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Abstract— Given the current evolution trends in mobile 

cellular networks, which is approaching us towards the future 

5G paradigm, novel techniques for network management are in 

the agenda. Machine Learning techniques are useful for 

extracting knowledge out of raw data; knowledge that can be 

applied to improving the experience in the operation of such 

systems. This paper proposes the use of Machine Learning 

applied to energy efficiency, which is set to be one major 

challenge in future network deployments. By studying the cell-

level traces collected in a real network, we can study traffic 

patterns and derive predictive models for different cell load 

metrics with the aid of different machine learning techniques. 

Such models are applied into a simulation environment designed 

to test different algorithms which, according to cell load 

predictions, dynamically switch on and off base stations with the 

aim of providing energy savings in a mobile cellular network. 
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I.  INTRODUCTION 

Wireless communication is, by far, the fastest growing 
segment of digital communications, probably due to its cost-
effectiveness and its ability to provide (near) ubiquitous 
access to a plethora of services and applications. Mobile 
cellular networks constitute one of the main pillars of the 
aforementioned growth: nowadays, the number of mobile 
subscribers exceeds the world population (7,600 million at 
the time of writing) and different studies predict a 5% annual 
growth rate (CAGR), reaching 9,000 million subscribers by 
2021 [1]. Moreover, not only the number of subscribers is 
expected to keep growing, but also the amount of data traffic 
generated by each connected device is expected to show a 
ten-fold increase in the same period due to the proliferation 
of bandwidth-intensive applications (e.g. HD video 
streaming, virtual/augmented reality, etc.). 

This scenario prompts the academia and the industry to 
work towards a new generation of wireless network, i.e. 5G. 
While the specification of 5G targets a time horizon beyond 
2020, the requirements those new technologies are expected 
to meet have already been discussed and identified in 
different works [2], which foresee 10-100x device density, 
10-100x typical user data rate and 5 times reduced latency. 
Those requirements are mainly tackled by new developments 
in radio access technologies (RAT), such as massive MIMO 
or mmWave. However, expectations of ~30% reduction in 
infrastructure energy consumption need a different approach. 
What is more, the aforementioned requirements should be 
met while keeping sustainable costs. This “implicit” 
requirement can be achieved through an innovative network 
architecture and intelligent management of the available 
resources. In this regard, techniques such as network function 

virtualization (NFV), software-defined networking (SDN) 
and the application of big data-driven intelligence were also 
identified as key enablers of the future 5G [3]. 

In this context, the present paper explores the idea of 
applying machine-learning techniques to improve 
management procedures of future 5G networks towards a 
fully self-organized network (SON). Through the analysis of 
huge amounts of network-generated data, the proposed 
intelligent system is capable of anticipating the future state of 
the network so that appropriate actions can be taken in a 
timely manner. As a proof of concept, this paper studies the 
application of such intelligence to produce energy savings: 
we propose a mechanism to switch off/on cells according to 
their expected traffic conditions. These kind of techniques are 
highly relevant to mobile operators if we consider that 
densification (increasing number of deployed cells is needed 
to increase area capacity) will carry an increase in energy 
consumption and the fact that 70-80% of energy consumption 
(and gas emissions derived thereof) of mobile operators 
comes from their network infrastructure [4]. 

The remaining of this paper is structured as follows: 
section II motivates the use of machine learning applied to 
the management of mobile networks and reviews related 
literature. Next, section III discloses the proposed 
mechanism. Then, section IV describes the evaluation 
environment and V discusses the results. Finally, conclusions 
are provided in VI.  

II. MACHINE LEARNING APPLIED TO MOBILE NETWORKS 

A high level view of current mobile networks is given in 
Fig. 1, which shows three distinctive components: i) the user 
equipment (UE) is the device connecting to the access 
network and providing subscribers with access to their 
services; ii) radio access network (RAN) provides a wireless 
link to UEs through one or multiple cells served by multi-
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Fig. 1: generic architecture of a Mobile network  



 

RAT base stations (BS) in order to reach the core of the 
network; and iii) the core network (CN) provides 
interconnection with other networks and is where final user 
services are managed.  

In current deployments, especially in dense 
environments, the RAN provides a multi-layered 
heterogeneous cellular coverage, whereby small, low-
powered cells are deployed within the area served by a 
macro-BS in order to increase the capacity in zones with 
higher traffic demands. With an even more intense 
“densification” expected for 5G networks, management of 
the RAN poses a great challenge, which will require a higher 
degree of automation. However, as suggested in [5], artificial 
intelligence (AI) could be useful to that aim. AI techniques, 
such as machine learning, are able to process large amounts 
of a variety of network-generated data (e.g. billing data, radio 
measurements, packet-level statistics, etc.) to produce 
exploitable knowledge with applications to network planning 
and optimization. 

In [5], for example, authors suggest the use of cell-level 
traffic data to feed a classification system with potential 
applications to i) energy savings, by identifying low loaded 
cells as potential candidates to be switched off; and ii) 
spectrum planning, by identifying those cells that are likely 
to require additional spectrum resources. Similar applications 
could be derived from the work in [6], which evaluates 
regression mechanisms used to predict aggregated traffic 
from multiple cells. In [7], clustering of cells is used to 
improve traffic predictions. With the same objective, [8] 
combines clustering, wavelet decomposition and neural 
networks. Those works provide a good discussion on the 
potential uses of machine learning in 5G deployments; 
however, none of them defines or evaluates a specific 
mechanism. 

III. A MACHINE LEARNING-BASED ENERGY SAVING 

SYSTEM FOR MOBILE NETWORKS 

In [9], authors state that BSs (LTE’s eNodeBs) can be 
either in an active state (handling UEs’ data) or in an idle state 
(transmitting only downlink control signaling). However, the 
power consumed by the BS is almost the same in both states. 
Therefore, considerable energy savings could be obtained if 
the BS (or some BS’s components) is switched off during idle 
periods. Applying this apparently simple concept is not 
trivial, though, since those idle periods are not deterministic 
but depend on the random distribution of traffic over time and 
space. As discussed in section II, however, machine-learning 
techniques could be used to predict the network behavior and 
identify those idle periods in advance. 

In order to study the applicability of machine learning to 
the management of mobile networks, in this section we 
describe a proof-of-concept system intended to save energy 
by switching on and off a selected set of BSs depending on 
their predicted state in the next period of time. The operation 
of the proposed system is depicted in Fig. 2 and discussed in 
the following paragraphs. 

A. Classification 

Developing the idea suggested in [5], our approach is 
based on classification of cells. Classification is a supervised 
learning technique intended to associate an entity, which is 
defined by the evolution of its features (i.e. relevant metrics), 
with a given class, selected among a pre-defined set of 

classes. The classifier uses a training data set (i.e. a collection 
of entities and their features along with its proper 
classification) extracted from historical data to derive a model 
that will be used to identify classes from new incoming data. 
In this case, our entities are the BSs present in the RAN and 
the features considered are those metrics related to cell load, 
namely, the number of active users, carried traffic and 
physical radio blocks (PRB) assigned to UEs. For each new 
sample received from a given BS, the classifier determines its 
class for the next period of time. We defined the following 
three classes: 

 OFF: BS candidate to be switched off the next period. 

 ACCEPT: BS is not a candidate to be switched off and 
it is expected to carry a medium/low load. 

 FULL: BS is expected to be highly loaded. 

B. Clustering 

The outcome of the classification is a model capable of 
predicting, with high accuracy, the state of a BS, according to 
its current load. In order to reduce the complexity of the 
system, instead of generating a classification model for each 
BS in the RAN, which does not scale when mobile network 
operators may control thousands of BSs, we use a reduced set 
of models. In that sense, we use clustering in order to identify 
sets of BSs showing similar behavior so that the same model 
(i.e. the same classification mechanism) can be applied to all 
of them without a significant loss of precision. Clustering is 
an unsupervised learning technique used to group entities into 
several clusters considering the similarity of those entities’ 
features. The set of features considered by the clustering 
block of Fig. 2 consists of the average number of users, 
average throughput, average PRB utilization and their 
respective variances, obtained by processing historical data. 
Since BSs are likely to be switched off mostly during valley 
hours [9], we are interested in using specific models showing 
high precision for those periods. In consequence, we define 
clusters of BS according to their behavior in the period from 
0 to 8am. We focused on those night hours since that period 
of time consistently showed a notable decrease in cellular 
traffic, according to our traces. However, note that whenever 
a BS experiences low traffic (i.e. similar to the behavior 
observed at night), it can be deemed as an OFF cell at any 
time of the day, not only nights. 

That is to say, for each of the clusters identified, an 
independent classification model is generated (classifiers #1 
to 3 in Fig. 2). Each classifier is then trained using data only 
from those BSs belonging to its corresponding cluster. 

Fig. 2: design of a ML-based system for energy savings in mobile 

networks  



 

Accordingly, the state of each BS is evaluated only by the 
classifier model corresponding to that BS’s cluster. For 
example, if, according to historical data, a given BS is 
assigned to cluster #1, that BS’ real-time data will be 
evaluated by classifier #1 to predict its state (OFF, ACCEPT 
or FULL) for the next period. 

C. Switch off decision 

Finally, the last block decides whether a given BS is 
switched off or kept in normal operation. This block receives 
periodic updates with information on the predicted state for 
each BS. Many kinds of algorithms, including other machine 
learning techniques, could be applied with the aim of 
maximizing energy savings while, at the same time, 
minimizing the impact over the final users. Note that a 
reduction in the number of active BSs may entail several 
issues, the selected energy-saving strategy should try to 
minimize: i) coverage gaps (i.e. areas not covered by BS) and, 
therefore, the possibility of leaving users without service; ii) 
reduced area capacity, possibly affecting QoS; and iii) an 
increased number of handovers because a cell could be 
serving UEs when the system decides to switch it off. 

As a proof of concept, we propose a simple approach 

where the switch on/off decision takes into account the 

predicted state of a cell and its neighbors: if a cell is classified 

as OFF and a given number of neighboring BSs is in either 

FULL or ACCEPT state, then that cell can be switched off. In 

section V, we evaluate two versions of that algorithm: 

 Reckless algorithm: switches off all BSs classified as 
OFF, regardless of the state of its neighbors. It is an 
aggressive approach used merely as a benchmark, 
which will provide larger power savings, but might 
affect the amount of users having to migrate or even 
left unserved if no other cell in the area is active. 

 Neighbor-aware algorithm (NA-X): before turning off 
a candidate cell, the state of neighboring cells in a 
given area is checked. If the ratio of active cells is 
higher than a given threshold X, the system is allowed 
to turn off that BS, hence reducing the probability of 
creating coverage gaps. Although we assume a fixed 
value, X could be set dynamically to deal with the 
trade-off between number of user migrations and the 
power saving goals. 

IV. TOOLS AND DATA SETS 

The study presented in this paper is based on simulation 
work, where the simulated scenarios are generated to recreate 
random variations of a real deployment in downtown Athens, 
Greece. Simulated BSs and UEs follow the behavior 
observed in the real deployment through a collection of cell-
level traces. 

A. Data sets 

The data used in this study comes from the cell-level 

traces extracted from a real network, and counts a total of 10 

LTE sites, each one having 1 to 6 sectors, providing a total of 

27 cells. The combination of those cells in the 

aforementioned network serves an area of about 2km2, each 

of them offering 20MHz of bandwidth and a coverage range 

between 100 and 600m. The data sets containing the traces 

from the network include 15 days of statistics with samples 

collected every 15 minutes, including weekends. The features 

that have been considered for the design of both the traffic 

prediction models and the simulation environment are the 

following: date and time of the measured sample, cell ID, 

uplink (UL) and downlink (DL) data traffic measured in MB, 

average and maximum UL and DL cell throughput, average 

and maximum number of connected UEs, average Physical 

Resource Block (PR) usage per transmission interval, and 

modulation and coding scheme (MCS) distribution. 

B. Tools 

The studies presented in this paper required the use of 
different specific tools for each of the stages of the process. 
A brief summary of the main tools is given in the following: 

RapidMiner [10]: an integrated data analytics platform 
that offers an environment for machine learning-related 
projects. RapidMiner Studio is a tool that offers a graphic 
interface in which, by means of boxes that perform different 
functionalities, data analytics projects can be programmed. 
RapidMiner has been used for the first stages devoted to 
analyze the data sets and the later extraction of prediction 
models for the different features studied in the project. 

Simulation environment: with the objective of 
evaluating different management strategies in cellular 
networks, we developed a custom-made simulation 
environment capable of generating realistic scenarios from 
the traces extracted in a real network. The Java-based 
application developed for this project generates scenarios of 
2,000 x 2,000 m, which are filled with the desired number of 
multi-sector BSs. BSs are distributed over the scenario in a 
semi-random way; that is, BSs are first distributed over a 
regular grid and then deviated randomly from that point and 
assigned a random coverage radius uniformly distributed 
between 100 and 600 m. Each cell is also assigned one out of 
three power profiles depending on its size [9] and assigned to 
a cluster with certain probability (following the same 
distribution found in the real network). In order to mimic the 
behavior of the real scenario, each simulated cell is bound to 
a real cell randomly chosen but belonging to the same cluster; 
in this way, each simulated BS will use data collected from a 
particular (real) BS, hence showing the same behavior of that 
real cell. Once the scenario is set, the simulation loops 
through the following steps to simulate a whole day for each 
BS in our scenario: 

1. The features of each simulated cell are taken from the 
assigned real cell’s traces; i.e. a given number of UEs 
is generated under the coverage area of each ON cell, 
where the carried traffic and the MCS distribution 
among those UEs follow that of its assigned real cell. 

2. Upon a handover, the amount of PRBs needed by a 
UE that moves to another cell changes depending on 
the UE’s carried traffic and new MCS distribution: 
we assume that a UE’s carried traffic is maintained 
after a handover, however, its MCS may change in 
the new BS and, therefore, required number of PRBs 
will change accordingly (e.g. a worse signal quality 
from new BS will require a slower MCS, penalizing 
the utilization of the new BS with the use of more 
PRBs than in the old BS). To capture this effect, a 
penalty parameter E is computed for each cell 
according to equation (1), where PRBt is the total 
PRB utilization in the cell in %, wi is the weight of 
each of the N associated UEs, proportional to its 
MCS [1, 2 or 3] and ti is the UE’s throughput. 
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 𝑤𝑖 · 𝑡𝑖
𝑁
𝑖

 
     (1) 

The PRBs required by a new UE arriving at a cell is 
then: PRBnew = wnew·tnew·E, where wnew depends on the 
MCS used by that UE after the handover and tnew is 
the offered throughput of that new UE in its old BS. 

3. The cell state (ON, FULL or ACCEPT) for the next 
period (i.e. 15 minutes in this case) is predicted based 
on the data from the previous samples using the 
classification model (with a Random Forest 
approach) corresponding to each cell’s cluster. 

4. Switch on/off decision on each individual cell is 
taken according to the selected algorithm (either 
Reckless or NA-X version). 

5. UEs (and their traffic) generated for a cell that has 
been switched off are handed over to the closest 
available cell in ACCEPT state, which is capable of 
satisfying the required PRBs (cf. step 2). If the UE is 
not within coverage of an ACCEPT cell, move to the 
closest FULL cell. 

6. Compute relevant statistics: power consumption, 
number of migrated UEs, number of UEs left 
unserved, etc. 

7. If the end of the day is not reached, load parameters 
from real traces corresponding to the new time of the 
day and go to step 1. Else, exit the simulation. 

V. EVALUATION AND RESULTS 

Using the tools described previously, in this section we 

evaluate the application of machine learning techniques 

(classification and clustering) within the context of the energy 

saving algorithm for mobile networks described in section III. 

A. Classification 

Classification and regression trees are known to perform 

automatic variable selection, which is an advantage when the 

set of features having more impact is not known. Besides, 

those models are capable of handling large data sets as this is 

the case in this work. Among decision trees, Random Forest 

has been found to be highly accurate [11]. 

Classification, as briefly explained in section III, is a 

supervised algorithm, which means that, in order to classify 

entries by inspecting a given variable, it must have 

information about that same variable in the training set. The 

‘supervised’ part of the mechanisms consisted in a priori 

processing of the historical data set in order to determine the 

future (i.e. in the next 15-minute period) state of a BS (OFF, 

ACCEPT or FULL) based on two thresholds OFF < th1 < 

ACCEPT < th2 < FULL. 

Using the RapidMiner tool, we optimized the parameters 

of the Random Forest classifier: 10 trees, depth equal to 10 

and window size 1. After different tests, we defined th1 = 7% 

and th2 = 25% of PRB usage, being those values 

representative of the load observed during valley hours. It is 

worth to mention that small variations of th1 and th2 around 

those values did not produce significant changes in the 

derived models. Fig. 3 shows a comparison between the 

classifier output (straight lines with three levels meaning 

OFF, ACCEPT and FULL from bottom to top) and simulated 

traffic. Table I illustrates the performance of the classification 

mechanism through a confusion matrix. It shows a high 

general accuracy of nearly 95%. The largest number of errors 

are found in OFF cells wrongly classified as ACCEPT (class 

recall of 77%), which, in fact, make the energy saving 

algorithm more conservative, as it reduces the chances of an 

active cell being turned off. 

 

Table I: confusion matrix of classification algorithm 

 true 

ACCEPT 

true 

OFF 

true 

FULL 

Class 

precision 

pred. 

ACCCEPT 
68.4% 3.6% 0.0% 95.0% 

pred. 

OFF 
1.3% 12.1% 0.0% 90.3% 

pred. 

FULL 
0.4% 0.0% 14.2% 97.3% 

class recall 97.6% 77.1% 100.0%  

 

B. Clustering 

As explained earlier, clustering was used to identify 

groups of cells showing a similar behavior in order to reduce 

the number of models used in the classification process. For 

clustering, we use K-means since it is a simple method that 

works well for low dimensional data. In our case, the input of 

the clustering block (cf. Fig. 2) comprises the list of cells. In 

order to characterize each cell, we used historical data to 

obtain a measure of each cell’s behavior. To that aim, we 

process the traces to obtain the average and variance of the 

PRB utilization, which seemed to be the most relevant metric 

according to the Random Forest classifier. Recall that, 

regarding the clustering process, we only considered values 

measured from 0 to 8am. 

Being an unsupervised learning algorithm, K-means does 

not need any training, although it does need to know the 

desired number of resulting clusters (k). In this regard, 

different values of k were tested to reveal that there are two 

groups of cells highly differentiated from the rest: a group of 

cells carrying very high load and showing a highly variable 

behavior, and a group of cells carrying high/medium load also 

showing large variations. Increasing k (i.e. the number of 

clusters) did not change significantly the composition of 

those two groups and only created more clusters among the 

cells carrying a lower load and showing fewer variations. 
Fig. 3: Output of the classification (green) compared to the evolution 

in time of cell load (red). 



 

Therefore, the value k = 3 was finally chosen. As a result, 7% 

of the cells were grouped as highly loaded cells, 26% as 

high/medium loaded cells and the remaining 67% as 

medium/low loaded. 

C. Energy saving algorithm 

Two strategies for energy saving (i.e. reckless and NA-X) 

are tested in the simulation environment described in IV.B. 

Both approaches are studied in two types of scenarios: i) 

present scenario, based on the deployment where real traces 

are extracted (cf. section IV.A); and ii) future 5G deployment, 

based on the same LTE deployment, but scaled up to 

represent a future 5G scenario, as envisioned in [12] (HetNet 

/ Outdoor small cell scenario). The same LTE-based energy 

model from [9] is used in both cases. 

 Present scenario: 90 cells placed randomly, with 
coverage radius assigned between 100 and 600 m and 
behaving according to the network traces, as explained 
in IV.B.  

 Future 5G deployment: multi-tier deployment consisting 
of a first layer of 100 three-sector macro-cells (radius 
between 100 and 300 m) covering the whole area, and a 
lower layer of small cells (600 BSs with radius between 
10 and 60 m) intended to improve area capacity. Note 
that macro-cells only consider other macro-cells when 
applying the NA-X while small cells consider both. 

1) Present scenario 

The main aim of the cell-switching strategies proposed in 

this paper is to reduce the power consumption in the network. 

However, turning cells off has a direct implication over the 

connectivity of the users, as those that are disconnected from 

a cell will have to migrate to another one, serving a partially 

overlapping area. Hence, there is always a trade-off between 

the power savings and the amount of migrated users –which 

has an impact over the signaling in the network and the user 

experience-. In the case of the first scenario, based on present 

deployments, the resulting density is 2.7 cells, that is to say, 

each single point of the scenario is served by 2.7 cells, on 

average; i.e. whenever a cell is switched off, UEs served by 

that cell will be able to choose between two possible new 

cells. This value is reduced to a different extent depending on 

the energy saving algorithm applied, causing coverage gaps 

in some cases and leaving some users without connectivity. 

The graphs represented in Fig. 4 offer a visual comparison 

of the impact over user migration. On the left, the evolution 

over time of the migrated and unserved users with the 

reckless algorithm, showing an aggressive behavior; due to 

the large number of cells turned off, there are many users 

being forced to migrate to a neighboring cell, and some are 

left unserved due to coverage gaps (0.6%). As expected, the 

highest values of these two metrics are found during the 

night, time during which the load decreases and more cells 

can be switched off. On the other hand, the right graph shows 

the results of the NA-70 algorithm, with lower values for both 

metrics, which are more equally distributed throughout the 

simulated day. 

The behavior of the UEs detailed above corresponds to 

the ratio of on/off cells in Fig. 5. The reckless algorithm 

presents a high ratio of sleeping cells during night hours 

(more than 65%). A more conservative approach, such as the 

NA-70, shows a similar behavior in time, although clearly 

smoothed. Note that the energy consumption is directly 

proportional to the number of active cells. On average, the 

reckless version saves, near 40% of energy, and the NA-70 

around 27%. 

 

2) Future 5G deployment 

The second proposed scenario refers to a possible future 

deployment, with a higher cell and UE density. With a density 

of 3.3 cells (each point of the scenario is served by 3.3 cells, 

on average), the probability of causing coverage gaps is 

reduced and, therefore, the total figure of unserved users can 

be minimized if the algorithms are tuned properly. 

 
Fig. 4 Evolution over time of migrated (green) and unserved (red) UEs in the present scenario with the application of the reckless (left) and 

the Neighbor-Aware-70% algorithm (right). 

 
Fig. 5 Evolution over time of the on (blue) and off (orange) cells in a present scenario with an application of the reckless (left) and the 

neighbor-aware-70% algorithm (right). 



 

In Fig. 6, we show a comparison of the main metrics 

obtained with different algorithm configurations, where the 

macro and small cell layers use different parameters for the 

NA algorithm. The nomenclature MX_SCY identifies the 

threshold parameters X and Y for both the macro (M) and 

small cells (SC), respectively. Note that a NA-0 is equivalent 

to the reckless approach, while a NA-100 means that no cell 

is turned off. The figure shows that more restrictive 

configurations -i.e. higher threshold values- entail less users 

being migrated and/or left unserved. In the case of 

M100_SCY (i.e. macro cells never sleep), the number of UEs 

unserved is always zero since 100% of the macro layer is 

always on service, leaving no coverage gaps. However, those 

configurations perform worse in terms of consumed energy 

(around 4%, on average, resulting in ~80.0 kWh saved per 

day). Also note that the particular case M100_SC00 (macro 

BSs are never switched off and reckless small cells are 

switched off whenever they are in OFF state) is equivalent to 

the “variable network deployment” proposed in [13]. 

 In the other extreme, when both the macro layer and the 

small cells run the reckless version of the algorithm (i.e. 

M00_SC00), energy savings exceed 26% (equivalent to ~500 

kWh per day in the simulated scenarios). On the other hand, 

UEs left without service can exceed 1%. Note that small cells 

have a low impact on the overall power consumption and that 

important savings are witnessed only when the macro-layer 

participates in the energy saving strategy. 

VI. CONCLUSIONS 

This work discusses the application of Machine Learning 
techniques to improve network management in present and 

future mobile networks. Specifically, a proof of concept with 
the aim of improving energy efficiency is presented and 
evaluated. First, thanks to a collection of cell-level traces 
corresponding to a real LTE deployment, we identified ML 
techniques that could be useful in the context of mobile 
networks: clustering, used to identify cells with similar 
behavior, and classification, to predict the state of the 
network based on real-time measurements. Such models are 
then applied into a simulation environment designed with the 
purpose of testing different configurations of an energy 
saving algorithm, which switches cells off and on depending 
on the predicted network state. Finally, those algorithms are 
studied in two different types of scenarios, one representing 
present deployments, and a denser version, expected to be 
representative of upcoming 5G networks. According to the 
simulations, energy savings could translate into a cost 
reduction between $1,000 and 6,000 per year and per km2 

(current prices in Europe).  Results also show that switching 
on/off small cells will not be enough to meet the required 
reduction in energy consumption. However, switching off at 
the macro layer may affect the service quality due to coverage 
gaps, which is an unacceptable outcome for a mobile network 
operator. Alternatively, macro-cells could switch off specific 
RATs (e.g. 2G, 3G, etc.) to reduce some energy and still be 
able to serve users. That approach, along with the 
characteristics of upcoming 5G BSs (i.e. gNB) will require a 
more sophisticated energy model and is left for a future work. 
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Fig. 6 performance figures for different NA-X algorithm 

configurations in a future, 5G multi-layer deployment 

 


