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Abstract—This paper present two different approaches for
modelling a magnetically coupled multiport dc-dc converter.
First, from the magnetic coupling equations, the instantaneous
dynamic model is obtained. Secondly, a behavioural dynamic
model, based on averaging the power flowing among the ports,
is derived. Some numerical simulations compare the temporal
evolutions with the two obtained models.

Index Terms—Isolated multiport dc–dc converter, bidirec-
tional power flow, high-frequency transformer, magnetic analysis,
phase-shifted pulse width modulation.

I. INTRODUCTION

Magnetically coupled multiport dc-dc converters have re-
cently attracted the interest of researchers for those appli-
cations connecting different dc networks. Examples include
electric aircrafts [6], hybrid-electric vehicles [4], satellites
[12], energy management systems [14], dc grids [10], ...

The attractiveness of this topology is, among others, related
to the use of less components (because switching devices
and storage elements are shared) resulting in lower overall
mass and compact packaging, the power flow bidirectionality
in each port, and the galvanic isolation among different dc
networks thanks to the magnetic core. Usually the control of
these converters is achieved by means of a high frequency
square signal, where the control input is the phase-shift applied
to each port, and under some conditions soft-switching can be
achieved [11].

The particular case of dc-dc converters with two ports is
known as dual active bridge (DAB) and was firstly studied
in [2] [7]. For a multiport converters, several topologies have
been proposed. Fully electrically isolated configurations, with
a separate winding in each port, include single magnetic
core [1] [3], a derived delta-type model for three-winding
transformer [9], or dual-transformer topologies [5]. Other
schemes reduce the number of windings (and, consequently,
the size and weight), see [15]. In automotive applications,
due to safety considerations, the fully isolated scheme is the
preferred topology.

Usually, the design of control algorithms is based on a
behavioural model obtained from averaging the power flow
among different ports, and only few papers consider other ap-
proaches such as the generalized state-space averaging (GSSA)
technique, see example in [8]. As far as our knowledge, the

exact derivation of the behavioural model has not been com-
pletely reported in the literature assuming a periodic regime of
voltages and currents in the high frequency transformer. Thus,
this paper aims for developing two control-oriented models
for a multiport dc-dc converters. Two different approaches
are considered: i) a model obtained from the analysis of the
magnetic coupling and, then, applying the Kirchoff Laws, ii)
a model based on averaging the power flow among different
ports.

The paper is organised as follows: Section II shows the
basic scheme of the multiport dc-dc converter. The instanta-
neous model is developed in Section III, and the behavioural
model is detailed in Section IV. Section V include numerical
simulations comparing the two models. Finally, conclusions
are stated in Section VI.

II. THE MULTIPORT DC-DC CONVERTER

Fig. 1 shows the schematic of the magnetically coupled mul-
tiport dc-dc converter. It consists of a n-port high frequency
transformer with full-bridge converters, with a capacitor Ck
in their dc side, connected to each transformer winding.

III. INSTANTANEOUS MODEL

A. Model of a multiport magnetic coupling

Consider the multiport magnetic coupling shown in Fig. 2.
From the Faraday’s Law, the voltage across each k winding is

uk(t) =
dψk
dt

(1)

where ψk is the flux linkage, and k ∈ {1, 2, . . . , n}. The
number of coils in a winding, Nk, relates the flux linkage
with the magnetic flux, φk, as

ψk(t) = Nkφk(t), (2)

and combining (1) and (2), one gets

uk(t) = Nk
dφk
dt

. (3)

The magnetic flux at each winding is

φk(t) = φ(t) + φdk(t), (4)
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Fig. 1. Multiport dc-dc converter.
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Fig. 2. Multiport magnetic coupling

with

φdk =
Nk
Rdk

ik (5)

φ =

∑n
k=1Nkik
R

(6)

whereR andRdk are the magnetic reluctances of the magnetic
circuit and the magnetic leakage, respectively. Using (4)-(6) in
(3), one gets

uk(t) = Lk
dik
dt

+

n∑
l=1,l 6=k

Mkl
dil
dt
, (7)

where Lk = Mk + Ldk, Mk =
N2

k

R , Ldk =
N2

k

Rdk
, and Mkl =

Mlk = NkNl

R for k, l ∈ {1, 2, . . . , n} and k 6= l, are used.
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Fig. 3. Circuit scheme of a three-port transformer reduced to port k.

Finally, the magnetic coupling is represented in a compact
form by

M
di
dt

= u(t) (8)

where iT = (i1(t), . . . , in(t)), uT = (u1(t), . . . , un(t)), and

M =


L1 M12 . . . M1n

M12 L2 . . . M2n

...
...

. . .
...

M1n M2n . . . Ln

 . (9)

Remark 1: The transformer turn ratio of the k-th port with
respect to the l-th port is defined as

αkl =
Nl
Nk

, k, l ∈ {1, 2, . . . , n} , k 6= l. (10)

For the sake of simplicity, from now on, sometimes the time
(t) argument in the electrical variables is omitted.

B. Magnetic coupling, referred to port k

With the aim of simplifying the analysis, usually, transform-
ers are referred to one port. This is equivalent to define new
variables using the transformer ratio. Let us define the l-th
voltage and current referred to port k as

u
(k)
l =

Nl
Nk

ul = αklul, (11)

i
(k)
l =

Nk
Nl

il =
1

αkl
il, (12)

respectively. Then (7) results in

uk = Ldk
dik
dt

+Mk

n∑
l=1

di(k)l

dt
, (13)

u
(k)
l = L

(k)
dl

di(k)l

dt
+Mk

n∑
m=1

di(k)m

dt
, ∀l 6= k (14)

where L(k)
dl =

N2
k

N2
l
Ldl. Fig. 3 shows the circuit scheme of a

multiport magnetic coupling referred to port k.



C. Instantaneous model of a multiport dc-dc converter

The voltage applied to each k-winding of the magnetic
coupling is, according the Kirchhoff Voltage Law,

uk = vkβk − rkik (15)

where vk(t) is the voltage at the capacitor in the k-th port,
βk(t) are the control signals (that take the discrete values βk ∈
{1,−1}), and rk is a parasitic resistance associated to the
conduction losses of winding k.

On another hand, using the Kirchhoff Current Law, the
capacitor dynamics is given by

Ck
dvk
dt

= −ikβk + ipk (16)

where ipk(t) is the current injected at port k.
Combining (8), (15) and (16), the dynamics of the dc-dc

converter can be written in a compact form as,

M
di
dt

= −Ri+ β ◦ v (17)

C
dv
dt

= −β ◦ i+ ip (18)

where ◦ is the Hadamard (or entrywise) product, the resistor
and capacitor matrices are defined as R = diag(r1, . . . , rn)
and C = diag(C1, . . . , Cn), respectively, and the vectors vT =
(v1, . . . , vn), iTp = (ip1, . . . , ipn), βT = (β1, . . . , βn).

Usually, a square wave signal is used as a modulation,

βk = sign (sin (ω1t− θk)) (19)

where ω1 is the switching angular frequency (for control
purposes, all ports have the same value) and θk is the shift-
phase for the k-port that can be used as a control signal1.

IV. BEHAVIOURAL MODEL

In this section, a model based on the power flow among the
ports is considered. The model is obtained with the following
assumptions:

A1 The magnetising inductances and the parasitic conduction
losses are not considered (Mkl = ∞ and rk = 0 for
k, l ∈ {1, 2, . . . , n}, k 6= l).

A2 The power transfer dynamics in the transformer is several
orders of magnitude faster than the dynamics of the full
converter (fixed by the values of the dc bus capacitors
of the full-bridge converters). Thus, the power transfer
in the high frequency transformer can be considered
instantaneous and it can be modelled algebraically.

A3 Modulation signals, βk(t), are as in (19).

Under Assumptions A1 and A2, the dc bus voltages of the
full-bridge converters can be assumed constant, i.e. vk(t) =
Vk, k ∈ {1, 2, . . . , n}, and the full bridge operation generates

1θk = 2πα where α ∈ [− 1
2
, 1
2
].
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Fig. 4. Simplified circuit scheme (assuming Mk = ∞) of a three-port
transformer reduced to port k.

periodic bipolar symmetric square wave voltages2 of constant
amplitude, duty ratio equal to 0.5 and phase shift θk. That is

uk(t) = Vk sign(sin(ω1t− θk)) (20)

where ω1 = 2π
T is the fundamental frequency of the periodic

voltages and currents in the transformer.
Notice that the voltages uk(t) at the transformer windings

are square signals with zero mean and the control variables
of the converter are, then, the relative phases between the
voltages. The currents at the windings ik(t) have also zero
mean. It is worth to remark that the power transfer in the
transformer is done at the fundamental frequency of the
voltage signals and their harmonics.

A. Power flow analysis at a given port k

Fig. 4 represents a multiport magnetic coupling referred to
any port k, when applying the modulation signals (19) and
the magnetising inductances are disregarded. Under a periodic
regime, with (20), the Fourier series development of voltages
in a multiport coupling is

uk(t) =

∞∑
h=−∞

ck,he
jhω1t (21)

u
(k)
l (t) =

∞∑
h=−∞

c
(k)
l,h e

jhω1t (22)

where h ∈ Z, and

ck,h =

{
−j 2Vk

hπ e
−jhθk , h mod 2 6= 0

0, h mod 2 = 0
(23)

c
(k)
l,h =

{
−j 2(Vl/αkl)

hπ e−jhθl , h mod 2 6= 0

0, h mod 2 = 0
(24)

2These signals fulfil the property uk(t) = −uk(t+ T
2
), ∀t, with T being

the fundamental period of the signal. This property is equivalent to have, in
their Fourier series developments, null harmonic content in the even harmonics
including the zero one.



Using the Rosen’s Theorem [13], the nodal network in
Fig. 4, is transformed into a meshed one where the linking
inductance between port k and any l-th port is given by

L
(k)
kl = LdkL

(k)
dl

n∑
m=1

1

L
(k)
dm

, (25)

and the (virtual) current flowing between ports k and l is

ikl(t) =

∞∑
h=−∞

dkl,he
jhω1t (26)

where

dkl,h =
ck,h − c(k)l,h

jhω1L
(k)
kl

. (27)

The total averaged (active) power injected from port k, is

Pk =

n∑
l=1,l 6=k

Pkl, (28)

where3

Pkl =
1

T

∫ t

t−T
uk(τ) ikl(τ) dτ. (29)

Using (21) and (26)

Pkl = ck,0dkl,0 + 2 Re

{ ∞∑
h=1

ck,h dkl,h

}
(30)

that can be written as

Pkl =− j2VkVl

αklπ2ω1L
(k)
kl

(
Li3(ejδkl)− Li3(−ejδkl)

−Li3(e−jδkl) + Li3(−e−jδkl)
)

(31)

where δkl = θl − θk and Lia(z) =
∑∞
r=1

zr

ra is the polylog-
arithm function. Fig. 5 shows graphically, in red, the relation
among Pkl and δkl for δkl ∈ [−π, π] that is equivalent to a
temporal delay [−T2 ,

T
2 ] between the voltages at the ports.

Developing the transferred power Pkl in series around δkl =
0 results in

Pkl =
VkVl

αklω1L
(k)
kl

(
δkl −

sign(δkl)δ
2
kl

π

)
+O(δMkl ). (32)

It is worth to remark that the order M can be anyone and that
the agreement between

P approx
kl =

VkVl

αklω1L
(k)
kl

(
δkl −

sign(δkl)δ
2
kl

π

)
=

VkVl

αklω1L
(k)
kl

δkl

(
1− |δkl|

π

)
(33)

and Pkl in (31) is perfect in the interval δkl ∈ [−π, π], see Fig.
5. Equation (33) is the usually stated in the previous literature,
e.g. [7]. Finally, the total power transferred to port k results
in

Pk =
Vk
ω1

n∑
l=1,l 6=k

Vl

αklL
(k)
kl

δkl

(
1− |δkl|

π

)
. (34)

3 a means the conjugate of the complex number a.

Fig. 5. Power transferred from ports l to k, Pkl, with respect to δkl. Exact
relationship, eq. (31), in red, and approximation, eq. (33), in blue. The used
parameters are Vk = 100 V, Vl = 100 V, ω1 = 2π40.0e3 rad/s, Lkl =
1.0e− 3 H and αkl = 1.

B. On the approximations of f(x) = x
(

1− |x|π
)

This section discusses some approximations of f(x) =

x
(

1− |x|π
)

in order to eliminate the absolute value and obtain
a simpler formulation to include it in the dynamic equations
of the converter. Specifically, f(x) is derivable at x = 0 but
it is only C1. Two possible approximations are

fa(x) =
π

4
sin(x) (35)

fb(x) =
π/4

tanh(aπ2 )
tanh(ax). (36)

Approximation (35) is the most used in the literature, see
example in [6], with a maximum absolute of 4.4% that occurs
at x = ±0.471972 rad. With this approximation the power
transfer between ports k and l is

P a1
kl =

VkVlπ

4αklω1L
(k)
kl

sin(δkl). (37)

It is worth to note that this value is different from the one
obtained taken into account only the fundamental components
of square voltages in Equation (20). In this last case, the power
transfer between ports k and l is

P a2
kl =

8VkVl

π2αkl ω1L
(k)
kl

sin(δkl). (38)

Note that P a2
kl

P a1
kl

= 32
π3 = 1.03205.

On another hand, function (36) approximates better, for
a = 1.1 the maximum absolute error is 1.66% and it occurs
at x = ±1.234 rad, but is more complicated. See functions
f(x), fa(x) and fb(x) in Fig. 6.

C. Multiport dc-dc converter

Similarly than Section III-C, the voltage at each port is given
by the Kirchhoff Current Law and the capacitor dynamics,

Ck
dvk
dt

= ipk −
1

vk
Pk. (39)



Fig. 6. f(x) (red), fa(x) (blue) and fb(x) (green) vs x ∈ [−π
2
, π
2
].

Finally, using (34), the voltage behaviour of each port can be
modelled as

Ck
dvk
dt

= ipk −
1

ω1

n∑
l=1,l 6=k

vl

αklL
(k)
kl

δkl

(
1− |δkl|

π

)
. (40)

V. COMPARATIVE SIMULATIONS: A THREE-PORT
CONVERTER

Let us consider a three dc bus system: a high voltage dc bus
(nominal voltage 400 V) and two low voltage buses (nominal
voltages 48 V and 12 V), with the parameters defined in Table
I.

TABLE I
PARAMETERS OF THE SIMULATED THREE-PORT CONVERTER.

E1 400 V ω1 2π 40.0e3 rad/s
C2 600 µF C3 200 µF
α12 0.12 Ld1 16.8 µH
α23 0.25 Ld2 0.994 µH
α13 0.03 Ld3 0.5 µH
M1 280 µH M12 336 µH
M2 40.32 µH M13 84 µH
M3 2.52 µH M23 10.08 µH

The voltage at the high voltage bus is assumed constant,
E1 = 400 V, (mainly, due to the usual high capacity battery
in these buses) and the two other buses have several loads
connected to them. Let us assume that two resistive loads
(R2, R3) and two CPLs (Pp2, Pp3) are connected to the low
voltage buses (48 V and 12 V), i.e.,

ip2(t) = −v2(t)

R2
− Pp2
v2(t)

(41)

ip3(t) = −v3(t)

R3
− Pp3
v3(t)

. (42)

The modulation strategy is as in (19) setting θ1 = 0.
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Fig. 7. Simulation results: Port voltages obtained from the instantaneous
model (blue) and the behavioural model (red).

The model corresponding to the instantaneous behaviour
obtained in Section III is

L1
di1
dt

+M12
di2
dt

+M13
di3
dt

= E1β1 − r1i1 (43)

M12
di1
dt

+ L2
di2
dt

+M23
di3
dt

= v2β2 − r2i2 (44)

M13
di1
dt

+M23
di2
dt

+ L3
di3
dt

= v3β3 − r3i3 (45)

C2
dv2
dt

= −i2β2 −
v2
R2
− Pp2

v2
(46)

C3
dv3
dt

= −i3β3 −
v3
R3
− Pp3

v3
(47)

with

β1 = sign(sin(ω1t)) (48)
β2 = sign(sin(ω1t− θ2)) (49)
β3 = sign(sin(ω1t− θ3)). (50)

On another hand, from the analysis in Section IV, the
behavioural model results in

C2
dv2
dt

= − v2
R2
− Pp2

v2
+

E1

α21ω1L
(2)
21

θ2

(
1− |θ2|

π

)
− v3

α23ω1L
(2)
23

(θ3 − θ2)

(
1− |θ3 − θ2|

π

)
(51)

C3
dv3
dt

= − v3
R3
− Pp3

v3
+

E1

α31ω1L
(3)
31

θ3

(
1− |θ3|

π

)
+

v2

α32ω1L
(3)
32

(θ3 − θ2)

(
1− |θ3 − θ2|

π

)
. (52)

Simulation tests using both models are performed using
Matlab/Simulink. The test where: P2 = P3 = 0, R2 = 0.75 Ω,
R3 = 0.3 Ω, θ2 = 25◦ and θ3 = 30◦, with initial conditions:
i2(0) = i3(0) = 0 A, v2(0) = 35 V and v3(0) = 10 V. For
a fair comparison, parasitic resistances r2, r3 are neglected in
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Fig. 8. Simulation results: Port injected power obtained from the instanta-
neous model (blue) and the behavioural model (red).
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Fig. 9. Simulation results: Port voltages obtained from the instantaneous
model (blue) and the behavioural model (red).

the instantaneous model. Fig. 7 and 8 show the voltages and
powers, respectively.

A second test is performed starting at the final conditions of
the previous test and changing the phase angles to θ2 = 27.5◦,
θ3 = 35◦ at t = 1 ms and t = 4 ms, respectively. Figures 9 and
10 show how the behaviour of model (51)-(52) approximates
the one obtained with (43)-(47) for different values.

As expected, the behavioural model closely represents the
averaged values (in red), while the model presented in Section
III contains the switching behaviour. Some discrepancies are
observed, specially in the power behaviour (Fig. 8 and 10)
due to the assumptions done in Section IV. Is worth to
mention that more differences are observed when the neglected
effects (mainly parasitic resistances) are considered in the
instantaneous model.

VI. CONCLUSIONS

Two different models for a magnetically coupled multiport
dc-dc converter are presented: an instantaneous model ob-
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Fig. 10. Simulation results: Port injected power obtained from the instanta-
neous model (blue) and the behavioural model (red).

tained from the analysis of the magnetic coupling, and an
averaged model based on the power flow among the ports.
In all cases, the models are generalized for n ports. In
addition, conditions on the approximations used to derive the
behavioural model are also discussed.
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