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Abstract

The power efficiency and linearity of radio frequency (RF) power amplifiers (PAs)
are critical in wireless communication systems. The main scope of PA designers is to
build the RF PAs capable to maintain high efficiency and linearity figures simultane-
ously. However, these figures are inherently conflicted to each other and system-level
solutions based on linearization techniques are required.

Digital predistortion (DPD) linearization has become the most widely used solu-
tion to mitigate the efficiency versus linearity trade-off. The dimensionality of the
DPD model depends on the complexity of the system. It increases significantly in
high efficient amplification architectures when considering current wideband and spec-
trally efficient technologies. Overparametrization may lead to an ill-conditioned least
squares (LS) estimation of the DPD coefficients, which is usually solved by employing
regularization techniques. However, in order to both reduce the computational com-
plexity and avoid ill-conditioning problems derived from overparametrization, several
efforts have been dedicated to investigate dimensionality reduction techniques to re-
duce the order of the DPD model.

This dissertation contributes to the dimensionality reduction of DPD linearizers
for RF PAs with emphasis on the identification and adaptation subsystem. In partic-
ular, several dynamic model order reduction approaches based on feature extraction
techniques are proposed. Thus, the minimum number of relevant DPD coefficients
are dynamically selected and estimated in the DPD adaptation subsystem. The
number of DPD coefficients is reduced, ensuring a well-conditioned LS estimation
while demanding minimum hardware resources. The presented dynamic lineariza-
tion approaches are evaluated and compared through experimental validation with
an envelope tracking PA and a class-J PA. The experimental results show similar lin-
earization performance than the conventional LS solution but at lower computational

cost.
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Chapter 1

Introduction

1.1 Motivation

Radio frequency (RF) power amplifiers (PAs) are crucial components in wireless com-
munications systems (WCSs). They are the most power consuming devices in the
transmitter chain and one of the main sources of nonlinear distortion. Figure [1.1
shows a survey that demonstrates the significance in power consumption [1]: the
base station accounts for 57% of the total supplied energy in a cellular system, in
which, 50-80% of this amount is distributed to the PAs. Therefore, the PA power
efficiency is a key feature to lower the running costs. The PA achieves highest power
efficiency when operated close to saturation, but also tends to be nonlinear. Figure
[1.2] shows this the compression in the input-output characteristics for higher output
levels. Nonlinearity causes effects such as distortion in the output signal and channel
interference.

The increasing demand for high-capacity services and applications requires high
speed data rates. This sets the path towards the every-time-more-spectrally-efficient
modulation schemes (high M-QAM schemes) and access techniques, such as wide-
band code-division multiple access (WCDMA) in 3G, orthogonal-frequency-division
multiplexing (OFDM) in 4G long term evolution (4G-LTE) and 5G New Radio (5G-
NR), or filter bank multi-carrier (FBMC) - a discarded candidate waveform for 5G-
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NR. The complex nonconstant envelope modulated signals generated by such modu-
lation schemes and access techniques present high peak-to-average-power ratios (PA-

PRs), which forces the PA to operate with significant back-off levels in order to avoid

2%

%

10-30% l

M Base station
B Mobile telephone exchange
m Core network
Data center
M Retail

W Power amplifier

B Power supply
m Signal processing
Cooling

(a) (b)

Figure 1.1: Power consumption distribution in (a) a wireless cellular system and (b)
a cellular base station. [1].
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Figure 1.2: Nonlinear characteristic of a RF PA.
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nonlinear distortion with the consequent degradation in average power efficiency. In
order to avoid wasting energy resources when handling these high PAPR signals,
highly efficient amplification architectures, such as outphasing [2], Doherty [3], en-
velope tracking (ET) [4], envelope elimination and restoration (EER) [5] and load
modulated balanced amplifiers (LMBA) [6] have been adopted. All these high effi-
cient PA architectures demand the use of linearization techniques to guarantee the
required linearity levels, such as, for example, feedforward [7], feedback [§] and predis-
tortion (digital [9] and analog [10]) linearization. Among them, digital predistortion
(DPD) linearization is the most extended solution to cope with the linearity versus
power efficiency trade-off due to its flexibility and good linearization performance.
The linearization of high efficient PAs that amplify spectrally efficient wideband
signals with high PAPR (> 10 dB) is challengeable due to the fact that the DPD
behavioral model may require a significantly high number of coefficients to meet
the stringent linearity specifications [11]. Increasing the number of coefficients, not
only derives in an increase of the computational complexity, but also may lead to
uncertainty of the least squares (LS) coefficient estimation. Therefore, it is essential
to keep the number of coefficients of the DPD model to the minimum necessary.
This thesis presents and discusses three dimensionality reduction techniques that

are aimed to reduce the computational complexity of DPD linearizers by:

e dynamically reducing the number of DPD coefficients to be estimated

and
e simplifying the DPD coefficient estimation and adaptation process.

To the best author’s knowledge, for the first time, dynamic linearization approaches
oriented at the simplification of the DPD coefficient estimation by taking advantage
of the orthogonality property among the transformed basis functions of the DPD
behavioral model are presented. These techniques are validated by means of two

different experimental test beds: one located at the laboratory of the Components
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and Systems for Communications research group and the other located at the Centre

Tecnologic de Telecomunicacions de Catalunya (CTTC).

1.2 Outline of Thesis

The dissertation presents different dimensionality reduction techniques for DPD lin-
earization of RF PAs and their effects on the DPD system which are organized as
follows.

First, Chapter (1| presents the motivation of the work, the outline of the disserta-
tion and a list of research publications related to the work developed by the Ph.D
candidate.

Chapter [2] analyzes the linearity versus efficiency trade-off of PAs, then presents
an overview on high-efficiency amplification topologies and linearization techniques
to cope with the trade-off.

Chapter 3| includes a brief introduction to PA behavioral modeling, the principles
of DPD linearization, numerical methods for solving the least squares solution and
specific details on look-up table (LUT) implementation of DPD behavioral models.

Chapter [ presents an overview of dimensionality reduction techniques for PA
behavioral modeling and DPD linearization, focusing on feature selection techniques
for the DPD forward path and feature extraction techniques for the DPD observation
path.

The next three Chapters describe sequently the new approaches for PA behavioral
modeling and DPD coefficient estimation/adaptation. Chapter 5| focuses on the di-
mensionality reduction technique based on the principal component analysis (PCA),
named block-deflated adaptive PCA (BD-APCA) which allows to reduce the number
of estimated DPD coefficients, estimate the coefficients independently and enhance
the robustness of the estimation.

Chapter @ presents the estimation/adaptation of DPD coefficients employing two
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dimensionality reduction techniques, namely partial least squares (PLS) and prin-
cipal component analysis, and providing a comparison between their linearization
performances. Subsequently, a new technique based on PLS, named dynamic par-
tial least squares (DPLS), is introduced to dynamically select, at each iteration of
the DPD adaptation, the minimum number of components required to guarantee a
certain identification performance of the DPD coefficients.

Chapter [7| describes a dimensionality reduction method, named PCA-DPLS, that
is a combination of PCA (computed off-line) and DPLS. The combination allows
dynamic DPD estimation/adaptation achieving similar dimensionality reduction ca-
pabilities than with Canonical Correlation Analysis (CCA is the method that shows
better model order reduction capabilities in comparison to PCA and PLS) but with
lower computational cost.

Finally, Chapter [§] gives the conclusion on the dissertation and discusses possible
future research lines in the field of DPD linearization. As a summary, Figure [1.3

depicts the main content of this dissertation.

- Reduce DPD coefficients to a dynamic
number (according to the residual error
Combination | signal)

PCA-DPLS - Independently estimate DPD coefficients
- Similar linearization performance to
CCA’s, but lower computational
complexity

IMENSIONALITY REDUCTIO b cpLs |- Reduce DPD coefficients to a dynamic
IN THE DPD IDENTIFICATION/ yhamic number (according to the residual error
ADAPTATION SUBSYSTEM (DPLS) signal)

- Independently estimate DPD coefficients

- Reduce DPD coefficients to a fixed number
- Independently estimate DPD coefficients
- Adaptively compute DPD coefficients

Block-deflated
APCA

Figure 1.3: Overview of main Chapters of this dissertation.
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1.3 Research Contributions

This Ph.D. dissertation contributes to the high power amplifier linearization using
DPD technique. Dynamic linearization approaches are proposed to dynamically de-
termine the number of required DPD coefficients to be estimated/updated in DPD
adaptation subsystem. The approaches reduce the computational complexity of the
DPD linearization system, at the same time, avoid the overfitting and uncertainty of
LS estimation. The experimental tests have been carried out to validate the perfor-
mance of these techniques.

The research reported in this thesis has generated publications in international
conferences and journal papers. The publications are listed in the following.

For block-deflated adaptive principal component analysis (Chapter [5)):

e Q. A. Pham, D. Lépez-Bueno, T. Wang, G. Montoro, and P. L. Gilabert, ” Mul-
tidimensional LUT-based digital predistorter for concurrent dual-band envelope
tracking power amplifier linearization,” in Proc. 2018 IEEE Topical Conf. on
93 RF/Microw. Power Amplifiers for Radio and Wireless Appl. (PAWR), Jan.
2018, pp. 47-50.

e Q. A. Pham, D. Loépez-Bueno, G. Montoro, and P. L. Gilabert, ” Adaptive
principal component analysis for online reduced order coefficient extraction in
PA behavioral modeling and DPD linearization,” in 2018 IEEE MTT-S Int.
Microw. Symp. (IMS), Jun. 2018, pp. 160-163.

e D. Lépez-Bueno, Q. A. Pham, G. Montoro, and P. L. Gilabert, ”Independent
digital predistortion coefficients estimation using adaptive principal component

analysis,” IEEE Transactions on Microwave Theory and Techniques, vol. 66,

no. 12, pp. 5771-5779, Dec. 2018.

For partial least squares and dynamic partial least squares (Chapter @:
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e Q. A. Pham, D. Lopez-Bueno, T. Wang, G. Montoro, and P. L. Gilabert, ” Par-
tial least squares identification of multi look-up table digital predistorters for
concurrent dual-band envelope tracking power amplifiers,” IEEE Transactions
on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5143-5150, Dec.
2018.

e Q. A. Pham, D. Lopez-Bueno, G. Montoro, and P. L. Gilabert, ” Dynamic selec-
tion and update of digital predistorter coefficients for power amplifier lineariza-
tion,” in Proc. 2019 IEEE Topical Conf. on RF/Microw. Power Amplifiers for
Radio and Wireless Appl. (PAWR), Jan. 2019.

For combination of principal component analysis and dynamic partial

least squares (Chapter [7)):

e Q. A. Pham, G. Montoro, D. Lépez-Bueno, and P. L. Gilabert, ”Dynamic se-

lection and estimation of the digital predistorter coefficients for power amplifi

er linearization,” IEEE Transactions on Microwave Theory and Techniques, vol.

67, no. 10, pp. 3996-4004, Oct. 2019.
Book Chapter:

e P. L. Gilabert, D. Lépez-Bueno, and Q. A. Pham, G. Montoro, ”Chapter 17:
Machine Learning for Digital Front-End: a Comprehensive Overview,” in Book
Fa-Long Luo., ”"Machine Learning for Future Wireless Communications”, John
Wiley & Sons, Inc., Hoboken, New Jersey, (accepted and to be published
in 2020).
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Chapter 2

Linearity and Power Efficiency
Issues in Power Amplification

The RF PA is an important element in the transmitters in WCS base stations. Lin-
earity and power efficiency are the key factors in power amplification. Linearity
ensures the accuracy of the amplification, whereas, high power efficiency enables to
reduce the power consumption and the size of the cooling system at the base sta-
tion thus minimizing the operating cost. In the mobile handset, high efficiency PA
lengthens the battery lifetime. Unfortunately, linearity and power efficiency are in-
herently conflicted to each other. For that reason, a lot of effort has been dedicated
to find efficient amplification architectures which are properly combined with system
level linearizers and capable to mitigate this trade-off. This Chapter presents the
PA linearity-efficiency compromise in Section [2.1] the methods to improve power ef-
ficiency in Section and the methods to preserve the required linearity levels in
Section 2.3

2.1 Linearity versus Efficiency Trade-off

Ideally, a linear power amplifier produces its output voltage as a scalar multiple of its

input voltage. Considering a memoryless linear PA (so that the memory effects can
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be ignored), its amplification can be expressed as

vout(t) = T[Um] = gvin(t) (21)

with vy, (t) be the amplifier’s input voltage, v,,(t) the amplifier’s output voltage, T[]
the transfer function and g the scalar voltage gain. In the ideal linear amplification,
the PA’s output and input are identical (except for the scalar gain), no additional
in-band or out-of-band frequency components are introduced.

However, in practice, the PA presents a nonlinear behavior when approximating
towards compression, as shown in Figure [I.2, The nonlinearity can be caused not
only by the amplifier itself but also by the oscillators or the mixers. In amplitude
and phase modulated signals, the nonlinear distortion introduced by PAs appears
as spectral regrowth. Figure [2.1] shows the spectral regrowth that appears in the
spectrum of the amplified output signal (red) with respect to the spectrum of the

input signal (blue) due to the PA nonlinear behaviour.

-------- Input signal
—— Qutput signal

Normalised Power [dBX]

n e e )
1 S e “h!,; AN o

45 0 5 0 5 10 15
Relative Frequency [MHz]

Figure 2.1: Power spectral density of the input and output signals of a nonlinear
power amplifier using a WCDMA signal [12].
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Figure 2.2: Harmonic and intermodulation distortion at the output of a nonlinear PA
considering a two-tone test [13].

The output signal v,,(t) of a nonlinear PA is a nonlinear function of its input

signal v;,(t) which can be expressed as
Vout () & > gk, (1), (2.2)
k=1

The polynomial function in includes a series of terms proportional to v;,(t),
in which g, is the voltage gain of each term in the series. The first term of this
series corresponds to the linear term and is the desired output signal. The rest of
the terms present additional frequency components. Specifically, even order terms of

the polynomial series (v2,, v} ..., v2%) describe the integer multiples of the input sig-

in? Yin) ) Yin

nal (harmonics). The nonlinear distortion introduced by even order terms is named
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harmonic distortion (HD). Whereas, odd order terms (v, v2,,..,v2*~!) show the in-
termodulation distortion (IMD) that occurs when the input signal contains more
than one different frequencies. In case some odd order terms fall inside the signal
bandwidth, they cause the in-band distortion. Figure shows the harmonic and
intermodulation distortion in the output of the nonlinear PA when considering a
two-tone test.

The distortion measurement of the PA output signal can be carried out using the
amplitude modulation to amplitude modulation (AM-AM) and amplitude modula-
tion to phase modulation (AM-PM) characteristics. The linearity of the PA can be
characterized with several figures of merit, such as the error vector magnitude (EVM)
and adjacent channel power ratio (ACPR).

To quantify the in-band distortion, the EVM measures the effects of the distortion
on the amplitude and phase (I and Q) of the modulated output signal. The error
vector (see Figure describes dissimilarity between the measured 1QQ modulation
signal and a reference (ideal) signal. The EVM is defined as the square root of the

N
ratio between the mean error vector power S,,, = % ST (AI? + AQ?) to the mean
1

r

1 N
reference (ideal) vector power S,.; = N S (IZ;+ Q%) N is the number of the
1

'

: Reference signal

I
v

: Measured signal

: Error vector
: Phase error

oot

: Magnitude error

Figure 2.3: Error vector magnitude representation.

21



samples (of the constellation) of the signals.

EVM =

(%] (2:3)

The figure of merit ACPR, also known as the adjacent channel leakage power ratio
(ACLR), measures the spectral regrowth present in the spectrum of the PA output
signal. ACPR is defined as the ratio of the power delivered in the adjacent channel
(upper or lower sideband) to the total power over the channel bandwidth [14].

j‘}%ut(j) 'df

fzt'acen —channe adj
ACPRleloglo( ;] ‘ thh ll)zl()loglo }JP G [dB]  (2.4)
main—channe out :
chan

Communication standards specify the maximum allowed out-of-band power emission
in terms of a spectrum emission mask and ACPR. Similarly to the spectral regrowth
limitations, communications standards determine maximum levels of the EVM per-
mitted at the transmitter antenna and at the receiver, depending on the modulation
scheme used and the codification (optional).

The efficiency of a PA () shows the capability of the PA to convert dc power from
the supply into RF energy of the output signal. It is calculated as the percentage
of the output power of PA (P,,) to the dc power taken from the supply (P,.) (see

Figure [2.4)):
POU
n= t

B Fﬁc

[%]. (2.5)

Besides, the power added efficiency (PAFE) that measures the efficiency of the PA
considering the already existing power from input signal is defined as

f%ut'_'}%n

PAFE =
Fbc

1%]. (2.6)
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Figure 2.4: Block diagram of the PA with power supply.

In a system that uses the nonconstant envelope signals, the PA instantaneous
efficiency, defined as the efficiency at a specific output power, is higher at the peaks
and lower at the non-peaks of the output signal. In other words, signals with time-
varying amplitudes produce time-varying efficiencies. The average efficiency (n4y¢) is
to measure the performance of the time-varying signal amplification. n4y ¢ is defined

as the ratio of the average output power to the average dc power.

POU
navag = I 1AV [%] (2.7)
dcAVG

When dealing with modern spectrally efficient multi-carrier (e.g., OFDM-based)
waveforms presenting high PAPR, the PA needs to operate at large power back-off
leading to a serious degradation of average efficiency. As shown in Figure 2.5 the PA
has to operate with significant back-off from the 1 dB compression point to prevent
the peaks of the signal going into compression. Consequently, the average PAE of
the amplification is low. Note that the PA efficiency not only depends on the back-off
level chosen to operate the PA but also on the PA operation class [15].

The combination of high efficient amplification topologies with linearization tech-
niques can overcome or at least mitigate the linearity-efficiency trade-off [7]. High
efficient amplification architectures based on dynamic load (e.g. outphasing and Do-

herty) or dynamic supply modulation (e.g. ET and EER) are adopted to enhance
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the power efficiency figures when dealing with nonconstant envelope signals that have
high PAPRs. Additionally, system level linearization techniques such as, feedforward,
feedback and predistortion are employed in order to guarantee the required linearity

levels.

2.2 High-efficiency Amplification Topologies

This Section presents the popular topologies for high efficiency amplification: out-
phasing, Doherty, ET and EER PAs. Outphasing and Doherty PAs make use of load
modulation techniques combining the operation of two or more PAs. While ET and

EER topologies improve the power efficiency through dynamic supply modulation

nout

Output Power (dBm)

PAE (%)

Input Power (dBm)

Figure 2.5: Linearity versus power efficiency trade-off.
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techniques that do not require additional RF PAs, but require high efficient envelope

modulators.

2.2.1 Dynamic Load-Modulation Techniques
Outphasing

The outphasing modulation architecture was invented by H. Chireix in 1935 [2], and
later revised and re-introduced under the name of linear amplification with nonlinear
components (LINC) by D. Cox in 1974 [16]. The outphasing architecture consists
in amplifying the amplitude-modulated signal by combining the amplification of two
equal constant amplitude phase-modulated signals. This scheme can be conducted as
following. First, the signal component separator splits the input amplitude-modulated
signal S(t) = A(t)cos [w.t + ¢(t)] (A(t) is the amplitude, w, the carrier frequency and
©(t) the phase shift of S(t)) into two constant-envelope phase-modulated signals with

opposite phases as

S(t) =Sy (1) + Sa(t) (2.8)

max

cos(wet + ¢(t) + &(t))+

max

cos(wet 4+ o(t) — o(t))

where A4, be the maximum amplitude of S(¢) and ¢ = cos™! <% be half the
outphasing angle. Then the two branch signals Si(t) and Sy(t) are independently
amplified by two separate amplifiers. Since S;(t) and Sy(¢) have constant envelopes,
the two branch PAs can operate in high efficient switched mode. At the PA outputs,
the amplified signals are recombined to get the amplified replica of the original signal.
The high-level architecture and operation principle of the outphasing PA is shown in

Figure [2.6
There are two popular techniques of outphasing: LINC and Chireix outphasing.
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Figure 2.6: Simplified outphasing configuration.

The main point that makes these techniques distinct from each other is the type of
employed power combiner: isolated or non-isolated. LINC uses an isolated combiner
while Chireix outphasing has a non-isolated one. The difference in the combiner af-
fects to the system operation, resulting different linearity and efficiency enhancement.
The Chireix outphasing with the non-isolate combiner gains good efficiency but not
good linearity. Whereas, the LINC with isolate combiner achieves good linearity but
lower power efficiency [17].

Although the outphasing gains high efficiency, some drawbacks of this topology

can be pointed out as follows:

e The signal separation require complex calculation, leading to the high complex-

ity PA architecture.
e The possibility of the mismatching between two branches.

e The combiner can dissipate the power, resulting to decrease the overall linearity

of the outphasing architecture.

Doherty PAs

Doherty PA (DPA) [3] was invented by the American electrical engineer W. H. Do-

herty in early 1936. The Doherty PA significantly improved the power efficiency of
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conventional PA (i.e. the class-B PA from which the Doherty PA was modified). It
was widely employed in commercial radio stations in Europe and Middle East in 1940s
and 1950s [19]. Early Doherty PAs (from 1936 to 1979) were operated in medium-
and high-power (from 50 kW to 2 MW), low frequency and medium frequency (from
30 kHz to 3 MHz) transmitters. Since then till the present, the DPAs are used in
different networks and applications such as digital radio, television broadcast, and
cellular networks (both base stations and handset transmitters) [19)].

Figure depicts the conceptual diagram of a classic Doherty architecture. The
most basic Doherty PA configuration includes two PAs (main and auxiliary) and two
A/4 impedance inverters (one locates after the main PA and one is at the input of
the auxiliary PA to balance the phase between the two paths) [18]. The main PA
is usually class-B or -AB and the auxiliary PA is class-C. It is important to design
the distribution/combining networks of Doherty so that the main and auxiliary PA
cooperate without loading each other.

The final RF output power of DPA is combined from the power of the two PAs.
At the high input power levels (typically from the peak power down to 6 dB output
power back-off (OBO)), both PAs are active and together contribute to the output

power. When the input power is reduced (more than 6 dB OBO from maximum

Main

PA .
RF input Zrvai

— >
% Z
Line Line

\ >E o

RF output

Aux. YA

PA

Aux.

Figure 2.7: The basic Doherty amplifier configuration [18].
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power), the auxiliary PA is inactivated, only the main PA operates with a modulated
load impedance, thus, significantly improving the efficiency at lower power levels.

The limitations of DPAs are:
e Same as outphasing, Doherty technique requires extra RF PA(s).

e DPAs support only the narrow bandwidth signals due to the use of the quar-
ter wavelength combining transformer. This introduces a challenge in LTE-
advanced systems which work with not only wider bandwidth but also multiple-

band signals [20].

2.2.2 Dynamic Supply Techniques
Envelope Tracking PAs

Conventional PAs are supplied with a fixed voltage at every instant of the transmis-
sion. The PAs can only achieve their peak efficiency at the peaks of the amplitude of
the input signal and have low efficiency at low amplitude levels of the input signal. In
communication systems that use high PAPR signals, this issue is only aggravated. In
order to avoid the excess of the dc supply power, the envelope tracking technique [4]
was proposed with the idea that the supply power is dynamically adapted to the
amplitude of the PA input signal.

Figure depicts the envelope tracking system. The amplitude detector takes
the envelope of the input of PA. Then the supply modulator drives the power supply
based on this input signal’s envelope to provide the dynamic voltage for the PA. The
PA operates in linear mode but still achieves high power efficiency due to the dynamic

voltage supply.
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Figure 2.8: Block diagram of envelope tracking system.

In 2013, the ET technique was employed for the first time in 3G /4G LTE mobile
devices by Qualcomm Inc.. Nowadays, this technique is popularly used in cellular
networks in both base stations and handset transmitters [21],22].

The ET technique’s advantage is its simple design structure. The ET can be
applied on conventional PAs by just simply replacing the conventional static supply

for a dynamic one. However, the ET technique still has following drawbacks:

e The energy savings in the RF PA may be lost if the envelope detector and the
supply modulator circuits are inefficient. Thus, the overall ET PA efficiency is a

product between the efficiency of the RF PA and that of the supply modulator.

e The supplied power to the PA should have the same speed of the signal’s enve-
lope. In OFDM-based modulations the envelope bandwidth is around 3-4 times
the bandwidth of the baseband complex modulated signal [23]. Therefore, some
solutions are given to reduce the envelope bandwidth, such as using a slower

version of the original envelope as in [23] and [11].
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e The variation of the supply voltage results nonlinearity into the PA, leading to
the requirement for a linearization technique (e.g. DPD) to satisfy efficiency

and linearity trade-off.

Envelope Elimination and Restoration

EER was introduced in [5] by L. R. Kahn in 1952. Since then, the technique has
been received lots of attention due to its high linearity and power efficiency [24/26].
Figure shows the block diagram of EER technique.

Similar to ET technique, the envelope of the input signal is detected by the ampli-
tude detector. Then, the supply modulator generates the supply voltage based on this
envelope. However, different from ET, in ERR technique, the amplitude information
of the input signal is eliminated by a limiter to gain a new signal with constant ampli-
tude. Then the new signal is amplified by a nonlinear PA (NLPA), achieving a high
efficiency. The amplitude information of the output signal of the NLPA is restored

Power
Supply

Amplitude Supply
— >
Detector Modulator /\/\

I/Q Analog
Signal [—— | Limiter
Source P, (t)

Figure 2.9: Block diagram of EER system.
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by the dynamic supply voltage provided by the supply modulator. By applying the
envelope tracking and constant amplitude amplifying, the EER technique enables the

NLPA to work as a high efficient LPA.

The main differences between ET and EER can be summarized as following [27]:
e ET uses a linear PA (LPA) while EER uses a nonlinear PA.

e ET PA amplifies the original input signal which includes both the amplitude
and phase information. Whereas, EER amplifies the signal that contains only

phase information.

e The purpose of supply modulator in ET technique is to achieve the power
efficiency of the LPA, while the supply modulator of EER technique aims to
restore the amplitude information of the output signal of the NLPA.

e While ET can use a slow envelope [11] to reduce the bandwidth that the en-
velope occupies, EER requires high accurate dynamic supply. This results the
requirement of high bandwidth in the components and control signals, making

EER to be less attractive for wide-band OFDM-based communications.

e The synchronization between the phase and the envelope in EER technique is

critical while it is not in ET.

Figure summarizes the average power efficiency (nayg) of different high-
efficiency amplification techniques (Chireix outphasing, Doherty, ET and EER), class-
A, class-B PAs and ideal class-B PAs applied gate switching (GS) technique. The
average power efficiency of the PAs is presented as the functions of the ratio of output
power and peak output power (Pyu:/Poupep). As it can be seen from Figure ,
EER is the one that provides best efficiency among the considered techniques. When
operating in back-off, the ET technique is more efficient than other techniques, except
the EER. Whereas, when operating close to saturation, ET is slightly less efficient
than EER, Chireix outphasing and Doherty. Both Chireix outphasing and Doherty
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achieve high efficiency at low back-off level but become much less efficient when go
deeper into the back-off. However, in general, all EET, ET, Doherty and Chireix
outphasing enhance much better efficiency in comparison to the class-A PAs, class-B

PAs and ideal class-B PAs applied GS technique.

1.0

MAVG

1
20  -15 =10 5 0
Po/Popgp- 9B

Figure 2.10: Comparison of efficiency of different high-efficiency amplification tech-
niques and classic PAs; A: class-A PA, B: class-B PA, DOH: Doherty, GS: gate-
switching technique applied for ideal class-B PA, CHIR: Chireix outphasing, ET:
envelope tracking, KAHN: EER [15].

Table 2.1: Comparison of outphasing, Doherty, ET and EER techniques (a part of
the Table is referenced from [27]).

Outphasing Doherty ET EER
RF PAs | 2 NLPAs | LPA (carrier PA) | 1 LPA 1 NLPA
NLPA (peak PA)
Efficiency | Medium Medium High Highest
Linearity Low Medium Good | Medium/Good

Table shows the comparison among outphasing, Doherty, ET and EER tech-
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niques about the number and type of used PAs, power efficiency and linearity.

2.3 Linearization

As the demand for high data transmission rates increases, higher bandwidths (at
mm-wave bands for example) and spectrally efficient modulation signals are being
used. Multi-carrier techniques (e.g., OFDM-based) are aimed at maximizing spec-
trum efficiency, but at the price of presenting high PAPRs (i.e., larger than 10 dB,
as depicted in Table . The amplification of these signals can be challenging from
both the power efficiency and linearity perspective. This Section focuses on the most
significant linearization techniques: feedforward, feedback and predistortion. At the
end of the Section, the comparison of supported bandwidth, linearity and efficiency

among the three techniques will be given.

Table 2.2: PAPR and bandwidth of the envelope signal for different wireless commu-
nication systems [27].

WCS | Signal modulation scheme | PAPR (dB) | BW (MHz)
2G GMSK (TDMA) 0 0.2
2.5G EDGE 3.2 0.2
3G WCDMA 3.5~9 5
4G OFDM 8.5~ 13 24 ~ 20

2.3.1 Feedforward Linearization

Feedforward was firstly introduced by H. S. Black in 1923 at Bell Telephone Labo-
ratories [8]. Figure shows the block diagram of feedforward linearization. The
idea of the feedforward technique was stated by Black as follows: " [..] I immediately
observed that by reducing the output to the same amplitude as the input and subtract-
ing one from the other, the distortion products only would remain which could then

be amplified in a separate amplifier and used to cancel out the distortion products in
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the original amplifier output.” [28].

Following the idea, the linearization system was designed consisting of two loops.
First, the main loop includes the main PA that is used to amplify the input signal.
The amplification of the main PA produces distortion into the output signal of the
PA. Second, the auxiliary loop includes the auxiliary PA that amplifies the distortion
of the main loop. Then, the output of the first loop is subtracted by the output of
the second loop to produce the undistorted amplified replica of the input signal. The

phase shift introduced in both loops is for the distortion cancelation adjustment [g].

A

—>

Power
> Main PA
Divider
—» Phase Shift +

A

—— Phase Shift

Auxiliary

PA

Figure 2.11: Simplified feedforward block diagram and principles of operation [29].
The advantage of the feedforward is that the concept is simple. However, some
disadvantages are listed in the following.

e The achieved power efficiency is low because the auxiliary PA causes additional

power consumption.

e Linearity performance is degraded because of the delay mismatch among the

components.

Feedforward technique was not applied for commercial applications at the time

it was invented since the technique was inappropriate to the popularly used valve
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amplifiers at that time. However, after the valve amplifiers were replaced by the
solid state amplifiers in the 1960s and 1970s, feedforward was used to address the
high linearity requirement in cellular telephone systems [§]. In practice, distortion

cancellation can be achieved only about 6 dB from saturation [§].

2.3.2 Feedback Linearization

After inventing the feedforward linearization system, in 1927, H. S. Black introduced
the negative feedback principle. The negative feedback is considered the most signif-
icant breakthrough of the field of electronics in the twentieth century. The technique
has been used not only in telecommunications, but also in industrial, military, and
consumer electronics, weaponry, analog computers, and such biomechanical devices
as pacemakers [30].

The main idea of using negative feedback for linearization purposes is feeding
back the output (after phase inverting) to the input to reduce the distortion at the
PA output. The block diagram of feedback linearization is shown in Figure[2.12] The
feedback technique is categorized into four groups: RF feedback, envelope feedback,
polar feedback and Cartesian feedback [29]. The details of the four groups can be
found in |13].

Phase inversion [a—

.

—>

Sampler

Figure 2.12: General block diagram of feedback linearization technique [29].

The feedback technique has better performance in comparison with the feedfor-

ward since it does not require additional PA and creates low distortion [28]. The
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limitation of the feedback is that it can only operate with low bandwidth signal due
to the loop delay (Atg). The bandwidth of the operated signal should be less than a
quarter of Aty [§].

2.3.3 Predistortion

Predistortion was introduced by Adel A. M. Saleh and his colleague J. Salz from Nokia
Bell Labs in 1983 [31]. Thanks to appearance of digital signal processors it became
the preferred linearization technique due to its simplicity, computational efficiency,
and ability for supporting for wide-band signals at high frequencies [§]. In the last
three decades, many publications have been contributing to this linearization method.
Some of these can be found in [10}/11}32-36].

The predistortion linearization includes a predistorter that is located before the
PA. The objective of the predistorter is to compensate for the nonlinear behavior
of the PA. To do so, the predistorter creates an inverse PA nonlinear behavior (i.e.,
F(.)) on the input signal w. The signal after predistorting is @ = F(u). Then,
the predistorted signal (x) is sent to the nonlinear PA (i.e., G(.)) to be amplified.
Consequently, the resulting output y is linear to the input signal w: y = G(x) =
G(F(u)). The basic operating principle of predistortion linearization technique is

illustrated in Figure [2.13]

) PA
Predistorter

—— FO) [

....
o
o

u X u

Figure 2.13: Principle of predistortion linearization technique.
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Predistortion can be classified based on:
e technology: analog predistortion (APD) and digital predistortion.

e frequency band: baseband (BB), intermediate frequency (IF) and radio fre-
quency (RF) predistortion.

e type of loop: closed-loop (or adaptive) and open-loop (or non-adaptive) predis-

tortion.

APD performs the PA linearization in the RF domain. APD is suitable for appli-
cations that require large bandwidth (300 GHz — 300 MHz), for example satellite com-
munications, since its operating cost is less than digital predistortion [8]. Whereas,
DPD predistorts baseband signal using a digital engine. DPD is popularly used in
telecommunication applications.

BB and IF predistortions have some advantages over RF predistortion. First,
BB and IF are more robust with environmental coefficients (e.g. PA’s temperature).
Second, they do not depend on the frequency band of operation. Third, the cost of
analog to digital converters (ADCs) and digital to analog converters (DACs) is lower
when operating at BB and IF frequency [13]. However, the drawback of BB and IF
is that the up-converters can introduce further distortion.

Closed-loop and open-loop predistortion will be discussed further in Subsection
[3.4.2] This dissertation focuses on the RF PA linearization using baseband adaptive
digital predistorters.

Table 2.3: Comparison of PA Linearization Techniques [37].

Technique Bandwidth | Linearity | Efficiency
Feedforward High High Low
Feedback Low Low Medium
APD Medium/High | Medium High

Table [2.3|summarizes a comparison among linearization techniques. It can be seen
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from Table [2.3| that among the three linearization techniques, predistortion is the one
that enables high power efficiency, supports wide bandwidth signals and achieves good

linearity levels.
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Chapter 3

Principles of Digital Predistortion
Linearization

As mentioned in Subsection [2.3.3] the DPD function is oriented to generate the inverse
PA’s nonlinear behavior. Therefore, in order to build a DPD function, first of all,
the PA nonlinear behavior should be characterized via PA behavior modeling (or
black-box modeling). PA behavioral modeling is a process to identify the nonlinear
characteristics and memory effects of PAs with parametric mathematical models.
The PA behavioral models used to form the DPD function is presented in Section
[3.1 This Section also describes the procedure for converting a polynomial-based DPD
model into a LUT-based model targeting FPGA implementation in Subsection [3.1.3]
Generally, the coefficients of these models are found by means of the LS regression.
Section presents the identification of PA behavioral models, while Section
introduces popular numerical methods to address the LS solution. Finally, in Section
[3.4] two architectures to design a closed loop adaptive DPD system: the direct and

indirect learning approaches are described.

3.1 Power Amplifier Behavioral Modeling

PA behavioral models are mathematical descriptors of the PA nonlinear behavior and

its memory effects. The construction of PA behavioral models are built upon a set of
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PA input-output observations. Consequently, the accuracy of the model mainly relies
on the adopted model structure and coefficient extraction method. Typically, the
model used to approximate the PA behavior is also employed to estimate its inverse
behavior. Therefore, the behavioral models presented in this Section are valid for
both the PA behavior approximation and DPD linearizer description.

It is possible to find in literature an enormous amount of publications on PA be-
havioral modeling. The PA behavioral models can be divided into four types: single-
input single-output (SISO) [38,/39], multi-input single-output (MISO) [40], single-
input multi-output (SIMO), multi-input multi-output (MIMO) [40-42] systems. In
this dissertation, SISO and MISO models have been considered for DPD lineariza-
tion purposes. Therefore, this Section focuses on SISO and MISO models using both

polynomial-based and LUT-based implementation.

3.1.1 SISO Behavioral Models

Volterra series

Volterra series was introduced by V. Volterra in 1930 [39], and is aimed at describing
time-invariant nonlinear systems with fading memory. The discrete-time low-pass
equivalent Volterra series formulation is described in the following. Considering the
general input-output notation in Figure[3.1], the estimated output g[n] of the discrete-

time low-pass equivalent Volterra series is

P Qp—1 Q1-1 p
gl =>"3 "> hylqr ,qp)Hw[n — qi (3.1)

with P being the number of kernels of the series (the polynomial degree or the order
of the nonlinearity), h, the coefficient associated with the p;h kernel, Q;...Q, the

memory depths (or number of delays) in each kernel and n denotes the discrete time.
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Figure 3.1: Identification of the power amplifier behavior.

The Volterra series has a simple structure. It is a linear combination of nonlinear
basis functions, in which the contribution of each basis function into the model is
controlled by its coefficients. The coefficient extraction of the model can be easily
performed by employing linear regression techniques, such as the LS regression.

However, the main problem of the Volterra series is that the number of coefficients
of the model grows significantly when the polynomial degree and memory depth
increases. The high order model may include unnecessary information and lead to ill-
conditioned problems in the coefficient extraction when using LS. A common solution
for this is using pruning techniques. The pruning techniques apply some reduction
method to the general Volterra series to get rid of irrelevant information of the series
and retain only the most important terms. Some pruned Volterra series can be found
in [43H45].

Another method for simplifying Volterra series expansion is the modular approach
that includes the combination of components from the memoryless (or static) non-
linear and linear time-invariant dynamic subsystems (i.e., Wiener and Hammerstein
models [46]). One of the most widely used models in literature due to its simplicity
is the memory polynomial (MP), presented in [47]. Another common model for SISO
systems is the generalized memory polynomial (GMP) behavioral model, proposed
in [48]. Besides, there are plenty of other behavioral models in literature used for

DPD purposes in SISO systems, just to mention a couple of examples, the NARMA
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model proposed in [49] and the Dynamic Deviation Reduction Volterra series in [44].

Further information on PA behavioral models for SISO systems can be found in [38§].

Memory Polynomial

One of the simplest PA behavioral models capable to characterize both nonlinear
distortion and memory effects is the memory polynomial, presented in [47]. In the

MP the estimated output g[n] is defined as follows

L—-1P-1
yln| = Z Z Qi Tn — 7] |:L‘[n — 7] }p (3.2)

i=0 p=0
where P is the nonlinearity order of the polynomial, L the length of the memory, o),
the complex coefficients describing the model, and 7 (with 7 € Z and 75 = 0) the
delay shifts (i.e. the most important non-consecutive delays of the input signal z[n]
that better contribute to characterize the PA memory effects). The total number of

coefficients of the MP model is in the order of M = P - L.

Generalized Memory Polynomial

The generalized memory polynomial behavioral model, proposed in [48], is another

widely used model for SISO systems. GMP is defined as following.

Lqo—1P,—1

yln] = Z Z i xln — 7] |$[” - Tia]|p+
i=0 p=0
K L::l Py

XD Bujaln =7 |zln—7) =7+ (3.3)

j=1 i=0 p=1
K. Le—1 P,

22 2 i aln =] faln =7 4 )

j=1 i=0 p=1

where P,, P,, P. are the nonlinearity orders of the polynomials, L,, Ly, L., K3, K. are

the lengths of memories. «,;, B, and 7,;; are the complex coefficients describing
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the model, and 7%, 7° and 7¢ (with 7 € Z and 79 = 0) are the most significant
non-consecutive delays of the input signal xz[n] that better contribute to characterize
memory effects. The total number of coefficients of GMP model is M = P,L, +
P LyKy + P.L.K..

Unlike the MP, the GMP has bi-dimensional kernels (considering cross-term prod-
ucts between the complex signal and the lagging and leading envelope terms) which
increases the accuracy of the modeling at the price of increasing the number of coef-

ficients.

3.1.2 MISO Behavioral Model

When considering concurrent multi-band transmissions such as in [50], or even com-
bined with PA dynamic supply modulation strategies such as in [51], or also in multi-
antenna systems where each transmit path has its own PA and antenna element such
as in [52]; MISO behavioral models are required to characterize the different sources
of nonlinear behavior. In concrete, this Subsection presents the 3-D distributed mem-
ory polynomial (3D-DMP) model introduced in [11] to approximate the behavior of

a concurrent dual-band envelope tracking PA.

3-D Distributed Memory Polynomial

The MISO behavioral model 3D-DMP has a parallel structure including three branches,
in which each branch is responsible for characterizing/compensating one of the three
main unwanted nonlinear distortion effects (intra-band, cross-band and dynamic sup-
ply distortion) in concurrent dual-band envelope tracking PAs. Figure depicts the
block diagram of the model.

The 3D-DMP behavioral model (for Band 1 signal) is defined as
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Py, P, and Pj are the polynomial orders of the Band 1 signal x; at each branch. Ny,
Ny and N3 are the number of delays of the signal x; at each branch. ()5 and M, are
the polynomial order and the number of delays of the interference signal, respectively.
K3 and Rj3 are the polynomial order and the number of delays of the supply envelope
E. respectively. 7,772 and 77 are the most significant sparse delays of the input
signal x;, the interference signal x5 and the supply envelope E, respectively. ayi, bpig;
and ¢, are the coefficients of the model. The 3D-DMP behavioral model for Band
2 signal can be defined similarly to the Band 1 signal, considering the input signal x5
and interference signal x;.

The 3D-DMP model will be used in Section to compare the model order
reduction capabilities vs. linearization performance when considering two different

dimensionality reduction techniques.

3.1.3 Look-up table implementation of DPD models

FPGA is an integrated circuit containing an array of programmable logic blocks that
is reconfigurable and reprogrammable to allow flexible computing as performed in
computer software. FPGA is an attractive solution for implementing the DPD func-
tion. Some of the advantages of fast prototyping DPD in FPGA platforms are the
high-speed processing, high density integration, flexible implementation and paral-
lel operation mechanisms [53]. In general, the DPD function can be implemented in
FPGA either by the polynomial based or the look-up table (LUT) based methods [54].
The direct implementation of polynomial-based DPD models in FPGA requires sev-
eral complex multiplications and additions [55]. Whereas, LUT based implementation
reduces the FPGA logic resources for describing the nonlinear function. The authors
in [56] discussed the advantages of LUT-based to polynomial-based implementation
of a DPD model. First, the complexity of LUTSs is lower than polynomials in terms
of using fewer multipliers (which is one of the most expensive elements in the FPGA

hardware). Reducing the number of multipliers helps to reduce hardware resources
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requirements for the DPD implementation. Second, LUTs are more numerically sta-
ble than polynomials when the order of the polynomials is high. According to the rule
of thumb, a 32-bit processor cannot handle polynomials greater than fifth or sixth
order. With higher order polynomials, the numerical instability becomes apparent.
Third, in the case that the signal power is unstable, a polynomial-based predistorter
is less robust than a LUT-based one.

In this dissertation, both polynomial based and LUT-based behavioral models are
considered to validate the suggested dimensionality reduction algorithms for the DPD
coefficient identification. The LUT-based models used in this dissertation follow the
linear interpolation and extrapolation approach described in [57,58]. For example,
the GMP SISO behavioral model in can be implemented with 1-D LUTSs [58],
as it will be shown in Section [5.4] of this dissertation. Whereas the 3D-DMP MISO
behavioral model in can be mapped into LUTs using 1-D LUTs and 2-D LUTs
[57] as it will be shown in Section [6.2]

The 1-D LUT [58] is a piecewise linear complex function, defined in as the

linear combination of K basis functions.

K—1
faw) = 2 ¢ildgiiso(u = id) (3.7)

0, 1< K—2
where u is a real number, (i, K) = {1, i=K —2 ;0 = max(u)/(K — 1) is the
2, i=K—1
width of each region on the real interval at which function fa(u) is defined; Ag(u)
defined in is the interpolation basis function on the interval [0, (K — 1)d]; while
Ai(u) in and Ag(u) in are extrapolation basis functions on the interval
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[(K — 1)d,0¢0]. Finally, ¢; are the coefficients of the picewise complex function.

No(w) = (1~ M)w(%);w(u) _ b U=sust (3.8)

0 0, otherwise

A (u) = (1—@)5(11—0—5);5@)— bu=0 (3.9)

0, otherwise

Ao(u) = (1 + E):;(u + 5); s(u) = bu=0 (3.10)

0 0, otherwise

The 2-D LUT [57] is defined by a piecewise bilinear complex function as follows,

Ki—-1K>-1

fa(ur,uz) = Z Z ©igLg(i,50),90,52) (U1 — 101, up — jda) (3.11)

=0 j=0
where T'; ;(ur,uz) = A;(u1)Aj(uz). Functions ¢(i, K), Ag(u), Ai(u), As(u), w(u) and
s(u) are defined in (3.7)-(3.10). In (3.11)), u; and uy are real numbers; K; and
K5 are the numbers of basis functions in the u; and wu, directions; d; and o are
the widths of each region of u; and wus respectively, 6, = max(uy)/(K; — 1) and

dy = max(ug)/(K2—1). Further details on the bilinear interpolation and extrapolation

can be found in [57].
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3.2 Identification of PA Behavioral Models

In general, the estimated PA behavioral model output y[n| (for n =0,1,--- | N — 1),

can be defined in a matrix notations as
y=Xw (3.12)

where w = (wl, Cee Wt ,wM>T is the M x 1 vector of coefficients. X is the N x M
data matrix (with N > M) containing the basis functions of the PA behavioral model.
N is the number of samples of the amplified signal. M is the number of columns (i.e.
the basis functions) of X. M is so-called the order of the behavioral model.

The data matrix X can be defined as

X = (000,01 @l oV —1]) (313)

where ¢, [n] = (qzﬁ?f n], -, @F[nl, -, % [n])T is the M x 1 vector of basis functions
¢F[n] (with ¢ =1,--- M) at time n.

This general equation can be particularized for any behavioral model. Thus, for
example, taking into account the MP model in , the basis functions in (3.13)) can
be defined as

p.n] = (:E[n], s xln — 1) ‘x[n — 7—"”1)7 s xn— T ‘x[n - TL_l]’P1>T (3.14)

Similarly, the original coefficients of the MP, «,, are mapped into w; coefficients,
with i =1,---, M. In order to compute the estimated output signal g, the vector of
coefficients w has to be found.

Generally, the problem in has no exact solution since it is over-determined
(i.e. more equations than unknowns). To identify the vector of coefficients w we

define a cost function that takes into account the identification error e expressed, as
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depicted in Figure 3.1} as
e=y—-Xw=y—1y. (3.15)

Taking the /5-norm squared of the identification error, the least squares minimization

problem can be defined as follows

Given X € CV*M N > M,y € CV,

find w € CM such that ||y — Xwl|2 is minimized. (3.16)
It can be proven that the solution to the LS problem in (3.16)) is given by
w=(XTX)' X"y (3.17)

with H denotes Hermitian transpose. The solutions to the LS problem will be further
discussed in Section [3.3

The accuracy of the PA behavioral model depends on the adopted model struc-
ture and the coefficient extraction procedure (usually solved via LS). In order to
evaluate the accuracy of a PA behavioral model, the measurements normalized mean
squared error (NMSFE) and adjacent channel error power ratio (ACEPR) are used.
The NMSE is used to measure the resemblance of the estimated output y(n) and
measured output signal y(n) of the PA. It is defined as

S ly(n) — ()P
NMSE(dB) = 10log,, (= 3.18
(@B) = 0oy ) (3.18)

n

And the ACEPR measures the power of the error signal in the adjacent channels

relative to the power inside the channel. It is given by

fos |ECH) 2

ACEPR(dB) = 1010g10(W)
ch

(3.19)
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where Y (f) and E(f) are the Fourier transforms of y(n) and e(n) = y(n) — y(n),
respectively.
In following Section, some popular numerical methods used to solve least squares

are presented.

3.3 Numerical Methods for Solving Least Squares

The LS problem in can be solved via many methods, such as normal equations,
QR factorization and singular value decomposition (SVD). Among of them, QR fac-
torization approach for solving the LS (QR-LS) of DPD coefficient estimation is most
numerically stable thus being adopted as the baseline method to compare with other

approaches presented in this dissertation.

3.3.1 Normal Equations

This method converts the problem in to the normal equations as follows

X7 Xw=X"y (3.20)
Then, applying Cholesky factorization [59] to the correlation matrix X X:

X"X =R"R (3.21)

where R is upper-triangular matrix. In next step, what we need to do is solving two

following upper-triangular systems

Rz = X"y forz, (3.22)

Rw = z, for w. (3.23)
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The operational cost of the normal equations method is ~ NM? + gM 3 flops [59)].
The method is not computational expensive in comparison to the next two solutions.
However, its biggest issue is that is unstable with rounding errors when finite precision

arithmetic is used to implement the method.

3.3.2 QR factorization

The most commonly used approach to solve the LS problem is QR factorization. In

this method, the matrix X is decomposed as
X =QR (3.24)

where Q = [q,,qy, -+, @] is an N x M unitary matrix (i.c., Q7Q = QQ" = I) and
R is an M x M upper-triangular matrix where the diagonal entries r;; are nonzero.
Therefore, it can be said that eac