
1Scientific RepoRtS |         (2019) 9:20232  | https://doi.org/10.1038/s41598-019-56588-4

www.nature.com/scientificreports

chest Movement and Respiratory 
Volume both contribute to thoracic 
Bioimpedance during Loaded 
Breathing
Dolores Blanco-Almazán  1,2,3*, Willemijn Groenendaal4, Francky catthoor5,6 &  
Raimon Jané  1,2,3

Bioimpedance has been widely studied as alternative to respiratory monitoring methods because of 
its linear relationship with respiratory volume during normal breathing. However, other body tissues 
and fluids contribute to the bioimpedance measurement. The objective of this study is to investigate 
the relevance of chest movement in thoracic bioimpedance contributions to evaluate the applicability 
of bioimpedance for respiratory monitoring. We measured airflow, bioimpedance at four electrode 
configurations and thoracic accelerometer data in 10 healthy subjects during inspiratory loading. This 
protocol permitted us to study the contributions during different levels of inspiratory muscle activity. 
We used chest movement and volume signals to characterize the bioimpedance signal using linear 
mixed-effect models and neural networks for each subject and level of muscle activity. The performance 
was evaluated using the Mean Average percentage errors for each respiratory cycle. the lowest errors 
corresponded to the combination of chest movement and volume for both linear models and neural 
networks. Particularly, neural networks presented lower errors (median below 4.29%). At high levels 
of muscle activity, the differences in model performance indicated an increased contribution of chest 
movement to the bioimpedance signal. Accordingly, chest movement contributed substantially to 
bioimpedance measurement and more notably at high muscle activity levels.

Respiratory diseases are diagnosed and monitored by measuring the patients’ pulmonary function. Spirometry is 
the main test for assessing many respiratory diseases such as asthma or chronic obstructive pulmonary disease1. 
Spirometry requires the use of facemasks or mouthpieces2 which usually are obtrusive and uncomfortable for the 
patients. In addition, this equipment could modify their breathing3. Lately less invasive methods are investigated 
as an alternative to classical methods to provide a continuous monitoring although more evidence for clinical 
application is needed4. One of these alternatives is thoracic bioimpedance which measures impedance changes 
over time. Thoracic bioimpedance has been widely studied as a non-invasive technique for measuring respira-
tion, and several studies have shown a linear relationship with respiratory volume5–11. However, not only airflow 
contributes to the measured thoracic bioimpedance measurement, but it is a combination of the impedance of 
several body tissues, organs and fluids in this zone. Defining how all thoracic components contribute to the meas-
urement is unclear. Modeling all these components as an electronic circuit can be difficult. Alternatively, previous 
studies presented computer simulations of these contributions in finite element human thorax models12–14. These 
simulations studied different electrode locations and showed that electrodes positioned around the middle of the 
thorax reflect changes in bioimpedance of the lungs12.

Early studies included animal testing to explain other changes in thoracic bioimpedance than the changes 
resulting from respiratory volume. These studies analyzed the relationship of bioimpedance relationship with 
respiratory volume and thoracic diameter15,16. Baker et al. showed that thoracic circumference or diaphragm 
displacement produced components of bioimpedance that combine linearly for normal volumes and probably 
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nonlinearly for extreme conditions15. In addition, recent studies indicated that during abnormal breathing the 
relation between bioimpedance and volume appeared non-linear8,10. This apparent non-linearity could be caused 
by the contribution of other components to the bioimpedance measurement. Thus, thoracic bioimpedance 
changes seem to be a combination of volume and other thoracic changes but both the ratio and how these contri-
butions change over different breathing types are unclear.

Inspiratory threshold loading enables the study of inspiratory muscle function and was used previously in 
respiratory studies17–20. Imposing inspiratory loads requires increased breathing pressure and are associated with 
breathing pattern changes and diaphragm fatigue17,18. In previous studies, we studied the relationship between 
bioimpedance and respiratory volume during inspiratory loaded breathing11,21. The analysis of the temporal rela-
tion between the signals revealed delays when loads were imposed21. These differences in time could be related 
to differences in thoracic breathing movement and displacement as a result of the increase of the breathing effort 
and changes in breathing pattern.

The aim of the current study is to investigate the relevance of respiratory volume and chest movement contri-
butions, represented by a spirometer and an accelerometer respectively, to thoracic bioimpedance measurement. 
Therefore, the objective is to have more knowledge about thoracic bioimpedance changes and its relation with 
breathing movement and respiratory volume. The combination of accelerometer and bioimpedance measure-
ments has been used before, however, these studies used the combination for motion aritifact removal22,23. These 
studies did not examine the relationship between these signals. We hypothesized that bioimpedance changes are a 
combination of breathing movement and airflow and that these contributions can change as a function of muscle 
force used for breathing. Consequently, we measured airflow, thoracic bioimpedance and accelerometer data to 
study the relation of thoracic bioimpedance with volume and chest motion. This relation was studied though lin-
ear mixed-effect models and neural networks by reconstructing bioimpedance signals for different levels of mus-
cle activity as a result of an inspiratory threshold loading protocol. Therefore, the novelty of our study compared 
to both the literature and our own earlier work is the inclusion of chest movement in the analysis of bioimpedance 
changes during loaded breathing. The conclusive results of this study will contribute to better understand of tho-
racic bioimpedance signal and to reinforce its application for non-invasive respiratory monitoring.

Methods
Subjects. The study included ten healthy non-smoker subjects (4 females) of age 24–37 years (mean 30.5) and 
body mass index 19.5–26.8 kg m−2 (mean 23.1). None reported any respiratory disease.

ethical approval. The research was approved by the Institutional Review Board of the Institute of 
Bioengineering of Catalonia and followed the World Medical Association’s Declaration of Helsinki on Ethical 
Principles for Medical Research Involving Human Subjects. The subjects were informed about the measurements 
and protocol procedure and provided their informed consent before participation.

Respiratory protocol. The study consisted of performing an incremental inspiratory threshold loading pro-
tocol during physiological signal measurements. During this kind of protocol, inspiratory loads are imposed to 
the subjects who need to increase the pressure to breath completely. The subjects wore a nose clip to prevent nasal 
breathing and were comfortably seated in upright position during the measurements.

The inspiratory threshold loading protocol used in the presented study consisted of imposing five incremental 
inspiratory threshold loads to the subjects while breathing. The inspiratory threshold values were increasing per-
centage values from each subject’s maximal static inspiratory pressure (MIP) from functional residual capacity. 
The MIP was obtained from each subject by performing a maximal volitional manoeuvre24. After the maximal 
manoeuvre, the subjects’ quiet breathing (QB) was recorded for 2 minutes and after that, the subjects breathed 
while inspiratory loads were imposed. The five load thresholds were progressively selected from 12% to 60% of 
the subject’s MIP (L1, L2, L3, L4 and L5). Each load included 30 breaths and was followed by a resting period to 
return to baseline (Fig. 1a).

The MIP maneuver and inspiratory loads were imposed using a class 1 medical inspiratory muscle trainer 
(POWERbreathe KH2, POWERbreathe International Ltd, Southam, UK)25. The device controlled electronically 
the threshold resistances imposed to the subjects.

Measurements. The physiological data were acquired by a wearable research prototype device (Stichting 
imec The Netherlands) and a standard wired acquisition system (MP150, Biopac Systems, Inc. Goleta, CA, USA).

Bioimpedance was measured at four tetrapolar electrode configurations simultaneously using the wearable 
device. The device measures isolated bioimpedance values from the four configurations by switching the current 
injection and the voltage measurement (MUSEIC v1 chip, Stichting imec The Netherlands)26. The four electrode 
configurations were previously presented11 and are represented in Fig. 1b. The electrodes configurations were 
symmetric from the midsternal. Configuration #1 was horizontal, the injecting current electrodes were placed at 
7 cm from the axillas on the midaxillary lines and the voltage electrodes were at 5 cm away from the injecting ones 
closer to the midsternal line. Configurations #2, #3 and #4 were verticals and all the electrodes were placed on the 
midaxillary lines. The electrodes of configurations #2 and #3 were separated 5 cm but electrodes of configuration 
#3 were on a upper zone. Configuration #4 covered a broader zone because the electrodes were separated 10 cm. 
For all the vertical configurations, the voltage electrodes were the lower ones. We included four electrode config-
urations to evaluate if the differences in geometry and distances were relevant to our analysis. The amplitude of 
the injection current was 110 μA at 80 kHz.

Respiratory airflow and accelerometer data were recorded using the Biopac wired acquisition system. 
Airflow was acquired with Biopac transducer (pneumotach transducer TSD107B, Biopac Systems, Inc.). The 
airflow transducer were connected to a differential amplifier which amplified 1000 times and low-pass filtered 
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(fc = 300 Hz) the signal. Disposable mouth pieces with bacterial filters were attached to the pneumotach and the 
subjects breathed through them.

Accelerometer data was measured with a tri-axial accelerometer (TSD109C2, Biopac Systems, Inc.) connected 
to its associated interface (HLT100C, Biopac Systems, Inc.). The accelerometer was placed on the subjects’ skin 
with adhesive rings close to the lower bioimpedance electrodes (Fig. 1b), approximately over the anterior axillary 
line and along the seventh or eighth intercostal spaces27. The location was selected to measure the movement of 
approximately the same area covered by thoracic bioimpedance measurement.

Electrocardiogram (ECG) was recorded across the wearable device and the wired Biopac system (ECG100C, 
Biopac Systems, Inc.) and was used to synchronize the signals from both systems.

The signals acquired by Biopac amplifiers were A/D converted by Biopac MP150 system with a sampling rate 
of 10 kHz. The wearable device acquired the bioimpedance and ECG signals at sampling rates of 16 Hz and 512 Hz 
respectively.

Stress test Ag/AgCl electrodes (EL501, Biopac Systems, Inc.) were used in bioimpedance and ECG 
measurements.

Signal processing. Signals synchronization. The signals from the systems were synchronized using the 
ECG signals. The delays between systems were computed as the lag that maximizes the cross-correlation of the 
ECG signals and subsequently they were corrected in the signals.

Signal filtering. The four bioimpedance channels were high-pass filtered to reduce the baseline oscillations 
(zero-phase 4th order Butterworth, fc = 0.05 Hz). The sampling frequency was increased from 16 Hz to 200 Hz by 
cubic interpolation to improve the time resolution.

Accelerometer and airflow signals were low-pass filtered to avoid aliasing (8th order Chebyshev Type I, 
fc = 80 Hz) and resampled from 10 kHz to 200 Hz. The accelerometer data, denoted as acc, was measured by 
a tri-axial accelerometer and consisted of three signals corresponding to the acceleration in the three spatial 
directions (accX, accY and accZ) related to the sensor axes. The accelerometer orientation was the same for all the 
subjects, hence, the axes approximately represent the same spatial direction over subjects. Airflow signal was 
low-pass filtered (zero-phase 4th order Butterworth, fc = 5 Hz) to remove the high frequency content not related 
to the breathing. The respiratory volume were computed by trapezoidal numerical integration of the low-pass 
filtered airflow signal.

Bioimpedance, acc and volume signals were low-pass filtered (zero-phase 4th order Butterworth, fc = 1 Hz) and 
high-pass filtered (zero-phase 4th order Butterworth, fc = 0.05 Hz) to get the respiratory information. The acc 
signals filtered in this low frequency range provide information of the surface chest motion, denoted as accCM, and 
particularly for each accelerometer axis denoted as accCMX

, accCMY
, and accCMZ

. For simplicity we are going to use 
accCM notation for the three accelerometer signals related to chest movement. The signals were normalized in the 
range of [−1, 1] for each subject.

Muscle force estimation. Surface mechanomyography measured by accelerometers on the chest wall over the 
lower intercostal spaces (sMMGlic) has been suggested to be able to provide a noninvasive index of inspiratory 
muscle force. We computed this index from our accelerometer signals based on the study of Lozano-García et 
al.20. Consequently, the acc signals were low-pass filtered (zero-phase 4th order Butterworth, fc = 35 Hz) and 
high-pass filtered (zero-phase 4th order Butterworth, fc = 5 Hz) to get information of the muscle fibre vibration 

Figure 1. Sensors location and protocol description of the presented study. (a) The respiratory protocol 
includes three steps: MIP manuever24, recording of quiet breathing (QB) during 2 min and loaded breathing. 
The loaded breathing consisted of thirty breaths while an inspiratory threshold load was imposed (progressively 
selected from 12% to 60% of the subject’s MIP) (b) Representation of the four tetra-polar electrode 
configurations and accelerometer locations. The electrode configurations were symmetric from the midsternal 
line. #1, #2, #3 and #4 denote the electrode configurations where the used electrodes are highlighted, I refers 
to the injecting electrodes and V to the voltage measurement electrodes. The accelerometer was placed on the 
subjects’ skin approximately over the anterior axillary line and along the seventh or eighth intercostal space.
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(sMMGlic). Note that we used the data from the same accelerometer but the bandwidth used in the muscle force 
estimation is different from the chest movement one. We got the total acceleration of the muscle fibre vibration 
(|sMMGlic|) by computing the Euclidan norm of the three signals. The envelope of the resulting signal was com-
puted as the root mean squared (RMS) values in windows of 750 ms and 90% of overlap20. We computed the 
muscle force estimation as the mean value of the RMS |sMMGlic| cycle by cycle.

Respiratory cycles selection. All the signals were fragmented in respiratory cycles using a thresholding algorithm 
applied to the airflow signal28. The respiratory cycles that were affected by artefacts were rejected. We determined 
the rejected cycles as the cycles which the |sMMGlic| maximum value was higher or lower than three times the 
scaled median absolute deviation of the cycle maximum values of each subject and load. Only 98 respiratory 
cycles were rejected (5.35% of the total).

contribution analysis to thoracic bioimpedance. We studied the relevance of volume and chest move-
ment contributions to the measured bioimpedance signal using linear mixed-effect models and neural networks 
(Fig. 2). The objective of our work was to understand the changes of the bioimpedance signal at different levels of 
muscle force. At this stage our aim was not to be able to predict the signal. Therefore, the current focus was not yet 
on finding the best machine learning technique to predict bioimpedance and we used all the data for computing 
the linear mixed-effect models and neural networks. Still, we also want to evaluate whether the linearity assump-
tion in linear mixed-effect models is appropriated for the context of our study.

Muscle force segmentation. We segmented each subject’s signals into twelve different levels of muscle force esti-
mation to study if changes in muscle activity alter bioimpedance signals. The intention of segmenting the data 
was to study the contributions of homogeneous cycles in terms of muscle force. We tested different number of 
segmentations and dividing in twelve levels permitted to have a proper resolution in muscle force estimation and 
sufficient samples to compute the linear models and neural networks. The levels were selected by proportional 
quantiles of the muscle force values computed for each subject, specifically, the quantiles used as threshold for the 
segmentations were: 0.08, 0.17, 0.25, 0.33, 0.42, 0.50, 0.67, 0.75, 0.83 and 0.92. In this way we got approximately 
the same number of cycles and samples per each segment of the data (~11 000 samples corresponding to 55 s). 
Thus, around 130 000 samples (650 s) were used to compute the linear models and 11 000 for each neural network.

Linear models. Linear mixed-effect models were computed using the accCM or volume signals as predictor vari-
ables, and bioimpedance as response variable (Fig. 2a). These models are an extension of linear regressions which 
allow the use of longitudinal, multilevel and non-independent data. The level of muscle force was used as group-
ing variable to adapt the model coefficients to different levels of muscle activity. Three different linear models were 
computed for each subject and electrode configuration by changing the predictor variables (accCM signals, volume 
or both types). We fitted the linear models using the maximum likelihood estimation.

Neural networks. The neural network analysis was included to examine the non-linear relation between bioim-
pedance and accCM signals or volume (Fig. 2b). Along the same lines as linear models we computed three different 
feedforward neural networks for each subject, level of muscle force and electrode configuration by changing the 
networks inputs: accCM signals, volume or both types. Thus, the input sizes were three, one and four, respectively. 

Figure 2. Contribution analysis for each subject and electrode configuration. (a) Linear mixed-effect models 
were used to evaluate linear characterization of bioimpedance. Three different models were computed by 
changing the predictor variables: accCM, volume and both volume and accCM. (b) Feedforward neural networks 
(FNN) were used to evaluate non-linear characterization of bioimpedance. Three combinations of inputs 
were used: accCM, volume and both volume and accCM. We computed one FNN for each level of muscle force 
estimation. In this figure, BioZ is used as contraction of bioimpedance term.
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The neural networks had one hidden layer of 10 units with hyperbolic tangent sigmoid transfer function. The 
output of the neural networks was one unit corresponding to the bioimpedance signal and its unit transfer func-
tion was linear. We used all the data for training and validation (85% and 15% of the samples randomly chosen, 
respectively) and none for testing. The training algorithm was Levenberg-Marquardt backpropagation.

Statistical analysis. The mean absolute percentage error (MAPE) was used to measure the performance of the 
linear models and neural networks. The MAPE values were computed between the bioimpedance signals and the 
output of the linear models and neural networks. The fitted bioimpedance signals were obtained with the same 
data we used to compute and train the linear mixed-effect models and neural networks to evaluate the adjustment 
of the data. The MAPE values were calculated cycle by cycle related to the peak-to-peak bioimpedance amplitude 
of the cycle as follows,
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where Z n[ ]i  and Z n[ ]i  are the true and the fitted bioimpedance signals during the cycle i, N is the number of sam-
ples and Z n[ ]i

PP  the bioimpedance peak-to-peak amplitude of the cycle i. The main analysis was done with MAPE 
to quantify the errors related to the amplitude of each cycle. In that way, we prevented the error from varying due 
to changes in signal amplitude.

Root mean squared errors (RMSE) were also calculated to evaluate the performance of the different tech-
niques using an absolute measure.

The signal processing and data analysis were developed in MATLAB environment (v. R2018a, Natick, MA, 
USA).

Results
Bioimpedance, volume and accelerometer data were acquired in ten healthy subjects during an incremental 
inspiratory threshold protocol. We studied bioimpedance signals by reconstructing it through linear mixed-effect 
models and neural networks with volume and/or accelerometer signals. The performance was evaluated by the 
MAPE values obtained from the linear models and neural networks.

Waveform changes during inspiratory loading. The signals used in the presented study are represented 
in Fig. 3 for all loads for subject 2 (S02). The signals of S02 showed large changes during the imposed loads, which 

Figure 3. Temporal representation of the signals used in the study: muscle force level, four electrode 
configuration of bioimpedance, respiratory volume and accCM. The muscle force level is represented in quantiles 
of all subject’s values. The other signals were normalized to be in the range of [−1, 1]. #1, #2, #3 and #4 denote 
the electrode configurations (Fig. 1b). X, Y and Z are the three spatial signals of accCM. QB, L1, L2, L3, L4 and L5 
denote the imposed threshold inspiratory loads. The signals corresponded to subject 2, who illustrated better 
the bioimpedance changes when the level of estimated muscle force increased.
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illustrate the waveform changes of the bioimpedance signal clearly. Firstly, Fig. 3 shows the increase of muscle 
force estimation level (RMS |sMMGlic|) over the loads, from 0.08 in QB to 0.92 in the highest load. The units 
shown in the muscle force representation are the corresponding quantile values. When high loads were imposed 
to S02, bioimpedance signal exhibited changes in waveform and temporal behaviour in all the configurations. 
Apart from the amplitude changes, bioimpedance signal showed waveform changes like the appearance of high 
frequency content during the highest inspiratory loads. In the temporal point of view, the configurations were no 
longer in phase, like configurations #1 and #3. The three accCM signals changed during the loads in a very similar 
way as bioimpedance waveform. The appearance of the high frequency content that is visible in the bioimpedance 
signal can also be observed clearly in the Z component. In contrast, volume waveform did not change, but the 
subjects inhaled more air when the loads were imposed. In short, Fig. 3 exhibits clear changes in the signals under 
study when the inspiratory loads were imposed and were more notable when load increased.

Models performance. Volume and chest movement combinations to characterize thoracic bioimped-
ance. The MAPE values were computed for each respiratory cycle and all the linear models and neural net-
works. Figure 4 shows the MAPE values distribution of all subjects’ cycles for the different inputs combinations 
corresponding to electrode configuration 4. Only accCM signals as inputs resulted in higher MAPE values than 
only volume or both accCM and volume inputs. Notice that for linear models the median of the error values were 
lower than 9.05% when only volume were used, 16.01% when accCM signals were used, and 6.31% in case of both 
signals. However, neural networks clearly presented lower errors, being the median of the MAPE 9.49% when 
accCM signals were used, 8.67% when only were used and 3.02% in case of both signals. Therefore, in both meth-
ods when volume and accCM signals were used as inputs, the median of MAPE values were always lower than 
using only volume. Consequently, both linear models and neural networks showed the lowest errors when volume 
and accCM signals were used.

The MAPE values from the linear models and neural networks are shown in Fig. 5 when only volume and both 
volume and accCM were used. Figure 5 depicts the better performance of neural networks when the inputs of the 
networks included volume and accCM signals. For the neural networks using both signals as inputs, the MAPE val-
ues remained approximately constant over the different muscle force levels and the median below 4.29% whereas 
the other models gave higher errors during low and high activity.

The target and fitted bioimpedance signals are shown in Fig. 6 for S02. These examples correspond to 10 sec-
onds of four different data segments, 8%, 42%, 75% and 100% percentile of muscle force estimation. We observed 
better adjustment between the target and the fitted signals when the techniques used accCM and volume as inputs. 
The best adjustment was observed for the outputs of the neural networks accordingly to the error results. Note 
that the adjustment improvement is more notable at high muscle activity (75% or 100% percentile).

Electrode configurations. The performances of the four electrode configurations were similar as Fig. 5 shows. 
In addition, RMSE values of the entire signals are shown in Fig. 7 for the four configurations. These errors were 

Figure 4. Mean Absolute Percentage Errors between bioimpedance and the fitted bioimpedance for different 
levels of muscle force estimation. MAPE values from the resulting outputs of (a) linear models and (b) neural 
networks. The errors correspond to the different inputs combinations: accCM, volume, and volume and accCM. 
The MAPE values are from electrode configuration #4 which electrodes were the most separated and covered a 
broader zone.
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Figure 5. Median values of the Mean Absolute Percentage Errors between bioimpedance and the fitted 
bioimpedance for different levels of muscle force estimation. The medians values were computed using the 
resulting outputs of (a) linear models and (b) neural networks. The errors correspond to the different inputs 
combinations: accCM, volume, and volume and accCM. The four electrode configurations are represented, #1, #2, 
#3 and #4 (Fig. 1b).

Figure 6. Bioimpedance signal and its corresponding fitted bioimpedance signal examples for 8%, 42%, 75% 
and 100% of muscle force level. The fitted signals examples were obtained from (a) the linear models and (b) the 
neural networks. The examples corresponded to subject 2 and electrode configuration #4 which electrodes were 
the most separated and covered a broader zone.
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computed from each subject’s bioimpedance and the corresponding fitted signals when volume and accCM signals 
were used together as inputs. The signals range was [−1, 1] because bioimpedance were normalized in that range. 
Note that RMSE values were lower for the neural networks than for the linear models which is the same as we 
observed in MAPE values. All four configurations presented RMSE values approximately in the same range but 
for neural networks, the median RMSE of configuration 1 was lower than the other configurations.

Discussion
The objective of the study was to examine the relevance of respiratory volume and chest movement contributions 
to thoracic bioimpedance. Thoracic bioimpedance and respiratory volume were compared in several studies5–11, 
but most of these studies were under normal breathing. Therefore, our aim was to better understand thoracic 
bioimpedance changes in relation with both volume and breathing movement under restrictive breathing to 
support its use for healthcare respiratory monitoring. Hereto, bioimpedance from four electrode configurations, 
respiratory airflow and accelerometer data were measured in ten healthy subjects during an inspiratory threshold 
loading protocol. This protocol allowed us to analyse the impact of these contributions during changes in breath-
ing pattern and muscle force. We reconstructed the bioimpedance signals from volume, chest movement and the 
combination of both using linear mixed-effect models and neural networks. The comparison between the actual 
and the fitted bioimpedance signals permitted to evaluate the relevance of the volume and chest movement con-
tributions. The main novelty is the inclusion of chest movement in the characterization of thoracic bioimpedance 
measurement for different levels of muscle force.

The performance of the techniques was measured with the MAPE computed for each cycle. Lower errors were 
obtained when the linear models and neural networks were computed using the volume and accCM signals (Figs. 4 
and 5). In linear models when only volume was used, the median of the MAPE were below 9.08% whereas in neu-
ral networks the median of values were below 8.74%. On the other hand, when the accCM signals were added to the 
models the median of the MAPE were below 7.94% for linear models and 4.29% for neural networks. Therefore, 
the MAPE values obtained from both techniques were good and improved when accCM signals were included. 
These results exhibited that linear models could be used to approximate the contributions of volume and chest 
movement to thoracic bioimpedance but neural networks described the relation even better. On the other hand, 
the median errors with only volume were lower than the ones when only accCM signals were used in linear models 
and neural networks for all muscle force levels (Fig. 4). Therefore, the contribution of volume was crucial for a 
good explanation of bioimpedance changes.

The relationship between bioimpedance and respiratory volume was studied previously and a linear rela-
tion between them was reported5–11. Focusing only on the relationship between bioimpedance and volume, we 
observed in Figs. 4 and 5 that the errors of linear models and neural networks are practically in the same range 
which may mean that the relation was essentially linear. These results are comparable to the ones of Baker et al.29 
who computed linear and non-linear regressions to characterize different electrode configurations of bioimped-
ance using respiratory volume. They found that fourth degree polynomial regression characterized the data better 
but the differences with linear regressions were often small.

Recent studies described nonlinear relations between bioimpedance and respiratory volume during abnormal 
breathing like maximal respiratory maneuvers and airway obstructions8,10. Therefore, the non-linearity showed 
in these studies seems to be related to the breathing pattern and mechanics of the subjects’ breathing. From these 
studies we deduced that the relationship between bioimpedance and volume is dependent on the electrodes loca-
tion and the way the subjects breathed in increased breathing effort conditions. We hypothesized that the nonlin-
ear relationship between bioimpedance and volume can be explained as changes in the impedance contributions. 
Along these lines, we included the chest movement as a contribution of thoracic bioimpedance to analyze if it 
can be related to the apparent non-linearity. We found a better performance in the characterizations which used 
volume and accCM (Fig. 4). Particularly, neural networks clearly showed an improvement over linear models thus 
the chest movement contribution was described better as nonlinear. The nonlinearity is difficult to characterize 

Figure 7. Root Mean Squared Errors between bioimpedance signal and the corresponding fitted bioimpedance 
signals. The errors were computed for the (a) linear models and (b) the neural networks when volume and accCM 
signals were used. The represented points correspond to each subject’s error for all electrode configurations. #1, 
#2, #3 and #4 denote the electrode configurations shown in Fig. 1b.
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previously because it is subject dependent. However, neural networks allowed us to analyze the nonlinear rela-
tions without establishing them previously. Not many bioimpedance studies included neural networks to their 
respiratory research. Młyńczak et al. used neural networks but for nonlinear calibrations. They found better accu-
racy in nonlinear calibration with neural networks than with simple linear modeling30.

Regarding to the electrode configurations, the RMSE obtained from the target and fitted bioimpedance signals 
was slightly smaller for configuration 1 (Fig. 7). These results agree with our previous study in which all config-
urations presented similar results but configuration 1 exhibited a robust performance in terms of concordance 
with volume11. Although in terms of error all configurations were quite similar, we observed different behavior in 
the signal waveform from the electrode configurations as Fig. 3 shows. This is consistent our previous temporal 
analysis of bioimpedance and volume in which delays were observed between the signals21. These delays were 
dependent on bioimpedance electrode location and changed with loads. Hence, none of the four configuration 
performed clearly better but we observed differences in signal waveform. These waveform differences can be 
related to the different impedance contributions of the zones covered by the electrode configurations.

In the presented study, accelerometer data were used for two different purposes, as measure of chest move-
ment and as estimation of muscle force. Previous studies suggested that accelerometer data in the high frequency 
band (|sMMGlic|) is related to the inspiratory effort20,27,31. Lozano-García et al. found strong correlation between 
|sMMGlic| and the inspiratory muscle function in healthy subjects and during the same loading protocol as the 
presented study20. Therefore, |sMMGlic| permitted us to divide the respiratory cycles into different levels of muscle 
force estimation.

We divided the respiratory cycles into twelve levels of muscle force estimation selected by proportional quan-
tiles. Figure 5 shows the medians of the MAPE values for each level of activity when volume and volume in 
combination with accCM were used. Higher errors were observed for the extreme levels of muscle activity in each 
method except when neural networks included volume and chest movement. The lower levels corresponded to 
the quiet breathing cycles in which the amplitude of the signals is lower (Fig. 3) so the corresponding MAPE 
values were related to lower peak-to-peak amplitudes and consequently higher. On the contrary, at high level of 
muscle activity the higher error values were due to a lower performance in the characterization of bioimpedance. 
In particular, this increase in error when only respiratory volume was used, was likely because volume did not 
explain completely bioimpedance especially during high muscle force level. In addition, the increase of error in 
the linear models with volume and accCM was probably due to the non-linearity between the signals. On the other 
hand, the neural networks with volume and accCM as inputs exhibited a better performance since the errors were 
lower than the other methods for all levels of muscle force. This better performance can be also observed in the 
comparison between the target and fitted bioimpedance signals of Fig. 6. Contrary to the other characterizations 
which performance worsen at high levels of muscle force, the performance of this method practically did not vary. 
Consequently, the relation between bioimpedance and volume can be basically described as linear. However, the 
addition of the chest movement improved the characterizations especially in neural networks and for high levels 
of muscle force. Therefore, the chest movement contribution was more relevant for high muscle activity than for 
middle activity.

The results from this study suggest that the combination of thoracic bioimpedance and chest movement could 
be promising for respiratory monitoring. The combination of the two signals could lead to an improved volume 
prediction. It becomes even more relevant during restrictive breathing, which is common in respiratory patients. 
Following the results from this study, further studies including thoracic bioimpedance and accelerometer signals 
should validate the suitability of these signals to predict volume. Hereto, larger databases including patients with 
pulmonary diseases will be needed to reinforce the use of these physiological signals in clinical application.

In summary, we investigated the relevance of volume and chest movement to thoracic bioimpedance at dif-
ferent levels of muscle force. In accordance to previous studies, we showed that the relation between volume and 
thoracic bioimpedance was essentially linear which supports the clinical application of bioimpedance for respira-
tory monitoring. However, the presented results exhibited that the combination of respiratory volume and accCM 
characterized better the thoracic bioimpedance measurement for all levels of muscle activity. The linear approxi-
mation showed good results although neural networks described better the volume and chest movement contri-
butions to bioimpedance. We did not find substantial differences in electrode configurations which means that all 
four included volume and chest movement contributions. Accordingly, we conclude that thoracic bioimpedance 
changes were fundamentally due to the respiratory volume, although chest movement contributed substantially 
to bioimpedance measurement and its contribution was more relevant at high muscle activity levels. Finally, the 
presented results provided a better understanding of the changes of thoracic bioimpedance measurement and its 
relation with muscle activity changes. Our contribution will help in the application of thoracic bioimpedance and 
accelerometer data as a non-invasive healthcare technique for respiratory monitoring.

Data availability
The dataset analysed during the current study is available from the corresponding author on reasonable request.
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