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Abstract—A simple and efficient analog direct voltage control
design for improving the performance and stability of a buck
converter feeding constant power loads (CPLs) is the main aim
of this article. One of the oldest and most spread approaches
is to design a relay control system. In these systems, although
the hysteretic relay adds non-linearity to the closed-loop system,
an adequate controller design procedure will be presented using
the locus of a perturbed relay system (LPRS) technique. This
work shows how a designer can apply LPRS technique to a
converter plant, in this case a buck converter feeding a mixed
linear and constant power load (CPL), using a parallel feed-
forward compensator (PFC) to obtain a suitable performance
in the closed-loop system. That means to enlarge the range
of stable behavior with respect to the power in the CPLs, in
comparison with the open-loop case, and to regulate adequately
the output voltage of the converter in front of input voltage and
load power variations. The simulation results with the converter-
load non-linear model show the good performance of the designed
controller with respect to the above-mentioned disturbances and
perturbations.

Index Terms—constant power load, relay feedback system,
almost strictly positive real, parallel feed-forward compensator,
locus of a perturbed relay system.

I. INTRODUCTION

Nowadays, the use of power converters in electrical systems
is increasing due to having the ability and characteristic to
accumulate and transform electrical energy. The performance
of power electronic converters depends on the variations
of the output (voltage and current) due to fluctuations of
the source voltage, internal parameters changes, and external
disturbances. In addition, recently, most of these power con-
verters feed mixed loads which are linear loads in parallel
with constant power loads (CPLs). Owing to the non-linear
behavior of CPLs, that threaten the stability of electrical
systems, the performance of power converters will be com-
promised in comparison with feeding linear positive resistance
loads. Different approaches for improving the stability of
the electrical circuits consisting CPLs have been proposed in
[1]–[4]. So, because of these reasons the development of a
practical simple control strategy, convenient for the stability
and performance of power converters, and also to be able

to cope more with the plant uncertainties and disturbances
is always required. From control perspective, depending on
the designers parameters assumptions and plant characteristics,
the desired control strategy will be defined. Various control
strategies (analog or digital) are applied to power converters
for improving their stability and efficiency, for example a
good comparison of them can be found in [5]. In this work,
we are more interested on analog controllers due to being
more simple and cheaper than the other options which are
implemented in micro-controllers and DSPs, and also on direct
voltage control techniques nor the typical cascade structure of
control loops. Among the oldest, powerful and widespread
control techniques, the advantages of using relay feedback
systems (RFS) in general and hysteretic controlled systems
in particular, which are also extended in control of power
electronic converters [6] and [7], have been proved in the form
of their wide presence in electronic applications. Moreover, the
use of RFS with feedback loops presents simplicity, cheapness,
great performance, and wide robustness margins. This paper
proposes RFS controller for improving the performance and
stability of a dc/dc buck converter feeding a mixed load while
handling more output power in a stable manner. This approach
is based on using a parallel feed-forward compensator (PFC)
[8]–[12], locally feeding back the relay controller to ensure
the stability of the closed-loop while sweeping the power of
the CPL. The PFC is also rely on the concept of almost strictly
positive real (ASPR) function [13], and non-minimum phase
plants. In addition, locus of a perturbed relay system (LPRS)
[14], is used as a technique to determine the exact frequency
and amplitude of the self-excited oscillations (chattering), and
also the value of the RFS.

Section 2 describes the analysis of a dc/dc buck converter
feeding a mixed load. Section 3 discusses the architecture
of the control system. Section 4 and Section 5 present the
controller design and simulation results, respectively. Finally,
Section 6 reports the main conclusion of this work.



II. ANALYSIS OF THE DC/DC BUCK CONVERTER

Conventional dc/dc buck converter with resistive load, in
average, is a linear electrical circuit; while some special loads
can add non-linearity to it. One of these loads is constant
power load, CPL, that adds non-linearity to the converter
behavior. The CPL-buck converter may produce a constant
power for different loads; or equivalent, but different loads
with the same output voltage get different constant currents
from the converter. In fact, it may consider as a negative
non-linear resistance and it can be modeled as a dependent
current source. Fig. 1 shows an averaged model of a dc/dc
buck converter feeding mixed load, consisting input voltage
source (E), control signal (u) while u ∈ {0, 1}, parasitic
resistance of inductor (r), inductor (L), output capacitor (Co),
load resistor (R), inductor current (iL), capacitor current (iC),
output current (io), load resistance current (iR), and CPL
current (iCPL = Po

vo
).
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Fig. 1: A current bi-directional buck converter feeding mixed load.

By Thévenin theorem, the buck converter from the points
AB can be replaced by an equivalent voltage source (Eth)
series with an impedance (Zth), which will be obtained as

Eth(s) = F (s)u,

Zth(s) =
1
Co
s+ r

LCo

s2 + r
Ls+ 1

LCo

,
(1)

where F (s) is the transfer function of the circuit, seen from
points AB and is equal to

F (s) =
E

LCo

s2 + r
Ls+ 1

LCo

. (2)

In Fig. 2, the Thévenin equivalent circuit of a buck converter
feeding mixed load seen at points AB is shown. In this figure,
the non-linear component is modeled as a dependent current
source (iCPL) and the output voltage is

Vo(s) = −Zth(s)Io(s) + Eth(s). (3)
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Fig. 2: Thévenin equivalent of a buck converter feeding mixed load.

By Taylor series expansion, a linear representation of the
dependent current, iCPL = Po

vo
, is

∆iCPL = (∂iCPL/∂vo)|(P o,vo)
∆vo+

(∂iCPL/∂Po)|(P o,vo)
∆Po = (−P o/v

2
o)∆vo + (1/vo)∆Po,

(4)
where P o and vo are the values of the CPL power and output
voltage at the equilibrium, respectively; moreover, as Po is
constant then, ∆Po = 0. With (4) the block diagram of the
linear buck converter is shown in Fig. 3, in which GR = 1/R,
is the conductance of the linear load and GCPL(s) = −P o/v

2
o

is the incremental conductance of the CPL.
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−

Fig. 3: Block diagram of the linear mixed load buck converter.

Considering Fig. 3, and Gl = GR + GCPL, (3) can be
modified as

Vo(s) =
F (s)

1 + Zth(s)Gl(s)
U(s)− (1/vo)Zth(s)

1 + Zth(s)Gl(s)
4Po(s).

(5)
The state-space equations of the non-linear CPL-buck con-

verter parallel with a conductivity where the output capacitor
voltage is the first state and the inductor current is the second
state, x = [vo, iL]T , are

Coẋ1 = −GRx1 −
Po

x1
+ x2,

Lẋ2 = −x1 − rx2 + uE.
(6)

In the following, the linearization procedure of the non-
linear CPL-buck converter is explained. In this procedure, at
first, the equilibrium points of the state-space equations in
(6) are found, then by Taylor’s series, the linear state-space
equations of the system are extracted.

A. Equilibrium Points

With respect to (6), by ẋ1 = 0, ẋ2 = 0, and constant vo =
vo, the result of equilibrium points for the mixed load buck
converter are

iL = GRvo +
Po

vo
,

u =
(1 +GRr)v

2
o + rPo

voE
,

(7)

where 0 ≤ u ≤ 1. By solving inequality u ≤ 1 for Po, the
upper limit of output power is

Po ≤ Pomax
=

(E − (1 +GRr)vo) vo
r

, (8)

which shows the range of CPL power for existence of equi-
librium.



B. Plant Linearization

In general, Taylor series is a useful technique for linearizing
a non-linear plant. Considering the minimal state-space system

ẋ = Ax+B1u+B2∆Po,

y = Cx+Du,
(9)

where A ∈ R2×2, B1 ∈ R2×1, B2 ∈ R2×1, C ∈ R1×2,
and D ∈ R1×1. The non-linear part of (6) is Po/x1 and by
Taylor series, its linear form is −(P o/v

2
o)x1 + (1/vo)∆Po;

accordingly, the linear state-space matrices of (6) are

A =

[
P o

Cov2
o
− GR

Co

1
Co

− 1
L − r

L

]
, B1 =

[
0
E
L

]
, B2 =

[
− 1

Covo

0

]
,

(10)
C =

[
1 0

]
, D = 0.

Considering linear state-space matrices A, B, C, and D, the
transfer function of the buck converter feeding mixed load, in
Fig. 1 will be 1

Gu(s) =
Y (s)

U(s)
=

b0
s2 + a1s+ a0

, (11)

where

b0 =
E

LCo
, a1 =

r

L
+
GR
Co
− P o
v2oCo

, a0 =
rGR
LCo

+
1

LCo
− rP o
v2oLCo

.

Obviously, the CPL power, Po, and the load conductance,
GR, affect the plant stability. Applying the Routh’s criterion,
the plant will be stable if and only if inequalities a0 > 0 and
a1 > 0 are met. From them, the maximum value of the CPL
power to have a stable plant, P ∗

o , is

P ∗
o <

rCo +GRL

L
v2o. (12)

III. ARCHITECTURE OF THE CONTROL SYSTEM

This section presents the main considerations and the ar-
chitecture of the control system. In this work, a direct output
voltage control of a buck converter feeding mixed load with
no measuring the inductor current is proposed. Furthermore,
the controller should have a binary output signal that will be
directly applied to the switches as is shown in Fig. 4 where
C(s) is the controller, voref and e are the output voltage
reference and the error signals, respectively.

C(s) Gu(s)
uvoref + e y

−

Fig. 4: Closed-loop control block diagram while u is control signal.

For designing the controller, we will mainly use relay
feedback systems (RFS) which are non-linear systems [15],
and this non-linearity assuming a linear plant, comes from the
discontinuous behavior of the relay function. In order to make
the things more adequate and to meet the specifications more

1It is worth to mention that Gu(s) can also be directly obtained from (5)

as Gu(s) =
F (s)

1 + Zth(s)Gl(s)
.

easily, this relay should be symmetric with output in {−1, 1}.
To use this symmetrical relay, the plant model should be
modified to create a new control variable, w, that is binary also,
and takes the values in {−1, 1}. Accordingly, this controller
will be implemented as an analog hysteretic comparator, with
positive hysteresis of width 2b and with values {−1, 1}. So,
the control loop will be modified as in Fig. 5.
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Fig. 5: Closed-loop control block diagram while w is control signal.

Considering u = (w+ 1)/2 mapping, the equations (6) and
(10) will be converted to (13) and (14), respectively, as

Coẋ1 = −GRx1 −
Po

x1
+ x2,

Lẋ2 = −x1 − rx2 +
E

2
w +

E

2
,

(13)

A =

[
P o

Cov2
o
− GR

Co

1
Co

− 1
L − r

L

]
, B1 =

[
0
E
2L

]
, B2 =

[
− 1

Covo

0

]
,

(14)
C =

[
1 0

]
, D = 0,

and the transfer function of the buck converter feeding mixed
load will be G(s) = Y (s)

W (s) = 1
2Gu(s).

A. Parallel Feed-forward Compensator

The necessity of using PFC can be explained considering
that we want to control a plant with relative degree 2 by
using a relay controller. If we close the loop directly with
the relay, we will obtain a closed-loop time response of the
system that is not enough adequate to meet the specifications
of the control strategy due to obtaining an output voltage with
very high amplitude oscillations. So, we need to work with a
more adequate plant with relative degree 1 and minimum phase
characteristic to achieve the desired behavior. As our original
plant does not meet these behavior we will rearrange this plant
by using PFC. In addition, ASPR-ness condition of the plant
can be guaranteed by adding a suitable parallel compensator
K(s) to the plant [7]. A linear plant G(s) is almost strictly
positive real (ASPR) [13], if and only if

1) Relative degree of G(s) is 1, rd{G(s)} = 1,
2) G(s) is minimum phase. It means that the zeros of G(s)

stay in the open LHP of the s-plane.
The desired parallel compensator K(s) must satisfy the

following conditions:
1) K(s) must be stable,
2) Relative degree of K(s) must be one, rd{K(s)} = 1.
In converter applications to achieve more adequate system,

the output of the parallel compensator K(s) should be consid-
ered negligible in steady-state with respect to the output of the
linear plant G(s). In addition, in this work, minimum order
of K(s) is more convenient to reduce the complexity of the



augmented plant. An augmented plant Ga(s), consisting of a
linear plant with a parallel feed-forward compensator K(s) is
shown in Fig. 6.

w
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K(s)

Σ

Ga(s)

y

yGa

Fig. 6: Augmented plant, Ga(s), the parallel connection of a linear
plant, G(s), with a compensator, K(s).

In this case, we face a problem due to having a compensator
in parallel with the plant, but fortunately this architecture is
equivalent to another architecture as is illustrated in Fig. 7.
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wvoref + e
+ y
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−

(a) Compensator K(s) in forward path parallel with the plant.
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w
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voref + e + y
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Controller

(b) Compensator K(s) in feedback path with the controller.

Fig. 7: Identical closed-loop block diagram.

Due to the block diagram rules, it is evident that the
performance of a closed-loop system with the compensator
in the forward path in parallel with the plant, Fig. 7a, is
identical with the compensator K(s) in the feedback path of
the controller, Fig. 7b. Taking into account the plant transfer
function in (11), a suitable PFC for the CPL-buck converter is

K(s) =
k0s

s2 + c1s+ c0
. (15)

Using the parameters k0, c1, and c0, the zeros of the
augmented plant can be placed at the desired positions in
the open LHP for a range of Po values. For these purposes,
by trial and error on the root locus diagram of the G(s) in
negative feedback with K−1(s), L(s) = K−1(s)G(s), closed-
loop poles, which are the compensated-plant zeros, can be
chosen to be stable and as damped as possible [7] and [16].

B. LPRS-based Design of a Relay Controller

In this work, the plant is linear, while the controller is a
symmetrical positive hysteresis with output in {−c, c} as is
shown in Fig. 8

b−b

c

−c

e

w(e)

Fig. 8: Relay function that exhibits a hysteresis behavior.

w =

{
+c if e > −b, w(t− ε) = c,

−c if e < b, w(t− ε) = −c,
(16)

where e is the error signal, w = w(e) is the control signal, 2b is
the hysteresis width, and c is the output amplitude of the relay
and in particular, c = 1, to represent the binary states of the
switches. To evaluate the system stability, output oscillations
and find the b value of the relay, LPRS is used which is
a frequency-domain analysis and provides the designer with
exact information [7], and [14]. The locus of the perturbed
relay system is the function J(w) and it is defined as

J(ω) = −1

2

1

keq
+ j

π

4c
y(t)|t=0 , (17)

where keq is the relay equivalent gain and is equal to
−1/2Re{J(w)}, c is the positive output value of the relay
and y(t)|t=0 shows the relay switch condition in t = 0 which
is the time when the relay switch moves from (−c) to (+c).
Once the system LPRS is computed, the possible limit cycle
frequency and the corresponding equivalent gain of the relay
element, keq , can be extracted by finding the J(w) intersection
with a horizontal line of ordinate πb/4c and depending on b
value, lies below or above the horizontal axes, (b > 0) and
(b < 0), respectively. After finding possible solution by LPRS,
the stability of the periodic solution must be investigated.
Derivation of LPRS relation is introduced in [14], and this
relation is computed with Poincaré map technique which is a
common way for computing periodic solution. The state-space
expression of LPRS for a non-integrating and delay-free plant,
as in the plant of this work [14], is

J(ω) = −0.5
(
A−1 +

2π

ω

(
I − e(2π/ω)A

)−1

e(π/ω)A
)
B

+j
π

4
C
(
I + e(π/ω)A

)−1 (
I − e(π/ω)A

)−1

A−1B.

(18)

Note that (18) contains only the plant parameters and ω is
the possible periodic solution frequency. For finding a solution
in LPRS technique, at least one intersection point between the
horizontal line and the J(w) must exist. For this reason, at first
by selecting relay parameter b, the start point of horizontal line
in jω axis is found, then extend it to −∞ in horizontal axes till
an intersection occurs. If there is no intersection for this try,
other relay parameter b is selected and this procedure will be
repeated. In this article, instead of mentioned procedure, the



relay parameter b is found by moving the horizontal line over
jω axis and find all possible intersection points. Then select
an intersection point with minimum Re{J(ω)} as a solution.
So, the relay parameter b is

b = −4c

π
Im{J(ω)}. (19)

In a relay control system, without considering the auto-
oscillations of the loop, the dynamics of the system can be
divided into two sub-systems [7] and [14]. One is the fast
sub-system that refers to the behavior of the loop with the
relay and the other one is the slow sub-system that refers
to the propagations of the reference and disturbance signals
through the loop. In the control loop with symmetrical relay,
in Fig.5, there will be an input that behaves as a disturbance
in the control signal. This disturbance affects the behavior of
the system and will create a steady-state error with respect to
the system reference, so the probable difference between the
mean value of the output with respect to the reference comes
from this disturbance. As this effect appears in the slow sub-
system dynamics, linear slow motions of the system should
be considered. For this purpose, the relay element should be
substituted by keq , which is the relay equivalent gain. The
block diagram for the system taking into account only the
slow motions is shown in Fig. 9.

keq G(s)
w +

K(s)

vref +

1

+e + y

−−

Controller

Fig. 9: Equivalent block diagram for the system slow sub-system.

It is noticeable that this steady-state error is small when the
equivalent gain, keq , is large.

IV. CONTROLLER DESIGN

This section presents the design of the controller from the
linearized model of the plant. The parameters of the buck
converter with mixed load are: E = 48 V, r = 0.05 Ω,
L = 100 µH, and Co = 470 µF. The desired objective of
the controller is an output voltage equal to, vo = 24 V. With
respect to (10), the values of the state-space matrices for the
linearized system A, B, C, and D for GR = 0.01 f, Po = 135
W, and with ∆Po = 0 are

A =

[
477.3936 2.1277 · 103

−10000 −500

]
, B1 =

[
0

24 · 104

]
,

C =
[
1 0

]
, D = 0.

The curves of the poles values when Po ∈ [0, 3000] W are
shown in Fig. 10, with Fig. 10a showing the real parts of the
plant open-loop poles and Fig. 10b their imaginary parts. Fig.
10a shows that the plant has only negative real parts when the
output power is lower than 135 W which is a very low value.
So, for enlarging the output power of the converter, a suitable
closed-loop controller should be designed.

(a) Re {poles} (b) Im {poles}

Fig. 10: Augmented poles with respect to Po ∈ [0, 3000] W.

The maximum possible open-loop output power of the plant,
Pomax

, is about 11500 W. As mentioned in section III, some
suitable PFCs fulfill the plant relative degree requirement,
make compensated-plant minimum-phase and improve the
stability of the closed-loop system regarding to the output
power. So, with trial and error on the root locus of the open-
loop transfer function, L(s) = K−1(s)G(s), in Po = 200 W,
a suitable PFC is designed as

K(s) =
3.7547 · 104 s

s2 + 6312.0 s+ 1.856 · 107
. (20)

The root locus of the open-loop transfer function of the
plant, L(s) is shown in Fig. 11. In this figure, the closed-loop
poles, that will be the zeros of the augmented plant, Ga(s) =
K(s) + G(s), are marked with squares and they correspond
to an open-loop gain value of 2.6633 · 10−5, which finally
appears in the compensator K(s). In the simulation results of
the next section, it is shown that how the designed PFC in
(20) improves the upper limit in (12).

Re {·}

Im
{·
}

Fig. 11: Root locus of L(s) = K−1(s)G(s).

To design the relay parameters b and c, the LPRS technique
is used. In converter applications, parameter c is one, while pa-
rameter b must be designed to fulfill the desired specifications.
As mentioned before, the plant is stable for Po ≤ 135 W but
to evaluate the LPRS behavior regarding to Po, Fig. 12 is used.
The J(w) curves for ω ∈ [6283,∞) rad/s for power values
Po = 20 W (stable plant), Po = 135 W (marginally stable
plant), and Po = 1500 W (unstable plant) of the augmented



plant are shown in Fig. 12. Considering this figure, the LPRS
curve in stable mode stays under the horizontal axis, while
in unstable mode, for lower frequencies, it is above of the
horizontal axis.
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Fig. 12: J(w) curves for stable, J1, marginally stable, J2, and
unstable, J3, plants.

In LPRS technique, if there is a solution, (intersection
point), the parameter b is obtained from the intersection of
the horizontal line and LPRS curve, J(ω). In this article, for
selecting relay parameter b, a new approach is introduced.
In this approach by moving the horizontal line on the jω
axis, some intersection points may be produced. The value
of the relay parameter b is selected from these intersection
points where the selected intersection point will be the one
with minimum real part. In this manner, the equivalent gain
of the relay will be maximum and then, the dynamics of the
global closed-loop system will be very close to the dynamics
associated to the zeros of Ga(s). In addition, as Fig. 12
shows, for any output power in stable or unstable mode for
ω ∈ [15400,∞) rad/s, by increasing ω, the real part of
LPRS, Re {J(ω)}, will decrease. Accordingly, the designer
should select a solution in this region with switching frequency
up to its maximum allowable value. For selecting the relay
parameter b, the LPRS curve of the Ga(s), is considered for
ω ∈ [1257,∞) rad/s with Po = 200 W. In Fig. 13, the LPRS
curve of the augmented plant with horizontal line is shown.
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Fig. 13: J(w) for the augmented plant, Ga(s), and Po = 200 W.

The zoom plot of Fig. 13 in the intersection point where
the relay parameter is b = 0.0760 and keq = 5.2174 · 103 is
shown in Fig. 14.
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Fig. 14: Zoom of Fig. 13 in the intersection point.

The solution gives ω = 775700 rad/s or equivalent fre-
quency f = 123.46 kHz2. Table I shows the comparison of the
output voltage ripples and switching frequencies with LPRS
solution technique and the non-linear model simulation results
of the following section. As it was expected [14], the LPRS
technique results are approximately very close to the practical
results even with the non-linear CPL model.

TABLE I: Fast sub-system frequency and ripple.

Ripple (V) f (kHz)
LPRS solution – 123.46

Non-linear CPL model 1.5 · 10−3 120.48

V. SIMULATION RESULTS

This section presents some numerical simulations that il-
lustrate the behavior of the closed-loop system under different
load values, Po, and input voltages, E. In the simulations3, the
closed-loop non-linear model of the plant is used. The output
voltage of the system, vo, for the parameters that are stated in
previous section with Po = 100 W is shown in Fig. 15 while
voref is the output voltage reference which is 24 V and voavg

is the average of the system output voltage ripple4. As it is
clear from this figure, the start up of the system is quite good
and without critical oscillations.

2It is worth to mention that, for the plant parameters, the natural frequency
of the converter LC filter is around fn = 739 Hz.

3In this work, Simulink/Matlab has been used to do all the numerical
simulations.

4In the figures that include the output voltage in this section, for more
clearness, the control signal u is not shown.
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Fig. 15: vo of the closed-loop system.

To make it easier to see the ripple amplitude and the
frequency of the output voltage, the zoom plot of the steady-
state region, with the scaled control signal u, is shown in
Fig. 16. This figure shows that the maximum amplitude of the
ripple is 2 mV and the average of the output voltage ripple
is very close to the output voltage reference even with the
non-linear model.
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Fig. 16: Zoom plot of the steady-state region in Fig. 15.

To go one step further and to investigate the effect of uncer-
tainties and disturbances on this system, the output voltage of
the closed-loop system with variations in the converter input
voltage, E, is shown in Fig. 17.
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Fig. 17: vo of the closed-loop system with changes in E.

This figure shows the output voltage, vo, due to the input
voltage, E, variations, changes its value in a step manner.
Besides, Fig. 17 shows the zoom plot of one of the variations,
when E changes from 48 V to 55 V. This zoom plot shows
that the maximum deviation in this change is around 0.55 V
and it takes only 1 ms to attenuate this disturbance and reach
the desired steady-state again.

The response of the closed-loop system with respect to the
load power, Po, changes is shown in Fig. 18. In this figure,
for more clearness, the zoom plot of one of the output voltage
variation while Po changes from 420 W to 810 W is shown.
This zoom plot shows that the maximum voltage deviation in
this change of the CPL power is approximately 1.8 V and it
takes only 1 ms to reach again its desired value.
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Fig. 18: vo of the closed-loop system with different loads (Po).

At a last test, disturbances in E and Po are applied simulta-
neously to the system. The response of the closed-loop system
while E and Po change is shown in Fig. 19.
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Fig. 19: vo of the closed-loop system when Po and E are changing.

In Fig. 19, yPFC , which is the output of the designed PFC,
is scaled 10 times. This figure shows that yPFC is negligible
in steady-state with respect to the plant output; moreover, the
output of the compensator is different from zero only when
the system is in a transient and in steady-state is equal to zero



due to the existence of a pure derivative in the compensator
K(s), so it works as we desired. The zoom plot in this figure
shows the voltage deviation when E changes from 57 V to
Time ∈ [0, 0.019] s and Po changes from 810 W to 250 W.
It is clear that the most important change in output voltage
occurs at time 0.065 s where Po has its biggest variation.

As a final simulation result, the effect of a band-limited
white noise in the feedback path of the closed-loop system
appears in Fig. 20. This figure shows the behavior of the output
voltage before and after applying the noise, with more than
4 V amplitude, at time 0.02 s. The zoom plot in Fig. 20, shows
the output voltage response for Time ∈ [0.015, 0.025] s with
and without the noise. The result shows the good ability of
the closed-loop system in attenuating the measurement noise.
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Fig. 20: vo of the closed-loop system with and without measurement
noise.

VI. CONCLUSION

Design procedure and simulation results in this work show
that using PFC and LPRS is a suitable technique for designing
relay controllers. The use of PFC allows to generate an
adequate augmented plant for the outer relay control loop.
In the studied case, this kind of control allows to enlarge
the range of output power with stable operation of the buck
converter in front of the open-loop case. Finally, the simulation
results with the non-linear model of the plant show that the
closed-loop system has a good performance even with input
voltage and output power disturbances.
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