement: the higher the score, the more suitable the
item. Any function respecting the definition can be used, and changing from one to another
would affect the greedy policy of selection. Intuitively, the function should reward items with
high value, since maximizing the value of the container is the ultimate objective, and penalize
the weight and area, that are two finite resources in the container that constraint the feasibility
of candidate solutions. In some contexts of application, it may be interesting to give much more
importance to the value than anything else, while in others the relation of the value, weight
and area should be a priority. For this reason, a flexible function to calculate the greedy score
of an item is the weighted sum of the value and the ratio defined by dividing the value by
a weighted version of the product of the item’s weight and the area of its shape. Let v, w
and a be the value, weight and area of the item, respectively. Consider Kv as a constant that
expresses the importance of the value of the item alone compared to the previously mentioned
ratio. Given the constraint 0 ≤ Kv ≤ 1, a value of Kv close to 0 implies that the ratio is more
relevant to calculate the score, while a value of Kv close to 1 gives more importance to the value
exclusively, decreasing the influence of both weight and area. Let Ka be a constant specifying
the importance of the area in the ratio, such that 0 ≤ Ka ≤ 1. The specific value of Kv and Ka

can be fixed in the specific context of application. Then, a greedy score function G for an item
can be formally defined as:

G(v, w, a) = Kv · v + (1−Kv) · (v / ((1−Ka) · w +Ka · a)) (2)

The selection algorithm associates items with adjacent ranges of values with the length of their
greedy score, and then a random value between 0 and the sum of ratios is chosen. Afterwards,
binary search, a technique with logarithmic computational complexity, is used to find the item
with the range of values that contains the random number. The item is subsequently selected,
and assigned a random position and rotation to be placed in the container. If it causes any
intersection with other items or the container, the addition of the object is discarded. Every
time an item is validly placed in the container, and also prior to the first iteration, the objects
whose weight would make the container exceed its capacity are discarded permanently, so that
they are not even checked in later iterations. To make this task efficient, the items are sorted by
ascending order of weight at the beginning of the algorithm, so that binary search can be used
to find the first item that would cause the capacity to be exceeded, and discard it, along with

17

all the following ones. A pseudo-code of the greedy algorithm is represented in Algorithm 1.
Section 3.3.1 explains in detail the common data structures used to represent the container, the
items and the solution of a problem, in the greedy algorithm and the rest of methods presented
in this work.

The described algorithm is considered to be greedy because of two reasons. Firstly, once the
algorithm has placed an item in the container it will never remove it or modify its position or
rotation. Secondly, the algorithm is prone to prioritize attempting to place items that provide
the greatest short-term gain, in terms of the greedy score, e.g. a remarkable addition in value
with a low increase in the container’s weight. However, the item selection was made stochastic,
without using a deterministic order for item placement, because as soon as one of the items (the
next one given the order) is very difficult to place, many iterations would take place without
any success in placements (therefore not improving the solution), even if a maximum number of
attempts per item is defined. Placing some items can be even impossible in some problems, due
to their shape and the container’s shape, and it is not trivial to detect these cases beforehand,
unless the item’s area is larger that the container’s area. Therefore, it was considered that it
was more appropriate to make the item selection process stochastic. Nevertheless, the greedy
score formula is flexible enough to intensify the importance of the value of the items alone (using
a weight), to make the algorithm more likely to place items in descending order of value.

In some problems, the solution quality of the greedy algorithm can potentially have a lot
of variance from one execution to another, due to the non-deterministic order in which items
are placed. It may frequently happen that the algorithm is unable to place some items because
there is no space left for them due to how previous objects were arranged. Therefore, it can
be interesting to apply an iterated greedy algorithm, i.e. run the base algorithm for a certain
number of iterations, and keep the solution with the highest value as the final one. For greater
efficiency, the iterated version of the greedy algorithm performs some preliminary operations
just once, to later reuse the result in each iteration. These tasks include the calculation of the
greedy score for all items, the weight-based sorting and the discarding of items whose weight is
greater than the capacity of the empty container. In hypothetical contexts of application where
it is possible to estimate the optimal value for a problem beforehand, it may be a good idea to
stop the algorithm as soon as the optimal or a close-to-optimal solution is obtained.

3.2 Reversible algorithm

The reversible algorithm has the same termination conditions as the greedy algorithm, but it
has different criteria to select which object is added into the container in a certain iteration:
it performs a uniformly (non-weighted) random item selection. This choice can diversify the
exploration in the search space of placements, at the cost of not exploiting the short-term
benefits of a greedy score-based criterion which, conversely, can constraint the long-term quality
of the solution. The reversible algorithm introduces the possibility of removing a randomly
selected item in an iteration with a certain (small) probability. It is obvious that the removal
operation decreases the total value of the container, but it brings the opportunity to explore
different regions of the search space, hoping to improve the value after some iterations. However,
to ensure that there is not a global, long-term decrease in the value of the container, the solution
prior to removing an item is reverted after a certain number of iterations if the removal has not
led to an eventual improvement in the container’s value. Before a recent removal is reverted or
permanently accepted, more items can be removed, but with a significantly lower probability;
otherwise it can be unlikely that enough placements will be done to increase the value to a
sufficient extent as to improve the container’s value and preserve the changes. To mitigate the
possibility that an item becomes placed again soon after being removed, it can be ignored until
the latter examination of the removal (to revert or accept it), with a certain probability. The

18

Algorithm 1: Greedy algorithm

Input : container /*Container, described by its shape and maximum weight*/,
items /*List of items, described by their value, weight and shape*/,
max iter num /*Maximum number of iterations*/,
converge iter num /*Number of consecutive iterations to stop the
algorithm if there are no placements*/

Output: solution /*Solution, describing a placement of items in the container*/
/*Create an initial solution with no placements, to be modified*/1

solution← create solution(container, items);2

/*Calculate the greedy score for all items*/3

items with score← calculate greedy score(items);4

/*Sort the items by weight, to make filtering faster*/5

items by weight← sort by weight(items with score);6

/*Discard the items whose weight is greater than the container’s capacity*/7

items by weight← filter items(items by weight, container.max weight);8

unchanged iter count← 0;9

/*Placements can only be possible with capacity and valid items*/10

if container.max weight > 0 and items by weight 6= ∅ then11

/*Try to add items to the container, for a maximum number of iterations*/12

for i← 1 to max iter num do13

/*Perform a weighted random choice of the next item to try to add*/14

item← select item(items by weight);15

/*Try to place the item in the container, with random position and rotation*/16

if solution.add item(item.index, get random position(container.shape),17

get random rotation()) then18

/*Determine the weight that can still be added*/19

remaining weight← container.max weight - solution.weight;20

/*Stop early if the capacity has been exactly reached*/21

if remaining weight== 0 then22

break;23

/*Remove the placed item from the list of pending items*/24

items by weight.pop(item.index);25

/*Discard the items whose weight is greater than the capacity*/26

items by weight← filter items(items by weight, remaining weight);27

/* Stop early if there are no items remaining or they would cause the capacity28

to be exceeded*/
if items by weight== ∅ then29

break;30

/*Reset the potential convergence counter, since an item has been added*/31

unchanged iter count← 0;32

else33

/*Register the fact of being unable to place an item this iteration*/34

unchanged iter count← unchanged iter count+ 1;
/*Stop early if there have been too many iterations without changes*/35

if unchanged iter count== converge iter num then36

break;37

19

reversible algorithm can also randomly rotate or move (to another point of the container) a
randomly selected object according to a specific probability. Such kind of changes are only
applied if they do not generate shape overlapping. Analogously to the removal case, these
modifications are motivated on the hypothesis that they may lead to an improvement of the
value after some iterations, but they do not directly affect the container’s value, that remains
unchanged, and therefore it is unnecessary to define any reverting operation for movements or
rotations. A pseudo-code for the reversible algorithm is represented in Algorithm 9, split in
consecutive pages due to its considerable length, that has motivated placing the pseudo-code in
the Appendix, to avoid introducing a long break in the sections of this chapter.

The reversible algorithm’s strategy of conditional changes that can be reverted if proven
useless is very different to that of the greedy algorithm, that cannot change poor decisions
after making them. Nevertheless, it can be argued that when a solution is reverted, all the
work done since the last removal has been in vain, or only to confirm that a certain direction
for exploration was not convenient. Conversely, all the steps made during the execution of
the greedy algorithm contribute to the final solution, excluding the cancelled additions that
would have caused intersections. The reversible algorithm can be seen as an attempt to emulate
(in a non-literal way) some mechanisms of an evolutionary algorithm in a single individual,
without any notion of crossover, and understanding mutation as all the possible actions that
change a solution: addition of items, removal and modification of placements. There is no
actual competition for survival among a population of candidate solutions, but some time after
removing an item, there is a small selection among two solutions, the one before the removal
and the current one: the one with the highest container’s value (which can be seen as the fitness
value) is preserved.

3.3 Evolutionary algorithm

3.3.1 Chromosome representation

The function to maximize in the problem, V, is the sum of the values of the items placed in the
container. The shape, value and weight of all items, as well as the capacity and the shape of
the container, are constant values, i.e. they do not change from one solution to another in the
same problem. Therefore, it would be redundant to encode such data in the chromosomes of
the evolutionary algorithm. Instead, the set of items which have been placed in the container
can be used to describe a candidate solution; their placement information, namely the position
and rotation of every placed item, is also essential to fully specify an individual.

Therefore, a chromosome is represented as a variable-length data structure which contains
one data unit associated to every item placed in the container. For simplicity the data structure
may be thought of as a list, but in practise it is a hash table indexed with an integer value, the
object’s identifier, comprised between 1 and the total number of items. An identifier is assigned
to every item before any main action of the algorithm is performed. The hash function, that
receives an identifier as a parameter, simply returns that identifier, so it cannot generate colli-
sions, because identifiers are unique. Every element in the hash table represents the placement
information of the associated placed object. This information can be represented in two ways.
For most objects, it is a pair of values describing the following aspects of the placement:

1. Reference position of the item in the container, expressed as a vector of two real values,
the width and height coordinate, respectively.

2. Rotation angle of the item in the container, greater than (or equal to) 0 degrees and lesser
than 360.

For some object shapes, namely circles, the rotation is irrelevant, because it does not change
the covered space in the container. In these cases, the placement information of an object stored

20

in the hash table contains a single real number, the reference position.
The reference position coincides with the center of the object for simple regular shapes (e.g.

rectangles and circles). In the case of more complex shapes (e.g. polygons), the reference
position is the center of the bounding rectangle of the shape for the 0-degree rotation angle,
and it is used as the origin point for rotations. The motivation to fix this point as the bounding
rectangle’s center for the 0-degree case and not recalculate it for every rotation guarantees that
all rotations keep the reference point in the same position, even if the bounding rectangle does
not coincide for different angles of rotation, therefore altering its center. For the shapes in
which the reference position is inside the geometry of the shape, the point should always be
inside the container. To avoid calculating if the container contains the point, this requirement
can be simplified to ensuring that, when placing or moving an item, the reference position lies
in the range defined by the container’s rectangle bounds, i.e. the coordinates of its leftmost
and rightmost points for the horizontal axis, and the lowest and highest values for the vertical
axis. However, for some shapes, such as compound polygons with holes, the reference point
may not be part of the geometry, and it should not be discarded to place the shape in a way
that makes the reference position be outside the container. As a limitation for the values of
the reference point in the latter scenario, it is fixed that, if the reference position lies outside
of the container in the potential placement of a shape in the container, at least one point of
the bounding rectangle of the shape should be inside the container. In any case, and regardless
of the reference point, no placement of a shape in the container is confirmed until a validation
check guarantees that there is no intersection between the new item and the container or any
other placed item, and analogous checks are used when moving an item that was already in the
container.

The reason to represent the chromosome with a hash table instead of using another data
structure, e.g. a list, is based on performance optimization. The algorithmic complexity of
adding or removing an element from a hash table is O(1), which is a significant improvement
over the linear or logarithmic complexity of other data structures. Searching an item or checking
whether it is already placed in the container hasO(1) complexity too. Due to the trivial nature of
the hashing function, it does not introduce overhead. Although it is not part of the chromosome,
an immutable hash table which associates all the object identifiers to their constant information
(shape, weight and value) is also generated at the beginning of the problem, to allow immediate
retrieval of the data of any item of the problem.

The chromosome representation defined for this algorithm does not encode candidate solu-
tions using approaches specific of some types of evolutionary algorithms, such as the bit-strings
commonly used in genetic algorithms. Instead, it directly operates in the domain level of the
problem, and avoids the computational cost of encoding and decoding individuals. The rep-
resentation is therefore flexible enough to be easy to adopt by non-evolutionary algorithms.
Regardless of the fact that it was originally conceived for this evolutionary algorithm, the de-
scribed representation of candidate solutions was also used in the greedy algorithm presented in
Section 3.1, and also in the reversible algorithm, explained in Section 3.2.

3.3.2 Fitness function

The fitness function yields a value of 0 if any of the Joint Problem constraints is not met, i.e.
if the capacity is exceeded or there is an overlap between items or between an item and the
container. Otherwise, when all constraints are respected, the fitness function coincides with the
objective function maximized in the Joint Problem, defined in Equation 1. The two possibilities
are formalized as follows:

21

F (x, p, r) =

V (x, p, r)

∑n
i=1 wixi ≤W, xi ∈ {0, 1},∑n
i=1 xi · intersect(si, pi, ri, S) = 0,∑n
i=1

∑n
j=1,j 6=i xi · xj · intersect(si, pi, ri, sj , pj , rj) = 0

0 otherwise

(3)

When the fitness value of two individuals is compared in the evolutionary algorithm (e.g.
during parent selection or population update, as explained in Sections 3.3.5 and 3.3.8, respec-
tively), it may happen that both chromosomes have the same fitness because their container’s
value coincides. Despite of the equality in the fitness value, it may be interesting to estimate
which of the two chromosomes is more likely to lead to better solutions in future generations,
and avoid selecting one of them in a uniformly random way. For this reason, a tie-breaking
strategy is used, based on the hypothesis that the best solution is the one with the smallest
total area (computed as the sum of the areas of the items placed in the container), since it keeps
more space free for items that have not been placed yet. The hypothesis may not be true in all
cases, depending on the characteristics of the container, the placed items, and those which are
outside of the container. Nevertheless, the criterion serves as an intuitive guideline assumed to
be true most of the times. In situations in which the total area of two compared chromosomes is
exactly equal, it may mean that the same objects have been placed in the container in the two
individuals. In such cases, the area of the tightest bounding rectangle that contains all items
is computed for both chromosomes, since an additional tie-breaking criterion sets that the best
individual is the one with the bounding rectangle with the smallest area. Even though this idea
is not guaranteed to be true in every context, it seems intuitive that a greater compaction of
objects can facilitate leaving larger free spaces for new items. If two solutions are still equal for
both tie-breaking criteria, they are considered equal in selection operations, and one of them is
chosen randomly.

It is interesting to notice that the tie-breaking criteria are not incorporated into the defini-
tion of the fitness function, but only calculated when it is necessary to break a tie in tournament
selection, which is explained in Section 3.3.5. Calculating the areas involved in the tie-breaking
criteria only for those individuals of a tournament pool which are in a tie (instead of following
the process for all individuals that opt to be selected), can be seen as an optimization of the
algorithm. Regardless of this design choice, it may be possible, if still wanted, to numerically in-
corporate the tie-breaking information into the fitness formula, if some consistency requirements
were met. Namely, a real value inversely proportional to the sum of areas mentioned in the first
tie-breaking criterion should be defined in a range of values with a minimum value greater than
0 (even if the totality of the area of the container was filled by items) and a maximum value
below the value of the less valuable item of the problem, so that the first tie-breaking criterion,
by means of its numerical contribution to the fitness value, would never be more important
than having an additional item placed in the container. Analogously, the value of the second
tie-breaking criterion should be inversely proportional to the area of the bounding rectangle of
all the placed items; the real value would be 0 if the inversely proportional area was greater
than (or equal to) the area of the bounding rectangle of the container, and otherwise it would
be lower than the minimum value of the first tie-breaking criterion, to avoid being treated as
more relevant than the previous finding.

3.3.3 Solution feasibility

The formalization of the fitness function (3) considers the theoretical possibility of having unfea-
sible individuals. However, in practise and for convenience, the evolutionary algorithm is never

22

allowed to create (from scratch or by modification) a solution which does not respect all the
constraints of the problem. In other words, solutions are either created feasible or not created.
The motivation of this policy is to avoid the need of designing a repair operator to transform
invalid solutions into feasible ones. Imagine, for instance, the hypothetical case in which the
algorithm would tolerate overlapping of items in the container, as a result of placing an object.
It would be required to perform a latter modification operation, that may include movements
and rotations for intersecting items, and additional intersection checks to determine the validity
of the solution. Such computationally expensive operations would be performed without any
guarantee of eventually finding a valid solution, unless it was possible to remove items as part
of the repair process, which would reduce the fitness value, in some cases not compensating the
value added with the placement that caused the unfeasible situation. Since the whole search
space of solutions can be eventually explored without producing invalid solutions at any time,
unfeasible situations are simply prevented.

3.3.4 Generation of the initial population

The initial population of the problem is generated executing a random placement algorithm
for each individual to create. Specifically, the method selects, in a uniformly random way
(except for special situations explained in next paragraph), an item that is not in the container
and would not cause to exceed the capacity, and assigns it a random position and rotation
angle. Subsequently, the algorithm checks whether the object, taking its shape into account,
can be placed into the container (with the selected position and rotation) without causing
any overlapping. If the non-intersecting condition is met, the placement is confirmed, since it
preserves the feasibility of the solution; otherwise, it is discarded. The process is repeated until
a maximum number of iterations Imax is reached, or an early termination condition is met:
there are no more items to place (discarding those that would cause the container’s capacity to
be exceeded) or the sum of item weights is equal to the container’s capacity, or a fixed number
of iterations Iconv has been performed without being able to add an object without overlapping.
It is relevant to note that the algorithm used to generate each of the initial solutions of the
population is similar to the greedy algorithm presented in Section 3.1, with the exception of not
using a greedy score to weight the probability of selecting an item (in this case the selection is
uniformly random), and also incorporating a novel specialization mechanism, explained in the
next paragraph.

The population has a prefixed size µ, which remains constant throughout generations. Gen-
erating a suitable initial population is a key step in an evolutionary algorithm. Having a wide
variety of initial solutions can boost the exploration of extensive regions of the search space, and
therefore facilitate the creation of solutions of high quality via mutations and other operators,
in the subsequent generations. Therefore, it is wanted that all items whose weight is not higher
than the container’s capacity appear at least in some of the initial solutions, to have diversity
for later exploration. Furthermore, it can be intuitively understood that if an item does not
appear in any initial solution because it is very difficult to place it (all the initial placement
attempts fail), it will be even less likely to place after some generations, when more items have
been added and there is less free space. If placing such item is essential to obtain an optimal
or close-to-optimal solution, the algorithm may not find it and converge to local optima. This
problematic scenario can be common, for instance, in problems with very large items (in terms
of area) that only fit if their reference position is placed within a very small region of the con-
tainer, and constrained to have a very restricted range of rotation angles to avoid intersections:
it is unlikely that a random placement algorithm can meet these strict requirements in a small
number of attempts. To ensure that all items have a high chance of being present in at least
one or few of the initial solutions, it is set that each of these solutions should try to place a

23

certain item (which can be called specialization item) before trying to place the rest of items
in a uniformly random way. The algorithm tries to place the specialization item for at most a
proportion S of the maximum number iterations, such that 0 < S <= 1; convergence is disabled
while that item is not placed. All items whose weight is within the capacity limit are used in
these specialized initialization procedures for the same number of initial solutions, calculated as
the truncated result of dividing the population size by the number of items whose weight does
not exceed the empty container’s capacity. If the division has a non-zero residual, the remaining
solutions to reach the initial population size µ are generated with the uniformly random scheme
for placement selection described in the previous paragraph.

Algorithm 2 presents the pseudo-code of the generation of the initial population, which is
used, calling the function ”generate population”, in the pseudo-code of the main evolutionary
algorithm, introduced in Section 3.3.9. The next sections of the evolutionary algorithm present
other parts of the main algorithm, which are also invoked via function calls in the pseudo-code
of Section 3.3.9, or in other secondary pseudo-codes.

Algorithm 2: Initial population generation (generate population)

Input : container /*Container, described by its shape and maximum weight*/,
items /*List of items, described by their value, weight and shape*/,
population size /*Size of the new population*/,
item specialization iter proportion /*Maximum proportion of iterations
to specialize in trying to place a specific item in a solution, at start*/

Output: population /*Generated population*/
/*Find the items whose weight does not exceed the container’s capacity*/1

feasible item indices←2

get feasible item indices(items, problem.container.max weight);
/*Limit the initial number of items to the population size (so that each of the kept items3

can have at least one specialization solution)*/
if feasible item indices.num() > population size then4

feasible item indices← get shuffled sublist(feasible item indices, population size);5

/*To promote the diversification of solutions in the search space, each feasible item will6

have the same number of solutions where it is tried to be insistently placed first, before
any other item, to promote that all items appear at least in some initial solutions*/
solution num per item specialization←7

truncate(population size/feasible item indices.num());
population← list();8

/*For each feasible item, initialize a certain number of solutions with that item placed9

first (if possible), then completed with other items*/
for each item index in feasible item indices do10

for i← 1 to solution num per item specialization do11

population.append(generate initial solution(container, items, item index,12

item specialization iter proportion));

/*Create as many solutions with standard initialization as needed to reach the wanted13

population size*/
remaining solution num← population size− population.num();14

for i← 1 to remaining solution num do15

population.append(generate initial solution(container, items));16

24

3.3.5 Parent selection and offspring generation

In every generation, a variable number of offspring λ′ is generated. Traditionally in evolutionary
algorithms, λ′ is equal to a constant parameter λ. Conversely, in this algorithm, it is true that
λ′ ≥ λ, i.e. λ fixes the minimum number of offspring generated (or λ + 1 individuals if λ is
odd and crossover is used, as explained later in this section). The variability is rooted in the
proposed crossover operator, which can generate additional offspring in special circumstances,
as explained in Section 3.3.6.

There are two variants of the algorithm, that generate offspring in different ways. However,
both techniques have in common that, at some point, they select individuals from the population
proportionally to their fitness, to be progenitors of new offspring. Specifically, the tournament
strategy is used, in which a pool with a fixed number Tp of individuals is randomly considered
as candidates, and the one with the highest fitness value is chosen as the tournament winner. If
there is a tie in which all the tie-breaking methods explained in section 3.3.2 fail to determine
the best individual, a chromosome is randomly selected among all the ones involved in the tie.

A Boolean parameter of the algorithm, Uc, fixes whether the usage of crossover is disabled
(which leads to the first variant of the algorithm) or enabled (which corresponds to the sec-
ond variant). The first variant of the algorithm uses mutation as the only method to generate
offspring. A total of λ individuals is chosen using the tournament strategy described in the
previous paragraph. Subsequently, each of the selected chromosomes is duplicated and the re-
sulting offspring undergoes mutation. The idea behind this variant of the evolutionary algorithm
is that mutation alone can promote all the changes needed to explore the whole search space
from an initial individual to an optimal (or close-to-optimal) solution, avoiding the additional
complexity of the crossover operator. Conversely, the second variant of the algorithm selects λ/2
pairs of individuals if λ is even, or bλ/2c+ 1 pairs if λ is odd. Crossover is applied to each pair
to create two offspring in each operation, that subsequently undergo mutation. It is interesting
to observe how the choice for the offspring generation method helps to define which type of
evolutionary algorithm is being used. On one hand, the first offspring generation technique is
focused on mutation as done in evolution strategies (BS02) and in the Breeder genetic algorithm
(SVM93), where mutation is the only (or at least main) source of variation. On the other hand,
the second variant of the algorithm is aligned with the most common formulation of genetic
algorithms (BBM93), where crossover is the main driving force of variation, while mutation is
a secondary one.

The pseudo-codes of parent selection and offspring generation can be seen in Algorithm 3
and Algorithm 4, respectively. In both cases, the two mentioned variants of the evolutionary
algorithm are considered: a parameter fixes whether crossover is used or only mutation.

3.3.6 Crossover

New offspring can be generated from a recombination of two parent individuals. In previous
works where the container space and the items were discretized into grid cells, it was reasonable
to attempt to identify broad common regions of placed items between the parent chromosomes
to pass them to offspring, assuming that they may contain useful information since it was present
in both individuals, given that they had survived and preserved that information until then.
However, in the currently proposed algorithm, the space of positions is continuous, so trying
to find strict coincidences is meaningless, even though it would be possible to attempt to work
with approximations. Nevertheless, the hypothesis that common or very similar information is
potentially beneficial is not always true, especially in the early stages of the algorithm, where
similar placements may be caused by randomness.

A different approach at recombination, proposed in this work, is to partition the container in

25

Algorithm 3: Parent selection (select parents)

Input : population /*Individuals that opt to be parents*/,
offspring size /*Number of offspring to produce*/,
pool size /*Number of individuals per tournament pool*/,
can use crossover /*Whether crossover will be used to generate
offspring*/

Output: parents /*Selected parents*/
/*If crossover will be used, pairs of parents will be selected; otherwise just one offspring1

will be generated per parent, using mutation*/
selection num← offspring size;2

if can use crossover then3

selection num← truncate(selection num/2);4

if offspring size% 2 6= 0 then5

selection num← selection num+ 1;6

parents← list();7

/*Perform parent selection*/8

for i← 1 to selection num do9

/*For crossover, parents are represented as pairs, and they cannot be the same10

individual*/
if can use crossover then11

parent0← get tournament winner(population, pool size);12

parent1← get tournament winner(population.except(parent0), pool size);13

parents.append((parent0, parent1));14

/*When there is no crossover, only mutation, parents are selected and represented15

individually*/
else16

parents.append(get tournament winner(population, pool size));17

26

Algorithm 4: Offspring generation (generate offspring)

Input : parents /*Individuals to use as parents of new offspring*/,
params /*Structure containing the numerous parameters of mutation
and crossover (not listed individually for readability)*/

Output: offspring /*Generated offspring*/
/*If there is no crossover, the parents will be the base for mutations*/1

individuals to mutate← list() if can use crossover else parents;2

/*Use crossover to generate (at least) two individuals per pair, to be mutated later*/3

if can use crossover then4

for each (parent0, parent1) in parents do5

individuals to mutate.extend(get crossover(parent0, parent1,6

params.subset(′crossover′)));

offspring ← list();7

/*Mutate the individuals to get the final offspring*/8

for each individual in individuals to mutate do9

/*If the individual has been generated with crossover, ignore mutation altogether10

with a certain probability*/
if can use crossover anduniform float(0, 1) <11

params.crossover ignore mutation prob then
offspring.append(individual);12

else13

/*Create a mutated copy of the individual*/14

mutated individual← get mutation(individual,15

params.subset(′mutation′));
/*If crossover was used and the mutated individual is less fit (or same but loses16

the tie-break), keep the pre-mutation individual with a certain probability*/
if can use crossover and is solution better than(individual,17

mutated individual)) then
offspring.append(individual);18

/*In normal conditions, keep the mutated individual*/19

else20

offspring.append(mutated individual);21

27

two regions to generate at least two offspring based on the items placed in the regions for different
progenitors, with the possibility of producing additional individuals under certain conditions, as
explained later in this section. Different geometric objects can be used as partitioning shapes,
among the following options:

1. Segment with its two endpoints placed at random points on top of two different sides of the
boundary rectangle of the container. The sides of the rectangle are randomly selected. For
each endpoint of the partitioning segment, one of the coordinates is imposed by the chosen
side of the rectangle (width if vertical, height if horizontal), while the other coordinate
is generated in a uniformly random way, lying within the range of width or height of the
container’s bounding rectangle. In practise, a segment alone is not used, but a polygon
that contains the segment and provides the same partitioning as the segment alone. If the
two selected sides of the bounding rectangle are adjacent, a right-angle triangle is used; if
the two sides are parallel, a quadrilateral is used instead. Both cases are given the same
probability to be randomly selected. A partitioning triangle has the chosen segment as
one of its three segments, while the other two lie on top of two segments of the container’s
bounding rectangle. The endpoints of the initial segment are two of the vertices of the
triangle, while the third one coincides with one of the vertices of the rectangle (the one
where the two related segments of the rectangle meet). In the quadrilateral case, the shape
also contains the partitioning segment; another segment is a randomly selected side of the
bounding rectangle of the container that is not touched by the partitioning segment, and
two additional segments (lying in two parallel sides of the bounding rectangle) connect
the already mentioned ones. The described shapes (triangle or quadrilateral) allow to
define the same partitioning regions of the container in two regions as the segment they
derives from. The motivation to use these polygons is related to the implementation
of the algorithm, since the check of whether a polygon intersects with other shapes was
already implemented, as well as the containing check; both checks are needed to determine
the separation of placed items in two regions (or intersecting between both). Using the
segment alone would have required to implement checks of whether another shape is left
or right to (or above or below of) the segment, to determine the partitioning region of the
items, so the polygon approach was preferred.

2. Geometric shape placed partially or completely within the container, with the center
and and all points lying within the boundary rectangle of the container (or being on
the segments that separate the rectangle with the exterior). One of the newly separated
regions is comprised of the area that lies inside the shape, while the other region is located
in the external area. The shape is randomly selected among the following ones:

(a) Ellipse, whose width and height are randomly calculated values, in the ranges of
a minimum and maximum width and height (respectively). The minimum and
maximum length in each axis is calculated using proportions of the side length of
the bounding rectangle of the container, L̄min and L̄max, respectively, such that
L̄min > 0, L̄max > 0, L̄min ≤ L̄max.

(b) Circle with a randomly determined radius that lies between a proportion of the hori-
zontal or vertical side length of the bounding rectangle of the container (the particular
axis is randomly chosen). The proportion of length of the selected side that deter-
mines the radius is in the range [L̄min, L̄max].

(c) Polygon with a random number of vertices, not lower than 3 (which is the triangle
case) and not greater than a fixed integer V̄c, such that V̄c ≥ 3. A polygon is generated
in such way that it does not have self-crossings or any degenerate property, and with
all points within the area of a bounding rectangle, whose dimensions are calculated

28

proportionally to the container’s bounding rectangle, using L̄min and L̄max, as done
for the previously mentioned shapes.

If the container is not rectangular (i.e. different in shape than its boundary rectangle) it may
happen that the whole partitioning shape lies outside of the actual container (or touching its
boundary but not entering in its area). If such situation is detected, an alternative shape is
generated, and the same condition is tested again; the process can be performed up to Mc times,
with Mc ≥ 1. If the final shape is still outside of the container, the crossover operator creates
a duplicate of each parent as the two generated offspring, that can be subsequently modified
with the mutation operator. Nevertheless, the situation of generating a partitioning shape that
lies completely outside of the container only has a high likelihood to happen if the area of the
container is considerably smaller than that of its boundary rectangle, or if the container is a
compound polygon with holes of large area. A shape can only be accepted if it does not have
a very small area, but large enough to make it likely to find items within that region. For
this reason, the area of the partitioning shape needs to be greater or equal than A · Ac, where
A is a fixed proportion of the container’s area (such that 0 < A < 1), and Ac is the area of
the container. If the area is smaller, the shape is considered invalid, and another attempt is
performed (if still possible). In other words, in each shape generation attempt, the algorithm
only validates a shape if it intersects with the container (it is partially inside of it) and it has
an area that is large enough.

For simplicity, the two listed partitioning alternatives have the same probability to be chosen
at a given time. Once the two regions have been defined, two offspring are generated. The
first newly created individual preserves in the first partition region all the items that were
completely contained in that region in the first parent, while placing in the other region all
the items completely contained in the analogous area of the second progenitor. The second
offspring applies the same principle but in the opposite mapping of parents with regions. The
new offspring are completely feasible solutions after removing duplicate items, at the expense
of having lost those items that were placed in the progenitors but lied partially in both regions
of partition. To tackle the issue, it is attempted to restore the missing items in their former
locations (if present in both parents, they can be only restored for one of them).

Some permutations of data pairs (representing an item and the parent from which it should
be restored) are generated, based on the cut items and the parents where they were placed
in. The number of permutations is limited to a maximum number R, to avoid a significant
increase in the computational time. These permutations are randomly selected among all the
possible ones, and describe the order in which restoring operations should be attempted. For
each of the chosen permutations, every item is attempted to be placed in the selected parent’s
position (with the rotation it had there), something that is only applied for an item if it causes
no intersection. Each permutation is applied only to one of the two base offspring, generating
an alternative version of it (keeping a copy of the old one for other permutations). Among
all the placement configurations obtained from the permutations (which can be considered as
candidates to become new individuals), the one with the highest fitness value (for each of the
two base offspring, the ones that were derived in permutations) is chosen and preserved as the
definitive offspring. If other candidates have a fitness value which is among the best in the
most recently updated population, they are made available as additional offspring, which makes
them eligible in the survival selection of the next population update. Specifically, the candidates
need to have a fitness value that is better than that of the C · 100% individuals of the previous
population, where 0 < C ≤ 1; the proportion C is a parameter of the algorithm. For instance, a
value of 1 implies that any additional offspring can only be accepted if its fitness value is higher
than that of the best solution found in the current population. The crossover pseudo-code is
shown in Algorithm 5.

29

Algorithm 5: Crossover (get crossover)

Input : parent0 /*First parent*/,
parent1 /*Second parent*/,
params /*Structure containing the numerous parameters of crossover
(not listed individually for readability)*/

Output: offspring /*Generated offspring*/
/*Initially, each offspring is generated as the copy of one parent, before recombination*/1

offspring ← [parent0.copy(), parent1.copy()];2

/*Try to create a shape that fully or partially lies within the container, and has at least a3

minimum area*/
shape← create partitioning shape(parent0.container, params.subset(′shape′));4

/*Only proceed if a valid shape has been obtained*/5

if shape 6= ∅ then6

/*Use the shape to divide the placed items of each parent in three lists: items in the7

first region (inside the shape), items in the second region (outside the shape), and
shape-intersecting items*/
parent0 region0, parent0 region1, parent0 intersec←8

get shape separation(parent0, shape);
parent1 region0, parent1 region1, parent1 intersec←9

get shape separation(parent1, shape);
/*For the first offspring, keep only the items placed in the first region in the first10

parent, then try to place the items of the second region of the second parent
(duplication is prevented); use the opposite parent-region mapping for the second
offspring*/
offspring[0].remove items(parent0 region1 + parent0 intersec);11

offspring[0].add items(parent1 region1);12

offspring[1].remove items(parent0 region0 + parent0 intersec);13

offspring[1].add items(parent1 region0);14

/*Find item-parent pairs, one for each item that intersected with the partitioning15

shape in a parent*/
item parent pairs← get item parent pairs(parent0 intersec, parent1 intersec);16

/*Further actions are only needed if there are intersected items*/17

if item parent pairs 6= ∅ then18

/*Generate the permutations of all (or many of) the possible orders of placement19

attempts for the items that intersected with the shape*/
placement permutations← get permutations(item parent pairs,20

params.max permutation num);
/*Try to add items following the order of permutations, keeping the best solution21

derived from each of the two base offspring as final (and any alternative solutions
with very high fitness)*/
offspring ← get best solutions after placements(offspring,22

placement permutations, params.min fitness for non best);

30

3.3.7 Mutation

Understanding mutation as a resource of evolutionary algorithms to explore the search space of
solutions and escape local optima, different ways of altering candidate solutions are defined to
promote variability among the individuals of the population. Each type of alteration (mutation
step) has an associated weight proportional to its probability of being selected. A single, atomic
execution of the mutation operation can be composed of a set of different mutation steps, that
can be divided in three types:

1. Addition of a randomly selected item into the container, at a random position and with a
random rotation angle. More specifically, the only items that opt to be selected are those
whose weight would not cause the container’s capacity to be exceeded. Adding an item
to the container increases the total value and therefore the fitness function, which is a
desirable property. The operation has a probability weight, Pa.

2. Removal of a randomly selected item from the container. Since the removal of an item
decreases the fitness value of an individual, executing this operation alone would decrease
the chance of survival of the individual, i.e. removal alone is detrimental. For this reason,
the mutation operator has the constraint that any removal step must be compensated by
a later addition step in the same execution of the mutation operator, even if it is not
immediate, i.e. other steps can take place before. Nevertheless, it is still possible for a
removal to cause a decrease in fitness even if an item is added later as a compensation,
if the new item has less value than the previous one. The removal action can take place
with a certain probability, proportional to a weight, Pr.

3. Modification of existing placements, i.e. the position or the rotation of items that are
present in the container. This operation can take place with a specific probability weight,
Pm, and does not affect the value of the container. Therefore, the core fitness value itself
is not modified, but some of the tie-breaking criteria can be affected by the changes.
Different ways to modify placements exist, related to position changes and rotations; the
latter cannot be applied to items for which the rotation angle is irrelevant, namely circles.
Each of the possible actions has the same probability to be selected (for simplicity, to
avoid a considerable increase the number of parameters):

(a) Movement (i.e. position change) of a randomly selected item in a randomly deter-
mined direction, as far as possible without intersecting, using a finite number of tested
positions. Namely, a two-dimensional ray (with the mentioned direction and origin
in the reference point of the selected item) is used to find intersection points with the
container or other placed items. The intersection point with the lowest distance to
the reference point of the item to move is fixed as the furthest point of displacement.
For convenience, the operation is not done if the two points are already very near,
namely at a distance M = ‖(D ·Lx, D ·Ly)‖ or smaller, where D is a parameter defin-
ing a proportion of distance to use as the minimum threshold (such that 0 < D < 1),
while Lx and Ly are, the horizontal and vertical length of the bounding area of the
container, respectively. A parameter Bp determines the number of equidistributed
points to check for a valid placement of the item through the half-line, with limit in
the mentioned intersection point; such point is the only checked point if Bp is equal
to 1, but other points between the item’s reference point and the nearest intersection
point are checked if Bp is greater than 1, which is the recommended setting. To find
the furthest of the point to check in which the item can be placed without causing
intersections, binary search is used, trying to place the item in subsequent positions,

31

only confirming the movements (and progressing further in distance from the initial
reference point) when they succeed. This operation can act as a compaction method,
since it attempts to place the object nearer to other objects or to the boundary of
the container.

(b) Rotation of a randomly selected item in a randomly determined rotation direction
(clockwise or counter-clockwise), until an intersection would take place, checking a
finite number of angles with uniform separation from each other, and with the first
and last of those angles being at the same distance to the original angle: the 0-
to-360 rotation space is divided in equal sized bins. Therefore, if no intersections
are found after the last rotation, the item is not restored to its original rotation,
but left in the last changed one, to produce a variation. The number of angles
to check, Br, is a parameter of the algorithm, that applies rotations as incremental
constant-angle changes, stopping as soon as one of the rotations cannot be successfully
applied because it would cause an overlapping situation. As the previously described
movement action, this rotation operation can be interpreted as a potential compaction
technique.

(c) Change in the position of a randomly selected item, to any other position within the
container.

(d) Small change in the position of a randomly selected item, without surpassing a
threshold. The small offset in position is a randomly determined point in the range
[(−4px,−4py), (4px,4py)], with 4px =Lx · Sp and 4py =Ly · Sp, where Lx and
Ly are the horizontal and vertical length of the container’s bounding rectangle, re-
spectively, and Sp is a parameter that sets which proportion of length is considered
to be small, such that 0<Sp<1.

(e) Swap of the position of two items, without changing their rotation.

(f) Change in the rotation angle of a randomly selected item, to any other angle.

(g) Small change in the rotation angle of a randomly selected item, without surpassing
a threshold. The small offset in rotation is a randomly determined value, expressed
in degrees, in the range [−4r,4r], with 4r=360 · Sr, where Sr is a parameter that
sets which proportion of a complete 360-degree rotation is considered to be small,
such that 0<Sr<1.

(h) Swap of the rotation of two items, preserving their position.

(i) Change in both the position and rotation angle of a randomly selected item, to any
other position (in the container) and rotation.

(j) Small change in both the position and rotation angle of a randomly selected item,
without surpassing the previously specified thresholds for both position and rotation.

(k) Swap in the position and rotation of two items.

The mutation operation is comprised of a minimum number of iterations Imut. More iter-
ations of the item addition type are performed at the end if there are removal steps that were
not compensated with a subsequent placement attempt. In each iteration, a single mutation
step is performed, selected proportionally to their probability weights. The result of a mutation
step is only confirmed and effectively applied to the individual if the feasibility of the solution is
preserved, i.e. no intersections are generated and the weight of the container is not exceeded. If
any of these constraints is not respected, different corrections are attempted to make it valid, by
randomly changing position or rotation (for modifications that alter one of them), or both prop-
erties (for item additions that would have intersections), for a maximum number of attempts:

32

Ma for item additions and Mm for placement modifications. The only placement modification
action that is not repeated multiple iterations is the one that rotates an item until it intersects:
there are only two possible directions, clockwise and counter-clockwise, so they are both checked
a single time, one after the other (in random order). Removal actions cannot make a solution
unfeasible, so they do not need multiple attempts, but they are only applicable if the container
is not empty, a constraint that is shared with the modification actions. In a single mutation
step, even if multiple attempts are performed (with parameter variations), the same (primary)
item is used, to encourage that difficult operations (e.g. the placement or movement of very
large items when there is not much room in the container) are tried multiple times, to promote
their success, instead of being discarded fast. If the action involves a secondary item, in swap
actions, the second item changes from one attempt to another, while the position and rotation
of the items is kept fixed, and the attempts are stopped early if all items other than the primary
have been checked.

Since a single execution of the mutation operator can contain multiple mutation steps, it may
happen that the configuration with the highest fitness is found at an intermediate step, and not
at the end. If that is the case, the intermediate point with the highest fitness is restored with
a certain probability Pi. If the mutation has been applied to an individual that had just been
generated as offspring by the crossover operator, the original individual (in the state prior to
mutation) can be chosen as the final offspring only if it has a greater fitness value (or same but it
is better according to tie-breaking criteria) than the mutated one, with a fixed probability Pcm.
Otherwise, if the mutated individual has better fitness (or exactly same quality, also according to
tie-breaking checks), the individual resulting from mutation is selected to be the final offspring.
The mutation pseudo-code is presented in Algorithm 6.

3.3.8 Population update

In every generation, the population is updated using a steady-state, partial replacement strategy
(µ+λ). Namely, tournament selection with a fixed pool size Tu is applied to the joint population
formed by the individuals of the previous generation and their offspring, to select surviving
individuals proportionally to fitness, until the previous population size is restored. First of all,
though, the elitism strategy is applied, leading to the fittest (elite) E individuals to have a
reserved place in the new generation, and ignored in the later selection process. Afterwards, the
aforementioned tournament selection process is performed µ−E times to restore the population
size µ. To promote variability, once a solution has been assigned in the new population, it cannot
be selected again as a duplicate. A pseudo-code with for selection of survivors is presented in
Algorithm 7.

The partial replacement approach was preferred over truncation selection (i.e. keeping the
best µ individuals in a deterministic way at the end of every generation) to promote variability,
by giving a small chance to lower-fitness solutions to survive and improve. Some of the solutions
with less fitness may be the result of removing one or more items from the container (therefore
decreasing fitness), that may allow new interesting possibilities in forthcoming placements. Nev-
ertheless, since selection is proportional to fitness, low-fitness solutions are less likely to survive
than those that already have a solid fitness value, which is a desirable situation.

3.3.9 Termination criteria

The evolutionary algorithm is run for a maximum number of generations, Gmax. After that,
the fittest individual is returned as the best solution found for the problem. Early stopping is
applied if the fittest individual is not replaced by a better chromosome for a certain consecutive
number of generations, Gconv, assuming that early convergence has taken place.

33

Algorithm 6: Mutation (get mutation)

Input : solution /*Base solution*/,
params /*Structure containing the numerous parameters of mutation
(not listed individually for readability)*/

Output: mutated solution /*Mutated copy of the base solution*/
/*All changes will be applied to a copy of the individual*/1

mutated solution← solution.copy();2

/*Temporarily keep the original solution as the best one*/3

bestsolution← solution;4

removal num to compensate← 0, iter count← 0;5

action indices← [add index, remove index,modify index]← [0, 1, 2];6

action weights← [params.add weight, params.remove weight, params.modify weight];7

/*Perform at least a minimum number of iterations, and continue if removals need to be8

compensated*/
while iter count < min iter numor removal num to compensate > 0 do9

/*After the minimum number of iterations, add items to compensate removals; before,10

perform a weighted random choice of the next action to do*/
action index← add index;11

if iter count < min iter num then12

action index← weighted random choice(action indices, action weights);13

/*Mutate with the selected action type*/14

has mutated← False;15

if action index== add index then16

has mutated← mutate with addition(mutated solution,17

params.max add attempt num);
/*If the addition is successful, it can compensate a previous removal; also count as18

compensated any failed additions after the base iteration limit, to avoid an eventual
infinite loop*/
if has mutatedor iter count ≥ min iter num then19

removal num to compensate← max(removal num to compensate - 1, 0);20

else if action index== remove index then21

has mutated← mutate with removal(mutated solution);22

/*If the removal is successful, it will need to be compensated*/23

if has mutated then24

removal num to compensate← removal num to compensate+ 1;25

else26

has mutated← mutate with placement modification(mutated solution,27

params.subset(′modify′));

/*If a mutation was applied and there is any possibility to select intermediate solutions as28

the final ones, and the current intermediate solution is better than any previous one, keep a
copy of it*/
if has mutated and params.intermediate selection prob > 0 and29

get fitness(mutated solution) > get fitness(best solution) then
best solution← mutated solution.copy();30

iter count← iter count+ 1;31

/*If possible, select an intermediate solution as final with a certain probability if it is better than32

the last mutation’s solution*/
if params.intermediate selection prob > 0 and mutated solution 6=33

best solution and best solution 6=, solution and uniform float(0, 1) <
params.intermediate selection prob then

mutated solution← best solution;34

34

Algorithm 7: Surviving population selection (get surviving population)

Input : population /*Base population*/,
survivor num /*Number of individuals that can survive*/,
pool size /*Number of individuals per tournament pool*/

Output: surviving population /*List of the individuals that survive*/
/*If the number of survivors is equal to or higher than the current population size, the whole1

population survives*/
surviving population← population if survivor num ≥ population.num() else list();2

/*Otherwise, select as many survivors as needed*/3

if surviving population.is empty() then4

for i← 1 to survivor num do5

/*A tournament winner can survive*/6

survivor ← get tournament winner(population, pool size);7

/*Add the survivor to the new population*/8

surviving population.append(survivor);9

/*Remove the survivor from the old population, to avoid duplicity*/10

population.remove(survivor);11

It would be straightforward to incorporate complementary stopping criteria to the algorithm
if it was needed for a certain context of usage. For instance, if used in a time-critical scenario,
it would be interesting to add a constraint to stop the algorithm at the end of a generation if
a maximum running time Tmax had been elapsed since the start of the execution. Alternative
additional stopping criteria may include a maximum number of fitness function evaluations,
Fmax, or stopping the algorithm as soon as one chromosome describes a solution with all the
items placed in the container. However, not including the latter early stopping mechanism may
eventually lead to a scenario that can be desirable in some contexts of usage: improving the
tie-breaking properties of solutions with the same fitness value, by reducing the area usage or
compacting items in a rectangular region with smaller area.

The general structure of the evolutionary algorithm is described in the pseudo-code of Al-
gorithm 8. Some of the functions of the pseudo-code correspond to the algorithms presented
in the previous pseudo-codes explained in other sections (e.g. for the generation of the ini-
tial population), and the recently introduced termination criteria is shown as well, as an early
stopping check. It should be noted that all the numerous parameters that configure how the
evolutionary algorithm works have been compressed as a single parameter structure (with each
unique parameter as an accessible member) to preserve the readability of the pseudo-code.

35

Algorithm 8: Evolutionary algorithm

Input : container /*Container, described by its shape and maximum weight*/,
items /*List of items, described by their value, weight and shape*/,
params /*Structure containing the numerous parameters of the algorithm
(not listed individually for readability)*/

Output: solution /*Solution, describing a placement of items in the container*/
/*Generate the initial population*/1

population← generate population(container, items, params.population size,2

params.initial generation item specialization iter proportion);
max fitness← -∞;3

iter count without improvement← 0;4

elite← list();5

/*Update the population up to a maximum number of generations*/6

for i← 1 to params.max generation num do7

/*Select as parents the individuals that will generate offspring*/8

parents← select parents(population, params.offspring size,9

params.parent selection pool size, params.can use crossover);
/*Calculate the minimum fitness for crossover non-best (alternative) solutions to be10

accepted as additional offspring*/
crossover min fitness for non best←11

get crossover min fitness for non best(population, params.can use crossover,
params.min fitness for non best proportion);
/*Generate offspring with crossover and/or mutation*/12

offspring ← generate offspring(parents, params.subset((′mutation′,13
′crossover′)) + [crossover min fitness for non best]);
/*Define a temporary extended population by joining the original population and14

their offspring*/
extended population← population+ offspring;15

/*Find the elite individuals among the extended population, sorted by descending16

fitness value*/
elite← get fittest solutions(extended population, params.elite size);17

/*Check if the elite fitness has improved in this generation, to discard or contribute to18

confirm the assumption of convergence*/
elite fitness← get fitness(elite[0]);19

if elite fitness > max fitness then20

max fitness← elite fitness;21

iter count without improvement← 0;22

else23

iter count without improvement← iter count without improvement+ 1;24

/*Stop early if the elite fitness is assumed to have converged*/25

if iter count without improvement ≥ params.converge generation num then26

break;27

/*Update the population to restore the standard population size (reserving places for28

the elite)
population← elite+ get surviving population(extended population−29

elite, population size− elite.num(), params.population update pool size);

/*The final solution is the fittest one*/30

solution← elite[0];31

36

4 Implementation

4.1 Technology and geometric checks

The algorithms described in Chapter 3 have been implemented in Python (version 3.6). Some
features of this high-level interpreted programming language, such as dynamic typing and simple
syntax, make the implementation of algorithms in Python fast and easily extensible, which was
considered as a key point to be able to productively create different variants of the algorithm
and hypothetically refine them with new ideas that may appear after applying the algorithms in
different experiments. Nevertheless, other programming languages may offer significantly higher
efficiency for some algorithms (Pre03), in terms of computational time, such as C++, that also
supports the object-oriented paradigm. If the algorithms described in this work are used in the
future in industrial applications, it may be recommendable to write a C++ implementation to
obtain an efficiency gain.

Regardless of the fact that the algorithms designed to solve the Joint Problem have been
implemented in Python, the most computationally expensive tasks, which are the geometric
checks, rely on efficient implementations. The Python package Shapely is used to perform the
geometric checks, e.g. determine whether two shapes intersect or a shape contains another one,
internally using the Java Topology Suite, according to Shapely’s user manual (Gil10). Shapely
supports shapes that can be represented by a finite set of points, including polygons (triangles,
squares, rectangles and any other polygon that is either regular or irregular, and convex or
concave) and compound polygons, here called multi-polygons, described by an external polygon
and a set of internal polygons acting as holes. For these shapes, Shapely provides all the
geometric operations needed for this work, namely intersection checks and queries of whether a
shape contains another one.

However, in this work it was planned to have other types of shapes that Shapely does not
directly support, namely circles and ellipses. Custom shapes inheriting from the base geometry
class of Shapely were created. To avoid defining the intersection and containing checks for the
ellipse with any other shape, the ellipse was represented as a polygon with 66 equidistant points
of the real ellipse, a number of points that the Shapely user manual claims to be sufficient to
cover 99.8% of the area of a circle, and a similar (or at least not very different) figure is assumed
for the ellipse. Nevertheless, this decision makes the usage of the ellipse slightly more limited
in terms of precision than the other shapes, since the shape used for geometric calculations is
an approximation of the real one.

The properties of a circle allow to define the intersection and containing checks with the rest
of shapes in a straightforward way, so those operations were implemented for the actual circle,
without discretizing it, as opposed to the case of the ellipse. The intersection check between a
circle and any other shape, required to guarantee the validity of placements that include circles,
is defined as follows:

1. Two circles intersect if the distance between their centers is not greater than the sum of
their radii.

2. A circle intersects with a polygon if the minimum distance from the polygon to the center
of the circle is not greater than the circle’s radius.

3. A circle intersects with a multi-polygon if it intersects with any of the composing polygons,
either the bounding one or a hole.

4. A circle intersects with an ellipse if it intersects with its approximation polygon.

37

The check of whether a circle is within another shape is needed when at least one item to place
is a circle, and is defined as follows:

1. A circle is contained by another circle if the second one has a greater radius and the center-
to-center distance plus the sum of the radii is lesser than the diameter of the second circle.

2. A circle is inside a polygon if the center of the circle is within the polygon and the minimum
distance to the boundary of the polygon is greater than the radius of the circle.

3. A circle is inside a multi-polygon if it is inside of the boundary polygon and not intersecting
with any hole.

4. A circle is within an ellipse if the circle is inside the polygon that approximates the ellipse.

For the situations in which a circle is the container of a problem, it is also required to define a
check of whether a circle contains another shape:

1. A circle contains another circle if the previously explained circle-within-circle check is true,
using opposite the order of container and content for the circles.

2. A circle contains a polygon if the distance between the center of the circle and all the
vertices of the polygon is lower than the radius.

3. A circle contains a multi-polygon if the circle contains the boundary polygon of the multi-
polygon.

4. A circle contains an ellipse if the circle contains the approximation polygon of the ellipse.

There is a single scenario in which a circle is discretized into a polygon, composed of points
that are equidistributed throughout the circle’s circumference, lying at the radius-matching
distance from the center. Such approximation is used when searching the intersection points
between shapes, with at least one of them being a circle, to avoid the need of implementing
custom functions to find those intersection points with every shape (including polygons and
multi-polygons). The intersection points are not needed in the Boolean check of whether two
shapes intersect (which is commonly used in the algorithm), but in a less frequent operation,
the type of mutation action that modifies the placement of an item by moving it in a random
direction, detecting when an intersection would happen to prevent shape overlapping. Since it
is an approximate operation, it is not required to have a very high number discretization points;
25 was the chosen value.

The area of the shapes is also required for the greedy algorithm, that takes it into account
when choosing an item for placement. The area of polygons and multi-polygons is provided as
a property of the geometric shapes in Shapely, while the area of the circle and the ellipse were
defined using well-known formulae: the area of a circle is π ·r2, where r is the radius; the area of
an ellipse is π ·a ·b, where a and b are the horizontal and vertical radii of the ellipse, respectively.

4.2 Visualization

The visualization of a possible solution to an instance of the Joint Problem is comprised of
two horizontally adjacent plots. The left plot depicts the placement of items that have been
added to the container, which is represented in gray color, while holes and the outside are
white. The right plot shows the items that have not been placed in the container, specifying
the value and weight of each item. In both plots, the total value and weight of the depicted
items (inside or outside of the container) is shown on the top, and the left plot also adds the

38

maximum weight (capacity) of the container. The items are shown in the same scale in both
plots, allowing to attempt to visually detect whether an algorithm was able to place all items
that it was geometrically possible to add (respecting the capacity), or there are some items that
could have been placed in visually obvious spaces of the container. Another common feature
of both plots is the fact that the items are colorized based on their profitability ratio, i.e. the
result of dividing the value by the weight, in the color range depicted by the bottom color bar,
that shows that the items with the highest ratio have an intense orange color, while the objects
with the lowest ratio have a light gray color (close to light pink). In other words, the higher
the ratio, the higher the orange color saturation. An example visualization of a problem in its
initial state, with an empty container, can be seen in Figure 1, while a possible solution with
some items in the container is depicted in Figure 2. The solution visualizations, and other plots
of this document, were built using the Matplotlib plotting library (Hun07).

Figure 1: Example problem in its initial state, with all the items outside of the container.

The items within the container are represented at the position and rotation in which they
were placed (or last moved or rotated to), only considering actions that were confirmed, to avoid
generating to invalid solutions. The items which are outside of the container are arranged for
visualization using a simple algorithm, that considers the bounding rectangle of items in the
order in which they were added to the list of items. The space is divided in a set of rows of
dynamic height, with the number of rows increasing in a logarithmic scale with respect to the
total number of items in the problem, to achieve a reasonable distribution for visualization. The
maximum width of the rows is defined as the result of dividing the sum of width of the bounding
rectangles of all items outside of the container by the number of rows. The start position is (0, 0),
where the bottom-left corner of the bounding rectangle of the first item outside of the container
is placed, with the item itself lying within the bounding rectangle. Every remaining item is then

39

Figure 2: A possible solution to a problem, where all the items have been placed in the container
except one, that would have caused the weight within the container to exceed the capacity.

placed adjacently after the horizontal end-point of the bounding rectangle of the previous one,
until the maximum width of the row is reached. After that, the process continues in the row
above the previous one, with the new row’s minimum-height point being the maximum-height
point among the bounding rectangles of the items from the previous row. It may be interesting
to outline the fact that, in some problems of low complexity, particularly with a container much
larger in area than the sum of all the items, the minimum-area bounding rectangle containing all
the items in the visualization may eventually fit in the container, which would mean that it would
be possible to perform a direct position mapping for the items from the outside visualization
space to the container space, without any extra operation, as long as the total weight does not
exceed the capacity. Items may be placed in descending order of profitability ratio, to have a
greater total value. However, this trivial method is not expected to be useful (i.e. not causing
intersections) in most real-world scenarios of certain complexity where the Joint Problem can
be applied. Otherwise, it would be possible to design a specific algorithm to decide the way
in which items are arranged as well as appropriate space distribution rules (e.g. to determine
the number and width of rows), to try to follow the shape of the container to decrease the
likelihood of causing intersections that would invalidate the attempt, and possibly considering
bounding shapes more complex than a rectangle (e.g. a regular or irregular polygon) for greater
compactness. However, increasing the complexity of the arrangement strategy may easily lead to
a slower algorithm. Unless significant additional modifications would be added, the arrangement
technique, that does not even take into account the position space of the container, would not
be based in reasonably solid foundations, unlike the methods proposed in Chapter 3, that aim
to be applicable to any instance of the Joint Problem.

40

4.3 Code availability

The code of this work is available in a public repository1. It contains the implementation of
the greedy, reversible and evolutionary algorithms, as well as the problem instances explained
in Chapter 5 and Section 8.2, and the configuration to perform the experiments. In fact, data
structures summarizing the results of the experiments described in Chapters 6, 7 and 8 are also
present, as well as plots and figures, some of which were not shown in this document.

1https://github.com/albert-espin/knapsack-packing

41

https://github.com/albert-espin/knapsack-packing

5 Joint Problem Dataset

5.1 Context, Goals and Design Principles

The joint problem of the Two-Dimensional Irregular Shape Packing Problem and the 0/1 Knap-
sack Problem (shortened in this document as Joint Problem for the sake of brevity) has not
been explored previously in the literature, to the knowledge of the author of this work. There-
fore, there is a lack of existing problem examples to which the new proposed algorithms can be
applied, which would allow to evaluate the quality of their solutions and their time efficiency.

According to the definition of the Joint Problem, a problem instance must be defined with a
container (specifying its maximum weight and shape) and a set of items (with the value, weight
and shape of each of them). Different datasets exist for the 0/1 Knapsack Problem and for the
Two-Dimensional Irregular Packing, but they lack part of the information needed for the Joint
Problem: the former do not have shapes (for the container and the items), while the latter do
not include any notion of value or weight. It would be possible to add the missing information
to existing problems, either by manual annotation or through algorithmic imputation. If the
programmatic option was chosen, a possible approach would be to define the capacity of the
container randomly within a fixed range, and then generate the weight of each item following a
chosen distribution, scaling it to any desired range, e.g. a combination of distribution and scaling
that on average would produce items with a weight sum roughly equal to the container’s capacity,
with a certain standard deviation fixing how far the weight sum can be from the capacity (either
exceeding it or not reaching it). Subsequently, it would be possible to determine the value of
the items, either by using a completely independent distribution and scaling method or using a
mathematical function that takes the weight as a parameter and outputs the item’s value.

When evaluating the quality of the solutions produced by an algorithm for a specific prob-
lem, it is very useful to know the optimal solution beforehand, because comparing it to the
solution of the algorithm allows to empirically determine how precise and effective the method
is. Unfortunately, transforming Packing Problem examples into instances of the Joint Problem
has the additional effect of changing the optimal solution of each problem, which is unavoidable,
since the two Problems have different criteria that define what makes a solution to be optimal.
In the Joint Problem, the optimum solution maximizes the sum of item values in the container
(respecting non-intersection and weight constraints), while the Packing Problem does not have
an explicit notion of value. It would be possible to assimilate an existing property as the value of
items, such as the area of their shape, but such approach would clearly introduce a bias, because
both fields can be completely unrelated in real problems, and therefore the experimental results
would not represent a general scenario. Alternatively, in some simple problems it may be easy
to manually determine the optimal solution by observing the properties (shape, weight, etc.) of
the items and the container, but the same task can be very time-consuming for a human for
complex problems, especially if they have many items.

A manually designed dataset, the Joint Problem Dataset, was created for this work. The
motivation behind this decision was to have a set of problem examples specifically designed
with the particularities of the Joint Problem in mind (namely the interaction of features such
as weights, values and shapes), with manually obtained optimal solutions. Creating a dataset
for a new problem from scratch allows to represent examples that showcase a variety of situa-
tions that are expected to be challenging for the algorithms, and therefore it is interesting to
discover how the methods tackle these circumstances. It would be less likely to find some of
the truly interesting cases if the problems were randomly generated, or even if some features
were automatically imputed, such as value and weight for examples adapted from the Packing
Problem.

Therefore, the Joint Problem Dataset contains examples that have been considered as hypo-

42

thetically challenging for the algorithms, and useful to detect potential weaknesses, or confirm
suspected strengths. For this reason, the level of difficulty of most of the designed problems
is not trivial, to avoid that all algorithms find optimal solutions very easily without showing
relevant differences in the quality of results. These characteristics of the problems in the Joint
Problem Dataset, along with the presence of a manually found optimal solution, make these
examples suitable to test the algorithms and compare the quality of their results (between the
proposed techniques and the optimal solution), as well as their time performance. These exper-
iments are studied in Chapter 7, using the final configuration of parameters for each algorithm,
which are chosen after different (potentially interesting) configurations are compared and the
best is chosen. The experiments and results of the parameter optimization phases are presented
and analyzed in Chapter 6.

Manually determining the optimal solution for each problem was possible by constraining
the number of items (that ranges from 5 to 20 depending on the problem), since each item
needs to be observed. Firstly, it is important to determine if the item can fit in any region of the
container, and some problems have very large items that can be easily discarded, while most of
the other items can be placed, although the ranges of positions and rotations that are feasible
for each item are not always trivial to visually approximate. The maximum weight accepted
by the container was adapted to ensure that some items would be necessarily left outside in
optimal solutions, either because of having a very high weight (with very low profitability ratio,
obtained by dividing the value by the weight), or the lowest value (as well as the lowest value-
weight ratio). Since the Joint Problem uses the continuous space for some features (such as
position and rotation) it is not feasible to demonstrate that the proposed solutions are optimal,
but it should be visually intuitive to understand that they are indeed optimal after carefully
analyzing each example. It was ensured that all the proposed solutions respect the constraints
of the Joint Problem, by not presenting any intersection between items or between an item and
the container, and not exceeding the capacity of the container. In fact, every placement position
and rotation that was thought of while constructing solutions was tested in the implementation,
and, if failed, other values were tried or eventually the placement strategy was planned again.
Defining the problems manually and finding an optimal solution for them was expected to be
(and proved to be) time-consuming. In consequence, the planned number of problems was 10,
which is not very large.

Since the number of problems is relatively small, the diversity of the examples was a priority,
to ensure that many interesting scenarios were represented. There are different notions and
properties that define problems that, by being different from one example to another, make the
dataset diverse:

1. Problem difficulty, which is the (subjective) perception of the author of how much human
effort and time is required to obtain an optimal solution for a problem, being convinced
that it is optimal.

2. Number of items in the problem.

3. Number (or percentage) of items within the container in an optimal solution.

4. Percentage of the value sum of all items that can be placed in the container in an optimal
solution.

5. Percentage of the weight sum of all items needed to reach the capacity of the container.

6. Percentage of the area sum of all items needed to reach the area of the container.

7. Distribution of the value of items.

43

8. Distribution of the weight of items, and its similarity or distance to the container’s capacity.

9. Distribution of the value-weight ratio of items.

10. Distribution of the area of items, and its similarity or distance to the container’s area.

11. Distribution of the types of shapes of items, and the homogeneity or diversity when the
type coincides.

12. Container’s capacity.

13. Container’s area.

14. Container’s shape.

15. Container’s capacity saturation, i.e. the percentage of the maximum weight that is used
in an optimal solution.

16. Container’s space saturation, i.e. the coverage of the container’s area by items in an
optimal solution.

It should be noted that problems can theoretically have infinite optimal solutions with a same
set of items placed in the container, with different values of position coordinates and rotation
angle, which are continuous numbers. For each of the designed problems, only one optimal
solution is presented, with a specific set of items placed in the container, but it is plausible
that optimal solutions with different placed items can exist (by providing the same value in
the container), namely in problems with cloned items where not all the clones can be placed in
the container, due to space or weight constraints. Therefore, it is important to know that the
information provided about the optimal solutions of the examples in Section 5.2, only reflects
the reality of a single optimal solution, with a set of placed items, that is not necessarily the
only plausible set.

5.2 Description and Analysis of the problems

The particular problems of the Joint Problem Dataset are presented in ascending order of item
number, and named with the ordinal of such sequence, starting by 1 and ending in 10. For each
example, a visualization of the initial state of the problem (with the container still empty) is
shown, as well as the configuration of placements of an optimal solution. At the end of this
section (as explained later) one can find a table with information of every problem and the
presented solution, that supports and complements the problem descriptions.

Problem 1, shown in Figure 3 defines a circle-shaped container, whose capacity (120), matches
the sum of weights of the 5 items. In this problem, it is visually intuitive that all items fit in the
container, as long as the largest item, which is a square (with the highest value and profitability
ratio), is placed approximately in the center of the container, and the other smaller items, circles
of different profitability ratios (ranging from 0.25 to 1), are placed next to the center of each
side of the square. Such configuration of placements leads to the optimal solution, shown in
Figure 4.

In the case of Problem 2, depicted in Figure 5, the container is an hexadecagon (a regular
polygon of 16 sides), while 4 of the items are multi-polygons whose exterior and hole also
have hexadecagonal shape, with different sizes and value-weight ratios, with the largest of the
items having the highest value (25), while the other objects have smaller value and value-weight
ratio. The fifth and smallest item has the lowest value, and it is a circle. The capacity of the
container is 100, while the sum of item weights is 70, meaning that the capacity constraint

44

Figure 3: Initial state of Problem 1.

Figure 4: Optimal solution of Problem 1.

cannot invalidate any solution attempt in this example. Moreover, it is visually obvious that all
items can geometrically fit in the container, if they are placed approximately in the center of the
circle-shaped container, in such way that each multi-polygon contains the one with immediate
smaller size inside its hole, and the small circle item is placed inside the hole of the smallest
multi-polygon, as exemplified in Figure 6.

Problem 3, depicted in Figure 7, has a square-shaped container whose capacity (32) is smaller

45

Figure 5: Initial state of Problem 2.

Figure 6: Optimal solution of Problem 2.

than the sum of item weights (50), so not all items can be accepted in the container in the optimal
solution, shown in Figure 8. Specifically, there are two right-angle triangles with the highest
value and profitability ratio (one of them tied with another item) that should be placed in the
container, contributing with a combined value of 30 and a weight of 20. From the remaining
items, which are 4 ellipses, it is visually clear that all would geometrically fit in the container,

46

but only the two with greater value and profitability ratio can be selected in the optimal solution,
since their weight is 5 for each of them, making the total weight in the container 30, with none
of the other items having a weight smaller or equal than 2, which would make the capacity to
be reached.

Figure 7: Initial state of Problem 3.

Figure 8: Optimal solution of Problem 3.

Figure 9 represents Problem 4, where the container is an ellipse, and there are 4 ellipse-
shaped items and 5 circle-shaped items. Despite of the large amount of space in the container,
not all items can be added inside, since the capacity (50) would be exceeded, since the sum of
item weights is higher (52). It is possible to see that if items are placed in descending order of
value one can obtain the optimal solution, by only leaving out an ellipse with a value of 2 and a

47

weight of 7. Therefore, the weight in the container in the optimal solution (45) is smaller than
the capacity, as shown in Figure 10.

Figure 9: Initial state of Problem 4.

Figure 10: Optimal solution of Problem 4.

In the case of Problem 5, depicted in Figure 11, the container is a multi-polygon, whose
exterior shape is a irregular polygon of five sides, with three holes, two of them of considerable
area, reducing the usable space and making it more difficult to place items. This example has
a great diversity of item shapes, namely all the accepted types: there are 3 circles, 3 ellipses,
4 polygons (3 right-angle triangles and a 4-side irregular polygon) and 2 multi-polygons (with
two four-sided holes each). After observing the geometry of the container and the items, it
can be seen that all items would fit in the container, and there is enough space to make it not
compulsory to place the smaller items inside multi-polygons, even if it is plausible. It is easy to
understand that the two largest items, a polygon and a multi-polygon, only fit if their reference

48

Figure 11: Initial state of Problem 5.

Figure 12: Optimal solution of Problem 5.

position lies within limited zones of the container’s space, with specific ranges of rotation angle.
Despite of the existence of enough space, the weight limit of the container is 100, while the items
have a weight sum of 136, so not all items can be placed inside the container. Since there is an
item that has both the lowest value (1) and highest weight (50), it is clear that it is the one to
leave outside to obtain an optimal solution, as shown in Figure 12.

Problem 6, shown in Figure 13, has a multi-polygon container where the external boundary

49

and the 3 inner holes are all regular quadrilaterals (3 squares and 1 rectangle). One can see that
there is a diverse set of 13 items: 8 polygons (all irregular, with side number ranging between
3 and 5), 3 circles and 2 ellipses. It is visually obvious that 2 of the polygons do not fit in any
position of the container, so their weight (16) can be ignored, and makes it possible to place all
the other items in the container, with a weight sum (145) that stays below the capacity (150).
The optimal solution is shown in Figure 14.

Figure 13: Initial state of Problem 6.

Figure 14: Optimal solution of Problem 6.

Problem 7, shown in Figure 15, features a twenty-sided irregular polygon as its container,

50

and a total of 14 items, including 2 single-hole multi-polygons, 6 irregular polygons, 3 ellipses
and 3 circles. It is intuitive to see that the largest ellipse cannot fit in the container, so that the
total item sum, ignoring it, is 140, while the capacity of the container is 122. In this problem
an optimal solution can be obtained by placing items in descending order, which leads to leave
outside the least valuable item, a circle, as shown in Figure 16.

Figure 15: Initial state of Problem 7.

Figure 16: Optimal solution of Problem 7.

Problem 8, as one can see in Figure 17, has a symmetric eight-sided irregular polygon as

51

its container, and a total of 15 items, including 8 irregular polygons, 4 ellipses and 3 circles.
The interesting aspect of this problem lies in the distribution of value and weight among items.
Namely, a single item, a polygon resembling the ”W” letter (or ”M” if rotated 180 degrees), is
more valuable than all other items together. Therefore, in the optimal solution shown in Figure
18 the most valuable item is placed first, but then the weight limit is reached, so no more objects
can be added, but the solution is obviously optimal.

Figure 17: Initial state of Problem 8.

Figure 18: Optimal solution of Problem 8.

In Problem 9, shown in Figure 19, the container is a regular dodecagon, that is not large

52

enough to make it possible to place all the available items, some of which have a considerable
area, such as a square and a multi-polygon whose exterior shape is an octagon while its hole
is square-shaped. These two items have values which are significantly higher than the rest of
items (80 and 110, while the next one has a value of 15). When they are placed in the container,
none of the other items have room left, even if the weight limit is not reached. None of the
combinations of the rest items (13 in total, 6 irregular polygons, 4 circles and 3 ellipses) would
provide a higher total value, and if only of the two most valuable items are placed, there is
no space for other items to sum more value than with the hypothetically removed item. The
optimal solution is presented in Figure 20.

Figure 19: Initial state of Problem 9.

In the case of Problem 10, depicted in Figure 21, the container is a polygon whose shape
resembles a cross. There is a large number of items (20), but they are actually repetitions of 4
different item templates. 4 of the rectangles, belonging to two different templates, are the most
valuable objects and have the smallest area. The rest of items are 10 right-angle triangles and 5
rectangles, and they have interesting properties: the area of two of the triangles is approximately
equal to one of the rectangles, but since the triangles have the same value and half of the weight
of the rectangles, the optimal solution is obtained using the triangles (put together in pairs
resembling a rectangle when combined) instead of the mentioned 5 rectangles, since there is no
space for them, and the capacity of the container is exactly reached. In the optimal solution,
shown in Figure 22, the distances between the items of this problem, and between the items
and the container, are much smaller than in any other example. Due to these circumstances, it
was expected to be extremely difficult (or even impossible) for the designed algorithms to find
an optimal solution.

Table 1 presents statistical information of the problems, providing values for each problem

53

Figure 20: Optimal solution of Problem 9.

Figure 21: Initial state of Problem 10.

54

Figure 22: Optimal solution of Problem 10.

individually, as well as the minimum, maximum, mean and standard deviation considering all
the problems. The last row corresponds to the percentage of the length of the range of values
(between the minimum and the maximum) of each field represented by the standard deviation,
i.e. it represents the standard deviation in the same range for all fields (between 0% and 100%).
The calculation is aimed to be an illustrative measure of the variability of each of the fields,
that are conceptually linked to some of the properties explained in in Section 5.1, that the
author wanted to make considerably diverse among problems. The percentage is near to 30%
or higher than such value for all fields, which implies that a moderately high level of variability
was effectively obtained, as wanted. The specific fields shown in the table are:

• Item number. It ranges between a small number (5) and a quite higher number of items
(20), while the average (11.4) represents a medium number of items.

• Percentage of items placed in the container in the presented optimal solution. In some
problems all the items can be placed in the container (100%) while in others only one or
few of the many items can be placed (such as Problem 8 and Problem 9, with 6.67% and
13.33% of the items placed, respectively), while on average more than half of the items
are placed (70.76%).

• Percentage of the value sum of all items that can be placed in the container in the optimal
solution. In the problems where all items can be placed the value is maximum (100%),
but in some cases most of the value needs to be left outside of the container, due to weight
or geometric constraints. In Problem 8, for instance, only a bit more than half of the total
value, 51.55%, can be placed. On average, a high majority of the items (81.78%) can be
placed in the container.

• Percentage of the weight sum of all items needed to reach the capacity of the container,
which exceeds 100% if the total weight is higher than the capacity. There are problems
where the sum of the weight of all items is quite smaller than the capacity (70% in Problem

55

2 is the minimum), while in others the capacity is significantly surpassed (275% in Problem
8 is the maximum). In most examples, the capacity constraint needs to be considered when
solving the problem (with an average of 146.12%).

• Percentage of the area sum of all items needed to reach the area of the container (it can
also exceed 100%). The percentage ranges from 22.88% in Problem 4, where the area of
the container is much larger than the sum of the area of every item, to 183.94% in Problem
10, where the presence of many items increases the total area, greater than that of the
quite narrow container. In other cases, such as Problem 9, with 144.01%, the presence of
few very large items is enough to surpass the area of the container. On average, the area
of all items is quite close to that of the container (79.67%).

• Percentage of container’s weight saturation in the optimal solution. In most problems, the
optimal solution uses most of the weight allowed by the container (92.06%), in some cases
using the full capacity (100% in Problems 1, 8 and 10), even though there are cases with
significantly lower weight pressure (such as 70% in Problem 2).

• Percentage of container’s space saturation in the optimal solution. There is no example
where the exact whole area of the container is used, which would be (almost) practically
impossible for any of the proposed algorithms to solve, due to the random determination
of position coordinate values, where the valid options would be potentially reduced to a
single value instead of a range. Nevertheless, a container saturation of 88.04%, as seen in
Problem 10, means that very little space is left in the container, and it is expected to be
very difficult for the algorithms to solve it optimally. The opposite case is that of Problem
8, where most of the space (all but 16.54%) is empty in the optimal solution. On average,
almost half of the area (46.06%) is covered by items in the presented optimal solutions.

Table 1: Statistics of the problems of the Joint Problem Dataset and their optimal solutions.

Item num.
Opt. % item

num. in cont.

Opt. % item

value in cont.

Item weight %

of max weight

Item area %

of max area

Cont. weight

saturation %

Cont. area

saturation %

Problem 1 5 100 100 100 66.63 100 66.63

Problem 2 5 100 100 70 65.85 70 65.85

Problem 3 6 66.67 80 156.25 44.48 93.75 40.24

Problem 4 9 88.89 94.44 104 22.88 90 22.38

Problem 5 12 91.67 99.58 136 40.15 86 39.39

Problem 6 13 84.62 77.84 114 56.52 96.67 30.71

Problem 7 14 85.71 78.15 120.49 87.1 99.18 35.91

Problem 8 15 6.67 51.55 275 85.16 100 16.54

Problem 9 15 13.33 58.46 205.5 144.01 85 73.97

Problem 10 20 70 77.78 180 183.94 100 88.94

Min 5 6.67 51.55 70 22.88 70 16.54

Max 20 100 100 275 183.94 100 88.94

Mean 11.4 70.76 81.78 146.12 79.67 92.06 48.06

Std 5.02 33.85 17.15 60.44 49.46 9.67 24.13

Std/(max-min)% 33.44 36.27 35.39 29.48 30.71 32.23 33.33

56

6 Parameter Configuration and Optimization

6.1 Motivation and Goals

The objective of this chapter is twofold. Firstly, to justify the default values for parameters
selected for the proposed algorithms. Secondly, to perform an optimization of those values, to
the possible extent, in the attempt of making all algorithms to compete in fair conditions in the
experiments of Chapter 7. It should be noted, however, that it is not feasible in time to try a
very extensive number of parameter values, especially in the case of the evolutionary algorithm,
that has a significantly greater number than the others, and it is also slower. In the case of the
greedy and reversible algorithms, which are faster, it is actually feasible to test multiple values
for most parameters. The experiments produced a considerable number of tables; to facilitate
readability, only the most relevant ones are shown in this chapter, while all the other ones are
present in Section A.3, which belongs to the Appendix.

In all the optimization tests, the experiments were run 10 times to ensure that a reasonable
level of statistical significance was obtained in the results. To make the experimentation faster,
multi-processing was used, in such way that each of the 10 runs was executed in a different
process. The experiments were performed in a machine with 6 CPU’s, so each of the last 4 runs
did not start until one of the initial ones had finished. The usage of multi-processing does not
affect the quality of the solutions, but it was observed to increase the average time of a run, even
if the total time among all runs decreases in a significant way due to the parallelism strategy, due
to the overhead of creating and managing processes. Therefore, the execution times reported in
this section should be given less confidence than those of Chapter 7, where the final configuration
of each algorithm is tested in a single process. Nevertheless, the order of magnitude of the
execution times do not change by using multi-processing, so if an algorithm is much faster than
another when not dividing runs in multiple processes, the difference should be still qualitatively
clear when using multi-processing, even if the reported quantities are not reliable if interpreted
as exact values. To avoid increasing the time variability of using multi-processing, no external
computationally expensive tasks were performed while running the experiments.

6.2 Greedy algorithm

6.2.1 Experimental Methodology

The behaviour of the greedy algorithm when it comes to selecting items in a weighted random
manner is determined by the parameters of the greedy score function defined in Equation 2. One
of these parameters is the value weight of the formula, Kv. If it is high, it gives a higher score
to items with a higher value, independently of their area and weight; if it is low, it gives more
importance to the other term of the formula, with the profitability ratio and the area of the item.
The other parameter of the function is the area weight, Ka: if high, it penalizes more severely
items with high area; if low, it mainly focuses in the profitability ratio of an item to determine
the score. Both weights are expected to be between 0 and 1, and it is interesting to see how
values in the interval affect the quality of the solutions found by the algorithm. Therefore, in the
first phase of parameter optimization of the greedy algorithm, grid search was applied to find
the best combination of weights among the following equidistributed values: 0, 0.25, 0.5, 0.75
and 1. Regarding the number of iterations, the initial configuration was used, with a maximum
of 1000 iterations and 300 iterations to assume convergence. Such configuration provided better
results in preliminary tests than other alternatives with values in the same order of magnitude.
Smaller values brought a significant decrease in the solution quality, measured as the value in
the container.

57

Additionally, as a second phase of parameter optimization, using the weights of the greedy
score function resulting from the first phase, it is interesting to determine if different orders
of magnitude for the maximum number of iterations and the convergence number of iterations
produce significantly different results. The original setup was compared with iteration numbers
10 and 100 times greater, keeping the same proportion between the convergence number and
the maximum number of iterations. In other words, a maximum of 10000 iterations and 3000
convergence iterations were checked, as well as using 100000 iterations as maximum and 30000
to assume convergence. If the difference in terms of solution quality between two of the tested
configurations was not significant, the fastest one should be selected as final; since the itera-
tion number is proportional to time, the total execution time was expected to be significantly
different from one configuration to another (longer for those with more iterations). It is not
expected that the iteration values and the greedy score parameters have strong common influ-
ence or interactions, since they affect different notions of the algorithm, so it was considered a
valid approach to first determine the value of the greedy score function weights and then the
iteration values. Furthermore, the presence of a configuration with 100 times more iterations
than the original setup would have made a combined test much more slow, due to the number
of combinations that would have been tested.

6.2.2 Results and Discussion

Table 11 (placed in Section A.3.1 of the Appendix due to its large size) presents the solution
quality results (expressed with a mean over 10 runs and the standard the deviation) of the 25
tested combinations of values for the value and area weights of the greedy score formula. A
maximum of 1000 iterations was used, and 300 to assume convergence, as defined for the first
optimization phase of the greedy algorithm. Observing the results, it is obvious that none of
the combinations obtains the best average results in a significant number of problems (the best
is shown in bold, the second best is underlined with a continuous line, and the third best has
a dashed underline). It should be noted that Problem 1 was completely ignored when it comes
to finding the best combination because all combinations were tied in the best value. Some
combinations are the best to solve 1 of the problems, and only one combination yielded the
best average value in 2 of the 9 problems (they are actually 10 but Problem 1 was ignored due
to its total tie), when Kv = 0 and Ka = 0.5, which does not represent a significant difference
from the rest of combinations. Furthermore, this configuration obtained very low values in some
problems (e.g. the worst results among all the tested combinations in Problem 10), therefore it
did not seem appropriate to select it as the best.

Table 12 (in the Appendix) shows the average time elapsed by each parameter configuration,
in milliseconds. Here, the bold notation is used to identify the fastest configuration for each
problem. It can be seen that, for a same problem, there are not massive differences in time,
they all belong to the same order of magnitude. The considerable variability in time values is
considered to be normal when running a problem that only takes few hundreds (or even tens) of
milliseconds to run, caused by the executing system in ways that are not related to the algorithm.
Since the times are small, it was considered unnecessary to use the time as a tie-breaking factor
when solution values are similar, since it would have led to losing sight of solid configurations.
For instance, using Kv = 0 and Ka = 1 is the fastest way to obtain a solution in 4 of the 10
Problems, which is significantly better in terms of time than the other configurations (the next
ones are the fastest in just 1 problem), but the value results of this configuration are poor, being
the best in no problem, never being the second, and just the third in a single problem. It makes
sense that this configuration is very fast, though, because it gives no importance to the value of
the item individually and all importance to the area as a penalizing factor in the ratio, which
leads to place items in increasing order of area (from small to large), so that first items are very

58

easy to place successfully (they are smaller), limiting the space for larger ones later, leading to
the algorithm to eventually converge faster, but not necessarily to better solutions (often worse).

To shed some light on finding a better configuration, it is interesting to observe which are
the combinations of parameters that make the algorithm obtain a very good result (within the
top 3 among the 25 combinations) for a higher number of problems. It can be observed that
using Kv = 0.5 and Ka = 0.5 allowed to obtain top-3 results in 4 of the 9 problems of the Joint
Problem Dataset (ignoring Problem 1), which doubled the results of the next configurations, that
only achieved it on 2 problems. This configuration is also reasonably solid (or at least not within
the top 5 worst), for the problems in which it is outside of the top 3 best results. Therefore, due
to the solid results among all problems, and being among the top 3 best more than any other
configuration, Kv = 0.5 and Ka = 0.5 were selected as the final weights for the value and area
(respectively) in the greedy score formula. It should be noted that this configuration was not
selected because it is clearly and significantly better than any other configuration: the similarity
of averages in general and the considerable standard deviations do not allow to assure that any
of the tested parameter configurations is the best; performing more runs in a larger dataset of
problems may be needed to determine that.

The chosen configuration of weights implies that when determining the suitability of selecting
an item for placement, the greedy algorithm gives 50% of weight to the value of the item, and
the remaining 50% is determined by the ratio resulting from dividing the value by the a weighted
sum of two penalizing elements, the item’s weight and the item’s area, both with same (50%)
contribution. One can see that this configuration balances all the involved elements (value,
weight and area) quite evenly, which seemed to work better than using extreme options, where
one of the elements was ignored (which happens if the area weight is 0 or 1, or when the value
weight is 0) or has all the importance (which takes place if the value weight is 1).

The configuration of weights selected in the first optimization phase (Kv = 0.5 and Ka =
0.5) is used in the second phase. In this case, 3 configurations of values for the maximum
and convergence number of iterations were tested: one using 1000 and 300 (respectively), a
configuration with 10000 and 3000, and the combination of 10000 and 30000. The mean value
results are presented in Table 2. It can be seen that the last configuration, with up to 100 more
iterations than the first one (and 10 more than the second one), was able to obtain results of
higher quality most of the times. The justification lies in the fact that more iterations allow
more opportunities to try to place items. In some scenarios, once the algorithm had placed a set
of items, it is very difficult to place some other items, since only a very specific range of positions
and rotations may make the placement valid; with more iterations (both as a maximum and
before assuming convergence), the chance of eventually succeeding increased. Those situations
are particularly common in complex problems such as Problem 6 and Problem 10, where the
configuration with more iterations clearly outperformed the others.

The time (in milliseconds) elapsed by each configuration is shown in Table 13 (located in
the Appendix). As one would expect, the more iterations that are performed, the higher the
computational time required to finish the execution, therefore the configuration with the smallest
limit of iterations was significantly faster than the others. The exception to this phenomenon
is only visible in problems where the algorithm is prone to place a set of items in very few
iterations (less than 100), and after that the capacity constraint does not allow to place any
more items, so the algorithm can stop. In these cases, the time among different configurations
does not have significant differences. This circumstance takes place in Problems 1, 3 and 4, and
to a smaller extent in Problem 8 (in which the initial iterations to place items are more).

Despite of the massive increase in execution time when using a maximum of 100000 iterations
and 30000 convergence iterations, this option was preferred as the final configuration of the
algorithm due to the significant improvement in solution quality in complex problems. There is

59

Table 2: Solution value of the iteration configurations tested in the second optimization phase
of the greedy algorithm.

1000 max iter.,

300 conv. iter.

10000 max iter.,

3000 conv. iter.

100000 max iter.,

30000 conv. iter.

Problem 1 50±0 50±0 50±0

Problem 2 39.5±9.86 47.5±10.06 52.5±8.14

Problem 3 28.5±5.94 21±2 24±5.83

Problem 4 32.7±1.35 32.5±1.36 32.9±1.37

Problem 5 118.7±17.12 128.3±8.91 123.2±9.25

Problem 6 90.8±10.93 102.2±5.38 112.4±5.75

Problem 7 89.8±7.33 100±8.22 108.3±6.81

Problem 8 50.4±5.54 52.4±7.57 56.4±4.9

Problem 9 107.2±15.98 108.1±5.15 122.5±25.65

Problem 10 113±6.4 123±6.4 135±6.71

no evidence that the algorithm would not be able to obtain even better solutions if many more
iterations were used (e.g. 10 times more), which may be tested in future work. Nevertheless, a
significant improvement would not be expected in the examples of the Joint Problem Dataset.
Observing the solutions obtained with the configuration with 100000 maximum iterations, there
are not many cases where it is visually clear that one of the items outside of the container in the
final state would fit inside if tried with a suitable position and rotation (respecting the capacity
limit), therefore improving the final value.

6.3 Reversible algorithm

6.3.1 Experimental Methodology

In the case of the reversible algorithm, the first optimization phase was dedicated to find the
best combination of action probabilities, among a small set. The probability of removing an
item in a certain iteration was set to be 0.005, 0.01 or 0.02, depending on the experiment. The
probability should always be moderately low, since removing an item decreases the value of a
solution, so it should not be continuously used. The probability to remove an item while another
removal is still recent (i.e. pending to be confirmed or dismissed after some iterations) should
be even smaller, because the higher the removal number, the less likely that the algorithm will
be able to add enough value to compensate the losses. To be consistent with this idea, a value
of 0.001 was chosen, which is clearly smaller than any of the tested values for the base removal
probability. On the one hand, ignoring the most recently removed item for the next placements
(until the removal is accepted or rejected) may facilitate avoiding the undesired scenario of that
item being placed again soon, having no long-term impact in the solution’s value. On the other
hand, if the item is the last one once the rest of objects are already placed, it would inefficient
to always ignore it. Due to the confluence of both thoughts, the probability to ignore a recently
removed for placement was fixed to be 0.5. The probability to modify the placement of an item
does not need to be very high, since it does not directly improve the value of a solution, but it
should be high enough to take place from time to time, to increase variability; the tested values

60

were 0.03, 0.05 and 0.1.
The second parameter optimization phase of the reversible algorithm is very similar to that

of the greedy algorithm. In preliminary tests, it was observed that a set of values for the
iteration parameters gave results of more quality than others of the same order of magnitude.
Namely, that was setting the maximum number of iterations to 1000 (the same as for the greedy
algorithm), as well as 300 iterations to assume convergence and 200 to evaluate a removal
(confirming it or reverting the solution to the one that preceded the removal). It was observed
that setting the removal evaluation iterations to a smaller number was not enough to make a
reasonable number of removals to be accepted (since there was not enough time to compensate
the value lost with new placements), but a very high number would imply that removal would
play an insignificant role in the algorithm; 200 iterations was seen as a reasonable trade-off. As
done in the case of the greedy algorithm, the initial value for the maximum number of iterations
was compared with a figure 10 times larger (10000 iterations) and one 100 times larger (100000),
and the same factor of growth is applied to the convergence iterations: 3000 and 30000 were
compared to using just 300. The 200 iterations to evaluate removal stayed unchanged, to allow
more removals to take place when the maximum number of iterations is longer, and study if
such aspect has any noticeable impact when finding solutions.

6.3.2 Results and Discussion

The value results of the first optimization phase of the reversible algorithm can be seen in
Table 14 (placed in Section A.3.2 of the Appendix). The probability to remove an item in an
iteration is noted as Pr, while the probability to modify an existing placement is represented as
Pm (they should not be confused with parameters of the evolutionary algorithm that use the
same notation). If one observes the results, it is clear that none of the tested configurations
of parameters always yields significantly better results than any other. Following the same
principle applied in the optimization of the greedy algorithm (for consistency), the most suitable
configuration was considered to be the one the highest number of problems where its result is
among the top 3. Since there were two configurations with the same number, it was reasonable to
check in Table 15 (in the Appendix) if there were significant differences between the execution
times, as a potential tie-breaking criterion. However, that is not the case: when observing
the table it is unclear that the time elapsed to solve a problem depends on the values for the
probabilities. A plausible explanation is that the heaviest computation (which outnumbers the
rest) is the placement of items, which eventually takes place a similar number of times regardless
of how probable it is to remove an item or modify a placement. Therefore, to select the most
suitable configuration, the number of wins among problems was used as a tie-breaking criterion,
and one of the configurations tied in the number of top-3 positions won in 5 of the 10 problems
(the second in only 3). This configuration was selected as the final one. It uses the smallest
tested removal probability, 0.005, implying that since removal decreases the value of solutions,
it should be used scarcely. The configuration sets the probability to modify a placement to
be 0.05, the intermediate value among the tested ones. However, the similarity of the average
values among different configurations is too similar to claim that these probabilities are actually
the best for any problem, and it would be a good idea (as future work) to repeat the experiments
in a larger dataset of problems before extracting further conclusions, such as to which extent
the modification of placements is a key (useful) factor to obtain a solution.

The value results of the second optimization phase of the reversible algorithm are presented
in Table 3. As it happened with the greedy algorithm, the configuration with the highest
number of iterations (a maximum of 100000 and 30000 to assume convergence) yielded the
highest quality. Namely, this configuration was the best one in 6 of the 9 problems (Problem
1 is ignored, since all configurations obtained the same result), and it was very close to the

61

Table 3: Solution value of the iteration configurations tested in the second optimization phase
of the reversible algorithm.

1000 max iter.,

300 conv. iter.

10000 max iter.,

3000 conv. iter.

100000 max iter.,

30000 conv. iter.

Problem 1 50.0±0.0 50.0±0.0 50.0±0.0

Problem 2 46.0±8.0 50.5±5.22 51.0±8.6

Problem 3 22.5±4.61 20.0±0.0 22.5±5.12

Problem 4 31.3±1.79 31.3±1.68 31.0±1.79

Problem 5 110.2±8.4 114.8±10.52 109.2±6.71

Problem 6 76.0±9.75 99.2±6.95 111.6±7.05

Problem 7 81.0±9.31 102.3±6.36 103.3±4.73

Problem 8 48.7±5.78 48.0±4.69 51.3±4.69

Problem 9 99.5±7.77 103.3±5.71 106.7±4.08

Problem 10 96.0±16.4 123.0±14.18 121.5±14.67

best solution in other 2 problems, and not very far in the remaining problem. Therefore, it was
selected as the final configuration of the algorithm, despite of being massively slower (except
in the case of the simplest problems), as shown in Table 16 (in the Appendix). Such results
were expected, since more iterations imply that actions are performed more times, including
computationally expensive checks used to determine the validity of a candidate placement. It
is of no surprise that performing a higher number of iterations produced better results. As it
happened with the greedy algorithm, this circumstance makes difficult placements more likely
to eventually take place, and, in this case, the usage of item removal and placement modification
can lead to new opportunities to place items that would otherwise not fit in the container.

6.4 Evolutionary algorithm

6.4.1 Experimental Methodology

6.4.1.1 General comments

The evolutionary algorithm has a large number of parameters compared to the other methods,
but its lower speed made it unfeasible to test many configurations with different parameter
values. Instead, most parameters used only a fixed value, chosen based on a combination of
common sense and standard values of analogous parameters in the literature of evolutionary
computation (when applicable). Additionally, in most cases, a small number of values was tested
at least in one problem, and the one that produced the highest solution quality on an average of
some iterations (e.g. 3 to 5) was chosen. These small experiments are referred to as preliminary
tests, and due to the specificity and limitations of their experimental conditions, the ideas
reached through them should be given much less confidence than those of formal experiments.
It is known that such methodology to set parameter values has room for improvement, and it is
clear that testing an exhaustive number of values for many of the parameters of the algorithm
in a diverse set of problems (e.g. in the Joint Problem Dataset presented in Chapter 5) would
potentially lead to finding better configurations. Such options would be an interesting direction
for future work, if enough time and computational resources were at disposal.

62

Nevertheless, there was a small number of parameters for which testing multiple values had a
noteworthy research interest and were considered to potentially lead to significant changes in the
quality of the solutions (and the execution time of the algorithm). Despite of this, there may be
other parameters of considerable research interest for which multiple values were not (formally)
tested, which might be explored in future work. Parameter optimization was performed in a
set of sequential phases: in each of them, a single parameter is optimized, using grid search, i.e.
selecting the value yielding the best solution quality among the 10 problems of the Joint Problem
Dataset, executed 10 times each for statistic significance. It is clear that the sequential method
is more limited since less combinations are tested than in a grid search done for all combinations
of the values of each tested parameter. However, to avoid the exponential growth in execution
time derived from the latter option, the sequential phase-by-phase approach was preferred. The
parameter optimization phases that were performed are listed as follows, in which each phase
fixed the best value obtained with grid search in the previous phase for the tested parameter:

• Population size µ, testing the values 30, 50 and 100, as explained in Section 6.4.1.2.

• Minimum offspring size λ, tested as different factors of the the population size (0.5 · µ, µ
and 2 · µ), as explained in Section 6.4.1.3.

• Algorithm variant, defined by the combination of two parameters: whether crossover is
used, Uc (true or false), and whether placement modification mutations can be used (with
a fixed non-zero probability weight for these mutations, Pm = 0.3) or not (Pm = 0,
in such case only placement and removal mutations are possible). This experiment was
motivated by the fact that, theoretically, an evolutionary algorithm based exclusively on
mutation can obtain any possible solution (if run an endless number of times), without
making crossover essential at functional level, raising the question of whether it provides
an effective improvement of the quality of solutions by diversifying exploration, or faster
convergence, or, on the contrary, has negative effects in terms of quality, time, or both
aspects. As crossover, placement modification mutations are not needed to allow the
algorithm to reach any possible solution (if run for an infinite number of generations), but
it is interesting to see if the incorporation of such types of mutations bring any significant
positive or negative changes in quality and time. It should be noted that when placement
modifications are not used, the probability of the other two types of mutation actions,
item addition and removal, is implicitly changed, even if their probability weights are not
changed, because the probability weight of placement modifications is reduced to 0, so
each of the other two weights represents a higher proportion of the sum of all weights.
The experiments were combined in a single optimization phase because the two tested
parameters configure the type of variant of the algorithm that is used: a crossover-mutation
variant or mutation-only variant; and with modifications of existing placements or only
using addition and removal.

For better readability, the justifications of the values selected for each parameter are divided
in sections that group parameters that belong to the same facets of the evolutionary algorithm,
with the same naming conventions for sections as used when explaining the evolutionary tech-
nique, in Section 3.3.

6.4.1.2 Generation of the initial population

In the process of generating the initial population, up to a maximum number of iterations
Imax = 300 is performed, with early stopping taking place if no improvement in the solution’s
value takes place after Iconv = 50 consecutive iterations; it is assumed that the algorithm has

63

converged. The current value of the maximum value of iterations is a trade-off between solution
quality and efficiency: smaller values (e.g. 100) were seen to produce nearly empty initial
solutions in preliminary tests, failing much more often to place large or difficult items (due
to the lack of enough attempts), while a much larger number of iterations (e.g. 1000) did not
significantly improve the quality of solutions, and made the generation process to take more time
than any of the evolutionary operators (summing the time spent in all generations), which was
considered to be an undesirable property for the algorithm. Before convergence can be applied,
up to a proportion S = 0.5 of the maximum number of iterations is devoted to try to place a
specific item in the container before any other, an specialization approach that aims to achieve
a high level of variability among the initial solutions. The chosen value is considerably high due
to the difficulty involved in placing some items, but at the same time is not closer to 1 to avoid
that if it completely impossible (or extremely difficult, i.e. unlikely) to place a certain item, at
least some other items can be placed after a reasonable number of specialization attempts.

The population size, µ, is a key parameter in evolutionary algorithms. A very low value
may not allow to express enough variability and feature diversity among the individuals of a
population, while a high value can usually achieve the objective, but implies a linear increase in
the number of times that some operations need to be performed (e.g. initial solution generation
and mutation), therefore making the execution time slower. In preliminary tests, a value of
50 individuals per population was seen to be a reasonable trade-off between variability and
computational efficiency. It was preferred as a default value to other conventional values in the
literature, such as 100, which was expected to make the algorithm slower, yet potentially able
to produce solutions of higher quality. Therefore, a parameter optimization phase was designed
to determine if doubling the population size from 50 to 100 provided significantly better results,
and see if the expected time penalty was worthy. To have a broader perspective of the effects of
different values in the space of parameter values for µ, a smaller value, 30, was also tested. For
30 individuals, the initial hypothesis, to be validated or refuted, was that the algorithm would
be both faster (due to having less operations to do per generation) and unable to reach the
quality of solutions produced with higher values, due to the smaller exploration possible with
less individuals, given that the number of generations remained unchanged.

6.4.1.3 Parent selection and offspring generation

In each generation of the evolutionary algorithm, at least λ individuals are generated (more in
the special circumstances explained in Section 3.3.6). One of the most common ways to set
this value in the literature is to make it equal to the population size, so this was opted for as
a natural choice. However, motivated by a notable quality of solutions obtained when using a
value of λ that was times 2 smaller than µ in preliminary tests, a parameter optimization phase
was designed to determine the best option, considering computational efficiency as a potential
tie-breaking criterion if the two options happened to yield results without differences of enough
significance. To have a greater perspective of the value of λ, as a factor of µ, an offspring size
2 times larger than the population was also tested, expected to make the algorithm slower but
capable of producing solutions of higher quality, as an initial hypothesis.

The tournament pool size used in parent selection, Tp = 3, was chosen to give higher value to
competition than with just 2 individuals, but without making selection pressure so high that the
population may be prone to become too less diverse in few generations, only keeping individuals
similar to the elite, and making exploration less effective (e.g. with a pool size of 5, or especially
10).

64

6.4.1.4 Crossover

In crossover, when the length of a non-segment partitioning shape is defined, it is set to be in the
range determined by two proportions of the side length of the container’s bounding rectangle,
a minimum and a maximum value. It was chosen to use a minimum proportion L̄min = 0.25
because it can make a shape to be small yet large enough to cover a reasonable amount of the
area to partition, and a maximum proportion L̄max = 0.75, which is considerably large but
should not usually cover the whole usable space of the container (which would lead to fail to
partition the container in two regions). For partitioning shapes that are polygons, it was fixed
that the number of vertices would be at most V̄c = 10, and of course not smaller than 3, which
produces a triangle; such range is wide enough to provide a large diversity of region shapes.
When trying to create a valid partitioning shape, at most Mc = 5 attempts can be done in a
single crossover action; with the used configuration of proportions for the size of the partitioning
shape a valid one should be produced before that number of attempts in most containers, often in
the first time. In problems with extremely narrow containers crossover is less likely to be useful,
so mutation should have a primary role, without trying too many times to perform crossover in
vain. It is considered that a valid partitioning shape should have an area representing at least
A = 0.1 times the container’s area: it is considered that smaller areas have a reduced likelihood
of enclosing any item within them, which is important to make crossover useful.

In one of the last steps of crossover, up to R = 5 permutations of orders of placements of
items intersecting with the two partitioning regions in the parents can be made. 5 is far from
being an exhaustive number, but large enough to obtain a clear boost in the quality of results
compared to not using any permutation, according to preliminary tests, since the placements
derived of permutations increase the value of solutions, and still not representing a large impact
in efficiency (which may happen if many more permutations were tried). Crossover can produce
additional offspring (more than two) as individuals resulting from permutations which, even if
they are not the best (which represent the two default offspring), have a fitness value that is
better than a proportion C = 0.95 of the most recently updated population. Smaller values
(e.g. 0.8 or below) generated a very high number of additional offspring in preliminary tests,
which was considered an undesirable property, because the surplus offspring are, in general, very
similar to the base ones, and should be only accepted if they are elite or almost elite, therefore
a very high proportion was fixed.

6.4.1.5 Mutation

In mutation, one of the three high-level types of mutation is selected at a given mutation step,
proportionally to their probability weights: Pa = 0.6 for addition, Pr = 0.1 for removal and
Pm = 0.3 for placement modification. The weights were fixed taking into account that addition
is the only type of operation that increases the fitness value, therefore it has a clearly higher value
than the others, while placement modifications do not directly change the value of a solution (but
can promote exploration and hypothetical improvements), and removal should be much lower
because it decreases the fitness value and can only be useful for an eventual, non-guaranteed
long-term improvement of the value after more placements take place. A single execution of the
mutation operator performs a minimum number of iterations Imut = 5, which seemed enough
to promote that in most cases at least one change is made (i.e. making mutation effective),
since some of the operations may fail. Nevertheless, to increase the likelihood that mutation is
effective, the action chosen in an iteration is not tried only once (except for removal, that cannot
fail if the container has at least one item), but up to a maximum number of attempts, Ma = 10
for addition and Mm = 3 for placement modification, giving more importance to the former
since it is the only operation increasing fitness when it is successful, and it is potentially difficult

65

to place items after some generations, when the container is almost full in some problems. The
intermediate solution after each mutation step is not lost if it is better than later ones. Actually,
if an intermediate solution has higher fitness than the individual at the end of mutation, the
intermediate solution is selected as final with a probability Pi = 1, i.e. always choosing the
intermediate option if better. In preliminary tests, using smaller values for the probability
(e.g. 0.5) brought a decrease in the quality of the final solution of the algorithm, so they
were discarded. If crossover is used and the offspring generated by crossover has higher fitness
than its subsequently mutated version, the individual before mutation is selected as final with
a probability Pcm = 0.5, which represents a trade-off between exploiting the best option and
exploring alternatives; in preliminary tests it was not observed the same effect in the final
solution as seen for the previous probability.

In the case of placement modification mutations, multiple parameters are used to determine
how the different actions work. In the case of moving an item in a random direction, in each
iteration of movement the displacement should have at least a minimum distance, calculated
using a proportion D = 0.03 of the length of non-parallel sides of the bounding rectangle of
the container. The chosen proportion is considerably small because in containers with many
items, even such proportion can provide a significant gain in terms of compacting items in
the container’s space. In the same modification action, the displacement segment is divided in
Bp = 15 equidistributed positions, providing the targeted level of precision in terms of dividing
the space in small sections, and taking into account that since binary search is used, the total
number of iterations (tested positions) is smaller (in a logarithmic way). In the action that
rotates an item in either clockwise or counter-clockwise direction, a maximum of Br = 8 angles
are tested, which provides an exploration that is detailed enough; the tested angles are calculated
with respect to the original rotation of the item, so they are not a constant set of absolute angles
that is same for all items (which would reduce variability). In the action that moves an item
with a small change in position, a proportion Sp = 0.2 of the length of the sides of the container
is used to determine what makes a distance change from being small to starting to be non-small;
in the action that performs a small change in rotation, a proportion Sr = 0.2 of 360 degrees is
used to define what is the first angle that is not considered small. In both cases, the thresholds
represent a value still relatively small, to guarantee that the changes in position or rotation that
are supposed to be small are indeed not large, but still significant on average.

6.4.1.6 Population update

When updating the population, tournament selection is used to determine which individuals
survive, and a pool size Tu = 3 is used, equal to that of parent selection, for the same reason: it
promotes a certain level of selection pressure, but not so high to easily jeopardize variability. In
each population update, the E = 5 elite individuals among the population and their offspring
are preserved, and ignored in tournaments. In preliminary tests it was observed that some of
the best solutions are very unlikely to be generated (e.g. by being able to place a very large,
high-value item that does not fit in most attempts), and with a small elite size (e.g. 1 or 2) it was
more likely that they were lost (if they are not in the elite, but still having the potential to lead
to be better after applying operators) in few generations (despite of the fact that they would
win in most tournament pools, they need to be randomly pre-selected first). These observations
motivated the choice of a considerably high elite size.

6.4.1.7 Termination criteria

The algorithm is run for a maximum number of generations, Gmax = 30. Traditionally, in
evolutionary algorithms, increasing the number of generations has the effect of improving the

66

quality of solutions (up to a certain extent, obviously the optimal value cannot be exceeded),
as well as making the algorithm slower, since more operations are performed (e.g. mutation,
crossover and population update). In preliminary tests, it was observed that a smaller maximum
number of generations (e.g. 20) yielded a significant decrease in the quality of final solutions,
while larger values (e.g. 50) did not provide a significant improvement, at least in the tested
problems. Nevertheless, it would be interesting to check much larger numbers of generations
(e.g. 100 or 300) in many problems (e.g. in the full Joint Problem Dataset) to determine in
which range of generations the algorithm stops improving in a significant way; this is a possible
direction for future work. It is considered that the algorithm has converged if the fitness value
does not improve in Gconv = 12 generations. It was observed in preliminary tests that a lower
value (e.g. 5 or 7, and even 10 in a much subtler way) often stopped too early, when the elite
fitness still had room for improvement in the population.

6.4.2 Results and Discussion

The first optimization phase of the evolutionary algorithm compares three different values of
population size: 30, 50 and 100. As expected and shown in Table 17 (placed in Section A.3.3
of the Appendix), using greater population sizes increases the likelihood of finding high-value
solutions, either at the initial population generation and as a result of applying operators such
as mutation or crossover. These operators are used more times since the population is larger,
and the offspring size was set to be proportional to population size, namely half of it for the first
optimization phase. Therefore, it is not surprising that the population size is empirically found
to be proportional to the execution time, as shown in Table 18 (in the Appendix). Although
the speed of the algorithm decreases in a significant way when using a population size of 100
individuals, this option was selected as the final one due to its clear increase in the quality of
solutions. Namely, the three configurations were tied in Problem 4, but a population size of
100 individuals allowed to obtain better results in 6 of the 9 remaining examples of the Joint
Problem Dataset (and it was especially close to the best in one of the other problems, and not
far in the case of the remaining one; the best solution was within the standard deviation).

In the second optimization phase of the evolutionary algorithm, multiple values of the min-
imum offspring size, λ, were tested: half of the population size (50 individuals), equal to the
population size (100), or twice larger (200). The value results are presented in Table 19 (located
in the Appendix). As one may expect, generating a larger number of offspring increases the
chance of finding better solutions, since the mutation and crossover operators are applied more
time, which can lead to increasingly challenging placements to be eventually possible. However,
because of the same reason (applying operators more times), the execution time increases pro-
portionally to the offspring size, as shown in Table 20 (in the Appendix). The configuration
with the largest λ obtained solutions of higher quality than that with the lowest λ in 5 of the
10 problems, while the configuration with 50 offspring is the best only 3 times. However, the
difference between them is only slight, since the best solution in 9 of the problems is within reach
of standard deviation for the 50-offspring configuration. The only case where the 200-offspring
configuration was clearly out of reach for the others was in Problem 10, a problem where it
is specially difficult to place all items due to the small space margin that allows to obtain an
optimal solution. Because of this apparent advantage for particularly difficult problems, the
configuration with λ = 200 was chosen as the final one. Nevertheless, due to the small overall
difference with the other configurations, it should be noted that in applications where time is
critical, a configuration with λ = 50 would be a very reasonable (and much faster) choice.

In the third (and last) optimization phase of the evolutionary algorithm, different variants
of the method were tested, depending on whether crossover was used (which happens when the
Boolean parameter Uc is true) and whether placement modifications were used (which requires

67

the probability weight Pm to be non-zero, in this case fixed to 0.3; if the weight is 0, modifications
are not used). The value of each configuration is shown in Table 4. Analyzing the mean values
and the standard deviations, one can see that the former are usually greater than the differences
between the different configurations. Therefore, it cannot be said that any of the 4 variants of the
algorithm is significantly better or worse than any other. The most interesting conclusion that
can be extracted from this table is that crossover does not have a clearly positive nor negative
effect in the quality of a solution, i.e. its presence or absence does not seem to affect the quality
of solutions. A potential explanation to this circumstance is the fact that mutation alone can
theoretically lead to obtain every possible solution for the problem, in other words, there is no
solution that can be generated exclusively via crossover. The execution time (in milliseconds)
of the configurations, presented in Table 5, also shows that the presence of crossover does not
make the algorithm significantly slower. It may be surprising at first, but it has a plausible
explanation: one of the parameter of the algorithms makes mutation to be avoided with a
certain probability only if crossover has been used first, and its default value is 0.5, meaning
that if crossover is not used, approximately twice of mutations are performed instead, which
balances the overall execution time.

Another interesting conclusion that can be extracted from Table 4 is that placement modifi-
cations do not seem to have a clear impact in the results, that are similar regardless of whether
they are enabled or not, as it happened with crossover. It has a similar explanation: the re-
maining actions, which are the placement (with random position and rotation) of items and
the removal, can eventually lead to any possible solution of the algorithm, even if the usage of
placement modifications can help to change the position or rotation of an already placed item
without removing it and then placing it again.

From the number of wins depicted in Table 4, it seems (if one ignores the lack of significant
differences) that the two best configurations are completely opposite: one does not use crossover
but does use placement modifications (this configuration wins individually in 3 problems, wins
in a tie in 1 problem and has the same solution as all the other configurations in 2 other prob-
lems); the other one, with results of very similar quality, uses crossover but ignores placement
modifications (wins alone in 4 problems). To choose a final configuration among the two, the
execution times of Table 5 were used as a tie-breaking criterion. It seems that the configuration
that does not use crossover (but uses placement modifications) is somewhat faster: at least, it
was the fastest in 5 of 10 problems, while the one using crossover (and ignoring placement mod-
ifications) only has the smallest time in 1 problem. Therefore, the configuration that ignores
crossover altogether but still uses placement modifications was selected as final. The results do
not point out clearly significant differences. However, it would not be surprising that the ab-
sence of crossover produces a slightly faster algorithm (despite of the mentioned counter-effect of
performing more mutations), since crossover tasks can be avoided, some of which are somewhat
computationally expensive, such as the placement permutations for items that intersect with
the partitioning regions.

68

Table 4: Solution value of the variants of the evolutionary algorithm tested in the third opti-
mization phase.

Uc = False,

Pm = 0

Uc = False,

Pm = 0.3

Uc = True,

Pm = 0

Uc = True,

Pm = 0.3

Problem 1 85.0±22.91 95.0±15.0 100.0±0.0 90.0±20.0

Problem 2 76.0±4.9 75.5±5.22 77.5±6.42 74.5±1.5

Problem 3 37.0±2.45 38.5±2.29 37.5±2.5 37.5±2.5

Problem 4 34.0±0.0 34.0±0.0 34.0±0.0 34.0±0.0

Problem 5 234.0±0.0 234.0±0.0 234.0±0.0 234.0±0.0

Problem 6 123.6±6.97 122.4±5.2 124.4±7.2 122.6±6.8

Problem 7 114.6±2.94 115.1±0.7 113.3±3.0 111.1±3.11

Problem 8 90.7±14.21 90.7±14.21 84.5±15.5 87.6±15.19

Problem 9 172.0±5.35 173.8±4.94 167.4±6.51 171.1±6.09

Problem 10 137.0±4.58 139.0±7.0 141.0±5.39 138.0±4.0

Table 5: Execution time (in milliseconds) of the variants of the evolutionary algorithm tested
in the third optimization phase.

Uc = False,

Pm = 0

Uc = False,

Pm = 0.3

Uc = True,

Pm = 0

Uc = True,

Pm = 0.3

Problem 1 42111±12410 34102±5842 44694±3910 36686±5094

Problem 2 136216±14039 104512±9635 98899±16142 78979±10992

Problem 3 19354±2135 18028±1478 31242±6950 32718±7760

Problem 4 15047±2125 21729±2762 37573±4874 41418±3273

Problem 5 167462±17170 135710±8043 104630±17227 108805±8054

Problem 6 104561±15955 94134±24423 97867±19276 86834±14033

Problem 7 107666±11471 92025±12284 112887±10410 97541±18470

Problem 8 31213±7149 26282±7424 42182±20400 33355±14721

Problem 9 90454±18089 70057±13575 80248±14920 85538±19405

Problem 10 108453±15147 87828±17802 74580±16915 60702±11671

69

7 Experimental Comparative Analysis of the Proposed
Methods with the Joint Problem Dataset

7.1 Experimental Methodology

The aim of this chapter is to compare the three algorithms that were designed and implemented
in this work (greedy, reversible and evolutionary), in terms of solution quality (understood as
the sum of the value of all items in the container) and execution time (reported in milliseconds).
Each algorithm was run in each of the 10 problems of the Joint Problem Dataset, introduced in
Chapter 5. Since at least one optimal solution is known for each of the problems (it was obtained
manually), the algorithms can be compared with this gold standard in terms of quality, to assess
how close to optimal they are.

The three algorithms used the parameter configurations that resulted from the optimization
steps described in Chapter 6, which also used the examples of the Joint Problem Dataset. In
general, it is advisable to optimize the parameters of algorithms in a set of problems that is
different from the one where they are tested later, to promote generalization and avoid over-
specialization biases. However, such approach was discarded for this work. It must be taken into
account that there were no preexisting datasets for the Joint Problem, so the Joint Problem
Dataset was created for this work (with a reduced number of problems, 10), and the author
wanted to apply the noteworthy diversity achieved for the problems to both the parameter
optimization phases and the algorithm comparison, to extract richer conclusions. Furthermore,
since all the algorithms were optimized using the same examples, it cannot be said that any of
them was given an unfair advantage over the others. Moreover, in the optimization it was found
that many of the parameters did not provide significant improvements for certain values (with
respect to the initial configurations), and others confirmed common-sense hypothesis that are
expected to be valid for most problems, such as the fact that increasing the population size and
offspring size improves the final solution, to a certain extent. However, if a greater dataset was
created in future work, it would be advisable to split it in optimization and testing partitions,
if performing parameter optimization was desired.

To guarantee a reasonable level of statistical significance of the results, each experiment
was run for 10 times, and statistical information summarizing them (mean, standard deviation,
minimum value, median and maximum value) is presented and analyzed in the next section.
To ensure that the execution times were not significantly affected by external causes, the ex-
periments were carried out in a single process, in a machine with no user interaction during
the experiments, and without other programs running (other than the essential processes of the
operating system). Since the machine has multiple CPU’s (6) it is not expected that operative
system factors affected the execution times presented in the next section in a significant way.

7.2 Results and Discussion

7.2.1 Solution Quality Analysis

The results of solution quality are presented in Table 6. For each of the three algorithms (greedy,
reversible and evolutionary), the following statistics are shown, in this order: mean, standard
deviation, minimum value, median and maximum value. The last column corresponds to the
value of the (manually obtained) optimal solution. For each problem, the bold notation is used
to identify which algorithm obtain the best mean, minimum value, median and maximum value.
When one of these numbers is equal to the value of the optimal solution, an underline is used, to
put focus in the fact that optimality was reached. An obvious conclusion that can be extracted
from the results of Table 6 is that the evolutionary algorithm produces results of significantly

70

higher quality than those of the greedy and reversible algorithms. This fact is clearly consistent,
not a matter of chance, since the evolutionary algorithm obtains the highest mean, minimum
value, median and maximum value in absolutely all the problems (even if the other algorithms
also reach that value in a small minority of cases).

Table 6: Statistics of the solution value results for each algorithm in the problems of the Joint
Problem Dataset, compared to the manual optimal solutions.

Algorithm Greedy Reversible Evolutionary Manual

Statistic mean std min med max mean std min med max mean std min med max optim.

Problem 1 50 0 50 50 50 50 0 50 50 50 100 0 100 100 100 100

Problem 2 50 10.49 30 50 75 50 3.16 45 50 55 77.5 6.42 70 75 90 90

Problem 3 23 5.1 20 20 35 22 5.1 15 20 35 37.5 2.5 35 37.5 40 40

Problem 4 32.7 0.78 31 33 34 30.1 1.81 29 29 34 34 0 34 34 34 34

Problem 5 130.1 4.97 123 134 134 111.6 11.73 103 105 139 234 0 234 234 234 239

Problem 6 104.9 6.41 97 105 118 110 10.1 97 109 130 119.9 5.77 110 118 130 130

Problem 7 110.3 6.39 96 113.5 115 103.4 6.89 91 105 115 114.7 1.95 111 115 118 118

Problem 8 53.8 5.93 45 55 60 49.9 7.63 42 48.5 65 84.5 15.5 69 84.5 100 100

Problem 9 109.3 2.61 105 111 113 104.4 5.62 94 103.5 113 172.4 4.43 166 174 177 190

Problem 10 136 4.9 130 140 140 132 8.72 120 130 150 140 6.32 130 140 150 210

The evolutionary algorithm is capable of obtaining the optimal value in at least one of the
10 executed runs in 7 of the 10 problems of the Joint Problem Dataset, which is a positive
quality. However, it is obvious that the algorithm does not guarantee that perfect results will be
obtained. To understand why, it can be useful to check the best evolutionary solutions for each
problem, whose visualization is shown in Section A.4 (in the Appendix), which can be compared
with the manual optimal solutions of Section 5.2. In both Problem 5 and Problem 9, two of
the largest items need to be placed in the container to achieve optimality, but in evolutionary
algorithm only manages to place one of them (in the visualized solutions). This is caused by the
fact that the item specialization in the generation of the initial generation (which is essential
for large items to be featured in solutions of complex problems) is performed on a single item
per initial solution; if the specialization was performed for more than one item, for sufficient
iterations, the optimal solutions would be much easier to obtain. Problem 10 was devised as
a very difficult problem where the optimal solution requires all items to be placed within a
very limited range of reference positions and rotations: the algorithm would have been much
more effective if it had known that using multiples of 90 degree was sufficient (but that is not
beneficial for all problems). As soon as one item does not meet these requirements, it becomes
impossible to find the optimal solution, unless it gets modified with a sequence of very specific
changes, which is unlikely. In Chapter 9, different ways to improve the algorithm are explored
as potential future work, to opt to find optimal solutions for the mentioned problems, and new
ones. Conversely, in the majority of problems (7 of the 10), as mentioned, the evolutionary
algorithm is able to obtain optimal solutions (either in all runs, some of them or at least one).

A key aspect of the success of the evolutionary algorithm is the creation of a large population
of candidate solutions that evolve through time, by the usage of operators, namely mutation,
that can place items in the container and perform removals and placement modifications; the

71

crossover operator was discarded in the last parameter optimization phase of Section 6.4. The
fitness-proportional selection of individuals in the population update of each generation promote
the progressive refinement of the quality of the solutions, until the best one remains intact for
enough generations to consider that the algorithm has converged. The fitness evolution process
is depicted in Figure 23 for one of the tested problems. It is easy to observe how the variability of
the problem is large by the time that the initial population is generated, and it is progressively
decreased (and improved) throughout generations; once a very good solution is found, it is
interesting to observe how it is preserved (by using elitism), while the population in general are
still refined to try to become even better.

This paragraph can be skipped by the reader if wanted, since it is exclusively devoted to
explain in more detail how statistical information is represented in Figure 23’s sequence of
boxplots to depict the evolution of the fitness value of the population through the generations
of the evolutionary algorithm. The first boxplot corresponds to the population after its original
creation, before any operator is applied, and each of the next boxplots corresponds to the
population after being updated in a generation. If early stopping takes place, the last generation
does not update the population (choosing the survivors among the old group and the offspring),
since it stops just after realizing that the elite has not improved with the new offspring, and
has kept unchanged for a certain number of convergence iterations. In such case, and with the
only motivation of performing a boxplot based on the same number of fitness values as in the
previous generations, the population is updated to restore the normal population size. The
described option of updating the population of an early-stopped generation for visualization
purposes has been preferred over duplicating the boxplot of the previous generation, which
would have also been a valid option (since the most recently confirmed population would be
the previous one), but it would not reflect the influence in the population’s fitness made by the
last-generated offspring, which may be interesting to see. In the boxplots, the rectangular shape
(box) represents the data between the first quartile (25th percentile) and the third quartile
(75th percentile); the median (or second quartile) is shown as an orange line, while the mean
is depicted in green. The lower whisker indicates the 5th percentile, whilst the upper whisker
indicates the 95th percentile. The values outside of these ranges are represented with plus
symbols.

One of the main limitations of the greedy and reversible algorithms is that a single solution
is managed at a time (not a whole population as done in the evolutionary algorithm), which
massively limits the space for exploration. Furthermore, in the case of the greedy algorithm, item
additions to the container are permanent, i.e. they are never changed. This has the consequence
of easily limiting the algorithm to fall into local optima, but since it can focus in a fixed set of
circumstances, it can eventually be able to place an item for which there is still enough free room
but a high placement difficulty (e.g. a small range of reference positions where it is feasible),
after a long number of attempts. An example of this scenario can be seen in Figure 24, where a
smaller number of iterations to assume convergence would not have allowed to place a valuable
item, that here is eventually placed after a large number of attempts.

In the case of the reversible algorithm, placements can be reverted via item removal, or
modified with the movement or rotation of placed items. While this circumstance helps to escape
potential local optima by providing new possibilities for placements, it can be detrimental in
some ways, even if an older state of the solution is restored if a removal does not lead to higher
value after a certain number of iterations. In some occasions a removal paves the way to a
placement which increases the value, as shown in Figure 25. The negative point is that the
algorithm sometimes places many efforts in trying to improve a solution after a removal in vain,
since it is unable to place enough items to compensate the removal before the evaluation period
ends. Conversely, the greedy algorithm is focused on improving a more limited exploration space

72

Figure 23: Evolution of the fitness of a population of the evolutionary algorithm in one problem,
throughout generations.

(since it has no removals or placement modifications), which can be a key factor in some runs.
The explained advantages and drawbacks of both the greedy and reversible algorithm make

it easier to understand the fact that both obtain solutions of similar quality, even though a
detailed observation of the statistics of Table 6 gives some advantage to the greedy algorithm.
The greedy algorithm has a higher average in 7 problems, the reversible one has a better mean
in 1, and are tied in 2. A similar result can be seen for the median, where the greedy wins 6
times, the greedy 1 and there are 3 ties. The greedy algorithm also has better minimum values:
it wins in 7 problems, with 1 win for the reversible algorithm and 2 ties. However, the reversible
algorithm obtains better maximum values: it wins 4 times, while the greedy algorithm has only
1 greater maximum, and there are 5 ties. Therefore, it seems that the the specialization of the
greedy algorithm in fixing placements is, in general, more effective that the conditional removal
policy of the reversible algorithm, which can still be useful sometimes to obtain better maximum
values, thanks to performing a greater exploration via removals and placement modifications.

7.2.2 Time Analysis

Table 7 presents the execution time (in milliseconds) for each algorithm, showing the same
statistics used for solution quality. In this case, the bold notation is used to identify the lowest
times, which are considered to be more computationally efficient. It is easy to observe that the
evolutionary algorithm is always the slowest one, while the other two, greedy and reversible, both
have a balanced number of wins. The reversible has the best mean in 7 problems. The median
results are almost even, with 4 wins for the greedy, 5 for the reversible and 1 tie. However,
some of the largest maximum times of the reversible algorithm are twice (or more times) greater
than those of the greedy algorithm (e.g. in Problems 2, 5 and 9). Therefore, it is not clear that
any of the two is significantly faster. Instead, both algorithms are in general in the same order
of magnitude in terms of time, which is massively smaller that the time of the evolutionary

73

Figure 24: Evolution of the value of a solution of the greedy algorithm in one problem, through-
out iterations.

algorithm. This fact is unsurprising, since the evolutionary algorithm keeps a large population
of solution, that are generated and updated throughout generations, while the iterations of the
greedy and reversible algorithm perform a single or small number of tasks in a single solution.
The tasks performed by the greedy and reversible algorithms are simpler than the mutation
operator, which is used many times in the evolutionary algorithm; for instance, a placement
in the greedy or reversible algorithm is attempted just once, while the mutation operator has
multiple attempts, and it is applied many times for each generation.

Table 7: Statistics of the execution time (in milliseconds) for each algorithm in the problems of
the Joint Problem Dataset.

Algorithm Greedy Reversible Evolutionary

Statistic mean std min med max mean std min med max mean std min med max

Problem 1 15 13 2 13 48 4 2 2 4 7 20399 1854 18103 20462 23525

Problem 2 17899 526 17439 17713 19054 30902 15166 2981 33202 50392 80866 12294 66535 75567 107385

Problem 3 19 10 9 17 47 13 8 5 11 34 13380 3619 9967 11068 19299

Problem 4 8 1 6 8 11 8 2 6 8 10 13223 637 12347 12850 14239

Problem 5 13970 4470 9893 11263 21198 20804 18130 3382 16192 61936 86815 8486 74924 84015 100684

Problem 6 14145 3106 11420 12622 21785 9662 1954 7102 9638 13730 59861 7535 49838 57350 76820

Problem 7 9897 5045 2428 9309 19342 6441 3649 1223 6227 13989 66235 18088 42913 59258 96525

Problem 8 145 96 37 128 330 120 93 34 104 354 23117 9808 13161 19901 44300

Problem 9 343 283 103 249 1100 1892 3174 104 294 9501 50271 12260 35532 46005 71366

Problem 10 13807 2566 11448 12828 19797 13113 909 12028 12877 14680 62213 13849 42430 61981 93049

74

Figure 25: Evolution of the value of a solution of the reversible algorithm in the start of one
problem, throughout iterations.

The already explained role of mutation in making the evolutionary algorithm much slower
(and capable to obtain solutions of higher quality, too) is supported by the division of tasks
by time, shown in Figure 26, where it is obvious that mutation takes about 90% of the time.
In previous experiments where crossover was still applied, it also used to take a considerable
amount of time, but a bit less than mutation (when both were used mutation took less absolute
time, due to a probability of crossover to avoid performing mutation afterwards, set to 50%).
Currently, the next heaviest task after mutation is the generation of the initial population,
due to the considerable number of iterations devoted to obtaining some reasonably fit solutions
from the very beginning. The time of parent selection, elite fitness and population update is
significantly smaller, and the rest of tasks have a negligible impact.

In the case of the greedy algorithm, the task that takes almost the totality of the running
time is the addition of items, as one can see in Figure 27 (in the same problem as shown
for the evolutionary algorithm, for consistency). This happens because the computations that
check whether a candidate placement is geometrically valid require are not trivial, especially
for items with complex shapes. The stochastic selection of items has a certain impact in time,
but about 100 times smaller that geometric checks; this circumstance is also present in the case
of the reversible algorithm, as shown in Figure 28. In the reversible case, geometric checks are
performed not only in item additions but also in placement modifications (which are attempted
less frequently); removals have a very small impact, since they do not require geometric checks.
In both algorithms, sorting the items by weight and discarding those that are outside of the
capacity is negligible in terms of time.

75

Figure 26: Time division of the tasks of the evolutionary algorithm in one of the tested problems.

Figure 27: Time division of the tasks of the greedy algorithm in one of the tested problems.

76

Figure 28: Time division of the tasks of the reversible algorithm in one of the tested problems.

77

8 Experimental Analysis of the Applicability of the Pro-
posed Methods to solve a traditional Packing Problem

8.1 Contextualization and Experimental Methodology

The aim of this chapter is to determine whether the proposed algorithms (greedy, reversible and
evolutionary) can be successfully applied to obtain results of a reasonably high quality in the
domain of the Packing Problem. Specifically, the author decided to explore the type of Packing
Problem whose objective is to maximize the number of items (eligible from a finite set) placed in
a container. It was considered that the developed algorithms can be naturally oriented to such
objective than to more distant problems, such as those that do not specify a fixed shape for the
container, and instead, try to minimize the area or side length of the bounding rectangle of the
region resulting from placing items in a compacted way. Many publicly available datasets exist
for this latter type of Packing Problem (AS80; DJ95; DDB98; Hop00), which also constraint
the possible rotation angles (e.g. to 0, 90, 180 and 270 degrees), unlike the proposed methods,
designed to support arbitrary rotation angles.

Unfortunately, the author did not find any public dataset for the type of Two-Dimensional
Irregular Packing Problem in which the item number must be maximized. A feasible alternative
would have been to convert the examples of the Joint Problem to this Packing Problem for
testing, but it was discarded, since it would require to manually determine the optimal solution,
and it would have been a bit repetitive to use the same problems again. Instead, the author
decided to use the two-dimensional packing solver (WR19) of the Wolfram Alpha knowledge
engine to create a set of problems and find the highest (optimal) number of items that can be
placed in the container. The solver is limited to items and containers whose shape is a circle,
triangle or rectangle, which excludes some of the shapes explored in the Joint Problem Dataset:
ellipses, polygons with more than 4 sides and compound polygons. Furthermore, all items are
restricted to have the same shape and dimensions. Despite of these drawbacks, an illustrative
variety of problems was created, along with their optimal solution, used to assess the solution
quality obtained by each of the algorithms. Since the Wolfram Alpha solver places all the items
in the container in all the cases, checking if the proposed algorithms reach optimality is as
simple as seeing if it has been able to place all items, without leaving any outside the container.
Apart from this intuitive analysis, another positive point of using Wolfram Alpha is that the
solver does not simplify or discretize the allowed ranges of positions and rotation angles (at least
explicitly), which is aligned with the designed methods (unlike many well-known, generally old,
Packing datasets, which imposed constrained rotations). Section 8.2 provides more details of
the created set of problems. As done in Chapters 6 and 7, each experiment was run 10 times
to obtain a reasonable level of statistical significance. To make the total time of executing the
experiments significantly faster, multi-processing was used, in the same terms (and with the
same effects in time stability) as explained in Chapter 6.

To switch from the Joint Problem to the Packing problem, the value and weight notions need
to disappear, or at least become irrelevant. The latter option was chosen, since it only requires
to change the data of the problems, while keeping the algorithms intact. All the items were
given the same value (1 unit), so that increasing the number of items makes the solution value
higher (and the fitness, in the case of the evolutionary algorithm), without preference (value
bias) for any item in particular. All items were assigned a common weight (1 unit), and the
capacity constraint is never applied, since the container was given infinite capacity.

78

8.2 Analysis of the Packing Problem Dataset

Hereinafter, the set of problems created for the experiments of this Chapter is referred to
as Packing Problem Dataset. In the problems, the items are a homogeneous set of circles,
triangles or squares, and the container is also either a circle, triangle or square; there are 9
combinations of item-container types, and one problem instance was created for each of them.
The used item types are simple if compared to polygons of many sides or compound polygons
with holes. Therefore, the geometric intersection and containing checks are less computationally
expensive, so it was feasible to have problems with a considerably larger number of items (with
a maximum of 100) than in the Joint Problem Dataset, where some items have more complex
shapes. However, to have a greater diversity of problems, there are also instances with fewer
number of items (with a minimum of 7).

In the created problems, the optimal solutions have in common that all the items can be
placed in the container. The characteristics of the optimal solution were checked in Wolfram
Alpha’s packing solver (WR19), namely the percentage of coverage of the container’s area when
all items are placed (in an optimal solution). Such percentage, and other statistical information
of each instance of the Packing Problem Dataset (including the dimensions of the items and the
container), are shown in Table 8. One can see that the problems have a moderately high area
pressure (with coverage percentages of optimal solutions ranging from 47.56% to 63%), though
it is lower than in some of the problems of the Joint Problem Dataset, e.g. in Problem 10 it
reached 88.94%. One may think that this makes the new problems easier, but the large number
of items in some problems is a new difficulty, added to the fact that the used algorithms were
not originally devised to solve the Packing Problem.

Table 8: Statistics of the problems of the Packing Problem Dataset and their optimal solutions.

Item num.
Item side/

radius

Cont. side/

radius

Opt. % item

num. in cont.

Items’ area %

of cont. area

Circles in circle 7 12 3.9 100 63

Triangles in circle 20 4 9.5 100 48.87

Squares in circle 12 3 7.8 100 56.5

Circles in triangle 10 1 9.5 100 59.96

Triangles in triangle 18 3.5 20 100 55.13

Squares in triangle 30 7.5 80 100 60.89

Circles in square 50 17 300 100 50.44

Triangles in square 15 4 14 100 53.02

Squares in square 100 4 58 100 47.56

8.3 Results and Discussion

A statistical overview of the solution quality results obtained by the algorithms in each of the
problems of the Packing Problem Dataset is shown in Table 9, while a visualization of the best
solution for each problem is present in Section A.5 of the Appendix. In these problems, the
value of a solution is equivalent to the number of items placed in the container, and a solution is
optimal if all the items have been placed. The bold notation is used in Table 9 to indicate which
algorithm obtains the highest mean, minimum, median or maximum value in each problem,

79

while an underscore implies that the optimal value (checked using Wolfram Alpha’s packing
solver (WR19)) was reached. It is easy to observe that the evolutionary algorithm obtains
the best results, achieving optimality in 5 of the 9 tested problems (at least in one of the 10
performed runs).

Table 9: Statistics of the solution value results for each algorithm in the problems of the Packing
Problem Dataset, compared to the optimal solutions obtained with Wolfram Alpha’s packing
solver.

Algorithm Greedy Reversible Evolutionary W. Alpha

Statistic mean std min med max mean std min med max mean std min med max optimum

Circles in circle 4.7 0.64 4 5 6 4.8 0.6 4 5 6 6.8 0.4 6 7 7 7

Triangles in circle 17.9 1.04 16 18 20 15.4 0.92 14 15.5 17 18.7 0.9 17 19 20 20

Squares in circle 8.9 0.7 8 9 10 8 0.63 7 8 9 10.3 0.46 10 10 11 12

Circles in triangle 7.4 0.8 6 7 9 6.4 0.49 6 6 7 9.8 0.4 9 10 10 10

Triangles in triangle 13.6 1.2 11 14 15 11.4 0.8 10 11 13 15.5 0.67 14 16 16 18

Squares in triangle 21.4 1.11 19 22 23 19.1 1.3 18 18.5 21 23 0.77 22 23 24 30

Circles in square 48.5 1.2 46 49 50 45.5 1.5 44 45.5 48 50 0 50 50 50 50

Triangles in square 11.9 0.94 10 12 13 10.1 0.7 9 10 11 13.9 0.7 13 14 15 15

Squares in square 97.6 2.46 94 98.5 100 90 2.32 86 90.5 93 95.5 1.28 93 95.5 97 100

As it happened in the experiments of the Joint Problem (in Chapter 7), the evolutionary
algorithm has the advantage of creating and managing not only a single solution at a time (as
done in the greedy and reversible algorithms), but a whole population. This approach allows
the evolutionary algorithm to expand the exploration of the search space, and progressively
refine solutions by mutation, generating offspring and exploiting the highest-value solutions via
elite keeping and fitness-proportional population update. This combination of exploration and
exploitation leads the evolutionary algorithm to solutions of higher quality.

Conversely, the greedy and reversible algorithm manage a single solution at a time, even
though the reversible algorithm can restore a solution to a pre-removal state if removing an
item does not lead to an improvement in the solution value after some time. The quality of the
results of the greedy algorithm is significantly higher than those of the reversible algorithm: in
8 of the 9 problems, the greedy algorithm obtains a higher mean, median and maximum value
than the reversible algorithm. The removal strategy of the reversible algorithm seems more
potentially useful in the Joint Problem, since items have different value and weight (and the
container had a maximum weight acting as a constraint); in such context, removing an item
may give an opportunity to place an item with higher value and lower weight, which would
be potentially useful. However, in the Packing Problem all items have the same value, and the
weight is ignored, so removing an item implies decreasing the value of the solution with a smaller
likelihood of eventually achieving a better solution than in some scenarios of the Joint Problem.
Since all the items have the same value, is unsurprising than the greedy algorithm’s strategy
of focusing only in adding items to the container (keeping the placements of the already added
items unchanged) is more appropriate.

In fact, the addition approach of the greedy algorithm is effective enough to achieve better
results than the evolutionary algorithm in the “Squares in square” problem, which has the
largest number of items (100). Since the evolutionary algorithm does not focus exclusively on

80

adding items (but also occasionally removing items or modifying existing placements), it is
plausible that when the number of items is large, it can be outperformed by an algorithm that
focuses on getting items placed, at least in the Packing Problem (where all objects have the
same value), in problems with a considerable percentage of free space. Specifically, one should
think of problems in which the random-position accumulative item placement strategy of the
greedy algorithm does not easily lead to situations in which a certain position or rotation of one
or multiple items makes it impossible to place additional objects. Nevertheless, it is expected
that if the evolutionary algorithm performed a higher number of epochs (e.g. 100) in problems
with a very large number of items, it would be eventually able to obtain results of equivalent or
higher quality than those of the greedy algorithm.

While maintaining and updating a whole population of solutions tends to lead the evolu-
tionary algorithm to results of higher quality, it implies performing certain operations (namely
placement attempts and the required geometric checks to ensure solution validity) many more
times, which significantly increases the time of computation. Therefore, as shown in Table 10,
the evolutionary algorithm is the slowest of the three algorithms, while the reversible algorithm
obtains the fastest times (in bold) for all the problems. This is an interesting circumstance, since
the time results of the Joint Problem experiments did not show significant differences in time
between the greedy and the reversible algorithm. In the Packing Problem, at least in the tested
cases, the reversible algorithm is significantly faster than the greedy method. To understand
the reason that causes this phenomenon, it is useful to analyze, in a same problem, the time
spent by the greedy algorithm (shown Figure 29) and the reversible algorithm (as seen in Figure
30). One can observe that since the greedy algorithm is solely dedicated to item addition, it
spends the vast majority of the time attempting to place items, and geometrically validating (or
discarding) the placements. Conversely the reversible algorithm tries to perform removals in a
considerable percentage of iterations, even if most iterations are also devoted to perform addi-
tion attempts, or placement modifications; in both cases, geometric checks are required. The
usage of removals can lead to facilitate further placements: since there is more space available,
less attempts (i.e. less time) are needed to try to make new placements effective. This situation
is not in conflict with the fact that the removal strategy is usually counter-productive for the
solution quality (as seen previously in this section when comparing the algorithms), since the
placements made by the greedy algorithm always help improve the final solution, while those
of the reversible algorithm can be cancelled via removal, and eventually lead to poorer final
solutions.

Despite of the ability of the proposed methods to obtain solutions of considerable quality in
the tested problems, if a geometric optimization tool that guarantees finding optimal solutions
is available, it should be preferred to solve the Packing Problem, especially when it is also
faster. In the Packing Problem Dataset, Wolfram Alpha’s solver returned a solution in less time
than the proposed algorithms. The only (possible) exception may be in the fastest executions
of the greedy and reversible algorithms (those from less than 1 second to about 3 seconds),
but since the solver is used via website the author was not able to measure the exact time
taken by Wolfram Alpha to perform the geometric optimization (i.e. separating the calculation
from communication and page-loading times). Therefore, when packing equal circles, equilateral
triangles or squares in containers chosen among those same shapes, it is more practical to use a
solver that always provides an optimal solution. In some of the problems of the Packing Problem
Dataset in which the items are triangles or squares, the optimal solution can be obtained even if
using only one rotation angle (0 degrees), or just two (adding 180 degrees). Hence, it is easy to
understand that the proposed algorithms, that do not assume or constraint orientations (since
they are prepared for arbitrary problems that may require greater diversity) face an increased
difficulty to solve the problems, compared to methods that apply angle constraints. Of course,

81

Table 10: Statistics of the execution time (in milliseconds) for each algorithm in the problems
of the Packing Problem Dataset.

Algorithm Greedy Reversible Evolutionary

Statistic mean std min med max mean std min med max mean std min med max

Circles in circle 11718 2924 7837 11262 19155 1188 1219 104 711 3612 53358 9591 39993 51557 74487

Triangles in circle 29495 10115 15888 28477 48196 6707 1155 4392 6841 8340 128983 20693 88910 128645 158268

Squares in circle 21546 3048 16039 21243 26079 5291 2356 627 5523 8309 92970 14828 69090 90720 124333

Circles in triangle 15096 2013 10779 15213 19510 3732 1857 661 4334 5813 90995 10043 73988 92274 107548

Triangles in triangle 23024 4585 14943 22939 32097 6576 894 4830 6865 7823 127117 17367 93394 134287 143723

Squares in triangle 23698 4973 16507 23752 33381 8106 810 6447 8175 8901 138361 15574 104662 147375 151629

Circles in square 20904 7311 2286 22945 30490 6646 820 4746 6920 7524 182541 32785 109134 185819 224984

Triangles in square 25013 5354 16700 22741 32321 6116 914 4094 6426 7070 108574 19371 67710 110076 132873

Squares in square 39235 13827 14417 41365 60622 10026 1565 6878 10640 11946 255571 33845 186449 266038 289289

Figure 29: Time division of the tasks of the greedy algorithm in one of the tested problems.

82

Figure 30: Time division of the tasks of the reversible algorithm in one of the tested problems.

it would be trivial to modify the proposed algorithms to use rotation angle constraints, and if
such action was done, results of higher quality can be expected for these problems, but not for
problems of more complex shapes. However, the aim of this chapter was to test the Packing
Problem applicability of the proposed methods without changing anything from their original
definition, devised for the Joint Problem.

In some of the tested problems, it is especially obvious that the proposed algorithms are not
the most effective approach. Namely, in problems such as “Circles in square” or “Squares in
squares”, a better (and actually optimal) solution can be obtained by simply using the algorithm
implemented for visualizing the items that are outside the container (as explained in Section
4.2). Such algorithm arranges the items with an adjacency criteria, using bounding rectangles as
size references, and it would just be required to move the set of items with that arrangement into
the container, e.g. placing the center of the bounding rectangle formed by all the items in the
center of the container’s shape. However, the situation is only expected to happen when using
simple shapes in problems where all or most items have the same or very similar dimensions.

The author of this work was not able to find geometric optimization solvers that guarantee
optimal results for problems that include some of the shapes that the proposed algorithms accept
(e.g. irregular polygons of any side number, either concave or convex, or compound polygons
with holes), even though previous methods that solve the Packing Problem have been reported to
obtain optimal results in some problems (AS80; TG95), with methods that include evolutionary
algorithms and simulated annealing, that generally cannot guarantee universal optimality of
solutions. In other words, to the knowledge of the author, existing Packing algorithms are
unable to guarantee optimal solutions for arbitrary problems with complex shapes, and in some
cases the methods are even unable to accept those shapes, i.e. they are not only unable to ensure
that optimal results are obtained, but even to find any (non-optimal) solution. In such cases, the
proposed methods have the potential of being useful, especially the evolutionary algorithm, and

83

even the greedy algorithm if the problem has a very large number of items. These algorithms
have shown the ability to obtain a notable quality of solutions in instances of Packing Problem
with simple shapes, and using more complex shapes in problems of the Joint Problem Dataset. It
would be interesting to test the proposed algorithms in a larger dataset of the Packing Problem,
including problems whose items have complex shapes, as future work. Ideally, to be able to
fully contextualize the quality of the solutions, it would be required to determine the optimal
solutions, which may be difficult if no other method is able to obtain them (ensuring that the
solutions are optimal), since that would require to try to solve the problems manually.

84

9 Conclusions and Future Work

9.1 Main Conclusions

The experiments of the Joint Problem performed in Chapter 7 showed that the designed evolu-
tionary algorithm is capable of obtaining solutions of high quality in the tested set of problems
(the Joint Problem Dataset, presented in Chapter 5). Namely, the evolutionary algorithm ob-
tained optimal solutions in 7 of the 10 problems in at least one of the 10 performed runs, and
in every run for 2 of the problems. In most of the other problems the solutions were close-to-
optimal, except for Problem 10, an especially difficult problem where items need to be placed
in very restricted ranges of positions (and rotations) to reach optimality.

In all the problems, the evolutionary algorithm obtained better results than the other two
developed methods, greedy and reversible, except for a small number of runs in which they
were in a tie; the evolutionary algorithm was not outperformed in any case. The success of the
evolutionary algorithm can be explained by the fact that it creates and maintains a population of
many candidate solutions in parallel, while the other algorithms focus on just one at a time. The
evolutionary algorithm progressively refines the population throughout generations, by creating
modified solutions using the mutation operator (adding new items to the container with high
probability, or, with lower probability, removing placed items or modifying their position or
rotation), selecting surviving individuals in each generation proportionally to their fitness. The
crossover operator was not used in the final experiments: in a parameter optimization phase
(explained in Chapter 6) it was seen that the presence of crossover did not improve solutions, even
if not making them worse neither; using crossover made the execution slightly slower. Keeping
and updating a population of individuals makes the evolutionary algorithm significantly slower
than the greedy and reversible methods (in some problems the times are in a different order
of magnitude). In the experiments of the Joint Problem, the advantages and limitations of
both the greedy and reversible algorithms led them to obtain results of similar quality (which
is acceptable, yet generally not very good), in a similar time.

In the experiments of Chapter 8, it was shown that the applicability of the proposed al-
gorithms is not limited to the Joint Problem. Instead, they can be applied to a traditional
Packing Problem (devoted to maximize the number of items placed in the container) without
having to change any aspect of the methods, just adding minor changes in the input data to
adapt it to the expected format. The evolutionary algorithm obtained optimal results in at
least one of 10 runs in 5 of the 9 tested problems, and close-to-optimal results in the majority of
other problems. The evolutionary algorithm outperformed the greedy and reversible algorithm
in most problems, due to the same reasons that made it effective for the Joint Problem, as
explained in the previous paragraph. However, an external method, Wolfram Alpha’s packing
solver (WR19), is able to obtain optimal results in all the tested problems, which use simple
shapes. Therefore, when using simple shapes, the proposed methods are not the most compet-
itive option. Nevertheless, the proposed algorithms are capable of solving problems with more
complex shapes, e.g. irregular polygons and compound polygons, even if unable to guarantee
optimality, while the mentioned mathematical solver cannot (currently) give any solution for
such problems.

The following sections of this chapter examine possible future modifications in the evolu-
tionary algorithm that may (hypothetically) lead to find even more effective ways of solving
the Joint Problem, or become capable of solving alternative problems in a competitive way. In
any case, it should be noted, as explained in Section 4.3, that the whole code of the original
algorithm is available in a public repository, which should facilitate the development of future
work.

85

9.2 Possible modifications for the evolutionary algorithm applied to
the Joint Problem

9.2.1 Multi-item placement specialization in the generation of the initial popula-
tion

In the current version of the algorithm, an item specialization process is used in the generation
of the initial population as an attempt to make all the items (or at least a large number of them)
represented in some solutions (or at least one), by focusing on the placement of an individual
item (before any other item) for a certain initial solution. This approach is useful to place
some items which are either very large or have challenging shapes for the container; when not
using specialization, small items are usually placed first, making the placement of the difficult-
to-place items less likely in later attempts. If one of the latter items helps to make a solution
more valuable than the average, the solution has a higher likelihood of being preserved and
mutated throughout generations, and additional items can be added to the container. However,
if the optimal solution requires adding to the container more than one difficult-to-place item, it
is considerably unlikely that the evolutionary algorithm reaches optimality, especially if there
are many other items which are much easier to place (e.g. small ones), that block potential
positions where the ideal items would be placed.

To tackle this problem, it would be possible to extend the item specialization operation to
more than one item, such as pairs and triples. It would be advisable to study the specific context
of application (e.g. a set of representative problems) to choose an appropriate number; keeping
just one item might be the best option in some cases (e.g. if it is known that all problems will
just have a very large item, and many tiny ones). If the multi-item approach was used, each
item in the group would be specialized in a certain sequential order, or using a random selection
in each placement attempt. However, to be able to represent all the possible combinations of
items, one would need to have either a small number of items or a large population size, to
be able to represent each combination in at least one of the initial solutions. Alternatively, it
would be possible to define a heuristic method to determine which items should be considered
as difficult-to-place (and optionally even choose only the most valuable ones, or those with a
higher value-weight ratio), so that only combinations of those items are used in specialization:
the easy-to-place items would be naturally added via the normal mutation operator throughout
generations. However, if specialization is applied only to a finite subset of items, a certain
number of initial solutions should be generated without any specialization, to be consistent with
the fact that the optimal solution may not need any difficult-to-place item in some problems.

Some of the elements that may be worth considering to define the heuristic include the
area of the item and the largest-extent side of its boundary rectangle, which are, intuitively,
proportional to the placement difficulty. It is also worth to empirically determine whether
making the random selection of items to place weighted (instead of uniform) may improve the
solution quality. Namely, it would be possible to give a higher chance of selection to those items
that are considered more difficult to place (using a heuristic estimation score), to compensate
the fact that, on average, they are expected to be less likely to be (successfully) added to the
container. Such weighting selection should be used carefully (with a well-defined heuristic score)
and not too aggressively, to avoid restricting too much the order in which items get placed in
the container, since it would reduce the diversity of solutions, and therefore the possibilities of
exploration. If a heuristic score was used for weighted selection of items, considering the item’s
value and weight (as done in the greedy algorithm) may also be interesting, since the algorithm
seeks the maximization of the value given the weight constraint of the container.

86

9.2.2 Nested movement and rotation of compound polygons and the items placed
in their holes

In the mutation operator, when performing modification actions on an already placed item,
namely movement or rotation, it may be interesting (in future work) to consider a special
scenario involving compound polygons which have holes, since they can contain other shapes in
the holes. In some circumstances, when a modification is applied to a compound shape, it may be
suitable to move or rotate not only the shape but also all the shapes that have been placed inside
the compound object (recursively, i.e. also for contained compound shapes with their content
shapes), to preserve the relative position and rotation of the contained shapes, with respect to
the compound shape. The movement case would require to apply the same displacement to the
shapes within the compound shape as to that shape (calculating the relative position when the
movement consists in moving the compound shape reference point to a specific position). It is
therefore conceptually simple, but would require to do more intersection checks, which would
make the operations slower. Particularly, in the validation of the candidate solution resulting
from the action, it would be necessary to check if all the moved shapes intersect with any
other non-moved shape or the container, while it would be not needed to check for intersections
between the moved shapes since their relative position and rotation is preserved. The additional
intersection computations are also required in the compound rotation case. Furthermore, in such
scenario, to keep the alignment with the compound shape, the internal shapes would need to be
rotated with the same rotation origin as the compound shape. The drawback of this operation is
that it would require to recalculate the absolute reference position and rotation of the internal
shapes to be consistent with their definition and guarantee that the placements of items in
the container of the final solution would be trivially reproducible. In the case of the reference
position, it should be updated to match again the bounding rectangle center that the shapes
would have with 0-degree rotation, which may not be trivial to calculate in a very efficient way
after the performed indirect-origin rotation, which would also be the case for the new angle of
rotation, knowing that it would not be the rotation angle of the compound shape, but another
one to be calculated based on the distance between the internal and the compound shape, and
also taking into account the angle that the internal shape already had.

However, in some scenarios, moving or rotating only the compound shape and not the
internal ones may lead to a placement setting that facilitates the addition of new items to
the container, and this was the approach used in this work. As mentioned, the compound (or
nested) approach, involving the movement or rotation of the shapes contained in a compound
shape, would involve performing geometric checks for every other placed item to see if one of the
holes of the compound shape contains it, which may add a considerable computational overhead,
which would be only valuable if this method would lead to faster convergence to solutions of the
same (or higher) quality. The overhead may be reduced by storing the shapes contained by each
compound shape, but would still require to perform the geometric checks every time an item
is added to the container or its placement is modified, and updating the lists when removing
items. For research purposes, it may be interesting to test the two types of scenarios, performing
experiments comparing the usage of one method alone or both combined. It would be possible
to have both variants of movement or rotation in a same problem by means of the following
approach: when a movement or rotation action would have to be performed in a compound
shape in the context of the mutation operator, a probability Pcomp would be used to determine
whether a compound action should be applied, i.e. moving or rotating also the shapes found
within the compound shape, or otherwise a standard single-shape rotation should be selected.

87

9.2.3 Self-evolution of parameters

When designing the algorithm, the possibility to encode self-evolution parameters in solutions
was considered. Such parameters may include mutation-related probabilities and weights, along
with their standard derivation and covariance. Self-evolution is used in evolution strategies to
tune certain parameters of an evolutionary algorithm and guide it towards solutions of higher
quality (BS02). It is important to outline, though, that incorporating self-evolution would
initially increase the complexity of the algorithm and its computational time, a drawback that
would be only compensated if it would eventually converge faster to results of similar or higher
quality. However, there is no theoretical guarantee that self-evolution would improve the quality
of solutions. Based on the hypothesis that the benefits of its addition may not compensate the
drawbacks, self-evolution was not incorporated into the algorithm. Nevertheless, it may be an
interesting direction for future work to study and eventually design and implement a specific
self-evolution scheme for an evolutionary algorithm to solve the Joint Problem, if a preliminary
analysis makes it seem a potentially useful improvement.

Alternative approaches to let the evolutionary algorithm update the value of parameters
include the usage of adaptive strategies (PK96), which have been applied in previous works to
both the Packing Problem (HWK99) and the Knapsack Problem (CJ07). Parameter adaptation
can be achieved by repeating the execution of the evolutionary algorithm multiple runs, varying
the value of parameters (e.g. population size) with a certain criterion; for instance, increasing the
value of the parameter if the elite fitness has increased since the previous run, or decreasing the
value otherwise. Elitism can be extended from a generational context to an inter-run scenario, i.e.
preserving the best solution found at any run. The drawback of using multiple runs is that the
computational time of the algorithm increases (although early stopping can be performed if the
elite fitness does not improve after some runs), so it was discarded for this work. Nevertheless,
adaptive strategies may help to converge to higher-quality solutions (PK96), so exploring their
integration in the current evolutionary algorithm would be an interesting direction for future
work. However, it may not be appropriate to apply the adaptation of multiple (or at least not
many) parameters at the same time, since then it would be difficult to assess the influence of
each of the concurrently modified parameters in the solution quality of new runs.

9.3 Possible modifications for the evolutionary algorithm to apply it
to other problems

9.3.1 Area Minimization Packing Problem

In the literature of the Two-Dimensional Packing Problem, a commonly approached problem
sub-type is the Area Minimization Packing Problem (AS80; Hop00), in which the items must be
placed in a region with the smallest possible area; alternatively, some algorithms minimize the
smallest possible extent in one dimension. In many cases, the dimensions of the container are
not fixed, even though a maximum value for the extents is frequently given. The container is
usually expected to be rectangular, optimized as the minimum bounding rectangle that contains
all items in the final solution. Some existing algorithms (Jak96) compact the items by placing
the first one in a corner of the rectangle (e.g. in the bottom left corner), and then sliding the
following items (e.g. starting in the opposite corner) in an iterative way until they are next to
already placed ones. While these approaches have been widely used in the past with considerably
successful results (Hop00), this section is devoted to examining how the proposed algorithm can
be changed to be effective in the area minimization problem, without completely changing its
definition.

88

In its current formulation, the evolutionary algorithm does not try to minimize the space
in which items are placed, since that was not the main aim of the Joint Problem, where value
maximization is the priority. It would be possible to promote the minimization of the area by
defining a certain position as the center of placements (e.g. the center of the container’s shape),
and calculating the position of a placement attempt with a new formula: instead of uniformly
selecting a point within the container’s bounding rectangle, selecting coordinates proportionally
to their closeness to the center, i.e. making near-to-center points be used more often in item
placement attempts. This way, there would be a tendency to place items near to a certain point
(the center), but with enough flexibility to progressively go further from there as the nearby
space becomes full. Additionally, when selecting the item to perform a removal in mutation,
it should be more likely to select items far away from the center than those lying near to it,
inverting the recently mentioned formula. Furthermore, placement modifications would need to
be adapted too: all the operations that select a new position for an item, should make it more
likely to move the item near to the center (using the first formula). In the operation of moving
an item in a random direction until it intersects, the most likely direction of movement of the
item should be the one of the vector that goes from the reference position of the item to the
center of placements: the probability of choosing a direction should be inversely proportional
to its angle with that vector, to promote the progressive process of compacting items together
(but being flexible enough to escape local optima).

9.3.2 Three-Dimensional Irregular Shape Packing Problem combined with the
Knapsack Problem

The Three-Dimensional Irregular Shape Packing Problem combined with the Knapsack Problem,
or Three-Dimensional Joint Problem for short, can be defined analogously to its two-dimensional
counterpart, with the exception that both the items and the container have three-dimensional
shapes. The objective is still the maximization of the value of items in the container, given the
same constraints of not exceeding the container’s capacity and not causing intersections between
items or between an item and the boundaries of the container. Given this formulation, the
current evolutionary algorithm should be directly applicable to the three-dimensional problem,
with the only requirement of providing an appropriate representations for the shapes, and a
method for checking the intersection of each pair of shape types, and whether an item of one of
the shapes is contained in the other one. It would be reasonable to support simple shapes (e.g.
spheres, rectangular cuboids, cylinders, prisms, cones, pyramids and tori) and complex ones,
such as three-dimensional models (commonly defined using polygon meshes). It is well-known
that geometric tests for three-dimensional shapes are significantly more expensive than for two-
dimensional shapes, so it might not be feasible to solve the problem in a reasonable time if there
were many items, especially if they have complex shapes, using conventional (single-machine)
computing resources. For this reason, it is common to see how the algorithms that solve a
Three-Dimensional Packing Problem use only simple shapes, such as making both the objects
and containers to be rectangular cuboids (HH11), and simplifying the space of positions as a
discrete grid can also help, as well as limiting the possible rotations to a small finite set.

One of the potential scenarios of applications of the Three-Dimensional Joint Problem is
that of logistics, i.e. transporting real-world objects in a container. Items would have a certain
value, expressing either a monetary cost, the priority of delivery or some other notion, as well as
a weight, which can be (if it desired) the real weight of the object (e.g. expressed in kilograms),
while the container’s weight would be the maximum weight in which it is feasible to move the
vehicle in normal conditions. In the logistics scenario, it is necessary to introduce additional
constraints that a solution must satisfy to be practical when applied in a real-world situation.
Firstly, the objects cannot be floating, but placed on top of the floor of the container or another

89

item: this requirement can be called the gravity constraint (and may not be applicable to a space
vehicle once in a zero-gravity scenario). In the case of placing items on top of others, a secondary
aspect of the gravity constraint may be required too: the items should be placed in such way
that they would not fall, for instance centered on top of another object, or at least not lying on
the edge. It may be suitable to perform physical simulations considering the mass distribution
of objects in the chosen rotation (and other aspects, such as the friction coefficients of the
materials of the items) to determine the validity of a placement of one object on top of another
one. It would be possible to introduce other constraints, such as one related to vehicle stability,
to ensure that the mass of objects is distributed in a reasonably even way in the volume of
the container, according to a specified formula (which may depend on particular characteristics
of the vehicle, as well as the weight of the items). Intuitively, the greater the number and
complexity of the constraints, the more difficult (and time-consuming) would (potentially) be
to find a high-quality solution. Despite of that, most of the core features of the evolutionary
algorithm would not need to be changed; the constraint checks would be added to the process of
determining the validity of solutions. Additionally, the process of selecting candidate positions
(now in three-dimensional coordinates) for item additions or placement modifications would be
changed. In the gravity-respecting scenario, a position cannot be any point of the container’s
volume, Instead, it should be selected among feasible regions of the top surfaces of items (just
outside of them), and the floor surface inside the container’s shape. Detecting which surfaces
are on top and which zones of them would make a placement feasible may not be trivial. The
mutation operation of moving an item in a direction should be performed keeping the distance
to the floor surface constant, i.e. moving through the surface, to respect the gravity constraint.

9.4 The Optimality Goal

It should be noted the Joint Problem operates in the continuous space: there are theoretically
infinite position coordinates and rotation angles that can be tried for each item; in practise,
it is not infinite but a very large number, once the problem is brought to the computational
domain, since floating point representations have a finite number of values. Therefore, an
exhaustive method would hypothetically try all the possible combinations of position coordinates
and rotation angles for each item (in all the required placement orders) to guarantee that
the optimal solution is found, which is computationally unfeasible. Discretizing the position
coordinates in a grid and constraining the possible rotations to a finite set can eliminate the
continuous nature of the Joint Problem. Such approach has been used in some algorithms
(TCR+13) to solve the Packing Problem with non-trivial shapes, including irregular polygons,
and obtaining results (for some tested problems) that are optimal in the solution space of the
discretizations, but which are not necessarily optimal in the unrestricted version of the problem.

For the Joint Problem, one cannot expect to devise a method that always obtain the optimal
solution, unless a general geometrical method is proposed. There are formulae for cases of the
Packing Problem with simple shapes for the container and the items, e.g. squares (Wei05) or
circles (Wei02), but of course it would be more challenging for arbitrary shapes, or at least the
types tested in this work (circles, ellipses, polygons and compound polygons with holes). Such
hypothetical method would also need to incorporate some kind of optimization method for the
value, and a mechanism to respect the capacity constraint. The author is not sure of whether
it would be possible to create an optimal method with these characteristics, but exploring this
option would arguably be an interesting direction for future work.

90

References

[AA76] Michael Adamowicz and Antonio Albano. Nesting two-dimensional shapes in
rectangular modules. Computer-Aided Design, 8(1):27–33, 1976.

[APR00] Rumen Andonov, Vincent Poirriez, and Sanjay Rajopadhye. Unbounded knap-
sack problem: Dynamic programming revisited. European Journal of Operational
Research, 123(2):394–407, 2000.

[AS80] Antonio Albano and Giuseppe Sapuppo. Optimal allocation of two-dimensional
irregular shapes using heuristic search methods. IEEE Transactions on Systems,
Man, and Cybernetics, 10(5):242–248, 1980.

[BB13] Paul Belitz and Thomas Bewley. New horizons in sphere-packing theory, part
ii: lattice-based derivative-free optimization via global surrogates. Journal of
Global Optimization, 56(1):61–91, 2013.

[BBM93] David Beasley, David R Bull, and Ralph Robert Martin. An overview of genetic
algorithms: Part 1, fundamentals. University computing, 15(2):56–69, 1993.

[BGB10] Leo Budin, Marin Golub, and Andrea Budin. Traditional techniques of genetic
algorithms applied to floating-point chromosome representations. sign, 1(11):52,
2010.

[BS02] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies–a comprehen-
sive introduction. Natural computing, 1(1):3–52, 2002.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge uni-
versity press, 2004.

[CFLR03] Ping Chen, Zhaohui Fu, Andrew Lim, and Brian Rodrigues. Two-dimensional
packing for irregular shaped objects. In 36th Annual Hawaii International Con-
ference on System Sciences, 2003. Proceedings of the, pages 10–pp. IEEE, 2003.

[CJ07] Rung-Ching Chen and Cheng-Huei Jian. Solving unbounded knapsack problem
using an adaptive genetic algorithm with elitism strategy. In International Sym-
posium on Parallel and Distributed Processing and Applications, pages 193–202.
Springer, 2007.

[CJW00] YJ Cao, L Jiang, and QH Wu. An evolutionary programming approach to mixed-
variable optimization problems. Applied Mathematical Modelling, 24(12):931–
942, 2000.

[CS03] Charles R Collins and Kenneth Stephenson. A circle packing algorithm. Com-
putational Geometry, 25(3):233–256, 2003.

[DDB98] KA Dowsland, WB Dowsland, and JA Bennell. Jostling for position: local
improvement for irregular cutting patterns. Journal of the Operational Research
Society, 49(6):647–658, 1998.

[DJ95] Rahul Dighe and Mark J Jakiela. Solving pattern nesting problems with genetic
algorithms employing task decomposition and contact detection. Evolutionary
Computation, 3(3):239–266, 1995.

91

[DM96] Karen Daniels and Victor J Milenkovic. Column-based strip packing using or-
dered and compliant containment. In Workshop on Applied Computational Ge-
ometry, pages 91–107. Springer, 1996.

[DPAM02] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A
fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on
evolutionary computation, 6(2):182–197, 2002.

[DRG19] Daniel Domović, Tomislav Rolich, and Marin Golub. Evolutionary hyper-
heuristic for solving the strip-packing problem. The Journal of The Textile
Institute, pages 1–11, 2019.

[DVDQMX12] Aline M Del Valle, Thiago A De Queiroz, Flavio K Miyazawa, and Eduardo C
Xavier. Heuristics for two-dimensional knapsack and cutting stock problems with
items of irregular shape. Expert Systems with Applications, 39(16):12589–12598,
2012.

[ES+03] Agoston E Eiben, James E Smith, et al. Introduction to evolutionary computing,
volume 53. Springer, 2003.

[For93] Stephanie Forrest. Genetic algorithms: principles of natural selection applied to
computation. Science, 261(5123):872–878, 1993.

[FS75] Herbert Freeman and Ruth Shapira. Determining the minimum-area encasing
rectangle for an arbitrary closed curve. Communications of the ACM, 18(7):409–
413, 1975.

[GACGW03] Vladimir B Gantovnik, Christine M Anderson-Cook, Zafer Gürdal, and Layne T
Watson. A genetic algorithm with memory for mixed discrete–continuous design
optimization. Computers & Structures, 81(20), 2003.

[Gil10] Sean Gillies. Shapely user manual, 2010. Accessed: 2019-09.

[GO02] A Miguel Gomes and José F Oliveira. A 2-exchange heuristic for nesting prob-
lems. European Journal of Operational Research, 141(2):359–370, 2002.

[Gom13] A Miguel Gomes. Irregular packing problems: Industrial applications and new
directions using computational geometry. volume 46, pages 378–383. Elsevier,
2013.

[HAAN+16] Ahmad Hassanat, Esra’ Alkafaween, Nedal A Al-Nawaiseh, Mohammad A Ab-
badi, Mouhammd Alkasassbeh, and Mahmoud B Alhasanat. Enhancing genetic
algorithms using multi mutations. arXiv preprint arXiv:1602.08313, 2016.

[HH11] Kun He and Wenqi Huang. An efficient placement heuristic for three-dimensional
rectangular packing. Computers & Operations Research, 38(1):227–233, 2011.

[HK02] Kuk-Hyun Han and Jong-Hwan Kim. Quantum-inspired evolutionary algorithm
for a class of combinatorial optimization. volume 6, pages 580–593. IEEE, 2002.

[HK13] Eric Huang and Richard E Korf. Optimal rectangle packing: An absolute place-
ment approach. Journal of Artificial Intelligence Research, 46:47–87, 2013.

[HL95] Jörg Heistermann and Thomas Lengauer. The nesting problem in the leather
manufacturing industry. Annals of Operations Research, 57(1):147–173, 1995.

92

[HLM96] Arild Hoff, Arne Løkketangen, and Ingvar Mittet. Genetic algorithms for 0/1
multidimensional knapsack problems. In Proceedings Norsk Informatikk Konfer-
anse, pages 291–301. Citeseer, 1996.

[Hop00] Eva Hopper. Two-dimensional packing utilising evolutionary algorithms and
other meta-heuristic methods. PhD thesis, University of Wales. Cardiff, 2000.

[HQL94] Abdollah Homaifar, Charlene X Qi, and Steven H Lai. Constrained optimization
via genetic algorithms. Simulation, 62(4):242–253, 1994.

[Hun07] John D Hunter. Matplotlib: A 2d graphics environment. Computing in science
& engineering, 9(3):90, 2007.

[HWK99] Koichi Hatta, Shinichi Wakabayashi, and Tetsushi Koide. Solving the rectangular
packing problem by an adaptive ga based on sequence-pair. In Proceedings of
the ASP-DAC’99 Asia and South Pacific Design Automation Conference 1999
(Cat. No. 99EX198), pages 181–184. IEEE, 1999.

[Jak96] Stefan Jakobs. On genetic algorithms for the packing of polygons. European
journal of operational research, 88(1):165–181, 1996.

[Jas02] Andrzej Jaszkiewicz. On the performance of multiple-objective genetic local
search on the 0/1 knapsack problem-a comparative experiment. IEEE Transac-
tions on Evolutionary Computation, 6(4):402–412, 2002.

[JG98] Sakait Jain and Hae Chang Gea. Two-dimensional packing problems using ge-
netic algorithms. Engineering with Computers, 14(3):206–213, 1998.

[JPSP14] Bonfim Amaro Júnior, Plácido Rogério Pinheiro, Rommel Dias Saraiva, and
Pedro Gabriel Caĺıope Dantas Pinheiro. Dealing with nonregular shapes packing.
Mathematical Problems in Engineering, 2014, 2014.

[MA94] Zbigniew Michalewicz and Jaros law Arabas. Genetic algorithms for the 0/1
knapsack problem. In International Symposium on Methodologies for Intelligent
Systems, pages 134–143. Springer, 1994.

[MBM03] George G. Mitchell, David Barnes, and Mark Mccarville. Generepair- a repair
operator for genetic algorithms, 2003.

[MOGF07] Lúıs M Moreira, José F Oliveira, A Miguel Gomes, and J Soeiro Ferreira. Heuris-
tics for a dynamic rural postman problem. Computers & operations research,
34(11):3281–3294, 2007.

[MPT99] Silvano Martello, David Pisinger, and Paolo Toth. Dynamic programming and
strong bounds for the 0-1 knapsack problem. Management Science, 45(3):414–
424, 1999.

[MPV00] Silvano Martello, David Pisinger, and Daniele Vigo. The three-dimensional bin
packing problem. Operations research, 48(2):256–267, 2000.

[OD94] David Orvosh and Lawrence Davis. Using a genetic algorithm to optimize prob-
lems with feasibility constraints. In Proceedings of the First IEEE Conference
on Evolutionary Computation. IEEE World Congress on Computational Intelli-
gence, pages 548–553. IEEE, 1994.

93

[Pis00] David Pisinger. A minimal algorithm for the bounded knapsack problem. IN-
FORMS Journal on Computing, 12(1):75–82, 2000.

[PK96] Zhengjun Pan and Lishan Kang. An adaptive evolutionary algorithm for nu-
merical optimization. In Asia-Pacific Conference on Simulated Evolution and
Learning, pages 27–34. Springer, 1996.

[Pre03] Lutz Prechelt. Are scripting languages any good? a validation of perl, python,
rexx, and tcl against c, c++, and java. Advances in Computers, 57(2003):205–
270, 2003.

[RGP+01] Ignacio Rojas, Jesús Gonzalez, Héctor Pomares, FJ Rojas, FJ Fernández, and
Alberto Prieto. Multidimensional and multideme genetic algorithms for the
construction of fuzzy systems. International Journal of Approximate Reasoning,
26(3):179–210, 2001.

[Ros99] Brian J Ross. A lamarckian evolution strategy for genetic algorithms. 1999.

[Ros08] David Rosen. Seamless intersection between triangle meshes. In Proceedings:
Senior Conference on Computational Geometry, pages 1–8, 2008.

[SD08] SN Sivanandam and SN Deepa. Genetic algorithms. In Introduction to genetic
algorithms, pages 15–37. Springer, 2008.

[SNB98] Marc Stelmack, Nari Nakashima, and Stephen Batill. Genetic algorithms for
mixed discrete/continuous optimization in multidisciplinary design. In 7th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Op-
timization, page 4771, 1998.

[SVM93] Dirk Schlierkamp-Voosen and H Mühlenbein. Predictive models for the breeder
genetic algorithm. Evolutionary Computation, 1(1):25–49, 1993.

[SWM08] Chaoming Song, Ping Wang, and Hernán A Makse. A phase diagram for jammed
matter. Nature, 453(7195):629, 2008.

[TCR+13] Franklina MB Toledo, Maria Antónia Carravilla, Cristina Ribeiro, José F
Oliveira, and A Miguel Gomes. The dotted-board model: a new mip model
for nesting irregular shapes. International Journal of Production Economics,
145(2):478–487, 2013.

[TG95] Vassilios E Theodoracatos and James L Grimsley. The optimal packing of
arbitrarily-shaped polygons using simulated annealing and polynomial-time cool-
ing schedules. Computer methods in applied mechanics and engineering, 125(1-
4):53–70, 1995.

[Wei02] Eric W Weisstein. Circle packing. 2002.

[Wei05] Eric W Weisstein. Square packing. 2005.

[WR19] Inc. Wolfram Research. Geometric packing in 2d - wolfram—alpha examples,
2019. Accessed: 2019-12.

[Wri91] Alden H Wright. Genetic algorithms for real parameter optimization. In Foun-
dations of genetic algorithms, volume 1, pages 205–218. Elsevier, 1991.

94

[ZT98] Eckart Zitzler and Lothar Thiele. Multiobjective optimization using evolution-
ary algorithmsa comparative case study. In International conference on parallel
problem solving from nature, pages 292–301. Springer, 1998.

[ZZZ06] Peiyi Zhao, Peixin Zhao, and Xin Zhang. A new ant colony optimization for the
knapsack problem. In 2006 7th International Conference on Computer-Aided
Industrial Design and Conceptual Design, pages 1–3. IEEE, 2006.

95

A Appendix

A.1 Pseudo-code of the reversible algorithm

Algorithm 9: Reversible algorithm (I)

Input : container /*Container, described by its shape and maximum weight*/,
items /*List of items, described by their value, weight and shape*/,
max iter num /*Maximum number of iterations*/,
converge iter num /*Number of consecutive iterations to stop the algorithm if
there are no placements*/,
revert iter num /*Number of iterations to revert a solution to a previous state,
if a recent removal did not increase the value*/,
remove prob /*Probability to remove an item in an iteration*/,
consec remove prob /*Probability to remove an item if a removal has already
taken place recently*/,
ignore prob /*Probability to ignore placing an item after removing it, until the
operation gets reverted or permanently accepted*/,
modify prob /*Probability to modify an existing placement (move or rotate)*/

Output: solution /*Solution, describing a placement of items in the container*/
/*Create an initial solution with no placements, to be modified*/1

solution← create solution(container, items);2

/*Sort the items by weight, to make filtering faster*/3

items by weight← sort by weight(items);4

/*Discard the items whose weight is greater than the container’s capacity*/5

items by weight← filter items(items by weight, container.max weight);6

iter count since addition← 0; iter count since removal← 0;7

solution before removal← null; ignored item index← -1;8

/*Placements can only be possible with capacity and valid items*/9

if container.max weight > 0 and items by weight 6= ∅ then10

/*Try to add items to the container, for a maximum number of iterations*/11

for i← 1 to max iter num do12

/*Perform a random choice of the next item to try to add*/13

item← random choice(items by weight);14

/*Try to place the item in the container, with random position and rotation*/15

if solution.add item(item.index, get random position(container.shape),16

get random rotation()) then17

/*Determine the weight that can still be added*/18

remaining weight← container.max weight - solution.weight;19

/*Stop early if the capacity has been exactly reached*/20

if remaining weight== 0 then21

break;22

/*Remove the placed item from the list of pending items*/23

items by weight.pop(item.index);24

/*Discard the items whose weight is greater than the capacity*/25

items by weight← filter items(items by weight, remaining weight);26

/* Stop early if there are no items remaining or the capacity would be exceeded*/27

if items by weight== ∅ then28

break;29

/*Reset the potential convergence counter, since an item has been added*/30

iter count since addition← 0;31

/*The algorithm continues in the next page*/

96

Algorithm 9: Reversible algorithm (II)

/*The previous page’s last line was inside the following if statement and for loop*/
if container.max weight > 0 and items by weight 6= ∅ then

for i← 1 to max iter num do
/*The following if statement had been just used in the previous page*/
if solution.add item(item.index, get random position(container.shape),
get random rotation()) then

... /*See previous page*/

/*The algorithm of the previous page continues as follows*/
else32

/*Register the fact of being unable to place an item this iteration*/33

iter count since addition← iter count since addition+ 1;34

/*Stop early if there have been too many iterations without placements*/35

if iter count since addition== converge iter num then36

break;37

/*If there are items in the container, try to remove an item with a certain38

probability, which depends on whether there was a recent removal*/
if solution.weight > 0 and uniform float(0, 1) < get cond prob(remove prob,39

consec remove prob, solution before removal == null) then
/*If there is no solution prior to a removal with pending re-examination*/40

if solution before removal == null then41

/*Save the current solution before removing, just in case in needs to be42

restored later*/
solution before removal← solution.copy();43

/*Reset the counter of iterations since removal, to avoid reverting earlier44

than needed*/
iter count since removal← 0;45

/*Get the removed item, which is randomly chosen*/46

removed item← solution.remove random item();47

/*With a certain probability, only if not ignoring an item already and if there48

are pending items, ignore placing again the removed item until the operation
gets reverted or permanently accepted*/
if ignored item index < 0 and items by index.num() > 0 and49

uniform float(0, 1) < ignore prob then
ignored item index← removed item.index;50

/*Otherwise, add the removed item to the weight-sorted list of items to try to51

place*/
else52

insert with order(items by weight, removed item);53

/*The algorithm continues in the next page*/

97

Algorithm 9: Reversible algorithm (III)

/*The previous page’s last line was inside the following if statement and for loop*/
if container.max weight > 0 and items by weight 6= ∅ then

for i← 1 to max iter num do
/*The algorithm of the previous page continues as follows*/
/*If there is a recent removal to be confirmed or discarded after some time*/54

if solution before removal 6= null then55

/*Re-examine a removal after a certain number of iterations*/56

if iter count since removal== revert iter num then57

/*If the value in the container has improved since removal, accept the58

operation in a definitive way*/
if solution.value > solution before removal.value then59

/*If an item had been ignored, make it available for placement again*/60

if ignored item index >= 0 then61

insert with order(items by weight, items.get(ignored item index));62

/*Otherwise, revert the solution to the pre-removal state*/63

else64

solution← solution before removal;65

/*After reverting, have some time to try to add items*/66

iter count since addition← 0;67

/*Reset removal data*/68

solution before removal← null; iter count since removal← 0;69

ignored item index← -1;70

/*Otherwise, the check will be done after more iterations*/71

else72

iter count since removal← iter count since removal + 1;73

/*If there are still items in the container (maybe there was a removal), modify the74

existing placements with a certain probability*/
if solution.weight > 0 and uniform float(0, 1) < modify prob then75

/*Perform a random choice of the item to affect*/76

item← random choice(items by weight);77

/*Try to move the item to a random position of the container with a78

probability of 50%*/
if uniform float(0, 1) < 0.5 then79

solution.move item to(item.index, get random position(container.shape));80

/*Otherwise, try to perform a random rotation*/81

else82

solution.rotate item to(item.index, get random rotation());83

/*In the end, revert the last unconfirmed removal if it did not improve the container’s84

value*/
if solution before removal 6= null and85

solution.value < solution before removal.value then
solution← solution before removal;86

98

A.2 List of parameters of the evolutionary algorithm

The evolutionary algorithm has a considerable number of parameters that are independent of
the data of the specific problems to be solved, which has motivated to have a complete list with
all of them. It should be noted that some parameters may not be used depending on the value
of others, e.g. the crossover-related probabilities are ignored if the parameter of crossover usage
fixes that the operator cannot be applied. The parameters are divided in the same groups used
in Chapter 6, where parameter optimization was performed, and the values for the comparative
experiments of Chapter 7 were fixed; such values are mentioned here as well, as default values.
The parameters within each group are presented in alphabetic order of description. The grouped
parameters are as follows:

• Generation of the initial population:

– Maximum number of iterations to generate a solution to be part of the initial population,
Imax. Default value: 300.

– Maximum number of iterations without improvements in the solution’s value to assume
convergence (and perform early stopping) in the generation of a solution that is going to be
part of the initial population, Iconv. Default value: 50.

– Population size, µ. Default value: 100.

– Proportion of the maximum number iterations in which the algorithm tries to place a
specialization item before any other item, S. The proportion sets the maximum iterations
to try to place the item, but the specialization can stop earlier if a placement attempt
succeeds. Default value: 0.5.

• Parent selection and offspring generation:

– Boolean property describing whether crossover can be used to generate offspring (otherwise
only mutation is applied), Uc. Default value: False.

– Minimum number of offspring created in a generation, λ. Default value: 200.

– Pool size for the tournament strategy used in parent selection, Tp. Default value: 3.

• Crossover:

– Maximum number of attempts to try to produce a partitioning shape for crossover that
intersects with the container (covering part of its area), Mc. Default value: 5.

– Maximum number of permutations determining the possible order in which item that lied
partially in both regions of a crossover partitioning can be tried to be placed again in the
container, R. Default value: 5.

– Maximum number of vertices that can be used to generate a polygon to partition the
container space of parents in two regions when performing crossover, V̄c. Default value: 10.

– Maximum proportion of the side length of the container’s bounding rectangle (for the rel-
evant axis) that can be used to define the length (in the same axis) of a non-segment
partitioning shape in crossover, L̄max. Default value: 0.75.

– Minimum proportion of the container’s area that a closed-region shape needs to have to be
accepted as a valid partitioning shape in crossover, A. Default value: 0.1.

– Minimum proportion of the side length of the container’s bounding rectangle (for the relevant
axis) that can be used to define the length (in the same axis) of a non-segment partitioning
shape in crossover, L̄min. Default value: 0.25.

– Proportion of individuals in a population that the candidate solutions generated in crossover
permutations (for items that lied in both regions of the partitioning of the container) need
to outperform in fitness to be eligible in the next population update, C. Default value: 0.95.

• Mutation:

99

– Maximum number of attempts to try to produce a valid addition of a specific item in a step
of the mutation operator, Ma. Default value: 10.

– Maximum number of attempts to try to produce a valid placement modification of a specific
item in a step of the mutation operator, Mm. Default value: 3.

– Minimum number of iterations of a single execution of the mutation operator, Imut. Default
value: 5.

– Maximum number of positions to check in the placement modification mutation that tries
to move an item in a direction until it intersects, Bp. Default value: 15.

– Maximum number of rotation angles to check in the placement modification mutation that
tries to rotate an item in a direction until it intersects, Br. Default value: 8.

– Maximum proportion of a 360-degree rotation that can be applied as a rotation offset in
a mutation step of placement modification of the type small rotation change, Sr. Default
value: 0.2.

– Maximum proportion of the side length of the container’s bounding rectangle (for the rele-
vant axis) that can be applied as a position offset in a mutation step of placement modifi-
cation of the type small position change, Sp. Default value: 0.2.

– Probability to select as the final mutation individual the candidate solution of the interme-
diate step with highest fitness instead of the final result of applying all steps, Pi. It is only
considered if the final candidate solution does not have higher fitness than all the previous
intermediate ones. Default value: 1.

– Probability to select as the final mutation individual the solution in the state that had prior
to the mutation, Pcm. It is only applicable if the solution had just been generated using
the crossover operator and the solution had greater fitness (or equal, but is better in the
tie-break check) before mutation than after applying the operator. Default value: 0.5.

– Probability weight to add an item in the container in a step of the mutation operator, Pa.
Default value: 0.6.

– Probability weight to modify the placement of an item placed in the container in a step of
the mutation operator, Pm. Default value: 0.3.

– Probability weight to remove an item from the container in a step of the mutation operator,
Pr. Default value: 0.1.

– Proportion of the side length of the container’s bounding rectangle used to calculate the
minimum relevant distance between an item’s reference point and the first intersection point
determined by the direction of a move-until-intersection mutation, D. Default value: 0.03.

• Population update:

– Number of elite individuals in a generation, E. Default value: 5.

– Pool size for the tournament strategy used in the population update, Tu. Default value: 3.

• Termination criteria:

– Maximum number of consecutive generations without highest fitness improvement to assume
convergence and perform early stopping, Gconv. Default value: 12.

– Maximum number of generations, Gmax. Default value: 30.

A.3 Secondary tables of Parameter Optimization

A.3.1 Greedy algorithm

This section contains the tables of the parameter optimization of the greedy algorithm that were
not shown in Section 6.2.

100

Table 11: Solution value of the different configurations of value and area weights for the first
optimization phase of the greedy algorithm.

Kv = 0,

Ka = 0

Kv = 0,

Ka = 0.25

Kv = 0,

Ka = 0.5

Kv = 0,

Ka = 0.75

Kv = 0,

Ka = 1

Kv = 0.25,

Ka = 0

Kv = 0.25,

Ka = 0.25

Kv = 0.25,

Ka = 0.5

Kv = 0.25,

Ka = 0.75

Problem 1 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0

Problem 2 41.0±10.2 48.0±6.0 40.5±10.59 38.5±10.5 41.0±9.17 36.0±9.17 46.0±10.68 41.5±9.76 45.0±8.94

Problem 3 24.5±5.68 20.5±1.5 24.0±5.83 26.0±6.63 21.5±4.5 25.5±6.5 23.5±5.94 26.0±7.35 24.0±5.83

Problem 4 33.2±0.4 32.6±1.28 32.3±1.73 32.7±1.27 32.8±0.6 33.4±0.49 32.8±1.33 33.3±0.46 32.4±0.92

Problem 5 111.1±17.25 126.7±34.35 119.5±13.73 126.4±9.23 116.9±10.22 118.7±12.62 122.8±12.86 121.8±12.16 119.9±8.46

Problem 6 80.5±13.95 85.5±14.69 93.3±12.65 86.7±13.22 89.8±7.7 81.0±12.25 76.8±14.51 91.2±9.69 89.7±11.85

Problem 7 82.0±12.78 85.0±11.38 87.8±10.21 88.0±6.13 89.2±6.23 89.3±11.04 87.8±7.73 80.0±12.14 90.2±8.67

Problem 8 53.1±5.11 52.5±4.06 57.0±4.98 54.4±5.08 51.8±3.63 52.9±6.16 53.8±6.18 53.3±6.08 53.4±5.39

Problem 9 106.5±10.11 99.4±8.18 104.2±13.72 103.9±5.39 109.6±4.2 100.9±15.29 110.5±12.55 101.8±13.55 105.1±9.96

Problem 10 98.0±18.87 103.0±19.0 97.0±19.0 111.0±13.75 115.0±8.06 107.0±11.87 112.0±9.8 114.0±6.63 116.0±12.0

Top 3 1 1 2 0 1 1 0 2 1

Kv = 0.25,

Ka = 1

Kv = 0.5,

Ka = 0

Kv = 0.5,

Ka = 0.25

Kv = 0.5,

Ka = 0.5

Kv = 0.5,

Ka = 0.75

Kv = 0.5,

Ka = 1

Kv = 0.75,

Ka = 0

Kv = 0.75,

Ka = 0.25

Problem 1 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0

Problem 2 41.5±10.74 44.0±9.17 41.5±9.5 48.0±11.0 43.5±9.5 45.5±7.89 38.5±10.5 43.5±8.96

Problem 3 21.5±4.5 24.5±4.72 21.5±3.2 27.5±7.5 23.5±5.94 26.5±5.94 22.0±4.58 24.5±6.87

Problem 4 32.1±1.7 32.5±1.8 32.9±1.37 33.0±1.41 32.2±1.6 32.4±1.28 32.7±0.64 32.1±1.58

Problem 5 116.9±10.22 121.5±12.17 125.4±8.67 120.8±11.35 124.7±28.39 121.9±14.63 123.8±10.81 132.5±23.21

Problem 6 89.8±8.12 83.9±10.78 89.9±8.99 83.0±10.99 77.5±12.26 89.7±8.97 87.7±7.47 85.8±12.35

Problem 7 90.6±6.09 84.8±10.86 92.6±8.9 91.2±8.01 87.2±7.64 89.4±7.57 93.2±10.24 90.9±7.29

Problem 8 55.2±5.64 54.5±5.04 54.5±5.14 54.3±6.81 55.6±4.65 53.0±4.52 52.3±3.03 51.2±3.31

Problem 9 104.0±6.83 106.6±9.16 110.9±17.11 112.6±13.44 110.9±12.89 102.0±13.94 111.0±11.38 112.6±16.31

Problem 10 112.0±9.8 107.0±11.87 113.0±10.05 117.0±6.4 106.5±16.74 115.0±6.71 113.0±11.87 110.0±14.14

Top 3 1 0 1 4 1 1 1 1

Kv = 0.75,

Ka = 0.5

Kv = 0.75,

Ka = 0.75

Kv = 0.75,

Ka = 1

Kv = 1,

Ka = 0

Kv = 1,

Ka = 0.25

Kv = 1,

Ka = 0.5

Kv = 1,

Ka = 0.75

Kv = 1,

Ka = 1

Problem 1 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0

Problem 2 37.5±9.29 48.5±8.08 42.5±10.31 42.0±10.05 46.0±8.6 44.0±9.43 35.5±9.07 40.0±10.25

Problem 3 23.5±4.5 23.5±5.94 27.0±6.78 24.5±5.68 25.5±6.1 25.0±5.92 28.0±6.4 26.5±7.09

Problem 4 32.8±0.98 31.9±1.3 33.0±0.0 32.5±1.43 32.6±1.5 32.8±1.4 33.1±0.54 31.9±1.76

Problem 5 130.7±26.42 122.4±10.41 128.4±27.92 121.8±10.84 122.0±13.3 122.0±12.02 124.2±12.98 130.3±5.25

Problem 6 89.9±12.79 86.3±9.32 92.5±9.28 84.4±8.92 81.4±21.78 83.4±11.51 84.3±9.66 84.7±10.74

Problem 7 82.0±11.33 86.2±11.36 87.0±7.64 91.6±9.1 81.5±13.38 86.4±11.98 89.4±9.79 90.5±8.71

Problem 8 50.8±4.21 51.9±4.01 54.7±5.2 53.1±7.42 52.3±5.78 54.4±4.76 52.6±4.76 53.1±3.67

Problem 9 109.9±17.05 96.7±11.92 106.1±9.65 110.1±17.48 114.7±14.46 113.9±17.25 110.9±14.72 117.6±18.11

Problem 10 112.0±8.72 108.0±15.36 112.0±9.8 99.0±19.21 106.5±12.66 107.0±14.87 114.5±13.12 113.0±11.0

Top 3 1 1 2 0 1 1 1 2

101

Table 12: Execution time (in milliseconds) of the different configurations of value and area
weights for the first optimization phase of the greedy algorithm.

Kv = 0,

Ka = 0

Kv = 0,

Ka = 0.25

Kv = 0,

Ka = 0.5

Kv = 0,

Ka = 0.75

Kv = 0,

Ka = 1

Kv = 0.25,

Ka = 0

Kv = 0.25,

Ka = 0.25

Kv = 0.25,

Ka = 0.5

Kv = 0.25,

Ka = 0.75

Problem 1 13±4 16±8 15±7 11±3 8±3 20±9 20±8 21±5 21±10

Problem 2 355±57 379±75 347±101 369±63 346±81 337±71 391±86 372±85 456±73

Problem 3 28±9 18±8 25±19 21±15 16±7 25±12 30±13 33±16 26±17

Problem 4 18±2 21±9 18±5 18±4 15±5 18±4 20±6 17±4 16±4

Problem 5 403±77 391±67 396±104 368±96 405±70 370±82 364±99 374±73 356±106

Problem 6 371±69 445±127 371±83 374±110 314±73 351±70 356±80 421±99 404±101

Problem 7 412±92 408±75 343±52 402±101 425±107 353±100 413±93 320±72 394±86

Problem 8 122±40 129±41 150±83 234±93 133±56 139±81 150±61 153±56 153±75

Problem 9 189±70 247±67 204±80 244±80 124±47 292±95 210±74 212±69 211±71

Problem 10 280±64 278±53 235±57 310±90 276±66 274±43 297±54 300±59 312±74

Kv = 0.25,

Ka = 1

Kv = 0.5,

Ka = 0

Kv = 0.5,

Ka = 0.25

Kv = 0.5,

Ka = 0.5

Kv = 0.5,

Ka = 0.75

Kv = 0.5,

Ka = 1

Kv = 0.75,

Ka = 0

Kv = 0.75,

Ka = 0.25

Problem 1 12±3 14±8 20±9 23±8 23±10 12±3 21±15 21±10

Problem 2 351±38 420±68 361±47 341±46 388±67 359±61 341±70 365±57

Problem 3 24±12 32±19 25±15 29±21 26±13 25±16 27±14 34±19

Problem 4 21±9 21±6 19±7 17±3 18±5 21±5 18±4 20±8

Problem 5 380±77 343±112 376±117 383±68 425±75 346±91 412±76 329±74

Problem 6 363±91 412±89 476±123 313±77 340±71 349±74 373±83 353±90

Problem 7 375±86 380±49 508±77 415±86 340±75 382±81 353±82 389±103

Problem 8 114±44 147±43 165±73 125±62 146±89 129±38 156±69 124±50

Problem 9 231±58 349±85 328±95 297±92 285±51 252±71 308±67 255±80

Problem 10 274±83 297±47 278±78 317±62 337±71 285±62 301±52 287±56

Kv = 0.75,

Ka = 0.5

Kv = 0.75,

Ka = 0.75

Kv = 0.75,

Ka = 1

Kv = 1,

Ka = 0

Kv = 1,

Ka = 0.25

Kv = 1,

Ka = 0.5

Kv = 1,

Ka = 0.75

Kv = 1,

Ka = 1

Problem 1 20±7 21±11 18±6 19±13 20±5 19±10 16±6 28±10

Problem 2 359±71 379±76 351±44 367±41 379±78 361±75 341±49 344±94

Problem 3 34±17 28±17 29±14 33±13 27±16 26±15 28±13 27±10

Problem 4 20±7 18±6 15±6 17±3 19±6 16±3 17±4 22±7

Problem 5 413±90 373±44 379±76 348±86 335±85 421±84 383±83 298±64

Problem 6 379±81 369±86 381±113 338±53 364±87 344±87 361±84 363±98

Problem 7 321±42 400±88 345±88 366±79 338±51 446±83 419±92 344±91

Problem 8 107±57 154±57 131±78 133±73 107±42 133±61 148±78 122±59

Problem 9 236±82 283±92 309±74 240±72 232±100 340±85 280±103 291±94

Problem 10 282±53 318±63 271±60 298±57 282±67 274±84 277±56 309±68

102

Table 13: Execution time (in milliseconds) of the iteration configurations tested in the second
optimization phase of the greedy algorithm.

1000 max iter.,

300 conv. iter.

10000 max iter.,

3000 conv. iter.

100000 max iter.,

30000 conv. iter.

Problem 1 19±7 19±9 20±7

Problem 2 340±56 2809±688 28802±2793

Problem 3 27±12 28±9 40±16

Problem 4 16±5 16±3 17±6

Problem 5 325±95 1902±629 22358±7245

Problem 6 375±77 2721±666 21109±4122

Problem 7 351±83 3215±441 14432±9070

Problem 8 168±66 109±64 298±257

Problem 9 272±83 578±501 1091±2634

Problem 10 305±52 2271±473 20331±3745

A.3.2 Reversible algorithm

This section contains the tables of the parameter optimization of the reversible algorithm that
were not shown in Section 6.3.

Table 14: Solution value of the different configurations of removal and placement modification
probabilities for the first optimization phase of the reversible algorithm.

Pr = 0.005,

Pm = 0.03

Pr = 0.005,

Pm = 0.05

Pr = 0.005,

Pm = 0.1

Pr = 0.01,

Pm = 0.03

Pr = 0.01,

Pm = 0.05

Pr = 0.01,

Pm = 0.1

Pr = 0.02,

Pm = 0.03

Pr = 0.02,

Pm = 0.05

Pr = 0.02,

Pm = 0.1

Problem 1 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 49.0±3.0 49.0±3.0 50.0±0.0

Problem 2 42.0±10.05 46.0±10.68 36.0±9.17 38.5±9.76 48.0±6.4 42.5±8.44 43.5±9.23 43.5±8.08 46.5±10.5

Problem 3 22.5±6.02 24.0±5.83 23.5±5.94 19.5±1.5 20.0±0.0 22.0±4.58 19.5±1.5 24.0±5.83 20.5±2.69

Problem 4 31.1±1.76 32.3±1.68 30.8±1.6 31.9±1.7 31.9±1.7 31.5±1.75 31.8±1.33 31.5±1.63 31.0±2.05

Problem 5 111.8±9.17 106.4±5.59 110.2±8.4 111.1±10.61 112.2±8.82 115.6±17.91 112.5±8.73 112.0±9.43 108.0±7.55

Problem 6 81.4±14.79 95.7±11.46 84.4±12.08 91.5±11.74 81.9±10.25 83.4±14.96 83.7±12.08 85.2±10.68 89.1±9.52

Problem 7 91.5±7.38 86.6±11.02 87.1±12.02 83.6±10.62 91.8±10.65 88.8±12.98 87.2±7.43 85.5±6.23 89.0±6.0

Problem 8 50.4±7.74 54.4±6.05 49.2±5.6 50.6±4.61 49.0±6.9 49.7±4.43 48.2±4.24 52.0±6.16 53.5±7.63

Problem 9 98.6±9.85 103.0±5.42 103.7±6.17 104.3±10.85 97.2±11.07 105.4±6.67 101.6±8.18 104.8±5.9 103.1±4.89

Problem 10 108.0±13.08 94.5±11.93 99.5±19.03 101.0±12.81 103.5±16.13 86.5±17.47 83.0±20.52 96.0±17.44 93.5±17.47

Wins 2 5 1 1 3 3 0 1 1

Top 3 3 6 2 4 6 3 1 3 5

103

Table 15: Execution time (in milliseconds) of the different configurations of removal and place-
ment modification for the first optimization phase of the reversible algorithm.

Pr = 0.005,

Pm = 0.03

Pr = 0.005,

Pm = 0.05

Pr = 0.005,

Pm = 0.1

Pr = 0.01,

Pm = 0.03

Pr = 0.01,

Pm = 0.05

Pr = 0.01,

Pm = 0.1

Pr = 0.02,

Pm = 0.03

Pr = 0.02,

Pm = 0.05

Pr = 0.02,

Pm = 0.1

Problem 1 10±4 9±4 12±4 10±3 11±4 28±35 47±108 51±127 12±4

Problem 2 461±142 523±149 571±190 603±189 690±179 704±196 643±215 643±193 878±114

Problem 3 37±34 25±15 29±18 25±13 22±8 26±20 23±19 21±11 18±7

Problem 4 15±4 18±6 20±8 17±4 20±4 17±5 26±19 23±11 22±6

Problem 5 510±171 700±187 515±218 1002±128 570±141 797±220 684±240 784±225 810±200

Problem 6 387±92 461±112 431±132 480±113 451±106 444±111 457±88 476±130 606±100

Problem 7 502±143 504±131 516±133 530±200 546±126 553±126 501±108 633±121 593±101

Problem 8 129±95 188±91 165±103 88±39 177±115 135±60 134±68 205±85 216±117

Problem 9 279±93 284±117 249±79 265±108 297±106 219±129 359±139 318±132 335±154

Problem 10 462±92 395±103 470±109 444±89 496±118 429±107 409±92 430±98 532±83

Table 16: Execution time (in milliseconds) of the iteration configurations tested in the second
optimization phase of the reversible algorithm.

1000 max iter.,

300 conv. iter.

10000 max iter.,

3000 conv. iter.

100000 max iter.,

30000 conv. iter.

Problem 1 12±5 11±5 11±2

Problem 2 538±193 6847±1206 33884±20221

Problem 3 19±7 16±6 18±8

Problem 4 20±11 15±3 24±8

Problem 5 574±180 5756±2441 30254±22536

Problem 6 441±119 3570±613 11182±2100

Problem 7 422±81 2792±870 11457±2028

Problem 8 136±93 112±74 241±110

Problem 9 234±109 940±1034 1194±2573

Problem 10 405±100 4302±497 19181±2750

104

A.3.3 Evolutionary algorithm

This section contains the tables of the parameter optimization of the evolutionary algorithm
that were not shown in Section 6.4.

Table 17: Solution value of the population size configurations tested in the first optimization
phase of the evolutionary algorithm.

µ = 30 µ = 50 µ = 100

Problem 1 65.0±22.91 80.0±24.49 95.0±15.0

Problem 2 62.5±9.29 65.5±12.54 73.0±6.0

Problem 3 35.0±0.0 35.5±1.5 35.0±0.0

Problem 4 34.0±0.0 34.0±0.0 34.0±0.0

Problem 5 214.7±22.45 230.4±5.5 221.0±30.35

Problem 6 107.5±9.75 115.4±8.19 116.9±5.2

Problem 7 106.4±5.77 106.8±4.62 110.9±3.62

Problem 8 73.5±17.77 80.2±16.34 89.9±15.46

Problem 9 164.3±8.85 168.2±6.05 168.4±9.84

Problem 10 124.0±4.9 128.0±4.0 129.0±5.39

Table 18: Execution time (in milliseconds) of the population size configurations tested in the
first optimization phase of the evolutionary algorithm.

µ = 30 µ = 50 µ = 100

Problem 1 3803±951 7076±575 13174±2246

Problem 2 7939±1223 14634±3642 27582±3995

Problem 3 2617±420 4884±821 8623±1176

Problem 4 3557±586 6412±761 11233±1735

Problem 5 11762±2267 23009±3436 37452±7094

Problem 6 8531±2051 16772±3587 30691±4982

Problem 7 10699±1552 17034±2318 33867±8046

Problem 8 5219±1760 9978±2860 14305±5334

Problem 9 8130±1580 13924±2856 25042±5013

Problem 10 5861±953 11290±2203 20610±4705

105

Table 19: Solution value of the offspring size configurations tested in the second optimization
phase of the evolutionary algorithm.

λ = 0.5 · µ

(50)

λ = µ

(100)

λ = 2 · µ

(200)

Problem 1 100.0±0.0 90.0±20.0 95.0±15.0

Problem 2 71.0±5.83 74.0±8.0 74.5±9.6

Problem 3 36.0±2.0 36.0±2.0 37.5±2.5

Problem 4 34.0±0.0 34.0±0.0 34.0±0.0

Problem 5 228.6±9.47 234.0±0.0 234.0±0.0

Problem 6 120.7±9.12 119.6±6.5 119.9±5.91

Problem 7 109.5±2.77 112.6±2.62 114.0±1.55

Problem 8 90.3±14.85 87.6±15.19 87.6±15.19

Problem 9 167.9±6.44 171.0±5.73 167.5±8.59

Problem 10 131.0±5.39 132.0±4.0 138.0±6.0

Table 20: Execution time (in milliseconds) of the offspring size configurations tested in the
second optimization phase of the evolutionary algorithm.

λ = 0.5 · µ

(50)

λ = µ

(100)

λ = 2 · µ

(200)

Problem 1 12957±2274 20188±3147 38489±3410

Problem 2 29089±5113 48845±7238 80617±11690

Problem 3 8449±1402 15653±1655 32169±6970

Problem 4 11418±1320 21783±2658 39406±5333

Problem 5 39353±5239 62929±6572 106269±10769

Problem 6 32852±5313 57462±4173 84603±13950

Problem 7 36193±5385 66445±7227 106128±23333

Problem 8 14816±4878 22325±9929 33336±17545

Problem 9 29604±3400 46536±5323 71307±9668

Problem 10 22750±3303 40928±5300 67961±13852

106

A.4 Visualization of the best solutions of the evolutionary algorithm
for the Joint Problem Dataset

Figure 31: Best solution of the evolutionary algorithm for Problem 1, which is optimal.

Figure 32: Best solution of the evolutionary algorithm for Problem 2, which is optimal.

107

Figure 33: Best solution of the evolutionary algorithm for Problem 3, which is optimal.

Figure 34: Best solution of the evolutionary algorithm for Problem 4, which is optimal.

108

Figure 35: Best solution of the evolutionary algorithm for Problem 5, which is not optimal.

Figure 36: Best solution of the evolutionary algorithm for Problem 6, which is optimal.

109

Figure 37: Best solution of the evolutionary algorithm for Problem 7, which is optimal.

Figure 38: Best solution of the evolutionary algorithm for Problem 8, which is optimal.

110

Figure 39: Best solution of the evolutionary algorithm for Problem 9, which is not optimal.

Figure 40: Best solution of the evolutionary algorithm for Problem 10, which is not optimal.

111

A.5 Visualization of the best solutions of the algorithms for the Pack-
ing Problem Dataset

Figure 41: Best solution obtained for the “Circles in circle” problem of the Packing Problem
Dataset. The solution is optimal and was produced by the evolutionary algorithm.

Figure 42: Best solution obtained for the “Triangles in circle” problem of the Packing Problem
Dataset. The solution is optimal and was produced by the evolutionary algorithm.

112

Figure 43: Best solution obtained for the “Squares in circle” problem of the Packing Problem
Dataset. The solution is not optimal and was produced by the evolutionary algorithm.

Figure 44: Best solution obtained for the “Circles in triangle” problem of the Packing Problem
Dataset. The solution is optimal and was produced by the evolutionary algorithm.

113

Figure 45: Best solution obtained for the “Triangles in triangle” problem of the Packing Problem
Dataset. The solution is not optimal and was produced by the evolutionary algorithm.

Figure 46: Best solution obtained for the “Squares in triangle” problem of the Packing Problem
Dataset. The solution is not optimal and was produced by the evolutionary algorithm.

114

Figure 47: Best solution obtained for the “Circles in square” problem of the Packing Problem
Dataset. The solution is optimal and was produced by the evolutionary algorithm.

Figure 48: Best solution obtained for the “Triangles in square” problem of the Packing Problem
Dataset. The solution is optimal and was produced by the evolutionary algorithm.

115

Figure 49: Best solution obtained for the “Squares in square” problem of the Packing Problem
Dataset. The solution is optimal and was produced by the greedy algorithm.

116

	Introduction
	Previous Work
	Evolutionary algorithms to solve the 0/1 Knapsack Problem
	Evolutionary algorithms to solve the Two-Dimensional Irregular Shape Packing Problem
	Combination of discrete and continuous variables in evolutionary algorithms

	Proposed Methods
	Greedy algorithm
	Reversible algorithm
	Evolutionary algorithm
	Chromosome representation
	Fitness function
	Solution feasibility
	Generation of the initial population
	Parent selection and offspring generation
	Crossover
	Mutation
	Population update
	Termination criteria

	Implementation
	Technology and geometric checks
	Visualization
	Code availability

	Joint Problem Dataset
	Context, Goals and Design Principles
	Description and Analysis of the problems

	Parameter Configuration and Optimization
	Motivation and Goals
	Greedy algorithm
	Experimental Methodology
	Results and Discussion

	Reversible algorithm
	Experimental Methodology
	Results and Discussion

	Evolutionary algorithm
	Experimental Methodology
	General comments
	Generation of the initial population
	Parent selection and offspring generation
	Crossover
	Mutation
	Population update
	Termination criteria

	Results and Discussion

	Experimental Comparative Analysis of the Proposed Methods with the Joint Problem Dataset
	Experimental Methodology
	Results and Discussion
	Solution Quality Analysis
	Time Analysis

	Experimental Analysis of the Applicability of the Proposed Methods to solve a traditional Packing Problem
	Contextualization and Experimental Methodology
	Analysis of the Packing Problem Dataset
	Results and Discussion

	Conclusions and Future Work
	Main Conclusions
	Possible modifications for the evolutionary algorithm applied to the Joint Problem
	Multi-item placement specialization in the generation of the initial population
	Nested movement and rotation of compound polygons and the items placed in their holes
	Self-evolution of parameters

	Possible modifications for the evolutionary algorithm to apply it to other problems
	Area Minimization Packing Problem
	Three-Dimensional Irregular Shape Packing Problem combined with the Knapsack Problem

	The Optimality Goal

	Appendix
	Pseudo-code of the reversible algorithm
	List of parameters of the evolutionary algorithm
	Secondary tables of Parameter Optimization
	Greedy algorithm
	Reversible algorithm
	Evolutionary algorithm

	Visualization of the best solutions of the evolutionary algorithm for the Joint Problem Dataset
	Visualization of the best solutions of the algorithms for the Packing Problem Dataset

