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HIGHLIGHTS 29 

• Presence of diversified litter typology was observed at almost all monitored sites 30 

• Higher presence of litter occurred in areas with fishing and maritime routes 31 

• Higher presence of plastic occurred where bottom current intensity was lower 32 

• Observed interactions occurred between fauna and litter 33 

 34 

ABSTRACT 35 

This study describes the distribution and composition of litter from the Gulf of Cadiz 36 

(Northeastern Atlantic, Spain), a region of confluence between the Atlantic and 37 

Mediterranean, with intense maritime traffic. Several geological features, such as 38 

canyons, open slopes and contourite furrows and channels, were surveyed by 39 

remotely operated vehicle (ROV) observations between depths of 220 and 1000 m. 40 

Marine litter was quantified by grouping the observations into six categories. Our 41 

results indicate the presence of markedly different habitats in which a complex 42 

collection of different types of litter accumulate in relation to bottom current flows 43 

and maritime and fishing routes. This result justifies a seascape approach in further 44 

anthropogenic impact studies within deep-sea areas. 45 

 46 

Keywords: ROV, imaging, anthropogenic impact, Northeastern Atlantic, trawl, marine 47 

litter 48 

 49 
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1. Introduction 55 

The Gulf of Cadiz (GoC) is an area of confluence between the Atlantic and 56 

the Mediterranean with high maritime traffic. Here, the impact of littering in the 57 

form of waste from boats as well as commercial fishery artifacts discarded from the 58 

intense extracting activity has not yet been quantified (Coll et al., 2014). 59 

The United Nations Environment Programme (UNEP) defines marine litter as 60 

any persistent, manufactured or processed solid material disposed of or abandoned 61 

in the marine environment (Chen, 2015). Litter accumulation depends on direct 62 

human activity at sea, such as commercial shipping (Ramirez-Llodra et al., 2013) and 63 

leisure crafts (Bergmann and Klages, 2012), combined with dispersive 64 

oceanographic and hydrographic processes (Galgani et al., 1996), as well as off-land 65 

transportation (Mecho et al., 2017). To date, litter has been found in all marine 66 

habitats, from the sea surface down to the deepest sea bottoms (Miyake et al., 67 

2011; Peng et al., 2019), with a trend of degradation time decreasing over depth 68 

(Barnes et al., 2009). Nevertheless, litter impacts on marine ecosystems are still 69 

largely underestimated. For example, the abundance and impact of a certain type of 70 

litter on marine ecosystems at all depths is hard to quantify due to the presence of 71 

small pieces (Ramirez-Llodra et al., 2010) and microplastics (Ory et al., 2018). The 72 

dumping of toxic artifacts is an additional source of underestimated impacts. 73 

Ammunitions and other military materials can release chemical pollutants due to 74 

the corrosive effect of seawater on iron or lead shells (Amato et al., 2006); 75 

therefore, a study and report of the distribution of these types of toxic litter are 76 

highly recommended. 77 

Several studies on sessile fauna have been undertaken to explore the 78 

biodiversity in different areas of the GoC (Delgado et al., 2013), revealing the 79 

occurrence of several sensitive and vulnerable habitats within the area, including 80 

cold-water corals or crinoid beds (Fonseca et al., 2014). However, to date, no 81 

quantitative investigation of the typology or abundance of litter artifacts or 82 

assessment of the impact of this phenomenon on deep-sea ecosystems have been 83 

undertaken in the GoC within the context of the specific oceanographic and marine 84 

traffic conditions in the area. The aim of this study is therefore to obtain new 85 



4 
 

insights into the typology, abundance and distribution of litter artifacts occurring in 86 

the different deep-sea habitats of GoC, evaluate their potential interactions with 87 

local megafauna and determine how this is affected by the interplay between the 88 

morpho-sedimentary environment and anthropogenic activity. 89 

 90 

2. Study area 91 

The GoC is an area of complex morphology due to the interaction between 92 

structural and contourite features formed under the action of Mediterranean 93 

Overflow Water (MOW) bottom currents. The physiography of this area results 94 

from a complex geodynamic evolution associated with the interaction between the 95 

African and Eurasian tectonic plates (Maldonado and Nelson, 1999). The shelf break 96 

is located at a depth of approximately 120-140 m, and the continental slope 97 

extends down to approximately 4300 m. The along-slope abraded surface (~100 km 98 

long and ~30 km wide) contains two large channels (upper at depths of ~550-620 m 99 

and lower at depths of ~660-750 m) associated with sedimentary drifts and erosive 100 

furrows. Irregular submarine canyons and unstable sedimentary deposits are 101 

downslope features that locally interrupt the along-slope trend in the contourites 102 

(see Fig. 1). 103 

The GoC region is also of great oceanographic interest. The most studied 104 

hydrographic feature is the overflow of Mediterranean waters, which mix and 105 

accelerate through the Strait of Gibraltar and cascade down the GoC continental 106 

slope, forming the MOW (Fig. 1A). The MOW flows northwestward paralleling the 107 

continental slope, and its bottom layer sweeps the seafloor between 400 and 1400 108 

m depth (Nelson et al., 1993). In the proximal domains, MOW velocities, after 109 

overflow of the Mediterranean waters, range from 0.3 m/s, increasing southward, 110 

to approx. 1.2 m/s (Sánchez-Leal et al., 2014) (Fig.1B). These values decrease 111 

progressively northwestward (approximately 0.4 m/s), although local bottom 112 

current increases (0.5 m/s) may occur when MOWs interact with seafloor obstacles 113 

(García et al., 2016) (Fig.1B). 114 

 115 

3. Materials and Methods 116 

 117 
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3.1. ROV video surveys 118 

An Argus work-class remotely operated vehicle (ROV) was used during 119 

September 2014 aboard the R/V Sarmiento de Gamboa. Video transects were carried 120 

out with a frontal color camera (Sony FCBH10 Argus RS Focus Zoom HDTV) under four 121 

Halogen 250 W DSPL lights. Navigation settings during video transecting followed 122 

standard protocols (Ayma et al., 2016) with the ROV positioned at ~1-1.5 m above the 123 

bottom, moving at a constant speed of 1.0 knots. 124 

A total of 17 dives adding more than 50 hours of video footage covering an 125 

approximate depth range between 200 and 1000 m took place in different 126 

sedimentary environments (Fig.1C) following the Hernández-Molina et al. (2014) 127 

classification: nine dives were recorded on contouritic furrow domains, five dives 128 

occurred in contouritic channels, two dives occurred on the open uppermost slope, 129 

and finally, one dive occurred on an upper slope canyon. The number of dives and 130 

associated oceanographic data plus navigation metadata are presented in Table 1 for 131 

each surveyed area. Depth and current data were averaged and then georeferenced in 132 

relation to our video transects with the help of Global Mapper and QGIS software. 133 

The video-swept seabed surface was calculated per dive (Table 1) through laser 134 

calibration by measuring each transect length with a global mapper. Then, the length 135 

was multiplied by the field of view width to derive the area. The scaling of the imaged 136 

seabed area was precisely calculated by using two parallel laser beams (50 cm apart) 137 

mounted above the camera. For the laser calibration, a grid was deployed on a flat 138 

seabed area by the ROV arm, and laser beams were aligned with its mesh corners. The 139 

laser point distance was 50 cm at an approximate navigation height of ~100-150 cm, 140 

resulting in an estimated field of view width of 1.5 m. 141 

 142 

3.2. Litter estimation and data analysis 143 

Litter was classified according to the available literature (Galgani et al., 2000; 144 

Pham et al., 2014; Ramirez-Llodra et al., 2011) as ceramic (i.e., amphorae fragments), 145 

plastic, glass, metal, abandoned longlines and fishing nets (Fig. 2A-F). The abundances of 146 

the different types of litter were estimated in each morpho-sedimentary domain by 147 

dividing counted items per unit of video-swept area, standardized to km2 (Mecho et al., 148 

2017). A relative percentage of litter presence per type was then quantified per transect 149 
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and then represented per domain. For each dive, we then related litter distributions 150 

with sedimentary and oceanographic environmental data (see below) to provide some 151 

indication of the environmental control of their distributions. Finally, we georeferenced 152 

our litter data and represented their presence along marine traffic routes (Junta de 153 

Andalucía, 2011) to verify the potential footprint of commercial navigation in deep-sea 154 

ecosystems in terms of historic dumping. 155 

We also considered trawling impact as a proxy of the fishing activity footprint, 156 

estimated by considering each trawl mark crossing the camera field of view as one 157 

record. For those trawl marks included for a longer time (i.e., whose axis partially 158 

coincided with the dive trajectory), one record each minute of continuous video 159 

observation was scored. Considering that trawl marks are estimated as a proxy and are 160 

not artifacts, we discuss their presence separately from the litter. To determine the 161 

trawled area by the Spanish Fishing Fleet, we followed Global Fishing Watch 162 

(https://globalfishingwatch.org/), a web page using the blue box located on ships, to 163 

visualize the approximate ship locations (with the exact tracking data being private, 164 

these are the best available data) and determine global fishing activity. The vessel 165 

monitoring system (VMS) reported by the Spanish Government Annual Report on the 166 

Activity of the Spanish Fishing Fleet reports 125 bottom-trawl vessels fishing in the 167 

GoC. 168 

Additionally, we also provided clinker-like observations (Fig. 2E; Appendix 1). 169 

The clinker is a general name used for different anthropological debris (i.e., burned 170 

charcoal from steamboats). Considering that this type of debris has not been produced 171 

for more than a century, we only describe the presence of this debris type, but we do 172 

not consider the items modern litter items. 173 

 174 

4. Results 175 

 176 

4.1. Litter abundance and distribution 177 

The overall abundances per litter category are reported in Fig. 3A. A diversified 178 

set of litter items was detected in all morpho-sedimentary domains, the relative 179 

abundance of which is reported in Table 2. Metal and plastic were commonly 180 

observed, representing 34% and 33%, respectively, of the total litter observations (Fig. 181 
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3A). These types were followed by glass artifacts (representing 20%), fishing nets (6%), 182 

ceramic items (5%) and longlines (2%). A total of 224 clinker-like observations were 183 

reported (Fig. 2E; Appendix 1). 184 

In the contouritic furrow domain, most of the detected litter was metal debris, 185 

representing 23% (see Fig. 3B) of the total observations, followed by plastic items 186 

(22%), ceramic (ancient manufactured amphorae) and fishing nets (17% each). The 187 

presence of lost longlines, such as wires entangled with sponges in dives no. 3 (at 188 

depths of ~653-651 m) and 6 (at depths of ~623-613 m), was also noted (12%). Finally, 189 

glass items represented only 9% of the litter. 190 

In the contouritic channels, glass dominated the litter observations (i.e., 48%, 191 

see Fig. 3C). In comparison, relatively lower percentages of plastic (23%) and metal 192 

(21%) artifacts were detected. Large ghost trawl-fishing nets were detected at a low 193 

percentage (8%). One of these trawl nets was surrounded by coral rubble, suggesting 194 

trawling activity over a cold-water coral reef of Madrepora oculata. Few trawling 195 

marks were observed on the contouritic areas (four annotations during dive no. 16 at 196 

~669 m). The presence of buried intercontinental telecommunication cables during 197 

dive no. 8 at a depth of ~640 m was also detected. 198 

On the upper open slope, the highest percentage of litter was represented by 199 

plastic (54%), followed by metal (24%, see Fig. 3D). Fewer percentages of ceramic 200 

(17%) and glass (5%) were observed. Ceramic was represented by ancient 201 

manufactured amphorae (see Fig. 2A). In this zone, we did not observe the presence of 202 

trawling impacts (marks and fishing items) or longlines. 203 

Finally, in the upper slope canyon, in comparison to the other litter types, 204 

metallic litter was present in a higher percentage, representing more than half of the 205 

total observations in the area (55%), followed by plastic (43%) and glass (2%) (Fig. 3E). 206 

Military dumping sites that contain grenades and metal projectiles were also reported 207 

in the area (see Fig. 2F). Several trawl marks were observed on the contouritic channel 208 

and upper slope canyon (i.e., 50 annotations - dives 16-17), but ghost fishing nets were 209 

not observed.  210 

 211 

4.2. Species interaction with litter and traffic distribution 212 
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Several species of fishes and decapod crustaceans were observed to interact 213 

with litter artifacts (Fig. 4). At a depth of ~520 m, two specimens of the fish Phycis 214 

blennoides were observed hiding under an unidentified metal object and in a plastic 215 

tube, and the decapod Munida sp. was also observed hiding under a metal projectile 216 

(dive no. 17; Fig. 4A). The crab Bathynectes maravigna was observed hiding by a metal 217 

artifact at a depth of 663 m (dive no. 16; Fig. 4B). Deeper, at ~895 m, the shrimp 218 

Plesionika martia was observed sheltering under a plastic sheet, and two unclassified 219 

individuals of the family Pandalidae (probably P. martia) were hidden in a plastic bag 220 

(dive nos. 16 and 18). 221 

The interaction of low motility or sessile species on litter artifacts was also 222 

reported. The crinoid Leptometra celtica and some unclassified anthozoans were in 223 

contact with a long piece of metal at depths of 737 and 654 m (dive nos. 15 and 16, 224 

respectively) (Fig. 4C). A specimen of the sponge Pachastrella monilifera was observed 225 

entangled with a lost fishing net at 654 m (dive no. 3). Two other individuals of P. 226 

monilifera were identified intertwined with a longline in dive no. 6 at depths of 628 m 227 

and 613 m. Many sea urchins (Cidaris cidaris) were observed on or near litter artifacts 228 

in dives nos. 16, 15 and 6, in a depth range of 617 to 743 m (Fig. 4D). Some tubeworms 229 

were often detected as adhered to all substrates (ceramic, organic, plastic, clinker-like 230 

debris, and metal) in dive nos. 2, 3, 6, 15, 17, and 16, at a depth range from 220 to 738 231 

m. 232 

Finally, we overlapped georeferenced litter data with marine traffic trajectories 233 

(Fig. 5A), observing that there was a superimposition of entries with vessel established 234 

trajectories. We also overlapped these data with current flows (Fig. 1B) to link litter 235 

accumulation with currents independently from vessel trajectories. We observed a 236 

coincident presence of litter with relatively higher vessel trajectories, as well as where 237 

the strong currents reduced their speed (Fig. 5A). We observed an elevated abundance 238 

of clinker-like debris in the contouritic channel and canyon domains (Fig. 5B), as a 239 

possible result of the MOW bottom current action or the currently intense trawling 240 

activity in the area that favored reworking of fine sediment from the seafloor that 241 

exposed the clinker-like debris to the surface via sediment resuspension. 242 

 243 

5. Discussion 244 
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This study quantifies for the first time the litter observed on the deep-sea 245 

bottoms in the Gulf of Cadiz. We reported the presence of a diversified typology of 246 

litter items in almost all video-inspected geomorphologies. Similarly, the interaction 247 

between litter and local megafauna is discussed. 248 

Plastic, metal, and glass artifacts are commonly found in the Mediterranean Sea 249 

(Mecho et al., 2017; Consoli et al., 2018 a, b) and NE Atlantic (Miyake et al., 2011). 250 

Here, we recorded the highest litter concentration in the area of the upper slope 251 

canyon and adjacent contouritic channel (Dives 17-16, respectively), which were also 252 

the locations of clinker debris. According to Global Fishing Watch 253 

(https://globalfishingwatch.org/), the trawling activity in our study area appeared 254 

concentrated in the flat muddy grounds near the canyon mouth. Then, we considered 255 

in addition to the regular maritime traffic, the litter dumped from the fishing vessels, 256 

which is not considered on shipping route maps. 257 

Submarine canyons are also known as litter collectors for their funnel action of 258 

land inputs (Mordecai et al., 2011; Pierdomenico et al., 2019). This has been reported 259 

in canyons whose heads are close to the coast (a few km) (Mecho et al., 2017). In the 260 

present study, the head of the surveyed canyon is approximately 25 km from the 261 

coastline, and its head does not incise the continental shelf; thus, it is considered a 262 

blind canyon confined to the continental slope (Harris and Whiteway, 2011; Lo Iacono 263 

et al., 2014). The sediment transport in the GoC continental shelf is affected by an 264 

important Atlantic inflow moving southwestwards (down to 600 m water depth, Lobo 265 

et al., 2000), and this inflow may favor the transport and funneling of litter with 266 

buoyancy properties (i.e., plastic) when this inflow interacts with the canyon head. This 267 

means that plastic could come not only from nearby sources but also from far away 268 

sources. When we overlapped our georeferenced data with bottom current flows, we 269 

also observed that litter is concentrated in the sites affected by relatively weaker 270 

bottom currents (Fig.5A). This would suggest that bottom current deceleration triggers 271 

or favors deposition of this type of litter. In fact, in videos where bottom currents are 272 

relatively strong, the presence of floating plastics passing the ROV is common. 273 

The mapped glass, metal and ceramic were probably found close to where they 274 

were dropped. This is because considering their size (a few tens of centimeters) and 275 
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material density, bottom currents sweeping the area cannot transport them as a 276 

suspension load or bed load (Hjulström, 1935). 277 

When we overlapped our georeferenced litter data with the routes of maritime 278 

traffic (Junta de Andalucía, 2011), we observed a match with the general presence of 279 

litter. Based on the above mentioned factors, we suggest that the presence of a high 280 

amount naval and recreational traffic and fishing activities are related to the presence 281 

and abundance of litter artifacts of all kinds. 282 

The presence of metal, longlines, fishing nets and trawling marks are related to 283 

fishing activities, indicating that they are mainly concentrated in the upper slope 284 

canyon (trawling) and furrow (longline and middle water fishing) areas. This type of 285 

litter is commonly observed in deep-sea ROV imaging studies (Mecho et al., 2017; 286 

Vertino et al., 2010) and causes unpredicted impacts on seabed fauna (Consoli et al; 287 

2018 a, b) through long-lasting (decomposition rate-dependent) ghost fishing 288 

(Ramirez-Llodra et al., 2013). We also observed discarded trawling net trapping litter, 289 

and these artifacts can indeed act as litter concentration sources (Mordecai et al., 290 

2011). Because of the generally highly resistant plastic material of which such fishing 291 

equipment is made, ghost fishing and litter trapping effects will be persistent for an 292 

unpredictable time interval (Deroiné et al., 2019; Kim et al., 2016). Furthermore, the 293 

presence of discarded longlines was also detected. The Activity of the Spanish Fishing 294 

Fleet reported 657 vessels that fished in the GoC using artisanal methods (gillnets, 295 

hooks and traps) and 75 purse seiners. Several of these lost or discarded artifacts were 296 

observed entangled with sponges (P. monilifera, a vulnerable marine ecosystems 297 

(VME) species indicator), representing an additional source of damage for benthic 298 

fauna, especially in areas where erect sessile organisms (e.g., sponges and corals) are 299 

abundant (Clark et al., 2007; Consoli et al; 2018 a). 300 

Even if most of these litter items are considered a potential source of damage, 301 

several specimens of decapod crustaceans and fishes were observed in association 302 

with litter artifacts. The introduction of hard material increases habitat heterogeneity 303 

at a small scale (Bergmann and Klages, 2012). Megabenthos can use litter as a 304 

substitution for burrows for hiding (Ayma et al., 2016), indicating that these artifacts 305 

effectively enhance camouflage opportunities (Braga-Henriques et al., 2011). Ceramic 306 

(i.e., amphorae) in muddy slope areas can be used by animals not only for sheltering 307 
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but also for enhancing predatory performance (e.g., Munida sp. observed as standing 308 

on an amphora as an elevated position to catch krill; Ayma et al., 2016). At the same 309 

time, ceramic and other hard substrates, such as clinker debris and ammunition, can 310 

be used for colonization by sessile organisms (Mecho et al., 2017; Neves et al., 2015). 311 

In fact, we observed species of Munida sp. using ammunition as shelter. 312 

Similarly, we reported the presence of buried submarine telecommunication 313 

cables in a contouritic channel. In the Northeastern Atlantic, the maximum seabed 314 

surface coverage of submarine cables laying on the seabed has been estimated to be 315 

approximately 5-10 km2 (Carter et al., 2009). This is most likely an underestimation of 316 

cable impacts since the value does not take into account buried lines (Benn et al., 317 

2010). 318 

In this scenario, our data contribute the quantification of global litter impacts in 319 

our oceans. Litter dumping overlaps with the tracks of maritime traffic (Junta de 320 

Andalucía, 2011) and major marine currents. Thus, our data are relevant in that they 321 

provide new information at a time when international management and legal entities 322 

are seeking to quantify global litter impact in our oceans. 323 

 324 
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Table 1. Metadata specifying dives (No.), Geo: morpho-sedimentary domain (US: 491 
Upper open slope; CC: Contouritic Channel), date, latitude, longitude, averaged depth 492 
(m), video duration. The estimated video-inspected seabed surface (km2) and bottom 493 
current velocity(m/s)(from Gasser et al., 2017). 494 
 495 

Geo No. Date Lat (N) Long (W) m Duration km² V 
US 2 09/03/2014 36º 02.1931' 6º 29.2622' 222 03:45 0.0130 0.20 

Furrow 3 09/04/2014 35º 59.5952' 6º 45.8666' 660 06:23 0.0036 0.65 
Furrow 4 09/04/2014 36º 00.4360' 6º 44.2907' 662 01:45 0.0004 0.65 

US 5 09/05/2014 36º 05.4462' 6º 32.4239' 224 01:54 0.0039 0.20 
Furrow 6 09/05/2014 36º 01.1509' 6º 40.5630' 626 04:58 0.0024 0.60 

CC 7 09/06/2014 35º 43.9216' 6º 38.2539' 593 03:25 0.0137 0.65 
CC 8 09/06/2014 35º 45.2046' 6º 42.0749' 691 04:37 0.0039 0.60 
CC 10 09/07/2014 35º 45.8414' 6º 41.4889' 707 02:11 0.0011 0.75 

Furrow 11 09/07/2014 35º 47.1166' 6º 39.9556' 633 03:21 0.0012 0.85 
Furrow 12 09/08/2014 36º 03.1527' 7º 02.0464' 798 03:30 0.0036 0.35 
Furrow 13 09/08/2014 35º 55.4302' 7º 10.0469' 978 03:52 0.0016 0.15 

CC 14 09/09/2014 36º 16.2517' 7º 08.0895' 911 03:34 0.0007 0.50 
Furrow 15 09/09/2014 36º 09.7459' 6º 56.8595' 742 04:26 0.0058 0.40 

CC 16 09/10/2014 36º 16.1242' 6º 47.5995' 664 03:50 0.0076 0.30 
Canyon 17 09/10/2014 36º 17.7340' 6º 46.7173' 883 05:24 0.0285 0.25 
Furrow 18 09/11/2014 36º 06.1391' 7º 14.8768' 891 02:59 0.0140 0.35 
Furrow 19 09/11/2014 36º 11.5924' 6º 50.3949' 638 02:01 0.0003 0.40 

 496 

  497 



17 
 

Table 2. Abundance (items/km2) of all types of litter per each morpho-sedimentary 498 
domain. 499 
 500 

Type of Litter 
Contouritic 

Furrow 
Contouritic 

Channel 
Upper Open 

Slope 
Upper slope 

Canyon 

Plastic 268.3 569.8 371.8 982.5 

Glass 111.7 1169.2 38.5 35.1 

Metal 285.6 519.9 166.7 1263.2 

Longline 154.3 0 0 0 

Fishing Net 216 181.8 0 0 

Ceramic 204.3 0 115.4 0 

Total 1240.2 2440.7 692.4 2280.8 

 501 

502 
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 519 

 520 

Fig. 1. A) Seabed morphology and oceanographic circulation model. Legend: orange 521 

arrow: Atlantic Current; yellow arrow: Atlantic inflow Water; red arrow: 522 

Mediterranean Outflow Water; blue arrow: North Atlantic Deep Water; purple: 523 

Western Mediterranean Deep Water; ASM: Ampere Seamount; CPSM: Coral Patch 524 

Seamount; GaB: Galicia Bank; GoB: Gorringe Bank; TSM: Tore Seamount; IAP: Iberia 525 

Abyssal Plain; TAP: Tagus Abyssal Plain; HsAP: Horseshoe Abyssal Plain; SAP: Seine 526 

Abyssal Plain (Image from https://joidesresolution.org/expedition/339). B) Near-527 

ground LADCP velocities (m/s) (form Sanchez-Leal et al., 2014). C) Bathymetric map 528 

displaying the location of ROVs dives (red stars) indicated in relation to the main 529 

depositional and erosive features. Compilation of bathymetry from (Zitellini et al., 530 
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2009) and GEBCO, and also from Contouriber project (e.g., (Hernández-Molina et al., 531 

2014) (pink area: Site of Community Importance (Habitats Directive) Volcanes de fango 532 

del Golfo de Cádiz). 533 

 534 
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 544 

Fig. 2. Differed types of video-detected litter artifacts. A) Ceramic; B) Black plastic; C) 545 

Cristal bottle; D) Metal tube; E) Clinker-like debris with plastic; F) Military artifacts. 546 

 547 

 548 

  549 
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 550 

Fig. 3. Percentage of total litter observed in the morpho-sedimentary domains. A) Total 551 

observations; B) Furrows domains; C) Contouritic channel domain; D) Upper Open 552 

Slope domain; and E) Upper slope canyon domain. 553 

  554 
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 555 

Fig. 4. Several species observed interacting with litter artefacts. A) Munida sp. hiding 556 

under a metal projectile. B) The crab B. maravigna hiding by a metal artefact. C) 557 

crinoid Leptometra celtica and unclassified Anthozoan in contact with a long piece of 558 

metal. D) Cidaris cidaris observed near litter artefacts. 559 

 560 
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 567 

 568 

Fig. 5. Overlapping of A) litter and B) clinker-like debris distribution map with maritime 569 

traffic data as straight lines (Junta de Andalucía, 2011). Dives numbers (red stars; see 570 

also Figure 1) and retrieved types of litter are also indicated (pink area: Site of 571 

Community Importance (Habitats Directive) Volcanes de fango del Golfo de Cádiz). 572 


