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Abstract

The power efficiency and linearity of radio frequency (RF) power amplifiers (PAs)

are critical in wireless communication systems. The main scope of PA designers is to

build the RF PAs capable to maintain high efficiency and linearity figures simultane-

ously. However, these figures are inherently conflicted to each other and system-level

solutions based on linearization techniques are required.

Digital predistortion (DPD) linearization has become the most widely used solu-

tion to mitigate the efficiency versus linearity trade-off. The dimensionality of the

DPD model depends on the complexity of the system. It increases significantly in

high efficient amplification architectures when considering current wideband and spec-

trally efficient technologies. Overparametrization may lead to an ill-conditioned least

squares (LS) estimation of the DPD coefficients, which is usually solved by employing

regularization techniques. However, in order to both reduce the computational com-

plexity and avoid ill-conditioning problems derived from overparametrization, several

efforts have been dedicated to investigate dimensionality reduction techniques to re-

duce the order of the DPD model.

This dissertation contributes to the dimensionality reduction of DPD linearizers

for RF PAs with emphasis on the identification and adaptation subsystem. In partic-

ular, several dynamic model order reduction approaches based on feature extraction

techniques are proposed. Thus, the minimum number of relevant DPD coefficients

are dynamically selected and estimated in the DPD adaptation subsystem. The

number of DPD coefficients is reduced, ensuring a well-conditioned LS estimation

while demanding minimum hardware resources. The presented dynamic lineariza-

tion approaches are evaluated and compared through experimental validation with

an envelope tracking PA and a class-J PA. The experimental results show similar lin-

earization performance than the conventional LS solution but at lower computational

cost.
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Chapter 1

Introduction

1.1 Motivation

Radio frequency (RF) power amplifiers (PAs) are crucial components in wireless com-

munications systems (WCSs). They are the most power consuming devices in the

transmitter chain and one of the main sources of nonlinear distortion. Figure 1.1

shows a survey that demonstrates the significance in power consumption [1]: the

base station accounts for 57% of the total supplied energy in a cellular system, in

which, 50-80% of this amount is distributed to the PAs. Therefore, the PA power

efficiency is a key feature to lower the running costs. The PA achieves highest power

efficiency when operated close to saturation, but also tends to be nonlinear. Figure

1.2 shows this the compression in the input-output characteristics for higher output

levels. Nonlinearity causes effects such as distortion in the output signal and channel

interference.

The increasing demand for high-capacity services and applications requires high

speed data rates. This sets the path towards the every-time-more-spectrally-efficient

modulation schemes (high M-QAM schemes) and access techniques, such as wide-

band code-division multiple access (WCDMA) in 3G, orthogonal-frequency-division

multiplexing (OFDM) in 4G long term evolution (4G-LTE) and 5G New Radio (5G-

NR), or filter bank multi-carrier (FBMC) - a discarded candidate waveform for 5G-
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NR. The complex nonconstant envelope modulated signals generated by such modu-

lation schemes and access techniques present high peak-to-average-power ratios (PA-

PRs), which forces the PA to operate with significant back-off levels in order to avoid

a) Power consumption of a wireless cellular network b) Power consumptio    

Base station 57% Power amplifier
Mobile telephone exchange 20% Power supply
Core network 15% Signal processing
Data center 6% Cooling
Retail 2% sum
sum 100%

57%
20%

15%
6%

2%

(a)

Base station
Mobile telephone exchange
Core network
Data center
Retail

50-80%
5-10%

5-15%

10-30%

(b)

Power amplifier
Power supply
Signal processing
Cooling

Figure 1.1: Power consumption distribution in (a) a wireless cellular system and (b)
a cellular base station. [1].

Input 
power

Output 
power

Saturation

Linear 
respone

satP

outP

inP

Compress 
region

Linear 
region

Figure 1.2: Nonlinear characteristic of a RF PA.
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nonlinear distortion with the consequent degradation in average power efficiency. In

order to avoid wasting energy resources when handling these high PAPR signals,

highly efficient amplification architectures, such as outphasing [2], Doherty [3], en-

velope tracking (ET) [4], envelope elimination and restoration (EER) [5] and load

modulated balanced amplifiers (LMBA) [6] have been adopted. All these high effi-

cient PA architectures demand the use of linearization techniques to guarantee the

required linearity levels, such as, for example, feedforward [7], feedback [8] and predis-

tortion (digital [9] and analog [10]) linearization. Among them, digital predistortion

(DPD) linearization is the most extended solution to cope with the linearity versus

power efficiency trade-off due to its flexibility and good linearization performance.

The linearization of high efficient PAs that amplify spectrally efficient wideband

signals with high PAPR (> 10 dB) is challengeable due to the fact that the DPD

behavioral model may require a significantly high number of coefficients to meet

the stringent linearity specifications [11]. Increasing the number of coefficients, not

only derives in an increase of the computational complexity, but also may lead to

uncertainty of the least squares (LS) coefficient estimation. Therefore, it is essential

to keep the number of coefficients of the DPD model to the minimum necessary.

This thesis presents and discusses three dimensionality reduction techniques that

are aimed to reduce the computational complexity of DPD linearizers by:

• dynamically reducing the number of DPD coefficients to be estimated

and

• simplifying the DPD coefficient estimation and adaptation process.

To the best author’s knowledge, for the first time, dynamic linearization approaches

oriented at the simplification of the DPD coefficient estimation by taking advantage

of the orthogonality property among the transformed basis functions of the DPD

behavioral model are presented. These techniques are validated by means of two

different experimental test beds: one located at the laboratory of the Components
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and Systems for Communications research group and the other located at the Centre

Tecnològic de Telecomunicacions de Catalunya (CTTC).

1.2 Outline of Thesis

The dissertation presents different dimensionality reduction techniques for DPD lin-

earization of RF PAs and their effects on the DPD system which are organized as

follows.

First, Chapter 1 presents the motivation of the work, the outline of the disserta-

tion and a list of research publications related to the work developed by the Ph.D

candidate.

Chapter 2 analyzes the linearity versus efficiency trade-off of PAs, then presents

an overview on high-efficiency amplification topologies and linearization techniques

to cope with the trade-off.

Chapter 3 includes a brief introduction to PA behavioral modeling, the principles

of DPD linearization, numerical methods for solving the least squares solution and

specific details on look-up table (LUT) implementation of DPD behavioral models.

Chapter 4 presents an overview of dimensionality reduction techniques for PA

behavioral modeling and DPD linearization, focusing on feature selection techniques

for the DPD forward path and feature extraction techniques for the DPD observation

path.

The next three Chapters describe sequently the new approaches for PA behavioral

modeling and DPD coefficient estimation/adaptation. Chapter 5 focuses on the di-

mensionality reduction technique based on the principal component analysis (PCA),

named block-deflated adaptive PCA (BD-APCA) which allows to reduce the number

of estimated DPD coefficients, estimate the coefficients independently and enhance

the robustness of the estimation.

Chapter 6 presents the estimation/adaptation of DPD coefficients employing two
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dimensionality reduction techniques, namely partial least squares (PLS) and prin-

cipal component analysis, and providing a comparison between their linearization

performances. Subsequently, a new technique based on PLS, named dynamic par-

tial least squares (DPLS), is introduced to dynamically select, at each iteration of

the DPD adaptation, the minimum number of components required to guarantee a

certain identification performance of the DPD coefficients.

Chapter 7 describes a dimensionality reduction method, named PCA-DPLS, that

is a combination of PCA (computed off-line) and DPLS. The combination allows

dynamic DPD estimation/adaptation achieving similar dimensionality reduction ca-

pabilities than with Canonical Correlation Analysis (CCA is the method that shows

better model order reduction capabilities in comparison to PCA and PLS) but with

lower computational cost.

Finally, Chapter 8 gives the conclusion on the dissertation and discusses possible

future research lines in the field of DPD linearization. As a summary, Figure 1.3

depicts the main content of this dissertation.

Simplify DPD 
linearization

Block-deflated 
APCA

Dynamic PLS 
(DPLS)

Combination 
PCA-DPLS

- Reduce DPD coefficients to a fixed number
- Independently estimate DPD coefficients
- Adaptively compute DPD coefficients

- Reduce DPD coefficients to a dynamic number 
(according to the residual error signal)
- Independently estimate DPD coefficients
- Better performance than PCA and PLS

- Reduce DPD coefficients to a dynamic number 
(according to the residual error signal)
- Independently estimate DPD coefficients
- Similar performance to CCA’s, better than PCA 
and DPLS.

DIMENSIONALITY REDUCTION 

IN THE DPD IDENTIFICATION/

ADAPTATION SUBSYSTEM

Block-deflated 
APCA

Dynamic PLS 
(DPLS)

Combination 
PCA-DPLS

- Reduce DPD coefficients to a fixed number
- Independently estimate DPD coefficients
- Adaptively compute DPD coefficients

- Reduce DPD coefficients to a dynamic 
number (according to the residual error 
signal)
- Independently estimate DPD coefficients

- Reduce DPD coefficients to a dynamic 
number (according to the residual error 
signal)
- Independently estimate DPD coefficients
- Similar linearization performance to 
CCA’s, but lower computational 
complexity

Figure 1.3: Overview of main Chapters of this dissertation.
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1.3 Research Contributions

This Ph.D. dissertation contributes to the high power amplifier linearization using

DPD technique. Dynamic linearization approaches are proposed to dynamically de-

termine the number of required DPD coefficients to be estimated/updated in DPD

adaptation subsystem. The approaches reduce the computational complexity of the

DPD linearization system, at the same time, avoid the overfitting and uncertainty of

LS estimation. The experimental tests have been carried out to validate the perfor-

mance of these techniques.

The research reported in this thesis has generated publications in international

conferences and journal papers. The publications are listed in the following.

For block-deflated adaptive principal component analysis (Chapter 5):

• Q. A. Pham, D. López-Bueno, T. Wang, G. Montoro, and P. L. Gilabert, ”Mul-

tidimensional LUT-based digital predistorter for concurrent dual-band envelope

tracking power amplifier linearization,” in Proc. 2018 IEEE Topical Conf. on

93 RF/Microw. Power Amplifiers for Radio and Wireless Appl. (PAWR), Jan.

2018, pp. 47-50.

• Q. A. Pham, D. López-Bueno, G. Montoro, and P. L. Gilabert, ”Adaptive

principal component analysis for online reduced order coefficient extraction in

PA behavioral modeling and DPD linearization,” in 2018 IEEE MTT-S Int.

Microw. Symp. (IMS), Jun. 2018, pp. 160-163.

• D. López-Bueno, Q. A. Pham, G. Montoro, and P. L. Gilabert, ”Independent

digital predistortion coefficients estimation using adaptive principal component

analysis,” IEEE Transactions on Microwave Theory and Techniques, vol. 66,

no. 12, pp. 5771-5779, Dec. 2018.

For partial least squares and dynamic partial least squares (Chapter 6):
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• Q. A. Pham, D. López-Bueno, T. Wang, G. Montoro, and P. L. Gilabert, ”Par-

tial least squares identification of multi look-up table digital predistorters for

concurrent dual-band envelope tracking power amplifiers,” IEEE Transactions

on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5143-5150, Dec.

2018.

• Q. A. Pham, D. López-Bueno, G. Montoro, and P. L. Gilabert, ”Dynamic selec-

tion and update of digital predistorter coefficients for power amplifier lineariza-

tion,” in Proc. 2019 IEEE Topical Conf. on RF/Microw. Power Amplifiers for

Radio and Wireless Appl. (PAWR), Jan. 2019.

For combination of principal component analysis and dynamic partial

least squares (Chapter 7):

• Q. A. Pham, G. Montoro, D. López-Bueno, and P. L. Gilabert, ”Dynamic se-

lection and estimation of the digital predistorter coefficients for power amplifi

er linearization,” IEEE Transactions on Microwave Theory and Techniques, vol.

67, no. 10, pp. 3996-4004, Oct. 2019.

Book Chapter:

• P. L. Gilabert, D. López-Bueno, and Q. A. Pham, G. Montoro, ”Chapter 17:

Machine Learning for Digital Front-End: a Comprehensive Overview,” in Book

Fa-Long Luo., ”Machine Learning for Future Wireless Communications”, John

Wiley & Sons, Inc., Hoboken, New Jersey, (accepted and to be published

in 2020).
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Chapter 2

Linearity and Power Efficiency
Issues in Power Amplification

The RF PA is an important element in the transmitters in WCS base stations. Lin-

earity and power efficiency are the key factors in power amplification. Linearity

ensures the accuracy of the amplification, whereas, high power efficiency enables to

reduce the power consumption and the size of the cooling system at the base sta-

tion thus minimizing the operating cost. In the mobile handset, high efficiency PA

lengthens the battery lifetime. Unfortunately, linearity and power efficiency are in-

herently conflicted to each other. For that reason, a lot of effort has been dedicated

to find efficient amplification architectures which are properly combined with system

level linearizers and capable to mitigate this trade-off. This Chapter presents the

PA linearity-efficiency compromise in Section 2.1, the methods to improve power ef-

ficiency in Section 2.2 and the methods to preserve the required linearity levels in

Section 2.3.

2.1 Linearity versus Efficiency Trade-off

Ideally, a linear power amplifier produces its output voltage as a scalar multiple of its

input voltage. Considering a memoryless linear PA (so that the memory effects can
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be ignored), its amplification can be expressed as

vout(t) = T [vin] = gvin(t) (2.1)

with vin(t) be the amplifier’s input voltage, vout(t) the amplifier’s output voltage, T [·]

the transfer function and g the scalar voltage gain. In the ideal linear amplification,

the PA’s output and input are identical (except for the scalar gain), no additional

in-band or out-of-band frequency components are introduced.

However, in practice, the PA presents a nonlinear behavior when approximating

towards compression, as shown in Figure 1.2. The nonlinearity can be caused not

only by the amplifier itself but also by the oscillators or the mixers. In amplitude

and phase modulated signals, the nonlinear distortion introduced by PAs appears

as spectral regrowth. Figure 2.1 shows the spectral regrowth that appears in the

spectrum of the amplified output signal (red) with respect to the spectrum of the

input signal (blue) due to the PA nonlinear behaviour.

Figure 2.1: Power spectral density of the input and output signals of a nonlinear
power amplifier using a WCDMA signal [12].
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Figure 2.2: Harmonic and intermodulation distortion at the output of a nonlinear PA
considering a two-tone test [13].

The output signal vout(t) of a nonlinear PA is a nonlinear function of its input

signal vin(t) which can be expressed as

vout(t) ≈
∞∑
k=1

gkv
k
in(t). (2.2)

The polynomial function in (2.2) includes a series of terms proportional to vin(t),

in which gk is the voltage gain of each term in the series. The first term of this

series corresponds to the linear term and is the desired output signal. The rest of

the terms present additional frequency components. Specifically, even order terms of

the polynomial series (v2
in, v

4
in, .., v

2k
in ) describe the integer multiples of the input sig-

nal (harmonics). The nonlinear distortion introduced by even order terms is named

20



harmonic distortion (HD). Whereas, odd order terms (v3
in, v

5
in, .., v

2k−1
in ) show the in-

termodulation distortion (IMD) that occurs when the input signal contains more

than one different frequencies. In case some odd order terms fall inside the signal

bandwidth, they cause the in-band distortion. Figure 2.2 shows the harmonic and

intermodulation distortion in the output of the nonlinear PA when considering a

two-tone test.

The distortion measurement of the PA output signal can be carried out using the

amplitude modulation to amplitude modulation (AM-AM) and amplitude modula-

tion to phase modulation (AM-PM) characteristics. The linearity of the PA can be

characterized with several figures of merit, such as the error vector magnitude (EVM )

and adjacent channel power ratio (ACPR).

To quantify the in-band distortion, the EVM measures the effects of the distortion

on the amplitude and phase (I and Q) of the modulated output signal. The error

vector (see Figure 2.3) describes dissimilarity between the measured IQ modulation

signal and a reference (ideal) signal. The EVM is defined as the square root of the

ratio between the mean error vector power Serr = 1
N

N∑
1

(∆I2 + ∆Q2) to the mean

reference (ideal) vector power Sref =
1

N

N∑
1

(
I2
ref +Q2

ref

)
, N is the number of the

I

Q


: Error vector

: Reference signal

: Measured signal

: Magnitude error

: Phase error
a

a

Figure 2.3: Error vector magnitude representation.
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samples (of the constellation) of the signals.

EVM =

√
Serr

Sref

[%] (2.3)

The figure of merit ACPR, also known as the adjacent channel leakage power ratio

(ACLR), measures the spectral regrowth present in the spectrum of the PA output

signal. ACPR is defined as the ratio of the power delivered in the adjacent channel

(upper or lower sideband) to the total power over the channel bandwidth [14].

ACPR = 10 log10

(
Padjacent−channel

Pmain−channel

)
= 10 log10


∫
adj

Pout (f) · df∫
chan

Pout (f) · df

 [dB] (2.4)

Communication standards specify the maximum allowed out-of-band power emission

in terms of a spectrum emission mask and ACPR. Similarly to the spectral regrowth

limitations, communications standards determine maximum levels of the EVM per-

mitted at the transmitter antenna and at the receiver, depending on the modulation

scheme used and the codification (optional).

The efficiency of a PA (η) shows the capability of the PA to convert dc power from

the supply into RF energy of the output signal. It is calculated as the percentage

of the output power of PA (Pout) to the dc power taken from the supply (Pdc) (see

Figure 2.4):

η =
Pout

Pdc

[%]. (2.5)

Besides, the power added efficiency (PAE) that measures the efficiency of the PA

considering the already existing power from input signal is defined as

PAE =
Pout − Pin

Pdc

[%]. (2.6)
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Figure 2.4: Block diagram of the PA with power supply.

In a system that uses the nonconstant envelope signals, the PA instantaneous

efficiency, defined as the efficiency at a specific output power, is higher at the peaks

and lower at the non-peaks of the output signal. In other words, signals with time-

varying amplitudes produce time-varying efficiencies. The average efficiency (ηAV G) is

to measure the performance of the time-varying signal amplification. ηAV G is defined

as the ratio of the average output power to the average dc power.

ηAV G =
PoutAV G

PdcAV G

[%]. (2.7)

When dealing with modern spectrally efficient multi-carrier (e.g., OFDM-based)

waveforms presenting high PAPR, the PA needs to operate at large power back-off

leading to a serious degradation of average efficiency. As shown in Figure 2.5, the PA

has to operate with significant back-off from the 1 dB compression point to prevent

the peaks of the signal going into compression. Consequently, the average PAE of

the amplification is low. Note that the PA efficiency not only depends on the back-off

level chosen to operate the PA but also on the PA operation class [15].

The combination of high efficient amplification topologies with linearization tech-

niques can overcome or at least mitigate the linearity-efficiency trade-off [7]. High

efficient amplification architectures based on dynamic load (e.g. outphasing and Do-

herty) or dynamic supply modulation (e.g. ET and EER) are adopted to enhance
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the power efficiency figures when dealing with nonconstant envelope signals that have

high PAPRs. Additionally, system level linearization techniques such as, feedforward,

feedback and predistortion are employed in order to guarantee the required linearity

levels.

2.2 High-efficiency Amplification Topologies

This Section presents the popular topologies for high efficiency amplification: out-

phasing, Doherty, ET and EER PAs. Outphasing and Doherty PAs make use of load

modulation techniques combining the operation of two or more PAs. While ET and

EER topologies improve the power efficiency through dynamic supply modulation

Figure 2.5: Linearity versus power efficiency trade-off.
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techniques that do not require additional RF PAs, but require high efficient envelope

modulators.

2.2.1 Dynamic Load-Modulation Techniques

Outphasing

The outphasing modulation architecture was invented by H. Chireix in 1935 [2], and

later revised and re-introduced under the name of linear amplification with nonlinear

components (LINC) by D. Cox in 1974 [16]. The outphasing architecture consists

in amplifying the amplitude-modulated signal by combining the amplification of two

equal constant amplitude phase-modulated signals. This scheme can be conducted as

following. First, the signal component separator splits the input amplitude-modulated

signal S(t) = A(t)cos [ωct+ ϕ(t)] (A(t) is the amplitude, ωc the carrier frequency and

ϕ(t) the phase shift of S(t)) into two constant-envelope phase-modulated signals with

opposite phases as

S(t) =S1(t) + S2(t) (2.8)

=
Amax

2
cos(ωct+ ϕ(t) + φ(t))+

Amax

2
cos(ωct+ ϕ(t)− φ(t))

where Amax be the maximum amplitude of S(t) and φ = cos−1

(
A(t)

Amax

)
be half the

outphasing angle. Then the two branch signals S1(t) and S2(t) are independently

amplified by two separate amplifiers. Since S1(t) and S2(t) have constant envelopes,

the two branch PAs can operate in high efficient switched mode. At the PA outputs,

the amplified signals are recombined to get the amplified replica of the original signal.

The high-level architecture and operation principle of the outphasing PA is shown in

Figure 2.6.

There are two popular techniques of outphasing: LINC and Chireix outphasing.
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Figure 2.6: Simplified outphasing configuration.

The main point that makes these techniques distinct from each other is the type of

employed power combiner: isolated or non-isolated. LINC uses an isolated combiner

while Chireix outphasing has a non-isolated one. The difference in the combiner af-

fects to the system operation, resulting different linearity and efficiency enhancement.

The Chireix outphasing with the non-isolate combiner gains good efficiency but not

good linearity. Whereas, the LINC with isolate combiner achieves good linearity but

lower power efficiency [17].

Although the outphasing gains high efficiency, some drawbacks of this topology

can be pointed out as follows:

• The signal separation require complex calculation, leading to the high complex-

ity PA architecture.

• The possibility of the mismatching between two branches.

• The combiner can dissipate the power, resulting to decrease the overall linearity

of the outphasing architecture.

Doherty PAs

Doherty PA (DPA) [3] was invented by the American electrical engineer W. H. Do-

herty in early 1936. The Doherty PA significantly improved the power efficiency of
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conventional PA (i.e. the class-B PA from which the Doherty PA was modified). It

was widely employed in commercial radio stations in Europe and Middle East in 1940s

and 1950s [19]. Early Doherty PAs (from 1936 to 1979) were operated in medium-

and high-power (from 50 kW to 2 MW), low frequency and medium frequency (from

30 kHz to 3 MHz) transmitters. Since then till the present, the DPAs are used in

different networks and applications such as digital radio, television broadcast, and

cellular networks (both base stations and handset transmitters) [19].

Figure 2.7 depicts the conceptual diagram of a classic Doherty architecture. The

most basic Doherty PA configuration includes two PAs (main and auxiliary) and two

λ/4 impedance inverters (one locates after the main PA and one is at the input of

the auxiliary PA to balance the phase between the two paths) [18]. The main PA

is usually class-B or -AB and the auxiliary PA is class-C. It is important to design

the distribution/combining networks of Doherty so that the main and auxiliary PA

cooperate without loading each other.

The final RF output power of DPA is combined from the power of the two PAs.

At the high input power levels (typically from the peak power down to 6 dB output

power back-off (OBO)), both PAs are active and together contribute to the output

power. When the input power is reduced (more than 6 dB OBO from maximum
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Figure 2.7: The basic Doherty amplifier configuration [18].
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power), the auxiliary PA is inactivated, only the main PA operates with a modulated

load impedance, thus, significantly improving the efficiency at lower power levels.

The limitations of DPAs are:

• Same as outphasing, Doherty technique requires extra RF PA(s).

• DPAs support only the narrow bandwidth signals due to the use of the quar-

ter wavelength combining transformer. This introduces a challenge in LTE-

advanced systems which work with not only wider bandwidth but also multiple-

band signals [20].

2.2.2 Dynamic Supply Techniques

Envelope Tracking PAs

Conventional PAs are supplied with a fixed voltage at every instant of the transmis-

sion. The PAs can only achieve their peak efficiency at the peaks of the amplitude of

the input signal and have low efficiency at low amplitude levels of the input signal. In

communication systems that use high PAPR signals, this issue is only aggravated. In

order to avoid the excess of the dc supply power, the envelope tracking technique [4]

was proposed with the idea that the supply power is dynamically adapted to the

amplitude of the PA input signal.

Figure 2.8 depicts the envelope tracking system. The amplitude detector takes

the envelope of the input of PA. Then the supply modulator drives the power supply

based on this input signal’s envelope to provide the dynamic voltage for the PA. The

PA operates in linear mode but still achieves high power efficiency due to the dynamic

voltage supply.
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Figure 2.8: Block diagram of envelope tracking system.

In 2013, the ET technique was employed for the first time in 3G/4G LTE mobile

devices by Qualcomm Inc.. Nowadays, this technique is popularly used in cellular

networks in both base stations and handset transmitters [21,22].

The ET technique’s advantage is its simple design structure. The ET can be

applied on conventional PAs by just simply replacing the conventional static supply

for a dynamic one. However, the ET technique still has following drawbacks:

• The energy savings in the RF PA may be lost if the envelope detector and the

supply modulator circuits are inefficient. Thus, the overall ET PA efficiency is a

product between the efficiency of the RF PA and that of the supply modulator.

• The supplied power to the PA should have the same speed of the signal’s enve-

lope. In OFDM-based modulations the envelope bandwidth is around 3-4 times

the bandwidth of the baseband complex modulated signal [23]. Therefore, some

solutions are given to reduce the envelope bandwidth, such as using a slower

version of the original envelope as in [23] and [11].
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• The variation of the supply voltage results nonlinearity into the PA, leading to

the requirement for a linearization technique (e.g. DPD) to satisfy efficiency

and linearity trade-off.

Envelope Elimination and Restoration

EER was introduced in [5] by L. R. Kahn in 1952. Since then, the technique has

been received lots of attention due to its high linearity and power efficiency [24–26].

Figure 2.9 shows the block diagram of EER technique.

Similar to ET technique, the envelope of the input signal is detected by the ampli-

tude detector. Then, the supply modulator generates the supply voltage based on this

envelope. However, different from ET, in ERR technique, the amplitude information

of the input signal is eliminated by a limiter to gain a new signal with constant ampli-

tude. Then the new signal is amplified by a nonlinear PA (NLPA), achieving a high

efficiency. The amplitude information of the output signal of the NLPA is restored

I/Q Analog 
Signal 
Source

Power 
Supply

PA

Amplitude 
Detector

Supply 
Modulator

( )dcP t

( )inP t

( )outP t
Limiter

Figure 2.9: Block diagram of EER system.
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by the dynamic supply voltage provided by the supply modulator. By applying the

envelope tracking and constant amplitude amplifying, the EER technique enables the

NLPA to work as a high efficient LPA.

The main differences between ET and EER can be summarized as following [27]:

• ET uses a linear PA (LPA) while EER uses a nonlinear PA.

• ET PA amplifies the original input signal which includes both the amplitude

and phase information. Whereas, EER amplifies the signal that contains only

phase information.

• The purpose of supply modulator in ET technique is to achieve the power

efficiency of the LPA, while the supply modulator of EER technique aims to

restore the amplitude information of the output signal of the NLPA.

• While ET can use a slow envelope [11] to reduce the bandwidth that the en-

velope occupies, EER requires high accurate dynamic supply. This results the

requirement of high bandwidth in the components and control signals, making

EER to be less attractive for wide-band OFDM-based communications.

• The synchronization between the phase and the envelope in EER technique is

critical while it is not in ET.

Figure 2.10 summarizes the average power efficiency (ηAV G) of different high-

efficiency amplification techniques (Chireix outphasing, Doherty, ET and EER), class-

A, class-B PAs and ideal class-B PAs applied gate switching (GS) technique. The

average power efficiency of the PAs is presented as the functions of the ratio of output

power and peak output power (Pout/PoutPEP ). As it can be seen from Figure 2.10,

EER is the one that provides best efficiency among the considered techniques. When

operating in back-off, the ET technique is more efficient than other techniques, except

the EER. Whereas, when operating close to saturation, ET is slightly less efficient

than EER, Chireix outphasing and Doherty. Both Chireix outphasing and Doherty
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achieve high efficiency at low back-off level but become much less efficient when go

deeper into the back-off. However, in general, all EET, ET, Doherty and Chireix

outphasing enhance much better efficiency in comparison to the class-A PAs, class-B

PAs and ideal class-B PAs applied GS technique.

Figure 2.10: Comparison of efficiency of different high-efficiency amplification tech-
niques and classic PAs; A: class-A PA, B: class-B PA, DOH: Doherty, GS: gate-
switching technique applied for ideal class-B PA, CHIR: Chireix outphasing, ET:
envelope tracking, KAHN: EER [15].

Table 2.1: Comparison of outphasing, Doherty, ET and EER techniques (a part of
the Table is referenced from [27]).

Outphasing Doherty ET EER

RF PAs 2 NLPAs LPA (carrier PA) 1 LPA 1 NLPA

NLPA (peak PA)

Efficiency Medium Medium High Highest

Linearity Low Medium Good Medium/Good

Table 2.1 shows the comparison among outphasing, Doherty, ET and EER tech-
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niques about the number and type of used PAs, power efficiency and linearity.

2.3 Linearization

As the demand for high data transmission rates increases, higher bandwidths (at

mm-wave bands for example) and spectrally efficient modulation signals are being

used. Multi-carrier techniques (e.g., OFDM-based) are aimed at maximizing spec-

trum efficiency, but at the price of presenting high PAPRs (i.e., larger than 10 dB,

as depicted in Table 2.2). The amplification of these signals can be challenging from

both the power efficiency and linearity perspective. This Section focuses on the most

significant linearization techniques: feedforward, feedback and predistortion. At the

end of the Section, the comparison of supported bandwidth, linearity and efficiency

among the three techniques will be given.

Table 2.2: PAPR and bandwidth of the envelope signal for different wireless commu-
nication systems [27].

WCS Signal modulation scheme PAPR (dB) BW (MHz)

2G GMSK (TDMA) 0 0.2

2.5G EDGE 3.2 0.2

3G WCDMA 3.5 ∼ 9 5

4G OFDM 8.5 ∼ 13 2.4 ∼ 20

2.3.1 Feedforward Linearization

Feedforward was firstly introduced by H. S. Black in 1923 at Bell Telephone Labo-

ratories [8]. Figure 2.11 shows the block diagram of feedforward linearization. The

idea of the feedforward technique was stated by Black as follows: ”[..] I immediately

observed that by reducing the output to the same amplitude as the input and subtract-

ing one from the other, the distortion products only would remain which could then

be amplified in a separate amplifier and used to cancel out the distortion products in
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the original amplifier output.” [28].

Following the idea, the linearization system was designed consisting of two loops.

First, the main loop includes the main PA that is used to amplify the input signal.

The amplification of the main PA produces distortion into the output signal of the

PA. Second, the auxiliary loop includes the auxiliary PA that amplifies the distortion

of the main loop. Then, the output of the first loop is subtracted by the output of

the second loop to produce the undistorted amplified replica of the input signal. The

phase shift introduced in both loops is for the distortion cancelation adjustment [8].

Phase Shift

Auxiliary 
PA

+

Power

Divider

Phase Shift

+Main PA

Figure 2.11: Simplified feedforward block diagram and principles of operation [29].

The advantage of the feedforward is that the concept is simple. However, some

disadvantages are listed in the following.

• The achieved power efficiency is low because the auxiliary PA causes additional

power consumption.

• Linearity performance is degraded because of the delay mismatch among the

components.

Feedforward technique was not applied for commercial applications at the time

it was invented since the technique was inappropriate to the popularly used valve
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amplifiers at that time. However, after the valve amplifiers were replaced by the

solid state amplifiers in the 1960s and 1970s, feedforward was used to address the

high linearity requirement in cellular telephone systems [8]. In practice, distortion

cancellation can be achieved only about 6 dB from saturation [8].

2.3.2 Feedback Linearization

After inventing the feedforward linearization system, in 1927, H. S. Black introduced

the negative feedback principle. The negative feedback is considered the most signif-

icant breakthrough of the field of electronics in the twentieth century. The technique

has been used not only in telecommunications, but also in industrial, military, and

consumer electronics, weaponry, analog computers, and such biomechanical devices

as pacemakers [30].

The main idea of using negative feedback for linearization purposes is feeding

back the output (after phase inverting) to the input to reduce the distortion at the

PA output. The block diagram of feedback linearization is shown in Figure 2.12. The

feedback technique is categorized into four groups: RF feedback, envelope feedback,

polar feedback and Cartesian feedback [29]. The details of the four groups can be

found in [13].

Phase inversion

PA

Sampler

+

Figure 2.12: General block diagram of feedback linearization technique [29].

The feedback technique has better performance in comparison with the feedfor-

ward since it does not require additional PA and creates low distortion [28]. The
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limitation of the feedback is that it can only operate with low bandwidth signal due

to the loop delay (∆ts). The bandwidth of the operated signal should be less than a

quarter of ∆ts [8].

2.3.3 Predistortion

Predistortion was introduced by Adel A. M. Saleh and his colleague J. Salz from Nokia

Bell Labs in 1983 [31]. Thanks to appearance of digital signal processors it became

the preferred linearization technique due to its simplicity, computational efficiency,

and ability for supporting for wide-band signals at high frequencies [8]. In the last

three decades, many publications have been contributing to this linearization method.

Some of these can be found in [10,11,32–36].

The predistortion linearization includes a predistorter that is located before the

PA. The objective of the predistorter is to compensate for the nonlinear behavior

of the PA. To do so, the predistorter creates an inverse PA nonlinear behavior (i.e.,

F (.)) on the input signal u. The signal after predistorting is x = F (u). Then,

the predistorted signal (x) is sent to the nonlinear PA (i.e., G(.)) to be amplified.

Consequently, the resulting output y is linear to the input signal u: y = G(x) =

G(F (u)). The basic operating principle of predistortion linearization technique is

illustrated in Figure 2.13.

PA
Predistorter

(.)F (.)G

+ =

u

x

x

x

y

yy

u u

Figure 2.13: Principle of predistortion linearization technique.
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Predistortion can be classified based on:

• technology: analog predistortion (APD) and digital predistortion.

• frequency band: baseband (BB), intermediate frequency (IF) and radio fre-

quency (RF) predistortion.

• type of loop: closed-loop (or adaptive) and open-loop (or non-adaptive) predis-

tortion.

APD performs the PA linearization in the RF domain. APD is suitable for appli-

cations that require large bandwidth (300 GHz – 300 MHz), for example satellite com-

munications, since its operating cost is less than digital predistortion [8]. Whereas,

DPD predistorts baseband signal using a digital engine. DPD is popularly used in

telecommunication applications.

BB and IF predistortions have some advantages over RF predistortion. First,

BB and IF are more robust with environmental coefficients (e.g. PA’s temperature).

Second, they do not depend on the frequency band of operation. Third, the cost of

analog to digital converters (ADCs) and digital to analog converters (DACs) is lower

when operating at BB and IF frequency [13]. However, the drawback of BB and IF

is that the up-converters can introduce further distortion.

Closed-loop and open-loop predistortion will be discussed further in Subsection

3.4.2. This dissertation focuses on the RF PA linearization using baseband adaptive

digital predistorters.

Table 2.3: Comparison of PA Linearization Techniques [37].

Technique Bandwidth Linearity Efficiency

Feedforward High High Low

Feedback Low Low Medium

APD Medium/High Medium High

Table 2.3 summarizes a comparison among linearization techniques. It can be seen
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from Table 2.3 that among the three linearization techniques, predistortion is the one

that enables high power efficiency, supports wide bandwidth signals and achieves good

linearity levels.
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Chapter 3

Principles of Digital Predistortion
Linearization

As mentioned in Subsection 2.3.3, the DPD function is oriented to generate the inverse

PA’s nonlinear behavior. Therefore, in order to build a DPD function, first of all,

the PA nonlinear behavior should be characterized via PA behavior modeling (or

black-box modeling). PA behavioral modeling is a process to identify the nonlinear

characteristics and memory effects of PAs with parametric mathematical models.

The PA behavioral models used to form the DPD function is presented in Section

3.1. This Section also describes the procedure for converting a polynomial-based DPD

model into a LUT-based model targeting FPGA implementation in Subsection 3.1.3.

Generally, the coefficients of these models are found by means of the LS regression.

Section 3.2 presents the identification of PA behavioral models, while Section 3.3

introduces popular numerical methods to address the LS solution. Finally, in Section

3.4, two architectures to design a closed loop adaptive DPD system: the direct and

indirect learning approaches are described.

3.1 Power Amplifier Behavioral Modeling

PA behavioral models are mathematical descriptors of the PA nonlinear behavior and

its memory effects. The construction of PA behavioral models are built upon a set of
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PA input-output observations. Consequently, the accuracy of the model mainly relies

on the adopted model structure and coefficient extraction method. Typically, the

model used to approximate the PA behavior is also employed to estimate its inverse

behavior. Therefore, the behavioral models presented in this Section are valid for

both the PA behavior approximation and DPD linearizer description.

It is possible to find in literature an enormous amount of publications on PA be-

havioral modeling. The PA behavioral models can be divided into four types: single-

input single-output (SISO) [38, 39], multi-input single-output (MISO) [40], single-

input multi-output (SIMO), multi-input multi-output (MIMO) [40–42] systems. In

this dissertation, SISO and MISO models have been considered for DPD lineariza-

tion purposes. Therefore, this Section focuses on SISO and MISO models using both

polynomial-based and LUT-based implementation.

3.1.1 SISO Behavioral Models

Volterra series

Volterra series was introduced by V. Volterra in 1930 [39], and is aimed at describing

time-invariant nonlinear systems with fading memory. The discrete-time low-pass

equivalent Volterra series formulation is described in the following. Considering the

general input-output notation in Figure 3.1, the estimated output ŷ[n] of the discrete-

time low-pass equivalent Volterra series is

ŷ[n] =
P∑

p=1

Qp−1∑
qp=0

· · ·
Q1−1∑
q1=0

hp(q1, · · · , qp)
p∏

i=1

x[n− qi] (3.1)

with P being the number of kernels of the series (the polynomial degree or the order

of the nonlinearity), hp the coefficient associated with the pth kernel, Q1...Qp the

memory depths (or number of delays) in each kernel and n denotes the discrete time.
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Figure 3.1: Identification of the power amplifier behavior.

The Volterra series has a simple structure. It is a linear combination of nonlinear

basis functions, in which the contribution of each basis function into the model is

controlled by its coefficients. The coefficient extraction of the model can be easily

performed by employing linear regression techniques, such as the LS regression.

However, the main problem of the Volterra series is that the number of coefficients

of the model grows significantly when the polynomial degree and memory depth

increases. The high order model may include unnecessary information and lead to ill-

conditioned problems in the coefficient extraction when using LS. A common solution

for this is using pruning techniques. The pruning techniques apply some reduction

method to the general Volterra series to get rid of irrelevant information of the series

and retain only the most important terms. Some pruned Volterra series can be found

in [43–45].

Another method for simplifying Volterra series expansion is the modular approach

that includes the combination of components from the memoryless (or static) non-

linear and linear time-invariant dynamic subsystems (i.e., Wiener and Hammerstein

models [46]). One of the most widely used models in literature due to its simplicity

is the memory polynomial (MP), presented in [47]. Another common model for SISO

systems is the generalized memory polynomial (GMP) behavioral model, proposed

in [48]. Besides, there are plenty of other behavioral models in literature used for

DPD purposes in SISO systems, just to mention a couple of examples, the NARMA
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model proposed in [49] and the Dynamic Deviation Reduction Volterra series in [44].

Further information on PA behavioral models for SISO systems can be found in [38].

Memory Polynomial

One of the simplest PA behavioral models capable to characterize both nonlinear

distortion and memory effects is the memory polynomial, presented in [47]. In the

MP the estimated output ŷ[n] is defined as follows

ŷ[n] =
L−1∑
i=0

P−1∑
p=0

αpi x[n− τi]
∣∣x[n− τi]

∣∣p (3.2)

where P is the nonlinearity order of the polynomial, L the length of the memory, αpi

the complex coefficients describing the model, and τ (with τ ∈ Z and τ0 = 0) the

delay shifts (i.e. the most important non-consecutive delays of the input signal x[n]

that better contribute to characterize the PA memory effects). The total number of

coefficients of the MP model is in the order of M = P · L.

Generalized Memory Polynomial

The generalized memory polynomial behavioral model, proposed in [48], is another

widely used model for SISO systems. GMP is defined as following.

ŷ[n] =
La−1∑
i=0

Pa−1∑
p=0

αpi x[n− τai ]
∣∣x[n− τai ]

∣∣p+
Kb∑
j=1

Lb−1∑
i=0

Pb∑
p=1

βpij x[n− τ bi ]
∣∣x[n− τ bi − τ bj ]

∣∣p+ (3.3)

Kc∑
j=1

Lc−1∑
i=0

Pc∑
p=1

γpij x[n− τ ci ]
∣∣x[n− τ ci + τ cj ]

∣∣p
where Pa, Pb, Pc are the nonlinearity orders of the polynomials, La, Lb, Lc, Kb, Kc are

the lengths of memories. αpi, βpij and γpij are the complex coefficients describing
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the model, and τa, τ b and τ c (with τ ∈ Z and τ0 = 0) are the most significant

non-consecutive delays of the input signal x[n] that better contribute to characterize

memory effects. The total number of coefficients of GMP model is M = PaLa +

PbLbKb + PcLcKc.

Unlike the MP, the GMP has bi-dimensional kernels (considering cross-term prod-

ucts between the complex signal and the lagging and leading envelope terms) which

increases the accuracy of the modeling at the price of increasing the number of coef-

ficients.

3.1.2 MISO Behavioral Model

When considering concurrent multi-band transmissions such as in [50], or even com-

bined with PA dynamic supply modulation strategies such as in [51], or also in multi-

antenna systems where each transmit path has its own PA and antenna element such

as in [52]; MISO behavioral models are required to characterize the different sources

of nonlinear behavior. In concrete, this Subsection presents the 3-D distributed mem-

ory polynomial (3D-DMP) model introduced in [11] to approximate the behavior of

a concurrent dual-band envelope tracking PA.

3-D Distributed Memory Polynomial

The MISO behavioral model 3D-DMP has a parallel structure including three branches,

in which each branch is responsible for characterizing/compensating one of the three

main unwanted nonlinear distortion effects (intra-band, cross-band and dynamic sup-

ply distortion) in concurrent dual-band envelope tracking PAs. Figure 3.2 depicts the

block diagram of the model.

The 3D-DMP behavioral model (for Band 1 signal) is defined as
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Figure 3.2: Block diagram of the 3D-DPD and slow envelope generator for concurrent
dual-band ET PAs [11].

ŷ[n] =

N1−1∑
i=0

P1−1∑
p=0

api.x1[n− τx1
i ]|x1[n− τx1

i ]|p

+

N2−1∑
i=1

P2−1∑
p=0

βpi(x2).x1[n]|x1[n− τx1
i ]|p (3.4)

+

N3−1∑
i=1

P3−1∑
p=0

γpi(E).x1[n]|x1[n− τx1
i ]|p

where

βpi(x2) =

M2−1∑
j=1

Q2−1∑
q=0

bpiqj|x2[n− τx2
j ]|q (3.5)

and

γpi(E) =

K3−1∑
k=1

R3−1∑
r=0

cpirk(E[n− τ ek ]r (3.6)
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P1, P2 and P3 are the polynomial orders of the Band 1 signal x1 at each branch. N1,

N2 and N3 are the number of delays of the signal x1 at each branch. Q2 and M2 are

the polynomial order and the number of delays of the interference signal, respectively.

K3 and R3 are the polynomial order and the number of delays of the supply envelope

E, respectively. τx1 , τx2 and τ ek are the most significant sparse delays of the input

signal x1, the interference signal x2 and the supply envelope E, respectively. api, bpiqj

and cpirk are the coefficients of the model. The 3D-DMP behavioral model for Band

2 signal can be defined similarly to the Band 1 signal, considering the input signal x2

and interference signal x1.

The 3D-DMP model will be used in Section 6.2 to compare the model order

reduction capabilities vs. linearization performance when considering two different

dimensionality reduction techniques.

3.1.3 Look-up table implementation of DPD models

FPGA is an integrated circuit containing an array of programmable logic blocks that

is reconfigurable and reprogrammable to allow flexible computing as performed in

computer software. FPGA is an attractive solution for implementing the DPD func-

tion. Some of the advantages of fast prototyping DPD in FPGA platforms are the

high-speed processing, high density integration, flexible implementation and paral-

lel operation mechanisms [53]. In general, the DPD function can be implemented in

FPGA either by the polynomial based or the look-up table (LUT) based methods [54].

The direct implementation of polynomial-based DPD models in FPGA requires sev-

eral complex multiplications and additions [55]. Whereas, LUT based implementation

reduces the FPGA logic resources for describing the nonlinear function. The authors

in [56] discussed the advantages of LUT-based to polynomial-based implementation

of a DPD model. First, the complexity of LUTs is lower than polynomials in terms

of using fewer multipliers (which is one of the most expensive elements in the FPGA

hardware). Reducing the number of multipliers helps to reduce hardware resources
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requirements for the DPD implementation. Second, LUTs are more numerically sta-

ble than polynomials when the order of the polynomials is high. According to the rule

of thumb, a 32-bit processor cannot handle polynomials greater than fifth or sixth

order. With higher order polynomials, the numerical instability becomes apparent.

Third, in the case that the signal power is unstable, a polynomial-based predistorter

is less robust than a LUT-based one.

In this dissertation, both polynomial based and LUT-based behavioral models are

considered to validate the suggested dimensionality reduction algorithms for the DPD

coefficient identification. The LUT-based models used in this dissertation follow the

linear interpolation and extrapolation approach described in [57, 58]. For example,

the GMP SISO behavioral model in (3.3) can be implemented with 1-D LUTs [58],

as it will be shown in Section 5.4 of this dissertation. Whereas the 3D-DMP MISO

behavioral model in (3.4) can be mapped into LUTs using 1-D LUTs and 2-D LUTs

[57] as it will be shown in Section 6.2.

The 1-D LUT [58] is a piecewise linear complex function, defined in (3.7) as the

linear combination of K basis functions.

fΦ(u) =
K−1∑
i=0

ϕiΛg(i,K)(u− iδ) (3.7)

where u is a real number, g(i,K) =


0, i < K − 2

1, i = K − 2

2, i = K − 1

; δ = max(u)/(K − 1) is the

width of each region on the real interval at which function fΦ(u) is defined; Λ0(u)

defined in (3.8) is the interpolation basis function on the interval [0, (K − 1)δ]; while

Λ1(u) in (3.9) and Λ2(u) in (3.10) are extrapolation basis functions on the interval
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[(K − 1)δ,∞]. Finally, ϕi are the coefficients of the picewise complex function.

Λ0(u) =
(

1−
∣∣u∣∣
δ

)
w
(∣∣u∣∣
δ

)
;w(u) =

1, 0 ≤ u ≤ 1

0, otherwise

(3.8)

Λ1(u) =
(

1−
∣∣u∣∣
δ

)
s
(
u+ δ

)
; s(u) =

1, u ≥ 0

0, otherwise

(3.9)

Λ2(u) =
(

1 +
u

δ

)
s
(
u+ δ

)
; s(u) =

1, u ≥ 0

0, otherwise

(3.10)

The 2-D LUT [57] is defined by a piecewise bilinear complex function as follows,

fΦ(u1, u2) =

K1−1∑
i=0

K2−1∑
j=0

ϕi,jΓg(i,K1),g(j,K2)(u1 − iδ1, u2 − jδ2) (3.11)

where Γi,j(u1, u2) = Λi(u1)Λj(u2). Functions g(i,K), Λ0(u), Λ1(u), Λ2(u), w(u) and

s(u) are defined in (3.7)-(3.10). In (3.11), u1 and u2 are real numbers; K1 and

K2 are the numbers of basis functions in the u1 and u2 directions; δ1 and δ2 are

the widths of each region of u1 and u2 respectively, δ1 = max(u1)/(K1 − 1) and

δ2 = max(u2)/(K2−1). Further details on the bilinear interpolation and extrapolation

can be found in [57].
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3.2 Identification of PA Behavioral Models

In general, the estimated PA behavioral model output ŷ[n] (for n = 0, 1, · · · , N − 1),

can be defined in a matrix notations as

ŷ = Xw (3.12)

where w =
(
w1, · · · , wi, · · · , wM

)T
is the M×1 vector of coefficients. X is the N×M

data matrix (withN �M) containing the basis functions of the PA behavioral model.

N is the number of samples of the amplified signal. M is the number of columns (i.e.

the basis functions) of X. M is so-called the order of the behavioral model.

The data matrix X can be defined as

X =
(
ϕx[0],ϕx[1], · · · ,ϕx[n], · · · ,ϕx[N − 1]

)T
(3.13)

where ϕx[n] =
(
φx

1 [n], · · · , φx
i [n], · · · , φx

M [n]
)T

is the M × 1 vector of basis functions

φx
i [n] (with i = 1, · · ·M) at time n.

This general equation can be particularized for any behavioral model. Thus, for

example, taking into account the MP model in (3.2), the basis functions in (3.13) can

be defined as

ϕx[n] =
(
x[n], · · · , x[n− τi]

∣∣x[n− τi]
∣∣p, · · · , x[n− τL−1]

∣∣x[n− τL−1]
∣∣P−1

)T
(3.14)

Similarly, the original coefficients of the MP, αpi, are mapped into wi coefficients,

with i = 1, · · · ,M . In order to compute the estimated output signal ŷ, the vector of

coefficients w has to be found.

Generally, the problem in (3.12) has no exact solution since it is over-determined

(i.e. more equations than unknowns). To identify the vector of coefficients w we

define a cost function that takes into account the identification error e expressed, as
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depicted in Figure 3.1, as

e = y −Xw = y − ŷ. (3.15)

Taking the `2-norm squared of the identification error, the least squares minimization

problem can be defined as follows

Given X ∈ CN×M , N �M,y ∈ CN ,

find w ∈ CM such that ||y −Xw||22 is minimized. (3.16)

It can be proven that the solution to the LS problem in (3.16) is given by

w = (XHX)−1XHy (3.17)

with H denotes Hermitian transpose. The solutions to the LS problem will be further

discussed in Section 3.3.

The accuracy of the PA behavioral model depends on the adopted model struc-

ture and the coefficient extraction procedure (usually solved via LS). In order to

evaluate the accuracy of a PA behavioral model, the measurements normalized mean

squared error (NMSE) and adjacent channel error power ratio (ACEPR) are used.

The NMSE is used to measure the resemblance of the estimated output ŷ(n) and

measured output signal y(n) of the PA. It is defined as

NMSE(dB) = 10log10(

∑
n

|y(n)− ŷ(n)|2∑
n

|y(n)|2
) (3.18)

And the ACEPR measures the power of the error signal in the adjacent channels

relative to the power inside the channel. It is given by

ACEPR(dB) = 10log10(

∫
adj
|E(f)|2df∫

ch
|Y (f)|2df

) (3.19)
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where Y (f) and E(f) are the Fourier transforms of y(n) and e(n) = y(n) − ŷ(n),

respectively.

In following Section, some popular numerical methods used to solve least squares

are presented.

3.3 Numerical Methods for Solving Least Squares

The LS problem in (3.16) can be solved via many methods, such as normal equations,

QR factorization and singular value decomposition (SVD). Among of them, QR fac-

torization approach for solving the LS (QR-LS) of DPD coefficient estimation is most

numerically stable thus being adopted as the baseline method to compare with other

approaches presented in this dissertation.

3.3.1 Normal Equations

This method converts the problem in (3.16) to the normal equations as follows

XHXw = XHy (3.20)

Then, applying Cholesky factorization [59] to the correlation matrix XHX:

XHX = RHR (3.21)

where R is upper-triangular matrix. In next step, what we need to do is solving two

following upper-triangular systems

RHz = XHy, for z, (3.22)

RHw = z, for w. (3.23)
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The operational cost of the normal equations method is ∼ NM2 +
1

3
M3 flops [59].

The method is not computational expensive in comparison to the next two solutions.

However, its biggest issue is that is unstable with rounding errors when finite precision

arithmetic is used to implement the method.

3.3.2 QR factorization

The most commonly used approach to solve the LS problem is QR factorization. In

this method, the matrix X is decomposed as

X = QR (3.24)

where Q = [q1, q2, · · ·, qM ] is an N ×M unitary matrix (i.e., QHQ = QQH = I) and

R is an M ×M upper-triangular matrix where the diagonal entries rjj are nonzero.

Therefore, it can be said that each column of X is a linear combination of columns

in Q, that can be expressed as follows

x1 = r11q1,

x2 = r12q1 + r22q2,

· · ·

xM = r1Mq1 + r2Mq2 + · · ·+ rMMqM . (3.25)

From (3.24), the problem in (3.16) takes the form

QRw = y, (3.26)

left-multiplication by QH gives

Rw = QHy. (3.27)
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Solving the upper-triangular system (3.27) for w by back substitution, we got the

result.

Several algorithms can be used for computing the QR factorization (3.24), the

Gram-Schmidt algorithm, Household triangularization, Givens transformation method,

Pivoting and Gaussian elimination [59].

3.3.3 Singular Value Decomposition

When the matrix X is not full rank, the QR factorization method becomes less stable.

The alternative for solving the LS problem is the singular value decomposition (SVD)

method, consisting in a matrix factorization technique (which can be real or complex).

The decomposition of the matrix X through SVD factorization can be written as

X = UΣV H (3.28)

in which, each column of the M ×M matrix V (named right singular vector) is the

unit vector of the unit sphere S; each column of the N ×M matrix U (named left

singular vector) is the unit vector oriented in the direction of a principle semiaxes of

XS. Therefore, the matrices U and V are unitary; Σ is an M ×M diagonal matrix

with positive entries. In case of full SVD, U is N ×N , V is M ×M and Σ is N ×M .

Then, the problem in (3.16) takes the form

UΣV Hw = y. (3.29)

Left-multiplication by UH results in

ΣV Hw = UHy. (3.30)
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Set z = V Hw, then (3.30) turns to

Σz = UHy. (3.31)

Solve the diagonal system in (3.31) for z, then set w = V z.

The SVD can be solved via eigenvalue decomposition, Golub-Kahan bidiagonal-

ization or Lawson–Hanson–Chan (LHC) bidiagonalization [59].

3.4 Adaptive Digital Predistortion Linearization

Since the inverse nonlinear behavior of a PA is built using a limited number of mea-

sured input and output samples, the coefficients of the DPD function may not be the

optimum ones. Moreover, the characteristics of PA can change over time due to the

environment temperature, component aging, component drift and power supply vari-

ations [60], thus the DPD coefficients should be adaptively updated. By iteratively

adjusting the predistorter coefficients to minimize the nonlinear residual between the

transmitted and received signal, it is possible to have a better estimation of the op-

timum DPD coefficients.

- 27 -SS-01 Fundamentals of Microwave PA Design - OVERVIEW ON LINEARIZATION TECHNIQUES

PA
I

Q

MOD

Up-conversion

LO

Down-conversion

Coefficient 
Estimation

DPD

Forward DPD path
[ ]x n

DAC

Feedback
Observation path

DAC

LO

ADC

[ ]y n

( )y t[ ]u n
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An adaptive digital predistortion linearization system consists of two subsystems:

the forward path and the feedback (or observation) path (see Figure 3.3). In the

forward path, the DPD function has to operate real-time and is responsible for pre-

distorting the input signal by generating the inverse nonlinear characteristic of the

PA to be linearized. In the feedback path, the coefficients of the DPD function are

estimated and updated iteratively.

3.4.1 DPD Forward Path

In the forward path, the input-output relationship at the DPD block can be described

as

x[n] = u[n]− d[n] (3.32)

in which u[n] is the input signal of the DPD block, x[n] is the output signal, and d[n]

is the distortion signal that can be described using the aforementioned PA behavioral

models that can be found in the literature. In general, the distortion in (3.32) can be

expressed as

d[n] = ϕu
T [n]w[n] (3.33)

with w[n] =
(
w1[n], · · · , wi[n], · · · , wM [n]

)T
being a vector of coefficients at time

n with dimensions M × 1 (M being the order of the behavioral model). ϕu
T [n] =(

φu
1 [n], · · · , φu

i [n], · · · , φu
M [n]

)
is the vector containing the basis functions φu

i [n] (i =

1, · · · ,M) at time n.

As explained in the previous Section, the same behavioral model or basis functions

used for approximating the response of the PA can be also used for DPD purposes

to estimate the inverse response of the PA. Therefore, for example, by particularizing

ϕu
T [n] with the MP model described in (3.2), the basis function φu

i [n] is defined as

φu
i [n] = u[n− τl]

∣∣u[n− τl]
∣∣p (3.34)
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where p is the polynomial order and τl is the delay shift.

Now, (3.32) can be rewritten considering a matrix notation as follows

x = u−Uw (3.35)

where u = (u[0], · · · , u[n], · · · , u[N − 1])T , with n = 0, · · · , N − 1, is the N × 1 input

vector. x = (x[0], · · · , x[n], · · · , x[N − 1])T is the N × 1 predistorted vector. The

N ×M data matrix U is defined as

U = (ϕu[0], · · · ,ϕu[n], · · · ,ϕu[N − 1])T (3.36)

Note that the matrix U in (3.36) contains the same basis functions than the matrix

X in (3.13). However, while matrix X is used for approximating the response of the

PA, the matrix U is used for estimating the inverse response of the PA.

The DPD function in the forward path described in (3.35) can be implemented

to operate in real-time in a programmable logic (PL) device following different ap-

proaches, such as look-up tables as in [57, 61], complex multipliers following a poly-

nomial approach using the Horner’s rule as in [62], or some combination of complex

multipliers and memory blocks as in [63].

3.4.2 DPD Feedback Path

The feedback path subsystem is where the DPD coefficients are estimated and adapted.

Unlike the DPD in the forward path, the coefficient identification/adaptation in the

feedback path is not required to be carried out in real time. Alternatively, the DPD

coefficients can be iteratively extracted and adapted in a slower time-scale. Therefore,

it can be implemented in a processing system (PS) instead of in a PL device.

There are two main methods for coefficient estimation and adaption:

• direct learning approach: In this approach, the predistorter is directly at-
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tained via ”pre-inverting” the PA behavior and the DPD coefficients are contin-

ually adjusted by comparing the PA output y[n] to the input signal u[n] . This

approach is also named ”closed-loop” since the predistorter is inside the feed-

back loop (see Figure 3.4). Some applications of the direct learning approach

can be found in [64–67].

• indirect learning approach: In this approach, first the PA nonlinear model

is post-inversed by a postdistorter, then the coefficients of the postdistorter are

used as the coefficients of the predistorter. Some applications of the indirect

learning approach can be found in [32,47].

A comparison of DPD indirect and direct learning approaches were presented

in [68, 69]. According to the comparisons in [68] and [69], the direct learning model

performs better than the indirect one since the PA’s output signal can be noisy

and thus reducing the accuracy of the postdistorter estimation. Consequently, the

experimental results presented in this dissertation have been obtained considering

DPD linearization based on the direct learning approach. Both learning methods are

explained in the following.

Direct Learning approach

The block diagram of the adaptive DPD following direct learning approach is shown

in Figure 3.4. The DPD function in the forward path is described in (3.33) or in

(3.35). In the feedback path, the DPD coefficients can be updated iteratively as

follows

wj+1 = wj + µ∆w (3.37)

with µ (0 ≤ µ ≤ 1) being a weighting factor (or convergence factor) and ∆w is the

DPD coefficients increment. The LS estimation of ∆w is defined in the following,

∆w =
(
UHU

)−1

UHe (3.38)
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where U is the N ×M data matrix, e is the N × 1 vector of the identification error

(also known as the residual linearization error) and is defined as

e =
y

G0

− u. (3.39)

where G0 is the desired linear gain of the PA and y and u are the N × 1 vectors of

the PA output and the transmitted input, respectively.

If the correlation matrix UHU is ill-conditioned, it will negatively impact the LS

estimation in (3.38). To avoid the uncertainty in the DPD coefficients estimation

regularization techniques can be applied to both avoid the numerical ill-conditioning

of the estimation and reduce the number of coefficients of the DPD function in the

forward path, which ultimately impacts the baseband processing computational com-

plexity and power consumption. This topic will be addressed in Section 4.1.1.

Indirect Learning Approach

The block diagram of the adaptive DPD following an indirect learning approach is

shown in Figure 3.5. Unlike the direct learning approach, the indirect learning ap-

proach estimates the inverse PA model with postdistortion. This is based on the

assumption that the coefficients of the postdistorter and the coefficients of the predis-
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torter are equivalent. The output of postdistorter x̂ = (x̂[0], · · · , x̂[n], · · · , x̂[N −1])T

is defined as

x̂ =
y

G0

− Y w (3.40)

y = (y[0], · · · , y[n], · · · , y[N − 1])T , with n = 0, · · · , N − 1, is the N × 1 PA output

vector (i.e. postdistorter input). The N ×M data matrix Y is defined as

Y =
(
ϕy[0],ϕy[1], · · · ,ϕy[n], · · · ,ϕy[N − 1]

)T
(3.41)

with ϕy[n] =
(
φy

1[n], · · · , φy
i [n], · · · , φy

M [n]
)T

being the M×1 vector of basis functions

φy
i [n] (with i = 1, · · ·M) at time n. At the jth iteration (i.e., when considering buffers

of N data samples) the new postdistorter coefficients wj (that later will be used as

predistorter coefficients) are obtained as in (3.37). However, following the indirect

learning approach, ∆w is calculated as follows

∆w =
(
Y HY

)−1

Y He (3.42)

with e = (e[0], · · · , e[n], · · · , e[N − 1])T being the N × 1 vector of the postdistortion

estimation error, defined as

e = x̂− x. (3.43)

Once the postdistortion coefficients w are estimated, these are used as the coeffi-

cients of the predistorter in the forward path. The simplicity of the indirect learning
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approach makes it widely used. However, there are some issues that should be taken

into account. As explained in [70], the input of the postdistortion y[n] can be noisy,

making the postdistorter coefficients’ estimation converge to biased values. In ad-

dition, since the commutative property does not apply in nonlinear systems, there

is no guarantee that the postdistortion coefficients will perform well as predistortion

coefficients. For these reasons, in this thesis we have preferred the use of the direct

learning approach for the DPD coefficients extraction.
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Chapter 4

Dimensionality Reduction
Techniques for PA Behavioral
Modeling and DPD Linearization

The least squares solution for extracting the coefficients of PA behavioral model in

(3.17) or for estimating the DPD coefficients increment in (3.38) can face the risk of

poor performance, such as underfitting or overfitting. As the least squares issue in

(3.17) is similar to the one in (3.38), from now on, we discuss about only the least

squares in (3.17) and the same thing can be deduced for the one in (3.38). Figures 4.1a,

4.1b and 4.1c show examples for underfitting, overfitting and right fitting, respectively.

Underfitting is the case when the model contains too few essential coefficients (i.e.

the number of columns of the data matrix X is too small) to represent the data.

Overfitting is the contrary effect, the model contains more coefficients than required

(i.e. the number of columns of the data matrix X is too large) and is therefore

unnecessarily complex. The large number of columns in the data matrix increases

the possibility that some columns are linearly dependent among them. Thus, the

Moore-Penrose inverse of the correlation matrix of X (i.e., (XHX)−1) becomes close

to singular. Consequently, the LS estimate tends to be highly sensitive to random

errors (e.g. random noise, quantization noise of the measurement setup, etc.) in the

observed response y. Both underfitted and overfitted models result in misrepresenting

the training data and introduce poor predictive performance. Thus, both of them have
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to be avoided which should result in right fitting. In order to solve the underfitting

effect, the order of the model can be increased. Whereas, to avoid the overfitting,

regularization or dimensionality reduction techniques are employed.

Regularization is a process of introducing additional information in order to pre-

vent overfitting. In general, the main idea of regularization techniques is to add a

regularization term R(w) to the cost function.

J(w) = ‖y −Xw‖2
2 + λR(w) (4.1)

The regularization term R(w) is particularized according to the specific regularization

technique selected. Regularization techniques such as, Ridge regression (or Tikhonov

regularization) [71], the least absolute shrinkage and selection operator (LASSO)

[72] or the Elastic Net [73] can be seen also as dimensionality reduction methods,

since one of the consequences of regularization is the reduction of the number of

coefficients. Analogously, considering the dimensionality reduction techniques that

will be discussed in Section 4.1, by reducing the number of coefficients of the model

a regularization effect is also introduced.

4.1 Dimensionality Reduction Techniques

Dimensionality reduction techniques can help to avoid overfitting and ill-conditioning

issues by properly reducing the number of basis functions, i.e., columns of the data

matrix X for PA behavioral modeling in (3.17), or the data matrix U for DPD lin-

earization in (3.38). These techniques remove redundant and irrelevant basis functions

of the data matrix, retaining only most significant basis functions that contribute to

model either the PA nonlinear behaviour or its inverse.

In general, dimensionality reduction techniques can be classified into two main

groups:

• Feature selection techniques: oriented at selecting the variables (i.e., basis
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Figure 4.1: Underfitting, overfitting and right fitting in LS identification of the PA
nonlinear behavior.
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functions, regressors) from a set of original variables that are the most relevant

for a particular model. Some examples of feature selection or regularization

techniques that will be later addressed in Subsection 4.1.1 are: LASSO [74],

Ridge regression [75], Elastic Net [73], matching pursuit [76] and orthogonal

matching pursuit (OMP) [77].

• Feature extraction techniques: creating a reduced set of new variables that

are linear or nonlinear combinations of the original variables. Some examples of

this group are the principal component analysis (PCA) [78], partial least squares

(PLS) [79] and canonical correlation analysis (CCA) [80]. Feature extraction

techniques (PCA, PLS and CCA) will be discussed in Subsection 4.1.2.

Figure 4.2 shows the hierarchical structure of dimensionality reduction techniques.

PCA, LDA, PLS, 

CCA, MAF, etc. 
Kernel PCA, LLE, 

etc. 

Dimensionality

Reduction

Feature Selection Feature Extraction

Linear Dimension 

Reduction
Non-linear Dimension 

Reduction
Filter Wrapper

Embedded 

Methods

Relief, 

CFS, etc. 
MP,OMP, 

etc. 

LASSO, 

Ridge, etc.

Dimensionality

Reduction

Feature Selection Feature Extraction

PCA PLSLASSO Ridge Elastic NetOMP ... CCA Kernel PCA ...

Figure 4.2: Hierarchical structure of dimensionality reduction techniques.

4.1.1 Feature Selection Techniques

As explained before, feature selection is the process of selecting the most relevant

variables (i.e., basis functions or regressors) from a random set of original variables.

The objective of feature selection techniques is to enforce the sparsity constraint on

the vector of coefficients by minimizing the number of basis functions (i.e., `0-norm)

subject to a constraint on the `2-norm squared of the identification error. For example,
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particularizing for the identification of the PA behavioral model coefficients described

in (3.17), the optimization problem can be described as

min
w
‖w‖0 (4.2)

subject to ‖y −Xw‖2
2 ≤ ε

Unfortunately, this is a non-deterministic polynomial-time hard (NP-hard) combina-

torial search problem. Therefore, in the field of DPD linearization, several sub-optimal

approaches have been proposed targeting both robust identification and model order

reduction.

In the following, some of the most popular feature selection techniques used in

the field of DPD linearization will de presented. Therefore, on the one hand, further

details will be given on the following regularization techniques: Ridge regression (or

Tikhonov regularization), least absolute shrinkage and selection operator (LASSO)

and Elastic Net. On the other hand, two popular greedy algorithms: the matching

pursuit and its orthogonal variant, the OMP will be presented.

Ridge Regression or `2 Regularization

Ridge regression minimizes the sum of squares of the residual e in (3.15) subject to

a constraint on the sum of squares of the coefficients, i.e.

min
w
‖y −Xw‖2

2

subject to ‖w‖2
2 ≤ t2. (4.3)

or

min
w

N−1∑
n=0

(y[n]−ϕH
x [n]w[n])2

subject to
M∑
i=1

|wi[n]|2 ≤ t2. (4.4)
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This constraint forces the coefficients to stay within a sphere of radius t2 (as depicted

in Figure 4.3). In Figure 4.3, the contours represent the values of coefficients estimated

by the least squares solution. The coefficients under the Ridge regression are the ones

on the contours that meet the constraint (i.e. the sphere).

1w

2w

ŵ

Contours of RSS as it moves 

away from the minimum

1w

2w

ŵ

RSS (LS 

coefficients)

Constraint shape of Ridge

Constraint shape of LASSO

Constraint shape of Elastic Net

LASSO coeff.

Elastic Net coeff.

Ridge coeff.

Figure 4.3: Ridge, LASSO and Elastic Net regularization.

The constrained cost function can also be written as a penalized residual sum of

squares

J(w) =
N−1∑
n=0

(y[n]−ϕH
x [n]w[n])2 + λ2

M∑
i=1

|wi[n]|2

= (y −Xw)H(y −Xw) + λ2‖w‖2
2 (4.5)

= ‖y −Xw‖2
2 + λ2‖w‖2

2

where λ2 (λ2 > 0) is the shrinkage coefficient. Taking the derivative of the cost
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function and setting it to zero we obtain the following solution,

wRidge = (XHX + λ2I)−1XHy, (4.6)

with I being the identity matrix. This approach enables to avoid the ill-conditioned

issue in OLS since (XHX + λ2I) is invertible even if (XHX) is not [81]. As shown

in (4.6), the Ridge coefficients wRidge depend on the shrinkage coefficient λ2, i.e. as

λ2 → 0, wRidge tends to the OLS solution; while as λ2 →∞, wRidge tends to 0.

As an example, Figures 4.4 and 4.5 illustrate how the Ridge regression prevents the

overfitting of PA modeling. The PA behavior is expressed using memory polynomial

model. Figure 4.4-left shows the NMSE of a PA nonlinear behavior identification

with different model configurations of nonlinear order and memory. It can be seen

that adding more memory or nonlinear terms does not allow the model achieve better

NMSE, on the contrary, the NMSE starts decreasing due to the ill-condition of

the coefficient identification and consequently the estimated coefficients have high

power values, as shown in Figure 4.5-left. By applying the Ridge, the power of the

coefficients is restricted (as shown in Figure 4.5-right). Therefore, the NMSE values

are still stable though the model order keeps increasing (see Figure 4.4-right).

Figure 4.4: NMSE for different values of nonlinear order and memory taps when
considering a memory polynomial model, without (left) and with (right) Tikhonov
regularization.
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Figure 4.5: Squared norm of the vector of coefficients of the PA behavior identification
for different values of nonlinear order and memory taps using a memory polynomial
model, without (left) and with (right) Tikhonov regularization.

LASSO or `1 Regularization

Similarly to Ridge regression, LASSO [72] also gives a constraint to the cost function

to limit the value of the model coefficients. While the constraint of the Ridge regres-

sion is the sum of square of the coefficients, the LASSO constraint is the sum of the

absolute value of the coefficients.

min
w
‖y −Xw‖2

2

subject to ‖w‖1 ≤ t1. (4.7)

or

min
w

N−1∑
n=0

(y[n]−wT [n]ϕx[n])2

subject to
M∑
i=1

|wi[n]| ≤ t1. (4.8)

This constraint forces the coefficients to stay within the diamond shape (see Figure

4.3). The constrained cost function can also be written as a penalized residual sum
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of squares

J(w) =
N−1∑
n=0

(y[n]−ϕH
x [n]w[n])2 + λ1

M∑
i=1

|wi[n]|

= (y −Xw)H(y −Xw) + λ1‖w‖1 (4.9)

= ‖y −Xw‖2
2 + λ1‖w‖1

where λ1 (λ1 > 0) is the shrinkage coefficient. The regression coefficients are estimated

as

wLASSO = (XHX)−1(XHy − λ1

2
b), (4.10)

where the elements bi of b are either +1 or −1, depending on the sign of the corre-

sponding regression coefficient wi[n]. Despite the fact that the original implementa-

tion involves quadratic programming techniques from convex optimization, Efron et

al. in [82] proposed the least angle regression (LARS) algorithm that can be used for

computing the LASSO path efficiently.

Elastic Net

When considering a model with the number of components (or basis functions) M

is bigger than the number of observations N (i.e., M > N), LASSO tends to select

all components. Moreover, in case there is a group of highly correlated components,

LASSO selects only one component from the group and ignores the others. In order

to overcome these limitations of LASSO, Elastic Net [73] was proposed to add one

more constraint into the cost function of LASSO. That is the constraint of Ridge.

The Elastic Net constraints are depicted in Figure 4.3.

min
w

N−1∑
n=0

(y[n]−wT [n]ϕx[n])2

subject to
M∑
i=1

|wi[n]|2 ≤ t2 and
M∑
i=1

|wi[n]| ≤ t1. (4.11)
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The constrained cost function can also be written as a penalized residual sum of

squares

J(w) =
N−1∑
n=0

(y[n]−ϕH
x [n]w[n])2 + λ2

M∑
i=1

|wi[n]|2 + λ1

M∑
i=1

|wi[n]|

= (y −Xw)H(y −Xw) + λ2‖w‖2
2 + λ1‖w‖1 (4.12)

= ‖y −Xw‖2
2 + λ2‖w‖2

2 + λ1‖w‖1

where λ2 > 0 and λ1 > 0 are the shrinkage coefficients. For the Elastic Net the

regression coefficients are estimated as

wE−net = (XHX + λ2I)−1(XHy − λ1

2
b), (4.13)

The minimization of the elastic net cost function in (4.12) is similar to minimiz-

ing the LASSO cost function and the entire elastic net regularization paths can be

estimated almost as efficiently as the LASSO paths with the LARS-EN algorithm

proposed in [73].

Matching Pursuit

The greedy iterative algorithm matching pursuit was proposed by Mallat and Zhang in

1992 [83]. In case the basis matrix X of the PA behavioral model is over-dimensioned

or redundant, matching pursuit can be applied to find the most essential columns of

X.

The matching pursuit algorithm selects, at each iteration step, the most relevant

column, defined as the one that most strongly correlates with the current residual

error r (initialized to r(0) = y). The covariance is identified by the inner products

between the residual and each column of the matrix of basis functions X. Then, the

residual error is updated to seek the next most important column. With matching

pursuit, a column may be considered multiple times.
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The matching pursuit algorithm is summarized in Algorithm 1. The number of

most important columns K we wish to select is given as an input of the algorithm.

Algorithm 1 returns the support set S that contains the indices of all the columns in

X. The columns are sorted based on the descending trend of the relevance of each

column. Therefore, the first K columns are the most important ones.

Algorithm 1 Matching Pursuit

1: procedure MPA(X,y, K)
2: initialization:
3: r(0) = y; S(0) = {}; n = 0;
4: for n = 1 to K do
5: i(n) ← argmaxi|XH

{i}r
(n−1)|;

6: S(n)← S(n− 1)
⋃
{i(n)};

7: an ←XH
{i}r

(n−1);

8: r(n) ← r(n−1) − anX{i};
9: end for
10: Return S
11: end procedure

Orthogonal Matching Pursuit

Orthogonal matching pursuit described by C. Pati et al. in 1993 in [84] is a modi-

fication of the matching pursuit algorithm. OMP is similar to the matching pursuit

except for the fact that, at each step of the algorithm, the residual error r is updated

taking into account the contribution of the already selected columns (their associated

coefficients are extracted via LS identification). Consequently, the residual error is

orthogonal to the already chosen columns. With this scheme, OMP gives better sort-

ing result than matching pursuit at the price of introducing higher complexity since

a LS identification is calculated at every iteration of the algorithm.

Algorithm 2 summarizes the OMP algorithm. The number of basis functions

under consideration mmax is the maximum number of columns of X. The support set

containing the indices of the selected columns at mth iteration is noted as S(m). At

eachmth iteration of the OMP algorithm, the basis function X{i} that best contributes
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to minimize the residual error e(m−1) is selected based on the covariance between the

basis function and the residual error. The selected basis function is then added to the

support set S(m). At the end, the algorithm returns the vector S(mmax) that includes

the indices of all original basis functions sorted according to their relevance. In order

to determine the optimum number of essential basis functions, the OMP is commonly

combined with some information criterion such as the Bayesian information criterion

(BIC) [77] or the Akaike information criterion (AIC) [85].

Algorithm 2 Orthogonal Matching Pursuit Algorithm

procedure OMP(y,X,mmax)
initialization:
e(0) = y − ŷ(0); with ŷ(0) = 0
S(0) = {}
for m = 1 to mmax do

i(m) = arg min
i

min
wi

||e(m−1) −X{i}wi||22 ≈ arg
i

max
∣∣∣XH
{i}e

(m−1)
∣∣∣

S(m) ← S(m−1)⋃ i(m)

w(m) =
(
XH

S(m)XS(m)

)−1

XH
S(m)y

ŷ(m) = XS(m)w(m)

e(m) = y − ŷ(m)

end for
return S(mmax)

end procedure

4.1.2 Feature Extraction Techniques

Feature extraction techniques first generate a set of new components (i.e., basis func-

tions) which are linear or nonlinear combinations of the original data. Then, the

most significant components of the new basis are retained while the irrelevant ones

are removed. This Subsection focuses on PCA, PLS and CCA techniques.
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Principal Component Analysis

Principal component analysis (PCA) is a statistical learning technique introduced by

K. Pearson in 1901 [86], suitable for converting an original basis of eventually cor-

related features or components into a new uncorrelated orthogonal basis set called

principal components. The principal components are linear combinations of the orig-

inal variables oriented to capture the maximum variance in the data.
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Figure 4.6: PCA transformation considering 2-dimensional data.

Figure 4.6 presents an example of PCA transformation in a 2-dimensional data.

The original coordinate axes are e1 and e2. The new coordinate axes are u1 and

u2 corresponding to the two eigenvectors of the original data. The first eigenvector

(corresponding to axis u1) has much larger variance than the second eigenvector (cor-

responding to axis u2) (i.e. σ̂1 > σ̂2). Whereas, in the original coordinate axes, the

difference of the variances of the data on the two axes are not significantly different.

In this example, u1 is the principal component of the considered data. Therefore,
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if we discard the unimportant component u2 and project the data on the dimension

u1, the information loss will not be very significant. Whereas, in the original coordi-

nate axes, if we simply remove one dimension and retain the other, we will encounter

relevant information loss.

Partial Least Squares

PLS was introduced by H. O. Wold [87]. Similar to PCA, PLS is a statistical tech-

nique used to construct a new basis of components that are linear combinations of

the original basis functions. However, while PCA obtains new components that max-

imize their own variance, PLS finds linear combinations of the original variables that

maximize the covariance between the new components and the reference data. This

difference enables PLS to outperform PCA in applications such as dimensionality re-

duction for PA behavioral modeling and DPD linearization as will be presented later

in Subsection 6.2.3.

Canonical Correlation Analysis

The CCA method, introduced by H. Hotelling in 1936 [80], finds linear combinations

of variables of a given data that maximally correlate to the reference data. Same as

PCA and PLS, CCA is also widely used to reduce the dimension of a given data. The

main differences among them are discussed in the following.

• PCA finds new orthogonal components with maximal variance among them-

selves. PCA takes into account only the input data. Its performance is inde-

pendent from the reference data (in our considered DPD problem, the reference

data is the output signal of PA y or the residual linearization error e).

• PLS finds linear combinations of the original basis functions that maximize the

covariance between the new components and the reference data. This enables
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PLS to outperform PCA in applications such as dimensionality reduction for

PA behavioral modeling and DPD linearization

• CCA finds new components with maximal correlation between the new com-

ponents and the reference data. Same as PLS, CCA also depends on both

the original and the reference data. Since the correlation relationship among

the components does not depend on the length of the components (unlike the

covariance relationship), CCA shows better performance than PLS.

A comparison of the three feature extraction techniques presented in this Subchap-

ter is summarized in Table 4.1. As can be seen from Table 4.1, the different statistical

measures used in three given techniques result different reduction performance. CCA

is the best among three dimensionality reduction techniques. The second best tech-

nique is PLS and the last one is PCA. Whereas PLS has lowest computational cost.

PCA has highest complexity and CCA is in the middle. Therefore, in Chapter 7, we

propose to use a combination of PCA (calculated off-line only once) and a modified

PLS to achieve the performance same as the CCA’s but with the computational cost

of PLS.

Table 4.1: Comparison among PCA, PLS and CCA. N : number of samples and M :
dimension of the given data.

Method Statistical Reference Complexity Reduction

measure signal performance

PCA Variance No O(NM2 +M3) [88] 3rd

PLS Covariance Yes O(NM) [89, 90] 2nd

CCA Correlation Yes O(NM2) [91] 1st
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4.2 Dimensionality Reduction of the Digital Pre-

distortion Linearization System

In the field of DPD linearization, dimensionality reduction techniques are used with

a double objective. On the one hand, to ensure a proper well-conditioned coefficient

identification and, on the other hand, to reduce the number of coefficients to be

estimated and thus relaxing the computational complexity and memory requirements

of a hardware implementation.

As presented in Section 3.4, an adaptive DPD linearization system is composed

of two subsystems: the forward path and the feedback path. The DPD coefficients

reduction can be implemented for both the DPD forward path and feedback path

subsystems. Generally, feature selection techniques are applied in the forward path

to select the most significant coefficients to be used in the DPD function, while feature

extraction techniques are employed in the adaptation subsystem to reduce the number

of DPD coefficients to be estimated.

4.2.1 Order reduction of the DPD Function in the Forward

Path

As explained before, in the field of DPD linearization, several approaches have been

proposed targeting both robust identification and model order reduction. For exam-

ple, LASSO was used by Wisell et al. in [92] consisting in a `1-norm regularization;

the Ridge regression was used for example by Guan et al. in [93] consisting in a

`2-norm regularization; the sparse Bayesian learning (SBL) algorithm was used by

Peng et al. in [94]; or the orthogonal matching pursuit was used in [77] by Reina et

al. to select the most relevant basis functions of the DPD function.

Note that in order to minimize the number of coefficients being required by the

DPD function in the forward path, we assume that the optimal subset of selected

basis functions of the DPD function will be the same as that used for PA behavioral
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modeling. Therefore, we can perform the feature selection on the matrix of basis func-

tions X in (3.12) since the selected basis functions used for PA behavioral modeling

will be later used to build matrix U in (3.35) for DPD linearization purposes.

The main contribution on this thesis is not focused in the feature selection tech-

niques for dimensionality reduction of the DPD function in the forward path. For

that reason, in our research we simply employed the OMP algorithm (presented in

Algorithm 2) to reduce the order of the PA behavioral model and DPD function

since OMP showed good reduction vs. modeling accuracy performance. Therefore,

the OMP search will be carried out off-line once and then the reduced set of basis

functions will be used for DPD linearization with two purposes: reducing the num-

ber of coefficients of the forward path DPD behavioral model and improving the

conditioning and robustness of the adaptation subsystem.

4.2.2 Simplification of the Identification/Adaptation Algo-

rithm in the DPD Feedback Path

The main scope of this thesis is the proposal of several feature extraction dimension-

ality reduction techniques for PA behavioral modeling and DPD coefficient estima-

tion/adaptation. The DPD dimensionality reduction is carried out by calculating a

new reduced set of orthogonal components that are linear combinations of the original

basis functions. Note that applying feature extraction techniques, we reduce only the

number of estimated coefficients in DPD feedback path subsystem, but the number

of coefficients in the DPD function in the forward path remain unaltered. For that

reason, in the next three Chapters of this thesis, the proposed dimensionality reduc-

tion strategies for DPD coefficient estimation/adaptation will be properly combined

with the OMP feature selection method in the forward path.

In either commercial products or publications addressing DPD implementation,

QR factorization is the most common solution to solve the LS regression problem.

For that reason, we will take the QR-LS identification/adaptation method as baseline
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for comparison with the proposed feature extraction strategies in next Chapters.

This Subsection provides a general description of the benefits of using feature

extraction techniques for the DPD identification/adaptation, particularizing for PCA

and PLS, where the new orthogonal transformed matrix significantly simplifies the

LS coefficients extraction.

DPD coefficients extraction using PCA or PLS

The objective of using PCA in DPD linearization is to transform the N ×M matrix

of basis functions U in (3.38) into a new set of orthogonal components. The N × L

(with L ≤M) transformed matrix Û pca contains only the most relevant components

(or new basis functions) of U . Thus, the less relevant or redundant components can

be removed, which reduces the complexity of the DPD coefficients adaptation and

avoids ill-conditioning.

The transformation of the basis matrix U into Û pca is carried out via the M × L

transformation matrix P pca as follows

Û pca = UP pca (4.14)

The transformation matrix P pca contains the most important eigenvectors of the

covariance matrix of U (cov(U)). The covariance matrix of U can be approximated

by the correlation matrix of U (UHU) because the expectation of U (E{U}) is 0:

cov(U) =
1

N − 1

(
(U − E{U})H(U − E{U})

)
≈ UHU . (4.15)

Whereas, the principal components of the basis functions (i.e., columns of U) are

the eigenvectors of UUH .

The matrix Û pca is then used in (3.38) instead of U to compute the L× 1 vector

of transformed DPD coefficients increment ∆ŵ, as described in (4.17). The new

transformed matrix Û pca contains the most relevant components sorted in descending
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order of importance, i.e., the most relevant one is in the first column of Û pca. The

coefficients update is performed calculating the vector ∆ŵ which contains only L

elements instead of the M elements (with L ≤ M) of the vector ∆w. Then, after

finding ∆ŵ, it is possible to go back to the original vector w that will be used in

DPD function in the forward path.

Similarly to PCA, PLS is used to create a new basis matrix Û pls of N × L or-

thonormal components from the N ×M original data matrix U through a M × L

transformation matrix P pls as follows,

Û pls = UP pls. (4.16)

The transformation matrix P pls is obtained by using an iterative algorithm named

SIMPLS proposed by De Jong, S. in 1993 in [95]. The new orthonormal components

of the transformed matrix Û pls are sorted according to their contribution to maximize

the covariance between the new components and the reference signal which, in the

case of DPD linearization, the reference signal is the error signal e defined in (3.39).

Taking into account the new transformed matrix Û (where Û refers to either Û pca

or Û pls) with orthogonal or orthonormal components, the extraction of the vector of

transformed DPD coefficients increment using the direct learning approach in (3.39)

turns to

∆ŵ =
(
Û

H
Û
)−1

Û
H
e. (4.17)

Taking into account that with PCA the components of the transformed matrix Ûpca

are orthogonal among them, the correlation matrix inversion of the LS solution re-

mains as follows,

(
Ûpca

H
Ûpca

)−1

= diag
(
λ−1

1 , · · · , λ−1
j · · · , λ−1

L

)
(4.18)

with λj being the eigenvalues of UHU and UUH . While, in the case of using PLS,
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the transformed matrix Ûpls contains orthonormal components and thus

(
Ûpls

H
Ûpls

)−1

= I. (4.19)

Consequently, the computation of the DPD coefficients increment ∆ŵ in (4.17) is

significantly simplified. Finally, once the vector ∆ŵ is obtained, it can be converted

back to ∆w by using the transformation matrix P (denoting either P pca or P pls).

∆w = P∆ŵ (4.20)

where ∆w will be used in (3.37) to update the new DPD coefficients.
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Chapter 5

DPD Coefficients
Estimation/Adaptation using
Block Deflated Adaptive Principal
Component Analysis

5.1 Introduction

The data matrix U may have large variation since the characteristics of PA can

change over time. The conventional PCA (presented in Subsection 4.2.2) cannot

deduce efficiently the principal components of such data [96]. Hence, in this case,

an adaptive PCA scheme is required to compute the principal components online.

APCA adaptively generates the transformation matrix P pca without requesting the

correlation matrix UHU in advance. APCA is suitable for real time application and

can be easily implemented in embedded processors because it has low requirement

for storage memory and reduced computational cost.

This Chapter presents a method, based on the APCA technique, that iteratively

creates and updates an orthogonal data matrix used to estimate the coefficients of PA

behavioral models or DPD linearizers. The method is named block deflated APCA

(BD-APCA). BD-APCA is designed by properly modifying the well-known complex

domain generalized Hebbian algorithm (CGHA). The generalized Hebbian algorithm
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(GHA) and CGHA are presented in Section 5.2. In Section 5.3 the BD-APCA tech-

nique is described in detail. This adaptation method enhances the robustness of the

coefficient estimation, simplifies the adaptation by reducing the number of estimated

coefficients and due to the orthogonality of the new basis, these coefficients can be es-

timated independently, thus allowing for scalability. Experimental results in Section

5.4 will show that the proposed BD-APCA method is a worthy solution for online,

adaptive and robust coefficient estimation for PA modeling and DPD linearization

with a reduced number of required coefficients.

5.2 Generalized Hebbian Algorithm

The GHA is a linear feedforward neural network model for unsupervised learning

introduced by Sanger in [97] that is used to iteratively find the transformation matrix

of PCA. In order to apply GHA taking into account complex numbers, Zhang et al.

proposed the complex domain GHA (CGHA) in [98].

5.2.1 Generalized Hebbian Algorithm for Real Signals

The key point of PCA is to find principal eigenvectors that are associated with the

largest eigenvalues. Generally, the correlation matrix UHU is required as the input

to compute the eigenvectors in the transformation matrix of the PCA. However, the

iterative scheme of GHA allows to deduce the eigenvectors directly from the vectors

of the data matrix U , without the need of the correlation matrix. The input to the

GHA is the vector ϕu, which is defined as the transpose of a row in the data matrix

U (containing the basis functions for DPD linearization),

ϕu =
(
φu

1 , · · · , φu
i , · · · , φu

M

)T
(5.1)
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where φu
i is the original ith basis function, with i = 1, · · · ,M . The output of GHA is

the transformation matrix P pca that includes L principal eigenvectors:

p1 = (p11, p12, · · · , p1M)T

p2 = (p21, p22, · · · , p2M)T (5.2)

...

pL = (pL1, pL2, · · · , pLM)T

First, the initial values of pl (l = 1, 2, ..., L) are randomly set. Then, the eigenvectors

are iteratively updated as follows

p
(j+1)
l = p

(j)
l + µ(j)y

(j)
l

[
ϕ(j)

u − y
(j)
l p

(j)
l −

∑
i<l

y
(j)
i p

(j)
i

]
(5.3)

where y
(j)
l =

(
p

(j)
l

)T
ϕu

(j), j is the iteration index and µ(j) the learning rate factor.

After a number of iterations (depending on the learning rate factor), pl converges to

the lth eigenvector of UHU .

5.2.2 Generalized Hebbian Algorithm for Complex Signals

The complex GHA (CGHA) is similar to GHA but the operations for real data are

replaced with the ones for complex data. Therefore, the update for each vector pl of

the transformation matrix P pca is

p
(j+1)
l = p

(j)
l + µ(j)(y

(j)
l )∗

[
ϕ(j)

u − y
(j)
l p

(j)
l −

∑
i<l

y
(j)
i p

(j)
i

]
(5.4)

in which (y
(j)
l )∗ is the complex conjugate of y

(j)
l =

(
p

(j)
l

)H
ϕu

(j). The advantages of

using CGHA to compute the matrix P pca are:

• CGHA avoids the expensive calculation of the correlation matrix UHU . It does
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not require the full data matrix U in advance.

• CGHA is expandable. That is, the updating of the (L + 1)th eigenvector does

not affect the preceding L vectors.

Algorithm 3 BD-APCA Algorithm

1: procedure BD-APCA(U , L)
2: initialization:
3: for j = 1 to L do
4: rj[0] = rand();
5: end for
6: for n = 0 to N − 1 do
7: b1[n] = ϕu[n];
8: end for
9: for j = 1 to L do
10: Bj = (bj[0], bj[1], · · ·, bj[N − 1])T ;
11: k = 0;
12: rj,k+1[0] = rj[0];
13: repeat
14: k = k + 1;
15: for n = 0 to N − 1 do
16: dj,k[n] = rH

j,k[n]bj[n];

17: ηj,k = σ · trace(BH
j Bj)/k;

18: rj,k[n+ 1] = rj,k[n] + ηj,k(dj,k[n])∗
(
bj[n]− dj,k[n]rj,k[n]

)
;

19: end for
20: until rj,k steady;
21: rj = rj,k[N ];
22: for n = 0 to N − 1 do
23: bj+1[n] = bj[n]−

(
rH
j bj[n]

)
rj;

24: end for
25: end for
26: Return R = (r1, r2, · · · , rL)
27: end procedure
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5.3 Block Deflated Adaptive Principal Component

Analysis

Based on CGHA, the block deflated adaptive principal component analysis (BD-

APCA) algorithm iteratively finds theM×L transformation matrix R = (r1, r2, · · · , rL),

with L ≤M . After a number of iterations, the matrix R will finally converge to the

matrix P pca in (4.14) without the requirement of calculating the correlation matrix

UHU . In comparison to CGHA, the BD-APCA algorithm presents the following

differences:

• The updated data in the BD-APCA is considered as a block of data vectors,

instead of only one vector as in CGHA.

• In BD-APCA, the columns rj (j = 1, 2, · · ·, L) of the transformation matrix

R are found iteratively one by one. Whereas, in CGHA, all the columns of

the transformation matrix are calculated at the same time. In BD-APCA,

by processing the columns separately in a sequential fashion, the number of

iterations of the estimation and the learning-rate coefficient η of each column

can be properly controlled. Besides, the next column is estimated by using

the values of the previously extracted components. These advantages enable

BD-APCA to enhance both the convergence time and the final performance.

• The BD-APCA uses variable learning-rate coefficient η for each column rj (j =

1, 2, · · · , L). As will be shown later, the η coefficients are computed from the

deflated data.

Algorithm 3 summarizes the BD-APCA method. The inputs of the algorithm are

the data matrix U =
(
ϕu[0],ϕu[1], · · · ,ϕu[n], · · · ,ϕu[N − 1]

)T
(see (3.36)) and the

dimensionality L of the desired transformation matrix R. The algorithm results the

transformation matrix R which is used as the transformation matrix P pca for model

order reduction in both PA behavioral modeling and DPD linearization applications.
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The operation ∗ in line 18 of the algorithm denotes the complex conjugate. The

learning rate η used to update each column of R is obtained as a proportional factor

of the power of the input data by using the trace(BHB). The trace(·) is the sum of

the vector’s modulus. σ in line 17 is a constant factor.

5.4 Experimental Test Bench and Results

5.4.1 Experimental Test Bench

The BD-APCA technique is validated for PA behavioral modeling and DPD lineariza-

tion using the Matlab–controlled digital linearization test bench. The test bench is

depicted in Figure 5.1.

In the test bench, four 20-MHz bandwidth and 64-QAM modulated FC-FBMC

signals, each with different sub-carrier group deactivation configurations, have been

carrier aggregated. The overall test signals feature 80 MHz bandwidth and around

13 dB PAPR. Considering a DPD expansion factor by three, the DPD baseband

waveform length is of 737280 samples.

For signal generation and data capture, we used commercial boards from Texas

Instruments (TI). Specifically, TI TSW1400EVM and TSW30H84EVM at Tx side

and TI ADC32RF45EVM and TSW14J56EVM at Rx side. In order to account for

the out-of-band distortion, a 368.64 MSa/s DPD signal with 240 MHz bandwidth

was up converted to the 875 MHz RF frequency to feed a class-J PA based on the

Cree CGH35030F GaN HEMT. The PA output signal (with +28 dBm mean output

power) was attenuated, RF sampled at 2457.6 MSa/s, and further down-sampled to

the DPD signal sample rate for time-alignment and DPD processing. The class-J

PA under test was designed by the research group of Dr. Jose Angel Garćıa at the

University of Cantabria, while the test bench was assembled by David López-Bueno

at the Centre Tecnològic de Telecomunicacions de Catalunya.
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Figure 5.1: Block diagram of the DPD linearization test bench used for experimental
validation including a picture of the PA used (upper). Picture of the overall Matlab-
controlled digital linearization platform including the laboratory instrumentation used
(below). Adapted from [67].
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5.4.2 Experimental Results

First, the proposed BD-APCA technique is validated for PA behavioral modeling. The

experiments have been conducted with different kinds of data, PAs and behavioral

models:

• Data 1 : 3× 20 MHz LTE signals amplified by a Class-AB PA. The behavioral

model used to model the PA is the MP (described in (3.2)).

• Data 2 : 20 MHz FC-FBMC signals amplified by Class-J PA. The behavioral

model used to model the PA is the GMP-LUT (described in (5.5)).

• Data 3 : 80 MHz FC-FBMC signals amplified by Class-J PA. The behavioral

model used to model the PA is the GMP (described in (3.3)).

The LUT-based behavioral model GMP-LUT is obtained by describing the non-

linear functions of the GMP model in (3.3) by look-up tables instead of polynomials.

The LUT-based models used in this dissertation follow the linear interpolation and

extrapolation approach described in Chapter 3. Therefore, the GMP-LUT behavioral

model can be defined as

ŷ[n] =
La−1∑
i=0

Pa−1∑
p=0

x[n− τai ]fΦi
(|x[n− τai ]|)+

Lb−1∑
i=0

i+Kb∑
j=i−Kb

Pb∑
p=1

x[n− τ bi ]fΦi,j
(|x[n− τ bj ]|)+ (5.5)

Lc−1∑
i=0

i+Kc∑
j=i−Kc

Pc∑
p=1

x[n− τ ci ]fΦi,j
(|x[n− τ cj ]|)

where fΦ(·) is a is a piecewise linear complex function, defined in (3.7) as the linear

combination of K basis functions.

The performance of the BD-APCA algorithm is compared to the performance of

the full LS estimation in terms of NMSE , ACEPR, and the number of required

coefficients. Note that when applying the BD-APCA solution, we consider a 10%
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maximum degradation level allowed in either the NMSE or the ACEPR with respect

to the values obtained with the full LS estimation.

Table 5.1 shows the comparison between the BD-APCA and the full LS for PA

behavioral modeling. As observed in Table 5.1, even with different kinds of data and

behavioral models, the BD-APCA technique reduces a huge number of coefficients

(about 60− 90%), while its modeling performance degradation (in terms of NMSE

and ACEPR) in comparison to the full LS (which includes a very high number of

coefficients to reach the best performance) is below 10%. In the case of Data 3, for

example, the BD-APCA reduces up to 90% the number of coefficients, while losing

only 2% of NMSE and 9% of ACEPR with respect to the full LS case.

Figure 5.2 presents the relationship between the number of basis functions (also

the number of corresponding coefficients) of the PA model and the modeling accuracy

in case of estimating the coefficients by means of the proposed BD-APCA solution.

As it can be observed in Figure 5.2, in all three tests cases the modeling accuracy

(in terms of NMSE and ACEPR) converges as the number of basis functions of

the PA model increases. Therefore, after the ACEPR and NMSE values reach a

steady state and no significant improvement is observed, adding more coefficients is

unnecessary and could even be harmful (i.e., drive to an ill-conditioned estimation).

The BD-APCA technique was also experimentally evaluated for DPD linearization

using Data3 and the GMP behavioral model. Table 5.2 illustrates the comparison of

DPD linearization performance in the following cases:

• without DPD,

• with DPD applying the full LS,

• with DPD applying the BD-APCA technique.

As shown in Table 5.2, the full DPD method that employs 322 coefficients found

by LS regression has the best performance but poorest performance vs. hardware

complexity trade-off. The BD-APCA DPD method employs 6.5 times less coefficients
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Figure 5.2: NMSE and ACEPR vs. number of components for three testing data sets.

Table 5.2: DPD Performance Comparison

Configuration Coeff NMSE ACPRWCA EVMWCA

80 MHz FC-FBMC No. [dB] [dB] %

No DPD - -18.7 -36.5 5.7

Full DPD 322 -41.2 -50.5 1

BD-APCA DPD 50 -39.1 -45.6 1.3

than the full DPD approach, enables online implementation, performs similarly in

terms of NMSE and fulfills the −45 dB ACPR requirement. Note that the amount

of reduction (i.e., the minimum number of required coefficients) is conditioned by

the fact that meeting the ACPR threshold specified in communications standards is

a must (−45 dB in our particular case). The EVM improvement, thanks to DPD,

facilitates using higher order subcarrier modulations such as 256-QAM. Figure 5.3

shows the unlinearized and linearized spectra for both the BD-APCA and full LS

cases.
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No DPD

BD-APCA DPD

Full DPD

Figure 5.3: Unlinearized and linearized 80 MHz FC-FBMC output power spectra.

5.5 Discussion

The presented BD-APCA method enables an incremental updating scheme without

the need of using the correlation matrix, which is advantageous over the conventional

PCA since it allows BD-APCA to be implemented in an embedded processor. It

also has advantages with respect to the conventional CGHA algorithm thanks to

the proposed block-deflating scheme. The BD-APCA technique is compared to the

full LS approach for the coefficient estimation and adaptation in the DPD feedback

path. Unlike full LS, BD-APCA can be easily implemented online in an embedded

processor to reduce the order of the coefficient estimation methods while still maintain

high levels of linearization and behavioral modeling performance. Moreover, the

coefficients can be estimated independently due to the orthogonality property of the

new transformed basis. This idea is further developed by D. Lopez et al. in [67].
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Chapter 6

Coefficient Estimation/Adaptation
using Partial Least Squares and
Dynamic Partial Least Squares

6.1 Introduction

In this Chapter, the PLS is employed as a method for estimating/adapting the coeffi-

cients in the DPD feedback path. Section 6.2 describes a DPD linearization approach

for concurrent dual-band ET PAs. The multi-LUT DPD architecture, named 3-D

distributed memory LUTs (3D-DML), which is converted from the MISO 3D-DMP

model (presented in Subsection 3.1.2), is used to model the nonlinear behavior of

the PAs. 3D-DML compensates for the distortion arising in concurrent dual-band

ET PAs and is suitable for efficient FPGA implementation. In order to properly

select the best LUTs of the 3D-DML model, a variant of the OMP algorithm, named

OMP-LUT, is presented. OMP-LUT helps to reduce the number of required DPD co-

efficients in the forward path. Whereas in the feedback path, a technique estimating

the coefficients of the 3D-DML architecture based on the PLS regression is suggested.

Section 6.2 provides the experimental results of DPD linearization for the con-

current dual-band ET PA employing the OMP-LUT in the DPD forward path and

PLS technique in the DPD feedback path. The results prove how it is possible to

reduce the DPD complexity (i.e. the number of coefficients) in both forward path and
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feedback path while meeting the targeted linearity levels. Moreover, the performance

of PLS is also compared to PCA’s.

In Section 6.3, a DPD dynamic linearization approach is proposed. The approach

employs the dynamic PLS technique inside the DPD adaptation loop to actively

adjust the basis matrix in the DPD identification subsystem. The dynamic basis re-

duction is carried out at every iteration according to the residual linearization error.

The dynamic PLS method gives similar linearization performance to the LS esti-

mation solved via QR decomposition, but using less coefficients at every adaptation

iteration. Section 6.3 also provides the experimental results of DPLS technique. The

proposed dynamic linearization approach leads to a reduction of the number of esti-

mated DPD coefficients (which impacts in the computational complexity reduction)

and guarantees a well-conditioned and robust DPD coefficient estimation.

Finally, Section 6.4 gives some discussion about the PLS and DPLS techniques.

6.2 PLS Identification of Multi Look-Up Table Dig-

ital Predistorters for Concurrent Dual-Band

ET PAs

6.2.1 Forward DPD path

3D-DML Digital Predistorter

The MISO DPD model 3D-DMP in (3.4) is proved to be a good choice for describing

the nonlinearity of concurrent dual-band ET PAs [11]. In order to simplify the DPD

for DB ET PAs and targeting a FPGA implementation, the 3D-DML DPD model is

introduced. The 3D-DML is based on the 3D-DMP model. The polynomials in the

3D-DMP are converted to LUTs with linear/bilinear interpolation and extrapolation.
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The 3D-DML DPD model for the signal in Band 1 is defined as:

x1[n] =

N1−1∑
i=0

u1[n− τu1
i ]fΦ1,i

(∣∣u1[n− τu1
i ]
∣∣)

+

N2−1∑
i=1

M2−1∑
j=1

u1[n]fΦ1,i,j

(∣∣u1[n− τu1
i ]
∣∣, ∣∣u2[n− τu2

j ]
∣∣) (6.1)

+

N3−1∑
i=1

K3−1∑
k=1

u1[n]fΦ1,i,k

(∣∣u1[n− τu1
i ]
∣∣, E[n− τ ek ]

)

where N1, N2 and N3 are the numbers of delays of the input signal u1[n] at

each branch; M2 is the number of delays of the interference signal u2[n]; K3 is the

number of delays of the supply envelope E[n]; τu1 , τu2 and τ e (with τu1,u2,e ∈ Z and

τu1,u2,e
0 = 0) are the most significant sparse delays of the input (u1[n]), interference

signal (u2[n]) and envelope (E[n]). Moreover, following the LUT interpolation and

extrapolation concept in [57], fΦ1,i
(u1) in (6.1) represents a 1-D LUT and is a piecewise

linear complex function defined as the linear combination of N basis functions; while

fΦ1,i,j
(u1, u2) or fΦ1,i,k

(u1, E) in (6.1) are 2-D LUTs defined by a piecewise bilinear

complex function. Further details on the bilinear interpolation and extrapolation can

be found in [57,99].

Analogously, the DPD function for Band 2 can be defined as in (6.1) but with

u2[n] and u1[n] being the input and interfering signal, respectively.

Best LUTs Selection Method (OMP-LUT)

In the 3D-DML DPD model, the required number of coefficients to compensate for

the in-band, cross-band intermodulation distortion and the slow-envelope dependent

distortion in ET PAs is seriously high. This leads to an increase of the system’s

computational complexity. Besides, the sparse data of LUT-based DPD model drives

the system to overfitting and uncertainty.

The sparsity of the LUT-based DPD models can be exploited to reduce the number
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of required basis functions or active components by using the greedy methods (such

as matching pursuit and OMP) or regression methods (such as LASSO, Ridge and

Elastic Net). By using OMP, for example, it is possible to obtain a sorted set of

the most relevant basis functions, named the OMP list. Moreover, the Bayesian

information criterion can be applied to OMP to determine the most suitable number

of basis functions.

Since 3D-DML model is built in LUTs, direct applying OMP to the 3D-DML data

matrix is impractical. Thus, to retain the effect of LUTs on the 3D-DML model,

we propose a method to allow doing the selection in LUTs, instead of the individual

basis functions (i.e. the columns of the 3D-DML data matrix). The proposed method

OMP-LUT is described in the following.

In order to value the significance of a LUT i on the 3D-DML model, the times a

LUT i appears in the OMP list (ti) is considered

ti =
n∑

j=1

aj (6.2)

in which n is the number of basis functions (columns) of the LUT i; if column j of

LUT i is in the OMP list aj = 1, otherwise aj = 0.

It is also needed to a) discriminate between LUTs which have same size n and

appearance times t in the OMP list; and b) determine a criterion to make different-

size LUTs comparable. The OMP algorithm sorts the basis functions by relevance

(i.e., the later a basis function appears in the list, the less significant it is). Therefore,

to enable a), a weight w is given to each element in the OMP list. w is an assigned

small positive value. For the first element in the list, its weight is the smallest one.

In the experiment in [99], the initial value w is assigned to 0.01; and then this value

is increased every position by 0.01. The sum of weight of a LUT i is

si =
n∑

j=1

wj (6.3)
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in which wj is the weight of the column j in the LUT i. Given the LUT i1 and LUT

i2 with ti1 = ti2 , if si1 < si2 then the LUT i1 is considered to be more relevant than

the LUT i2, and vice versa.

To solve b), the final weight (l) of a LUT i is computed as follow li = (ti − si)/n.

The greater l is, the better the LUT is. The list of LUTs is ranked in decreasing

order according to the value l of each LUT. A small number of LUTs used as starting

point is increased until meeting linearity requirements.

6.2.2 Feedback Identification/Adaptation Path

In order to avoid the ill-conditioned LS in (3.38), several regularization techniques

[100] can be found in literature to address this problem. Among them, the PLS

regression method is a suitable technique since it not only enhances the conditioning

of the estimation but also allows reducing the number of coefficients to be estimated.

The process of employing PLS regression in DPD feedback path can be referred in

Subsection 4.2.2.

As presented in Subsection 4.2.2, both PLS and PCA construct new components

that are the linear combinations of the original basis functions. However, while PCA

obtains new components that maximize their own variance, PLS finds linear combi-

nations of the original basis functions that maximize the covariance between the new

components and the reference signal (i.e. the output vector in PA modeling or the

error vector in DPD adaptation). With that, PLS improves the accuracy of the DPD

coefficient estimation. Consequently, PLS’s performance is better than PCA’s.

6.2.3 Experimental Results

Experimental Test Bench

The DPD estimation/adaptation methods using PLS and PCA applied on the D3-

DML behavioral model [99] are tested with the remoteUPCLab test bench (see Figure
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6.1).

The test bed is built from the collaboration between our lab with IEEE MTT-S

and Rohde & Schwarz (R&S). It consists of a PC running Matlab and an FTP server

to allow worldwide users to connect to the equipments:

• the R&S SMW200A vector signal generator,

• the R&S FSW8 signal and spectrum analyzer,

• the DUT consisting in a Texas Instruments LM3290-91-1EVM ET board that

includes a Skyworks SKY776621 4G handset PA. The PA operates with a dual-

band signal composed by two OFDM signals whose center frequency is spaced

80 MHz and that feature 10 MHz and 5 MHz bandwidth (with 80 MHz spacing).

Figure 6.1: Block diagram of the remoteUPCLab.

The remoteUPCLab server receives the incoming baseband I/Q waveforms and an

appropriate delay-compensated supply waveform from a remote user. These are both

downloaded into the R&S SMW200A vector signal generator (VSG) that generates

i) the I/Q signals being RF up converted to deliver the PA input signal (i.e. through

the VSG I/Q modulator) and ii) the EVM supply modulator input signal. The R&S

FSW8 signal and spectrum analyzer (SSA) is in charge of RF down conversion and
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data acquisition of the waveform at the output of the PA, whose I/Q data will be sent

back to the remote user for DPD processing. The baseband clock that is employed

in the signal processing operations is 122.88 MHz which corresponds also to the I/Q

A/D and D/A sampling frequencies (no over-sampling is applied). The peak output

power level from the SKY77621 PA is limited to approximately 1 W. The settings in

the signal analyzer (reference level and input attenuation) are set in such a way as

not to distort the measured signal even for the highest peak power levels allowed.

Experimental Results

In DPD forward path, three different selection methods are applied to the original

data matrix (composed of 223 basis functions) to show the model order reduction

capabilities while meeting the linearity specifications (set at −45 dB of ACPR).

They are:

M1) No OMP: no proper search is carried out, the look-up table selection is done by

adding consecutive memory terms of both input signals and the slow envelope.

It is likely that with this straightforward method to build the data matrix (no

requirement or constraint is applied to select LUTs), some basis functions will

be highly correlated among them.

M2) OMP-col: selection of the best columns of the data matrix using the OMP-

BIC algorithm [77]. With this method, the basis functions are selected without

taking into account to which LUT they belong to, thus, without concerning if

the resulting selected basis correspond to complete LUTs or not. The output

of the search are the best columns of the data matrix. With the OMP-col, we

are implicitly avoiding the ill-conditioning problem by selecting only the most

relevant basis functions.

M3) OMP-LUT: selection of the best LUTs using the modified version of the OMP-

BIC algorithm. The output of the search are the best complete LUTs of the data
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matrix. For the sake of completeness some basis functions with low relevance

have to be added to complete the LUT structure and this may later contribute

to introduce uncertainty in the estimation of the coefficients.

The linearity, the power efficiency and the reduced numbers of basis functions of

the DPD model after applying three aforementioned selection methods are shown in

Table 6.1. These results are taken when the system meets the ACPR threshold of

−45 dB. Applying the method M1, which mainly consist in adding delays sequentially,

may lead to an ill-conditioned estimation and therefore require a large number of

coefficients to achieve the threshold of −45 dB of ACPR. Note the DPD for Band 2

for example, requiring up to 153 coefficients or, what is the same, 2 1-D LUTs and

10 2-D LUTs. When selecting the most relevant coefficients with OMP, the original

universe of possible coefficients is limited to 110 coefficients for Band 1 and 119 for

Band 2. As expected, thanks to the OMP algorithm, both methods M2 and M3,

allow reaching the targeted ACPR value in both bands with less coefficients than

method M1. However, while the OMP-col method requires 92 coefficients for both

bands to get −45 dB of ACPR, the proposed OMP-LUT method M3, allows meeting

the requirements with only 62 coefficients (i.e., a 3D-DML DPD with 2 1-D LUTs

and 5 2-D LUTs) for Band 1 and 73 coefficients (i.e., a 3D-DML DPD with 3 1-D

LUTs and 4 2-D LUTs) for Band 2.

Then, starting from the reduced set of coefficients obtained for the DPD function

in the forward path, we now attempt to improve the conditioning of the estimation

as well as reducing the number of coefficients to be estimated in the feedback identi-

fication/adaptation path. For simplicity (without loss of generality), the advantages

of the PLS-based estimation will be highlighted considering the extraction of the co-

efficients of the 3D-DML PA behavioral model instead of the 3D-DML DPD model.

In order to extract the coefficients of the DPD function (based on LUTs) in the

forward path, the Moore-Penrose inverse is commonly used to solve the LS regres-

sion. However, if the resulting order reduced matrix is not well-conditioned, then the
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Table 6.1: Comparison of Different OMP Coefficient Selection Methods for 3D-DML
DPD

Method Pout η NMSE ACPR No.

[dBm] [%] [dB] [dB] coeff.

(a) B1: -36.5 B1: -45.6 B1: 85

No OMP 23.1 19.0 B2: -37.7 B2: -46.0 B2: 153

(b) B1: -36.3 B1: -45.1 B1: 92

OMP-col 22.8 18.2 B2: -37.5 B2: -45.3 B2: 92

(c) B1: -36.5 B1: -45.1 B1: 62

OMP-LUT 23.0 18.7 B2: -37.1 B2: -45.3 B2: 73

coefficient estimation may lead to an inaccurate solution. In the particular case of

the OMP-col selection, since all the basis functions were properly selected, the LS

estimation will be perfectly conditioned. However, in the OMP-LUT case, because

the objective is to obtain an integer number of complete LUTs we have to include

some of the basis functions (i.e., columns) that make the LS estimation rank deficient.

To illustrate this, Table 6.2 shows the results of PA behavioral modeling in terms of

NMSE and ACEPR for the three selection methods when considering the Moore-

Penrose inverse and the Matlab’s backslash (\) operations. It can be observed that

in the case of the OMP-LUT basis selection, the MP-LS cannot provide an accurate

estimation, while the Matlab’s backslash operator can.

As an alternative to the backslash operator, we suggest to use the PLS algorithm

to both improve the conditioning of the correlation matrix and reduce the number

of coefficients of the estimation. In addition, we also compare the accuracy versus

coefficient reduction between the PLS and PCA techniques. The Figures 6.2-6.4 show

the NMSE and ACEPR evolution when considering different numbers of coefficients

in the identification for three basis function selection methods: M1, M2 and M3,

respectively. In all three cases, we can see that the PLS technique is more robust

than PCA in terms of NMSE and ACEPR degradation when reducing the number
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Table 6.2: Moore-Penrose inverse vs. Matlab’s Backslash Operator for the PA Be-
havioral Modeling after Applying Different Coefficient Selection Methods

Method Sig. No. of NMSE [dB] ACEPR [dB]

coeff. MP–LS \ MP–LS \
(a) B1 85 NaN -39.8 NaN -43.8

No OMP B2 153 NaN -46.0 NaN -51.1

(b) B1 92 -39.4 -39.4 -43.4 -43.4

OMP-col B2 92 -45.9 -45.9 -50.7 -50.7

(c) B1 62 NaN -40.0 NaN -44.0

OMP-LUT B2 73 NaN -45.6 NaN -50.3

of coefficients of the estimation (coefficients of the transformed basis). The reason for

this is that PLS, unlike PCA, takes also into account the information of the output

signal for creating the transformation matrix.

In case of M1 (no OMP), in Figure 6.2, there are two types ofNMSE andACEPR

degradation, when the number of identification components is too small and also when

the full basis of components is considered. The latter degradation is due to the fact

that the correlation matrix is ill-conditioned when considering the full basis of new

components because we are including the ones that are expendable. Eliminating the

less relevant columns (components) produces a regularization effect, which results in

a new well-conditioned basis with less coefficients to estimate. Similarly, in case of

M3 (OMP-LUT) in Figure 6.4 we can observe the same behavior involving NMSE

and ACEPR degradation due to excess of coefficient reduction or due to the ill-

conditioned estimation for an excess of linear dependent components. Instead, in

case of M2 (OMP-col) in Figure 6.3, thanks to the proper basis selection performed

by the OMP-BIC algorithm, no ill-condition problem is observed at high number of

components, while only degradation is appreciated, as expected, when significantly

decreasing the number of coefficients.

101



10 20 30 40 50 60 70 80
Number of coefficients

-40

-30

-20

-10

0

N
M

S
E

 [d
B

]
-60

-40

-20

0

A
C

E
P

R
 [d

B
]

a)

NMSE PLS
NMSE PCA
ACEPR PLS
ACEPR PCA

20 40 60 80 100 120 140
Number of coefficients

-60

-40

-20

0

N
M

S
E

 [d
B

]

-60

-40

-20

0

20

A
C

E
P

R
 [d

B
]

b)

NMSE PLS
NMSE PCA
ACEPR PLS
ACEPR PCA

Figure 6.2: NMSE and ACEPR vs. number of coefficients considering No-OMP
selection in the forward path, a) for Band 1 signal and b) for Band 2 signal.

10 20 30 40 50 60 70 80 90
Number of coefficients

-40

-30

-20

-10

0

N
M

S
E

 [d
B

]

-50

-40

-30

-20

-10

A
C

E
P

R
 [d

B
]

a)

NMSE PLS
NMSE PCA
ACEPR PLS
ACEPR PCA

10 20 30 40 50 60 70 80 90
Number of coefficients

-50

-40

-30

-20

-10

N
M

S
E

 [d
B

]

-60

-40

-20

0

A
C

E
P

R
 [d

B
]

b)

NMSE PLS
NMSE PCA
ACEPR PLS
ACEPR PCA

Figure 6.3: NMSE and ACEPR vs. number of coefficients considering OMP-col
selection in the forward path, a) for Band 1 signal and b) for Band 2 signal.
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Figure 6.4: NMSE and ACEPR vs. number of coefficients considering OMP-LUT
selection in the forward path, a) for Band 1 signal and b) for Band 2 signal.

The advantage of using the PLS technique for the coefficients estimation when

considering the case of the OMP-LUT basis selection is summarized in Table 6.3.

Thanks to PLS, we can reduce the number of coefficients to be estimated almost

without losing accuracy in the identification. In particular (see Table 6.3), around

35% for Band 1 and 34% for Band 2 of reduction in the number of coefficients can be

considered at the expenses of a loss of identification performance (in terms of NMSE

and ACEPR) of less than 0.5% in the worst case.

Figure 6.5 (for Band 1) and Figure 6.6 (for Band 2) show the spectra of the

estimated outputs considering a 3D-DML behavioral model after applying OMP-

LUT selection (i.e., 62 coefficient Band 1 and 73 coefficient Band 2) and reduced

PLS coefficient estimation (i.e., 40 coefficient Band 1 and 48 coefficient Band 2).

Finally, applying the aforementioned combination (i.e., OMP-LUT selection in the

forward path and PLS reduction estimation in the feedback identification path) we

can significantly reduce the complexity of the 3D-DML DPD while still meeting the
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Table 6.3: PLS-based Behavioral Modeling Identification after OMP-LUT coefficient
reduction

Signal Number of coefficients NMSE [dB] ACEPR [dB]

”\” PLS ↓ % ”\” PLS ↓ % ”\” PLS ↓ %

reduction reduction reduction

Band 1 62 40 35.5 -40.0 -39.8 0.5 -44.0 -43.8 0.5

Band 2 73 48 34.2 -45.6 -45.4 0.4 -50.3 -50.3 0.0

specific linearity requirements as shown in Figure 6.7.
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Figure 6.5: Spectra of the input, measured output, estimated output and residual
error of Band 1 signal when applying ’OMP-LUT and PLS reduction’.
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Figure 6.6: Spectra of the input, measured output, estimated output and residual
error of Band 2 signal when applying ’OMP-LUT and PLS reduction’.
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configuration in Table 6.1) spectra of a dual-band signal.
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6.3 Dynamic Selection and Update of Digital Pre-

distorter Coefficients for Power Amplifier Lin-

earization

6.3.1 Dynamic Partial Least Squares algorithm

In a closed-loop direct learning approach (see Figure 3.4), the DPD coefficients are

iteratively updated as described in (3.37). In order to reduce the number of coefficients

in the DPD forward path, OMP is applied to choose the most relevant basis functions

of U . Then, in order to avoid calculating the Moore-Penrose inverse of the correlation

matrix of U , the PLS regression [101] is implemented inside the DPD adaptation loop

to dynamically adjust the basis matrix in the DPD subsystem. This solution is an

alternative of QR-LS.

The dynamic orthonormal transformation matrix (DOTM) algorithm (Algorithm

4) is proposed to generate a new transformed matrix with a minimum necessary

number of new components. DOTM algorithm is a modification of the iterative

SIMPLS algorithm [95] for PLS regression. Whereas the size of the transformation

matrix P dpls is predetermined and given as an input information in SIMPLS, in

DOTM, the number of columns of P dpls and coefficients are iteratively calculated

and added until the power of the estimated error is close enough to the threshold Eth.

Eth is defined as a percentage δ of the power of the error signal e.

Figure 6.8 depicts the proposed DPD estimation/adaptation employing dynamic

basis matrix approach. Thanks to the DOTM algorithm, at each iteration i of the

DPD adaptation, the number of most important columns of the transformation matrix

P dpls varies, and thus only the minimum necessary number of columns that meets

the Eth threshold requirements is selected.

The M × L transformation matrix P dpls obtained from DOTM is used for con-

structing the transformed basis matrix Û as depicted in (4.16), in which U being the
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N ×M matrix of basis functions after applying OMP. The transformed matrix Û

presents orthonormal components and has dimensions N × L.

Note that the number of components L (L ≤ M) is variable since it depends on

the dimensions of P dpls. The new orthonormal components (i.e., columns) of the

transformed matrix Û are sorted according to their contribution to maximize the

covariance between the new components and the error signal e.

Taking into account the orthonormal property of the transformed matrix Û (i.e.,

Û
H
Û = I), the update of the transformed coefficients in (4.17) is simplified as

∆ŵ = µÛ
H
e. (6.4)

Then, the increment of the original coefficients is obtained through the following

anti-transformation as shown in (4.20).

Since the components of Û are orthonormal, the power of the estimated error

(eHe) is equivalent to the power of the increment of estimated coefficients (∆ŵH∆ŵ).

Following is the demonstration for that. It can be deduced from (3.38) that

e = U∆w. (6.5)

Similarly, with ∆ŵ and Û , we have

e = Û∆ŵ. (6.6)

Therefore,

eHe = (Û∆ŵ)HÛ∆ŵ = ∆ŵHÛ
H
Û∆ŵ = ∆ŵH∆ŵ. (6.7)

The power of the increment of estimated coefficients ∆ŵH∆ŵ is used to control the

while loop in Algorithm 4.

As described in Figure 6.8, the DPD adaptation will continue until achieving the
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Algorithm 4 DOTM Calculation

1: procedure DOTM(U , e, δ)
2: initialization:
3: V (0) = {}; P

(0)
dpls = {}; ∆ŵ(0) = {}; j = 1;

4: E1 = 0; Eth = δµ2||e||22; r1 = UHe;
5: while Ej < Eth do

6: pj =
rj

||Urj||2
;

7: P
(j)
dpls ← P

(j−1)
dpls

⋃
pj;

8: vj = UHUpj;
9: for repeat = 1 to 2 do
10: for i = 1 to j − 1 do
11: vi = V (:, i);
12: vj = vj − (vH

i vj)vi;
13: end for
14: end for
15: vj =

vj

||vj||2
;

16: rj = rj − vj(v
H
j rj);

17: V (j) ← V (j−1)⋃vj;
18: rj+1 = rj − V (j)((V (j))Hrj);
19: ûj = Upj;

20: dŵj = ûH
j e;

21: ∆ŵ(j) ← ∆ŵ(j−1)⋃ dŵj;

22: Ej+1 = ||∆ŵ(j)||22;
23: j = j + 1;
24: end while
25: Return P dpls,∆ŵ
26: end procedure

6.3.2 Experimental Results

The dynamic selection and update of the DPD coefficients was validated using the

Matlab-controlled digital linearization test bed described in 5.4.1. The original basis

functions were generated by using the GMP behavioral model with 322 coefficients.

By applying OMP in the DPD forward path, the number of coefficients is reduced

down to 107. Then, we performed two tests: i) DPD estimation/adaptation with QR

decomposition using 107 coefficients and ii) DPD estimation/adaptation using the
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Figure 6.10: Spectra of the PA output before and after dynamic DPD linearization.

DOTM algorithm to generate dynamic basis matrix with an ACPR target of -48 dB.

As shown in Figure 6.9, both DPD adaptation methods converge after 10 iter-

ations to the same ACPR level. However, while the DPD adaptation with QR-LS

requires a constant number of 107 coefficients at every iteration to converge, the DPD

adaptation with the DOTM algorithm (that dynamically adjusts the dimensions of

the basis matrix), needs less coefficients (only at iterations 3 and 4 it needs up to 107

coefficients) to achieve the same targeted ACPR value.

Figure 6.10 shows the non-linearized and linearized spectra considering the QR-

LS and the proposed dynamic selection and update of the DPD coefficients. Despite

showing similar performance, when comparing the measured running time for both

algorithms implemented in Matlab plain code, the DOTM algorithm is around 50

times faster than the case of QR.

6.4 Discussion

In this Chapter, the PLS regression method is suggested to address the ill-conditioning

problem of the DPD coefficient estimation. In order to validate the proposed PLS
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method, the 3D-DML DPD model which is built from multiple LUTs is considered.

PLS addresses both the regularization problem of the DPD coefficient estimation, and

at the same time, reducing the number of coefficients to be estimated in the DPD

feedback identification path. In addition, by exploiting the orthogonality of the PLS

transformed matrix, the computational complexity of the coefficients’ identification

is remarkably simplified. Moreover, the PLS approach is compared to the PCA. The

experimental results prove that PLS has over-performance to the PCA since PLS

considers the reference signal when generating the new components whereas PCA

does not.

Furthermore, a new method for dynamically estimating and updating the DPD

coefficients using the DOTM algorithm, based on the PLS algorithm, is proposed. The

DPLS is employed inside the DPD adaptation loop, allowing to decide the minimum

number of coefficients required to minimize the residual error. The DPLS benefits

from reducing the number of coefficients to be estimated in the DPD identification

subsystem with respect to the non-dynamic conventional DPD estimation based on

QR-LS.
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Chapter 7

Combination of Principal
Component Analysis and Dynamic
Partial Least Squares

7.1 Introduction

This Chapter presents a new technique that dynamically estimates and updates the

coefficients of a digital predistorter. The proposed technique is a combination of

PCA and DPLS. The technique is dynamic in the sense that at every iteration of the

coefficient’s update, only a minimum necessary coefficients are estimated and updated

according to a criterion based on the residual estimation error.

In the first step, the original basis functions defining the digital predistorter in

the forward path are orthonormalized for DPD adaptation in the feedback path by

means of a pre-calculated PCA transformation and normalization. The robustness

and reliability of the pre-calculated PCA transformation is tested and verified. Note

that the PCA transformation matrix is obtained off-line and only once.

In the second step, the dynamic PLS algorithm explained in Subsection 6.3.1, is

applied to obtain the minimum number of most relevant transformed components

required for updating the coefficients of the DPD linearizer. The combination of the

PCA transformation with the DPLS extraction of components is equivalent to using

the canonical correlation analysis (CCA) technique, which is optimum in the sense of
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generating components with maximum correlation (instead of maximum covariance

as in the case of the DPLS extraction alone). The relationship between PLS and

CCA is analyzed in Subsection 7.2. Subsection 7.3 presents the method of combining

PCA and DPLS for DPD estimation/adaptation.

The proposed dynamic extraction technique is evaluated and compared in terms

of computational cost and linearization performance with the commonly used QR

decomposition approach for solving the least squares problem. Experimental results

in Subsection 7.4 show that the combination of PCA and DPLS drastically reduces

the amount of DPD coefficients to be estimated while maintaining the same achieved

linearity levels. Finally, Subsection 7.5 summarizes and discusses the proposed iden-

tification method consisting in the combination of PCA and DPLS.

7.2 Relationship between CCA and PLS

As presented in Subsection 4.1.2, CCA and PLS are techniques for feature extraction

from a set of variables or basis functions. However, while CCA finds the compo-

nents that have maximum correlation, PLS finds the components that have maxi-

mum covariance between the components and the reference signal. Covariance and

correlation are two different statistical measures for quantifying how the variables are

related. CCA creates new components that maximize the correlation factor ρCCA,

defined as

ρCCA =
〈Upi,y〉
||Upi||2||y||2

. (7.1)

PLS maximizes the covariance factor ρPLS, defined as

ρPLS =
〈Upi,y〉
||pi||2||y||2

(7.2)
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with 〈·, ·〉 being the inner product and || · ||2 being the Euclidean norm, U is the

N ×M matrix of DPD basis functions. The reference signal (the N × 1 vector y)

is the signal to be estimated (in case of PA modeling) or to be linearized (in case of

DPD linearization).

The objective is to find the M × 1 vector of coefficients pi, necessary for creating

a new component Upi maximally related to y in terms of maximal correlation (in

the case of CCA) or maximal covariance (in the case of PLS). Therefore, in the case

of CCA the target can be mathematically defined as

max
pi

{ρCCA} = max
pi

{
〈Upi,y〉
||Upi||2||y||2

}
(7.3)

whereas, in the case of PLS, the target can be defined as follows,

max
pi

{ρPLS} = max
pi

{
〈Upi,y〉
||pi||2||y||2

}
(7.4)

Note that, in case the matrix U is unitary (i.e., UHU = I), then CCA is equivalent

to PLS

ρCCA =
〈Upi,y〉
||Upi||2||y||2

=
〈Upi,y〉(

pH
i U

HUpi

)
||y||2

(7.5)

=
〈Upi,y〉
||pi||2||y||2

= ρPLS.

Taking advantage of this property, at first, we use the pre-calculated PCA transfor-

mation matrix to convert the original data matrix containing the DPD basis functions

into a unitary transformed matrix. Then, we apply PLS on the unitary transformed

matrix. With this strategy it is able to maximize the correlation factor as in the CCA

but using PLS which has less computational complexity. Next Section presents the

DPD coefficient estimation/adaptation approach employing the combination of PCA

and dynamic PLS.
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7.3 The Combination of PCA and DPLS

Following a closed-loop direct learning approach (as shown in Figure 3.4), the DPD

coefficients are iteratively updated as in (3.37). In a first approach, in order to

reduce the number of coefficients in the DPD forward path, the greedy algorithm

OMP (see Subsection 4.1.1) is applied to select the most relevant basis functions

of the N × M data matrix U . Then, in order to reduce the number of required

DPD coefficients in the adaptation path while still keeping the same linearization

performance (in comparison with QR-LS), the PCA-DPLS technique is employed.

The proposed PCA-DPLS technique is described in the following.

The M ×M PCA transformation matrix P pca is first calculated in an off-line pro-

cess. The M×M matrix P pca is then used to transform the original DPD basis U into

an orthogonal subspace Û pca as described in (4.14). The N ×M transformed matrix

Û pca contains the principal components oriented to capture the maximum variance in

the data. The components in the new transformed basis Û pca are orthogonal among

them and are sorted according to their relevance.

Since the PCA technique relies only in the input data, as long as the characteristics

of the transmitted signals (e.g. bandwidth and power operation conditions) do not

change, the obtained PCA transformation matrix P pca is quite robust and thus can

be calculated off-line only once and then applied to different basis U . However, the

matrix P pca should be recalculated when the bandwidth and the power operation

conditions of the signal change.

After the PCA transformation in (4.14), each column of the transformed basis

Û pca is normalized as follows,

Ū pca = Û pcaT norm = UP pcaT norm = UP̄ pca. (7.6)

T norm being a M ×M diagonal matrix composed by the norm of each of the columns

of Û pca. It is worth to mention that, like P pca, T norm can be also calculated off-line
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and only once. After the PCA transformation in (4.14) and the normalization in

(7.6), the resulting transformed matrix Ū pca is unitary.

Then, following a dynamic PLS approach (which is an upgraded version of the

DOTM algorithm presented in Subsection 6.3.1), it is possible to carry out the DPD

adaptation. Algorithm 5 describes the proposed PCA-DPLS method in pseudo lan-

guage. Notice that at every iteration of the adaptation, P̄ pca is fixed, while U and e

are updated with the new input data.

With the PCA-DPLS algorithm, at every iteration of DPD adaptation process we

obtain a new PLS transformed matrix P dpls with the minimum necessary number of

new components. The criteria to decide the minimum required number of components

is based on the thresholds Eth1 and Eth2, defined as a percentage δ1 and δ2 of the

energy of the error signal e, respectively. The transformed basis matrix Ūpca obtained

from (7.6) is one more time transformed through the M ×L (where L is variable and

may be changed at every update iteration) transformation matrix P dpls as follows

̂̂
U = Ū pcaP dpls = UP̄ pcaP dpls. (7.7)

The N × L transformed matrix
̂̂
U includes L new orthonormal components which

are linear combinations of the components of Ū pca. The number of components L is

variable as it depends on the dimensions of the transformation matrix P dpls.

If the PCA transformation matrix P pca is perfectly orthogonal and the normaliza-

tion matrix T norm is perfectly diagonal, then the resulting transformed data matrix

Ū pca is unitary. In this case, the combination of PCA and dynamic PLS is equivalent

to CCA (as justified in Section 7.2). Therefore, after the PCA-DPLS transforma-

tion, the new orthonormal components (or columns) of the matrix
̂̂
U appear sorted

according to their contribution to maximize the correlation factor between the new

components and the error signal e. Having a sorted set of orthonormal components

ensures that by selecting the first coefficients we get the most relevant ones in terms

of correlation.
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Algorithm 5 PCA-DPLS Calculation

1: procedure PCA-DPLS(U , P̄ pca, e, δ1, δ2)
2: initialization:
3: V (0) = {}; P

(0)
dpls = {}; ∆wpls

(0) = {};
4: j = 0; Eth1 = δ1||e||22; Eth2 = δ2||e||22;

5: r1 = (UP̄ pca)
He = P̄

H
pca(U

He);
6: repeat
7: j = j + 1;

8: pj =
rj

||U(P̄ pcarj)||2
;

9: P
(j)
dpls ← P

(j−1)
dpls

⋃
pj;

10: vj = P̄
H
pcaU

HUP̄ pcapj;
11: for repeat = 1 to 2 do
12: for i = 1 to j − 1 do
13: vi = V (:, i);
14: vj = vj − (vH

i vj)vi;
15: end for
16: end for
17: vj =

vj

||vj||2
;

18: rj = rj − vj(v
H
j rj);

19: V (j) ← V (j−1)⋃vj;
20: rj+1 = rj − V (j)((V (j))Hrj);
21: x̂j = U(P̄ pcapj);

22: ∆wplsj = x̂H
j e;

23: ∆wpls
(j) ← ∆wpls

(j−1)
⋃

∆wplsj;

24: Ej = ||∆wpls
(j)||22;

25: until (|∆wpls1|
2 < Eth1) OR (Ej > Eth2) OR (j == dimension(U ))

26: ∆ ̂̂w = ∆wpls;

27: Return P dpls,∆ ̂̂w
28: end procedure
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However, if the resulting transformed data matrix Ū pca is not perfectly unitary,

then some degradation in the sorting of the new orthonormal components will exist. In

the estimation procedure, this degradation effect is detected and solved by introducing

two thresholds in the coefficients extraction process. These two thresholds are set for

the purpose of detecting any degradation and decide how many relevant coefficients

should be calculated.

• The first threshold, Eth1, is determined as a percentage δ1 of the energy (see

Algorithm 5) of the error to be estimated (i.e., Eth1 = δ1||e||22). The energy of

the first coefficient (i.e., |∆wpls1|
2) is calculated and compared to the threshold

Eth1. If the first coefficient is not good enough to estimate the error, the thresh-

old is not achieved. In this case, the updating process is stopped and no more

coefficients are calculated. If the first coefficient is good enough to estimate

the error, then the threshold is met and more coefficients are calculated until

the second threshold is reached. This is decided relying on the fact that the

coefficients are sorted.

• The second threshold Eth2 (see Algorithm 5) is determined as a percentage δ2

of the energy of the error (i.e., Eth2 = δ2||e||22). The energy of all the calculated

coefficients up to iteration j (i.e., ||∆wpls
(j)||22) is evaluated and compared to

the threshold Eth2. The PCA-DPLS algorithm will continue estimating DPD

coefficients until the threshold Eth2 is met.

The key advantage of the PCA-DPLS approach with respect to the DPLS ap-

proach adopting the DOTM algorithm presented in Subsection 6.3.1 is that the or-

thonormal components of the transformed matrix
̂̂
U are sorted. Therefore, taking

advantage of this property, we can select the least number of required coefficients

to achieve the given thresholds (Eth1 and Eth2). Whereas with the DPLS approach,

since the new components are not properly sorted, it is necessary to estimate more

coefficients to reach the same threshold Eth2. This difference is illustrated later via
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experimental results shown in Figure 7.4.

Taking into account the orthonormal property of the transformed matrix
̂̂
U (i.e.,̂̂

U
H ̂̂
U = I), the calculation of the transformed DPD coefficient increment in (3.38)

is simplified as

∆ ̂̂w =
̂̂
U

H

e (7.8)

Finally, the original DPD coefficient increment ∆w can be found by applying the

corresponding anti–transformations

∆w = P̄ pca∆ŵ = P̄ pcaP dpls∆ ̂̂w (7.9)

Figure 7.1 schematically describes the proposed PCA-DPLS approach for DPD

estimation/adaptation. Experimental results proving the benefits of estimating the

DPD coefficients by means of the proposed PCA-DPLS approach are shown in next

Section.
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Figure 7.1: Flowchart of the DPD estimation/adaptation using the PCA-DPLS tech-
nique.
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7.4 Experimental Results

In order to prove the advantages of the proposed PCA-DPLS approach for DPD

coefficient estimation/adaptation, we compared it with the following techniques:

• the dynamic PLS (DOTM algorithm) introduced in Subsection 6.3.1,

• the CCA (see Subsection 4.1.2),

• the QR-LS (see Subsection 3.3.2).

The experiments are performed on the test bench described in Subsection 5.4.1. The

comparison is established in terms of

• linearization performance (via evaluating theNMSE and the ACPR after DPD

linearization),

• the minimum number of required coefficients in the adaptation DPD subsystem

to meet the linearity specifications,

• the computational running time according to Matlab’s tic-toc measurements.

Firstly, the original N × M data matrix U containing the basis functions was

generated using the GMP behavioral model (see Subsection 3.1.1) with 322 coeffi-

cients. The validity of the proposed PCA-DPLS method is universal, that means it

does not depend on a specific PA. However, if we had used a different PA, the basis

functions describing the PA behavior under some certain operating conditions (signal

bandwidth, level of PA saturation) would have changed.

By applying the OMP feature selection algorithm, the number of required coef-

ficients in the forward path are cut down to 100. Then, the tests are performed on

this reduced basis matrix by applying one at a time the DPD techniques under com-

parison (i.e., the proposed PCA-DPLS, DPLS based on the DOTM algorithm, CCA

and QR-LS).
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Figure 7.2: Evolution of the NMSE and ACPR for PCA-DPLS, DPLS, CCA and
QR-LS.

Figure 7.2a and Figure 7.2b show the NMSE and ACPR evolution when con-

sidering different adaptation methods and taking into account different number of

121



Table 7.1: DPD Performance Comparison.

Configuration Num. of Coeff. NMSE ACPR EVM

80 MHz FC-FBMC (max/min) [dB] [dB] [%]

No DPD - -18.6 -36.35 5.73

QR-LS 100/100 -40.39 -49.08 1.17

DPLS (DOTM) 100/1 -39.77 -49.27 1.19

CCA 1/1 -40.73 -49.34 1.16

PCA-DPLS 10/1 -40.35 -49.33 1.17

components (i.e. coefficients) for the DPD estimation/update. All the tested DPD

techniques converge to around −40 dB of NMSE after 5 iterations and −48 dB of

ACPR after approximately 10 iterations. However, as shown in Figure 7.2 and Table

7.1, whereas the QR-LS needs a fixed amount of coefficients (up to 100 coefficients)

for each iteration of the DPD update, both DPLS (DOTM algorithm) and PCA-

DPLS dynamically select the minimum necessary components to reach the targeted

linearity levels. As observed in Table 7.1, the PCA-DPLS is more efficient (i.e., uses

less coefficients at every iteration) than DPLS while achieving the same linearization

performance. The DPLS technique dynamically selects among, for example, 100, 54,

27, 7 and 1 coefficients depending on the iteration, whereas most of the times, the

PCA-DPLS needs only 1 coefficient as shown in Figure 7.2. Only when the trans-

formed matrix Ū pca of the first step of the PCA-DPLS algorithm is not perfectly

unitary, the algorithm needs to select more coefficients (e.g., up to 10). Finally, the

CCA technique needs only 1 coefficient at every DPD adaptation iteration to meet

the linearity specifications. However, as shown in Table 4.1, its computational cost

is more expensive than the PLS.

Figure 7.3 shows the non-linearized spectrum and the linearized spectrum when

considering 100 coefficients in the DPD forward path and 1 coefficient in the feedback

path with the PCA-DPLS adaptation.

As explained in Section 7.3, after the PCA-DPLS transformation, the new or-
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Figure 7.3: Spectra of the PA output before and after DPD linearization using the
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thonormal components of the matrix
̂̂
U (and also the coefficients) appear sorted

according to their contribution to maximize the correlation factor between the new

components and the error signal e. This is a key advantage of the proposed PCA-

DPLS with respect to DPLS. Figure 7.4 depicts the magnitude of the DPD coeffi-

cients when applying DPLS (Figure 7.4-top) and PCA-DPLS (Figure 7.4-bottom).

Although in both cases the general trend shows that the magnitude of the coeffi-

cients decreases, in the case of PCA-DPLS the sorting is more accurate, i.e., close to

monotonically decreasing. This allows PCA-DPLS to avoid the estimation of several

unnecessary coefficients in comparison to DPLS (DOTM).
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Figure 7.5: Computational time of the PCA-DPLS algorithm considering different
number of coefficients and taking as a reference the computational time of Matlab’s
backslash operation.

In addition, the advantage of the PCA-DPLS technique is also validated in terms

of the Matlab’s tic-toc processing time. Taking as a reference the processing time

(tic-toc) of Matlab’s backslash operation with 100 coefficients, Figure 7.5 shows the

relative factors of the processing time when considering PCA-DPLS using 1, 10 and

100 coefficients. It can be seen that, when considering the same number of esti-

mated coefficients (i.e., 100 coefficients), the Matlab’s backslash operation is around

2 times faster than the proposed PCA-DPLS. However, the proposed PCA-DPLS

can significantly reduce the number of computed coefficients in the DPD adaptation

subsystem while still achieving the same linearity levels as QR-LS. Therefore, by sig-
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nificantly reducing the number of coefficients, for example, down to 10 coefficients, the

PCA-DPLS processing time is only one third that of Matlab’s backslash operation.

Moreover, in the case of using only 1 coefficient (which happens with high probability

since PCA-DPLS is equivalent to CCA when no significant degradation occurs), the

PCA-DPLS running time is five times faster than Matlab’s backslash operation.

7.5 Discussion

This Chapter has presented a new technique for dynamically estimating and updat-

ing the DPD coefficients based on the combination of the PCA transformation with

the dynamic PLS extraction of components. The PCA-DPLS approach significantly

improves the model order reduction capabilities of the DPLS technique (DOTM) pre-

sented in Section 6.3 of Chapter 6. The PCA-DPLS combination is equivalent to a

CCA updating solution, which is optimal in the sense of generating components with

maximum correlation. The PCA-DPLS method allows to update as many coeffi-

cients as necessary for achieving the required linearity, and to stop this update when

it detects that the DPD basis is not able to estimate and minimize the remaining

nonlinear error anymore. This allows to reduce the computational cost and overcome

ill-conditioning problems in comparison to other methods that use a fixed number of

coefficients when solving the required LS estimation in the DPD adaptation loop.

The proposed dynamic adaptation technique has been tested and compared in

terms of linearization performance and computational cost with the commonly used

QR decomposition approach for solving the LS problem. Experimental results show

that the PCA-DPLS combination drastically reduces the amount of DPD coefficients

required in the DPD adaptation subsystem while maintaining the same linearization

performance, which ultimately impacts the computational cost and running time.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

The emphasis of this dissertation is on the development of dimensionality reduction

techniques for DPD linearization of high efficient RF PAs in wideband transmitters.

The proposed techiques, BD-APCA, DPLS and PCA-DPLS, are designed by modi-

fying and combining different feature extraction methods: PCA, PLS and CCA. The

presented techniques are able to determine the minimum number of relevant DPD

coefficients to be estimated and updated in the DPD feedback path. They reduce

the order of the DPD behavioral models, thus achieving a reduction of the computa-

tional cost and, at the same time, ensuring a well-conditioned estimation. Moreover,

the selected transformed coefficients can be estimated independently due to the or-

thogonality property of the new transformed basis. This simplifies remarkably the

coefficient estimation in the DPD feedback path. The distinct point of the three tech-

niques is that while BD-APCA allows an adaptive manner to estimate and update

the DPD coefficients, DPLS and PCA-DPLS enable to dynamically determine the

optimum number of coefficients for each update iteration. Apart from the theoreti-

cal development, all the presented methods have been simulated and experimentally

tested in two instrumentation-based test beds.

The BD-APCA technique (presented in Chapter 5), based on the PCA technique,
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allows to iteratively estimate and update the DPD coefficients without requiring the

correlation of the DPD data matrix. The benefit of the BD-APCA to the conventional

PCA is that it can be implemented in an embedded processor, such as the one available

in ARM or FPGA devices. The BD-APCA algorithm is modified with respect to the

CGHA algorithm in order to improve the convergence speed. Experimental results

demonstrate the capability of significantly reducing the estimated DPD coefficients

while still maintaining acceptable levels of linearization performance, in comparison

to the full LS approach.

The DPLS method (presented in Chapter 6) dynamically estimates and updates

the DPD coefficients in the feedback path. It achieves the dynamic dimensionality

reduction by employing the suggested DOTM algorithm in the DPD adaptation loop.

The DOTM algorithm is a modification of the SIMPLS algorithm. Experimental

results show same linearity performance as QR-LS, but with a lower number of DPD

coefficients.

The PCA-DPLS is a combination of PCA and DPLS, and presented in Chapter

7. It achieves equivalent dimensionality reduction to the well-known CCA method,

but avoids the expensive computational cost necessary for obtaining the required

canonical components. The method has been experimentally validated and compared

with QR-LS, DPLS and CCA to show its advantage in terms of computational cost.

8.2 Future Directions

The research work developed in this thesis can be extended in a number of directions,

as follows:

• The proper selection of the coefficients of the predistortion function in the for-

ward path is important to achieve a desired distortion reduction with an opti-

mum computational cost. Besides matching pursuit and OMP described and

used in this dissertation, there are various efficient methods that can be ana-
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lyzed and employed for selecting the most relevant DPD coefficients, such as

recursive feature elimination, mutual information, and F-test [102]. Therefore,

further research efforts could be focused on the DPD coefficient selection tech-

niques in the DPD forward path.

• Since Machine Learning field of knowledge has been developed explosively over

the last years, applying Machine Learning techniques to build a ”smart” digital

predistorter is an on-trend research direction. This dissertation presents some

linearization techniques based on the concepts related to the Machine Learning

field of knowledge: PCA, PLS and CCA. In the next step, more complex and

effective Machine Learning structures such as artificial neural networks and deep

neural networks can be employed in the DPD system to efficiently determine

the DPD model and coefficients. However, their high computational complexity

should be evaluated and taken into consideration.

• Nowadays, MIMO systems are popularly used in 5G networks. Improving

the linearization performance and efficiency of MIMO systems is an attractive

topic [52,103,104]. Unlike in SISO systems, in MIMO systems, cross-interference

and other unwanted effects have to be considered, thus demanding additional

complexity of the predistorter. Therefore, the high computational complex-

ity/cost of the predistorter for MIMO systems deserves our attention, as a field

where to apply the presented methods for dimensionality reduction.
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