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Abstract 

 
Submerged floating tunnels (SFTs) are innovative structural solutions to waterway 

crossings, such as sea-straits. As the width and depth of straits increase, the 

conventional structures such as cable-supported bridges, underground tunnels or 

immersed tunnels become uneconomical alternatives. 

 

In this thesis, we will understand how Submerged Floating Tunnels work, how they are 

designed and constructed, find advantages and disadvantages and, finally, when all 

that is clear, we will evaluate the possible application of this type of crossing on the 

Chacao Channel. All this in comparison with a much more common structure such as 

a long span bridge, in this case a suspension bridge. 

 

In order to assess the viability of the SFT in the Chacao Channel, a multi-criteria 

analysis has been chosen to evaluate both construction processes in an objective and 

systematical manner. This analysis has evaluated and compared, both construction 

processes integrating diverse aspects such as costs, environmental impact, safety, 

social impact and functionality.  

 

The results obtained for both structures have been considered very similar, being 0.78 

for the Suspension Bridge and 0.80 for the Submerged Flotation Tunnel. In conclusion, 

both the construction of an SFT and an SB in the Chacao Canal is feasible. 
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1. Introduction and Objectives 

1.1. Introduction 
 

The water crossings structures often give an optimal solution for achieving the 

minimum travel time and infrastructure length between two areas separated by 

water. Normally, in these cases, the terrestrial travel time (if it’s possible) or boat 

crossing tends to be very long. Therefore, when the connections want to be more 

effective, analysing this type of structures, is of special interest.   

 

Nowadays, the Submerged Floating Tunnel (SFT) is a new crossing solution under 

development and which concerns many countries. This infrastructure is considered 

to be a suitable solution for wide and deep water crossing and is thought that it will 

be able to offer access to places until now unthinkable. Apart from that, this solution 

has many advantages against conventional structures. SFTs are environmentally 

friendlier than conventional structures and cheaper after a certain distance.  

 

Chiloe island is located in the southern of Chile and the Chacao Channel separates it 

from Chile mainland.  

The connection between the island and mainland is by means of ferry. The ferry is 

known for being a transport mean which does not require any infrastructure, a part 

from docks for satisfying their services and so there is no need for big inversions. 

However, the ferries also have some disadvantages. On the one hand ferries depend 

on the weather and their services can’t be always operative. On the other hand, the 

ferries velocities are slow compared to other transport means. As a result, the 

construction of a new suspension bridge has been approved. 

 

The main objective of this thesis is to study the feasibility of an SFT in the Chacao 

Channel in order to see if it would have been a more viable solution for the new 

crossing. Firstly, in the second chapter the concept of a Submerged Floating Tunnel 

has been introduced followed by the explanation of the different design and 

construction methods for a SFT and a suspension bridge. Different similarities can 

be appreciated.  

Chapter three evaluates and identifies advantages and disadvantages with the 

construction of both in different locations.   

Finally, in chapter four the site conditions of the Chacao Channel are analyzed in 

order to choose a viable location for situating the proposed SFT. Once the location is 

chosen, a comparison between sites with similar conditions to proof its viability has 

been done. With the viability of the site, a suitable SFT design has been proposed 

and finally an objective analysis between the SFT and the SB has been carried out to 

evaluate their global impact and conclude which alternative is more feasible. It is 

interesting to notice how all the chapters of the thesis project are linked at the four 

chapter of the work. 
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1.2. Objectives 
 

The objective of this thesis is to understand how Submerged Floating Tunnels work, 

how they are designed and constructed, find advantages and disadvantages and, 

when all that is clear, to see a possible application of this type of crossing on the 

Chacao Channel. All this in comparison with a much more common structure such as 

long span bridge, in this case a suspension bridge.  

 

2. State of the Art 

2.1. Submerged Floating Tunnel 
 

 

The submerged floating tunnel (SFT), also named as Archimedes Bridge, is a novel 

way of crossing water beneath its surface. Unlike conventional immersed tube 

tunnels, a SFT is not an embedded structure, but instead is suspended above the sea 

floor, anchored by a support system such as pontoons on the surface or by anchoring 

to the seabed. It consists of one or more prefabricated hollow tunnel elements 

constructed in the dry at a location, which is not their final location. Their final location 

is somewhere between the surface and the bed level, surrounded by water as 

mentioned before.  

SFT can provide a more economical way of crossing a body of water in comparison 

with an undersea tunnel or a suspension bridge, depending obviously on the local 

sea characteristics, (depth, traffic etc..) and hydrographic conditions. 

Nevertheless, even though the concept of SFT has existed for many years and that 

there are many site studies and proposals, none have been constructed yet, probably 

due to the total lack of experimental data on the actual behaviour of the SFT, both in 

traffic and in environmental actions.  

Submerged floating tunnels have applications not only for road and rail traffic, but 

also for use as pedestrian tunnels and service tunnels as well. 

 

Even though, a submerged floating tunnel has never been built yet, several proposals 

have been presented by different entities. 

1. English Channel, United Kingdom. 

2. Strait of Messina, Italy. 

3. Høgsfjorden, Norway. 

4. Transatlantic tunnel (between North America and Europe) Atlantic Ocean. 

5. Funka Bay, Japan. 

6. Lake Washington, Seattle, United States. 

7. Vancouver Island, Canada. 

8. Lugano Lake, Switzerland. 
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2.1.1. SFT Classification. 

 

SFTs can be classified according to their anchorage system. 

There are four types of SFT (CEP, Civil engineering portal). 

a. SFT with pontoons. 

b. SFT supported on columns. 

c. SFT with tethers to the bottom. 

d. Unanchored SFT. 

a. SFT with pontoons.  

 

This type of SFT is sensitive to the wind, waves current and possible ship collisions. 

On the other hand, this system is totally independent of the water depth, and so its 

use could be beneficial in places where depth makes impossible the foundation 

construction and long crossing distances prevent the construction of bridges without 

support points in the middle of the crossing. In addition, the construction of 

underground tunnels would be unthinkable. 
 

Figure  2.1 SFT supported by pontoons. 

b. SFT supported on columns.  

Some journals have referred to this type of SFT as an “underwater bridge”, as 

columns attached to foundations, support this SFT. These columns can be either in 

compression or in tension depending on the buoyancy ratio (explained on the 

following chapters). This type of SFT will be very limited by the sea depth, at present 

a few hundred meters is considered a limit at present time. However, the construction 

of an underground bridge will have a less environmental impact. 
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Figure  2.2 SFT supported by columns. 

 

c. SFT with tethers to the bottom. 

It is based on tethers being in tension in all future situations, no slack in these tethers 

may be accepted in any future load cases; consequently, the SFT must have sufficient 

net buoyancy under any load, wave, current, salinity or temperature condition in order 

to avoid any foul in the structure. The present practical depths for this type of crossing 

may be several hundred meters. 
 

Figure  2.3 SFT supported by tethers anchored to the bottom. 
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d. Unanchored SFT. 

This type of SFT has no anchoring at all except at landfalls, and so its independent 

of depth. However, its length is limited.  

Figure  2.4 Unanchored SFT. 

2.1.2. SFT Design Criteria 

 

In this part we are going to analyse the most important concepts and issues that must 

be taken into account before focusing on the construction methods. 

Even though, it is important to notice that the allowable design general criteria are 

mainly determined by the national codes; if not, the client/owner, together with the 

designer/contractor, must establish them.  

In the design of a Submerged Floating Tunnel, the definition of the functional and 

geometrical arrangement of the cross section and the structural configuration of the 

tunnel is one of the main aspects to be faced. 

 

2.1.2.1. Geometry 

 

In terms of geometry, different alternative cross sections are being studied, circular, 

elliptical, polygonal and rectangular. Optimization of the cross section will mainly 

depend on hydrodynamic effects, vortex shedding, and structure strength, 

construction, economy and functionality.  

 

Site conditions such as the length, water depth, water currents and densities, geology 

at the entrance etc.. have an impact on the dimension of the structure in terms of 

criteria for both the design and the construction methods.  
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The dimensions of the main body of a SFT are determined by the internal, external 

and structural requirements. The secondary components such as the supports are 

mainly determined by structural requirements and installation methods.  

Obviously, the internal dimensions will depend on the purpose of the tunnel, since a 

SFT could be used for the crossing of both the railroad and road traffic, even for the 

crossing of pedestrians or wiring; and therefore, different dimensions will be required 

to fit the different purposes. 

 

On the other hand, the external dimensions will be mainly determined by the 

construction methods, the influence of external loadings, the overall structural 

concept and the local structural requirements, it is also important to notice that they 

will depend on the required internal dimensions.  

The behaviour of the tunnel is significantly affected by the external dimensions as the 

most important design loads are related to the tunnels volume. Examples of such 

loads are the buoyancy and the added mass, the circumferential compression load, 

and the forces of inertia associated with the wave motion and the seismic excitation. 

 

The design of the tunnel structure and geometry of a SFT must be made according to 

some criteria. 

 

1) The tunnels structure must be designed in order to meet the desired structural 

performances in terms of serviceability and safety by providing enough 

stiffness, strength and ductility. In addition, the waterproofing of the tunnel 

and the durability must be assured. 

 

2) The internal dimensions of the cross section should be large enough to 

accommodate the infrastructures facilities and implants, necessary to 

guarantee the normal development of the operations inside. 

 

3) The tunnel cross section must be designed so that the buoyancy ratio (the 

relationship between buoyancy and self-weight), is larger than the minimum 

value, if the buoyancy is limited inferiorly (upward force) and smaller than the 

maximum if the buoyancy ratio is limited superiorly (downward force). 

 

4) Finally, issues related to the fabrication and transportation of the tunnel 

modules to site must be considered. 

 

 

2.1.2.1.1. Circular Cross Section. 

 

According to Brancaleoni et al. a circular cross section with respect to hydrostatic 

pressure features a very rational structural behaviour, as this induces only 

comprehensive stresses and no bending in the cross-section plane. In addition, 

Grantz W.(1997) says that thanks to the fact that generally the outer ring shell of a 
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circular SFT is at leads partially made up of concrete, no longitudinal cracks are 

produced by hydrostatic pressure, and so the tunnel waterproofing is not 

compromised. Furthermore, regarding hydro-elastic stability issues, Solari (2010) 

says that a circular cross section features a good response, as, thanks to its polar 

symmetry, it should not be subjected to flutter or torsional divergence phenomena. 

 

 
Figure  2.5 SFT with circular cross section.(a) Messina Strait crossing(Italy) proposed by ATI-SSST (Scolari et al., 

1989); (b) Hǿgsfjord crossing (Norway) proposed by Aker Norwegian contractors (Skorpa and Ǿstlid, 2001); (c) 

Sulafjord crossing (Norway) (Jakobsen et al., 2009). 

In addition, another suitable geometrical configuration for the SFT cross section is to 

have one or more circular tubes holding the required traffic lanes and other related 

facilities connected to each other through a frame substructure and enclosed inside 

a streamline shell. This solution was envisaged in the first SFT proposal, developed 

by Alan Grant in 1969 for the Messina Strait crossing (Figure 2.6. a) and considered 

again later on, such as in the casa of the Northern Japan Exchange Axis (Figure 2.6. 

b). 

 

Figure  2.6  (a) Messina Strait (Japan) crossing proposal (Alan Grant, 1969); (b) Northern Japan Exchange Axis. 

2.1.2.1.2. Elliptical and Polygonal 

 

When the water conditions are stronger, instead of using circular cross section, 

elliptical and polygonal cross sections can be employed. Thanks to the elongation of 

the cross section in the horizontal direction, the impact of the hydrodynamic actions 

on the tube are decreased. In addition, these shapes provide larger values of stiffness 

and strength in the horizontal bending plan, which ensures the good hydrodynamic 

behaviour (Panduro J. Omar 2013).  

 

In terms of distribution, it is easier to accommodate the traffic and facilities 

requirements in a polygonal than elliptical cross section, but the opposite happens in 
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terms of structural requisites. Furthermore, the production process of the elements 

is easier for a polygonal cross section. Some proposals can be seen in Figure 2.7. 

 
 

 

 
Figure  2.7 a) Messina Strait crossing, Italy (ponte di Archimedes S.p.A., 1984); (b) Jintang Strait crossing, 

People Republic of China (Faggiano, et al 2001a); (c) Washington Lake crossing, USA (Felch et al, 2001). 

2.1.2.1.3. Rectangular 

 

Rectangular cross section would represent the most rational solution, considering the 

easiness of the production procedures and the versatility in the organisation of the 

internal spaces and facilities. M. Kristofersen et al. says that in terms of functionality 

and distribution, the rectangular cross section works better than a circular cross 

section but with respect to blast loading, a circular cross section indicates a superior 

behaviour. 

 

Under severe conditions, the hydrodynamic behaviour of a complete rectangular 

shape is not suitable, the water flow passing through a rectangular SFT would 

generate turbulence, thus increase the regime of dynamic pressures induced on the 

structure. In order to improve the hydrodynamic behaviour, one solution could be a 

rectangular cross section with rounded edges. This solution is recommended when 

the magnitude of currents and waves are not large. Another suitable solution in 

extreme natural conditions is the employ of hydrodynamic lateral keel, which can be 

fabricated of steel shells and trusses. This would improve the fluid dynamic behaviour 

of the SFT, preserving the advantage of the rectangular cross section. 

 

 
Figure  2.8 (a) Sognefjord crossing, Norway (Sweco Norge AS, 2012); (b) Sognefjord crossing, Norway (Cowi AS, 

Aas-Jakobsen AS, Johs Holt AS, NGI and Skanska AS, 2012); (c) Tsing Ma Bridge element, Hong kong. 
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2.1.2.2. Materials 

 

When building a marine structure, the main factors when choosing the materials are; 

safety, (which would include ensuring structural and functional performances, show 

resistance to marine environment etc..) sustainability and economical points of view 

(constructional and maintenance cost).  

 

According to Martire G. (2010) the most suitable and rational solutions are the ones 

who involve more materials, leading to a multi-layer/multi-material composite 

structure. In this way, each material has a particular function that exalts the material 

advantages and neutralizes its defects (Faggiano et al. 2001b). In this chapter, the 

most recommended materials for the design and construction of a SFT will be 

analysed. 

These materials are: 

 

a) Steel. 

 

It is commonly employed in offshore structures. It has a very good behaviour against 

tensile and compressive efforts at the same time that has a lightweight. On the other 

hand, the corrosion is one of the main problems. Eiichi et al (2003) proposes a graph 

where in terms of the SFT vertical position, corrosion rate increases or decreases. 

 

New types of steel have been introduced, featuring a lower content of carbon and 

resistant to corrosion, in order to improve its performance in maritime applications. 

But other types of problems affect them such as the difficulty to produce them in 

large scale (Ramasco et al., 1991). 
 

The following table (Table 2.2) shows the different advantages and disadvantages 

of steel in marine conditions. 

 
Table 2.1 Distribution of corrosion rate of steel (Ramasco et al., 1991). 
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Table 2.2 Advantages and disadvantages for steel. (Martire, 2010). 

 

b) Concrete (reinforced and/ or prestressed). 

 

Concrete is recommended when a large structural weight is required in order to 

stabilize the structure. Concrete in a SFT can contribute to structural strength and 

stiffness and provides the weight needed in order to counteract the tunnel buoyancy 

(Martire, 2010).  

In addition, implementing prestressed concrete can lead to better mechanical 

performances and to a larger degree of waterproofing.  

Table 2.3. shows the main advantages and disadvantages when employing concrete 

in a marine environment. 

 

 
 

Table 2.3 Advantages and disadvantages for concrete (Martire, 2010). 

 

 

c) Aluminium Alloys.  

 

Their main application in offshore structure is in the emerged part of the offshore 

platform, its used as to protect the internal structure from corrosion, external impacts 

and acts as a waterproofing surface. The following table summarizes its mechanical 

properties in a marine environment. 

 

 
Table 2.4 Advantages and disadvantages for aluminium alloys. (Martire, 2010). 
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d) Rubber Foam. 

 

This material has been considered for the design of a SFT as an external layer as it’s 

an impermeable material which would act protecting the inner structure from 

corrosion, also is an extremely light material which is able to dissipate the energy 

transmitted by external impacts (Grantz,2003). In addition, it is a porous rubber 

made up of expanded polyurethane used in the Naval Engineering to increase the 

buoyancy of vessels and so it could help stabilize the buoyancy ratio too. 

 

f) High-Performance Fibre Concrete (HPFC) 

 

These materials have appeared in the last decade and are known as high 

performance fibre concrete materials. Reinforced concrete is being replaced in water 

crossing by HPFC’s due to the fact that HPFC’s have higher tensile strength and crack 

resistance and also, they are widely being used because of their good behaviour 

against compression, their extent tension strength, their anti-impact resistance, their 

waterproofing and their durability. 

 

The following table shows the HPFC’s current properties, also it can be seen how 

mechanical parameters increase by using different types of fibre (SINTEF (2009)).. 

Table 2.5 Properties of high-performance fibre concrete with different fibre.   

 

The table shows some abbreviations which mean: 

SRC: Steel fibre reinforced concrete. 

GRC: glass fibre reinforced concrete. 

PPFC: polypropylene fibre reinforced concrete. 

S-PPFC: multi-layered materials, also called Sandwich. 



SUBMERGED FLOATING TUNNEL: A REVIEW AND STUDY OF THEIR USE FOR STRAIT CROSSING.  

 

 

19 

 

Archimedes Bridge Prototype in Qiandao Lake  

 

Features an internal layer made of steel shells, so that its high mechanical 

performances are exploited; an intermediate concrete layer protecting steel shells 

from corrosion and cooperating with them with the axial, bending and shear 

resistance of the tunnel. In addition, this concrete layer has the function of assuring 

the ballast weight and as mentioned before, provides the weight needed in order to 

counteract the tunnel buoyancy. The steel and concrete parts act as a composite 

structure by means of shear connectors, Figure 2.9. shows a possible way of how 

steel shells and concrete layer could be disposed together with shear connectors. 

 

 
Figure  2.9 Steel shells and concrete layer act as a composite by means of shear connectors. 

Finally, an external aluminium layer, protecting the inner layers from corrosion, 

external impacts and water penetration.  

Mazzolani et al. (2007) says that this structural configuration also known as 

‘sandwich’ structure, presents good characteristics of flexural strength in both elastic 

and post-elastic fields and that under exceptional events such as internal impacts or 

explosions is able to face up without great damages. 

Figure  2.10 Sandwich tunnel structure of AB prototype in Qiandao Lake. 
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The Baltimore Harbour Tunnel  

 

An example of a double steel shell Immersed Tunnel, is similar to the one of the 

prototypes, with the difference that the outer shell is made out of steel. This external 

shell has the same function as the aluminium outer layer from the prototype, to 

protect the inner structure from corrosion, impacts and to reduce the hydrodynamic 

actions due to incident wave flows (Grantz, 1997). Grantz also in 2003 made a 

similar proposal, a double steel shell hull reinforced with reinforced concrete rings on 

correspondence with the connections of the tethers and covered with an external 

layer of rubber foam, protecting and waterproofing the inner structure. 

 

 

 

2.1.2.3. Stability of the Tunnel 

 

The vertical stability of a SFT is a very important consideration. In order to understand 

better this concept, Ahrens D. (1997) compares the SFT with other types of tunnels.  

For a bored tunnel, the vertical stability is sufficiently ensured by the soil weight on 

top of the tunnel. In the case of an immersed tunnel, the vertical stability after the 

element is placed on the trench; additional ballast concrete is added in order to 

ensure the vertical stability. 

 

Also, for a SFT, the vertical stability has to be ensured by the structure and its support 

system as it will never be covered by soil. 

In addition, as the SFT in placed between the surface and the seabed, the 

appearance of the relationship between buoyancy and self-weight, also known as the 

buoyancy ratio, is very important and is crucial to analyse it. In fact, it is a critical 

structure parameter tremendously affects the dynamic behaviour of both the tunnel 

tube and the cable system (Ahrens D. 1997). 

 

 

 

 

 

 

Figure  2.11 The proposed SFT structure by Grantz in 2003  

 SFT proposed with an outer foam rubber layer. 
 

 

 

 

 

Figure  2.12 The Baltimore Harbour Tunnel, was constructed  
                   on 1957 in   Baltimore, Maryland, United States .  

 

 

                                                      

https://en.wikipedia.org/wiki/Baltimore,_Maryland
https://en.wikipedia.org/wiki/United_States
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Two ways of ensuring the vertical stability of a SFT could be:  

 

• Tether system: A situation where there is more buoyancy than weight and so 

the structure delivers a resulting upward and positive force, which is taken by 

a downward force created by the support system.  

 

• Pontoon system: A situation where there is less buoyancy than weight and so 

the structure delivers a resulting downward and negative force, which is then 

taken by the upward force created by the support system.  

 

 

Depending on the site conditions, this relationship will vary, as it will be of a much 

more interest to use one type of support system or another. It could exist the 

possibility that there is too much traffic in the surface and so a tether system would 

be more beneficial and safe (buoyancy more than weight), on the other hand deep 

sites can lead to difficulties and so much more expensive projects, as a consequence 

a pontoon system would be more viable (weight more than buoyancy).  

 

The resulting load known as residual buoyancy in the tether or the pontoon, will be 

the difference between the upward and downward force, or in much more detail, the 

algebraic sum of the permanent loads, live loads and the buoyancy of the tunnel. This 

load is determined by the internal arrangement and the external dimensions of the 

cross section, by the material used and the destination of use.  

 

The third design requisite, where the tunnel cross section must be designed so that 

the buoyancy-weight-ratio (BWR) is larger than the minimum value, is of particular 

importance in terms of stability and deserves a more detailed discussion.  

BWR determines the tension force in the tether section and influences the dynamic 

behaviour of SFT structure (Hong Y. et al. 2010).  

Firstly, it is important to highlight that the aim of this design condition is to 

conveniently limit inferiorly the residual buoyancy.  

When a upward (positive) residual buoyancy is assumed, in order to avoid anchorage 

slackening due to the induction of environmental actions, it is necessary to ensure a 

minimum value of the residual buoyancy in operational conditions. By contrast, for a 

SFT where its weight is bigger that the buoyancy force, a different criterion has to be 

considered. 

 

The design value of the positive BWR can be evaluated considering the load 

combination under vertical dead and live loads valid for the Ultimate Limit State, 

defined according to the Eurocode 0 provisions [CEN, EN 1990, 2002] (Panduro J. 

2013).  
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Fd= γg.(Gk + Bk) + γq.Qk (γg = 1.35; γq = 1.5)                                          (eq2.1) 

 

Where: 

 

- γg, γq are the partial safety factor for dead and live loads, respectively 

- Gk is the characteristic value of the dead loads; 

- Bk is the characteristic value of the buoyancy; 

- Qk is the characteristic value of the live loads. 

 

Very large values of the lower limit of the BWR were considered in the first studies 

and preliminary designs, up to 1,70. Numerical studies confirmed that larger values 

of the BWR can improve noticeably the structural performance of the SFTs, when they 

are subjected to severe environmental loading scenarios (Martire 2010). In 

particular, Brancaleoni et al. (1989) found that increasing the BWR from 1,25 to 1,40 

can lead to impressive improvements of the SFT response to extremely severe sea 

states. 
 

Table 2.6 Typical design values for buoyancy ratio proposed by Mazzolani et al. and Zhang et al. on their works. 

 

As see in Table 2.5. Mazzolani et al. and Zhang et al. proposed optimal intervals in 

which the BWR should be stablished depending in the direction of the residual 

buoyancy. 

 

The following table shows how the amplitude of tunnel vibration varies with the 

increase of the BWR having a fixed section diameter and for a SFT. As seen, the 

dynamic response in the current direction increases with the increasing of BWR, and 

shows that when BWR is between 1.1 and 1.2, the vertical response decreases 

dramatically with the increase in BWR, and so it is seen how Mazzolani was right 

when stablishing the optimal BWR between 1.2 and 1.3. 

 
Table 2.7 STDEV at SFT mid-span under different BWRs. (a)Current direction. (b) Vertical direction. (Hong Y. et al. 

2010) 
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Figure 2.13. provides a flow chart which describes the general procedures for the 

cross-section design of a SFT. It is being considered both cases, when the tunnels 

weight is larger than its buoyancy and opposite, when the resulting force is negative 

and when it is positive. In both cases is sought the design value of the buoyancy ratio. 

In addition, when the preliminary design does not meet this requirement, the 

calculation of ballast could be the solution for satisfying the point. 

  

It also considers the structural analysis of the SFT once the other structural issues of 

the tube are designed. In addition, it is taking into account the anchorage of the 

support system, which will depend on the decision made after evaluating the natural 

conditions of the crossing. 

 

Once the anchorage or support system is designed the static analysis can be made, 

both transversal and longitudinal analysis (Mazzolani et al 2008). Then it is designed 

the inter-modular joints and shore connection of the SFT for finally realize the 

dynamic analysis of the whole structure and meeting the limits of the design 

(Remseth S et al. 1999; Xiang Y. et al. 2019). 
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Figure  2.13 Flow chart of the design of a Submerged Floating Tunnel. (Panduro J.Omar 2013). 
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2.1.3. Supports 

 

As mentioned in previous chapters, a SFT can be fixed at the seabed by foundation 

systems or on the surface by pontoons, it also exists the possibility of a self-supported  

tube where the presence of supports is not needed. 

 

 
Figure  2.15 Unanchored SFT 

 

In some cases, depending on the site and the environmental conditions, a 

combination of pontoons and tethers can be proposed. 

 

2.1.3.1. Pontoons 

 

When the residual buoyancy has a negative value, pontoons are employed. The 

weight of the structure is bigger than the buoyancy of it and so an extra force is 

needed in order to maintain the SFT stable and in position (vertical and horizontal). 

These elements are fixed on the surface of the water crossing. 

 

Their design usually depends on the SFT cross section and the types of boats that will 

have to allow the passage. The first and most important issue is the fact of having to 

dimension the structure in order to assure the enough buoyancy for supporting its 

weight itself and the SFTs. 

The separation between pontoons will depend on the issue mentioned before, and 

so as it is required to provide enough clearance to allow boats crossing, in some 

Figure  2.14 (a) SFT supported by pontoons. (b) SFT anchored to the seabed by tethers. 
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cases space between pontoons would not be enough for the vessels in the region, 

thus, a navigation channel must be provided. In the following figure, we can see an 

example of a navigation channel, this figure represents a design proposed by NPRA 

for the Norwegian fjords.  

 

Figure  2.16 A proposed SFT supported by pontoons for the crossing between the cities of Kristiansand and 

Tronheim. 

Pontoons are only able to provide vertical support and lead to a system that is more 

flexible. They should be applied in less severe environmental conditions, as even 

though pontoons have the advantage of being independent of the water depth, they 

will have to cope with ships, waves, tides, currents and ice. Also, the applicability 

under severe conditions is reduced due to the fact that when fixing the pontoons to 

the SFT should be made through a ‘’weak link’’ joint. Pontoons might be fabricated 

of steel or concrete, having several compartments of ensured buoyancy in the event 

of a ship collision (FEHRL, 1996). 

 

Fixing the pontoons to the SFT through weak links, will isolate the tunnel from impact 

overload and so will limit the forces that can be transferred. Also a weak link will be 

beneficial with respect to damages to the ship (Fjeld et al. , 2013) 

 

Here are three alternative weak link concepts which where nominated for further 

assessment for the current Bjørnafjord crossing (Engseth M et al. , 2016). 

 

 

2.1.3.1.1. Truss Integrated WLA 

 

Aas-Jakobsen et al. (2012) propose a tubular truss tower. This tower is designed to 

possess enough lateral drift capacity for the columns to fail in tension at the column 

ends prior to forming any plastic hinge action. The maximum load transferred to the 

bridge is limited by a bolted connection at the base of the columns designed to break 

at a certain load. The columns are placed on the inside of the tubes to exclude 

potential damage to the tunnel for a climbing ship scenario. 
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Figure  2.17 Tuss integrated weak link. 

                 

2.1.3.1.2. Shaft Integrated WL 

 

Olav Olsen et al. (2012) developed a shear type weak link in the Sognefjord feasibility 

study. The load path is obtained by separating the horizontal shear from the other 

load effects in the shaft. The weak link is designed to break at a target impact energy 

level, while remaining elastic under normal operational conditions. 

Figure  2.18 (a)Shaft integrated weak link. (b) Bolted connection at the base of the columns. 

 

 

2.1.3.1.3. Bracing Integrated WL 

 

The sacrificial connection to the pontoon shown in Figure 4.2-4 (Dr.techn. Olav Olsen, 

Reinertsen, Norconsult, 2015) is based on the same philosophy as the previous WL 

concept 1, except that the columns are placed outside the tubes. This will give a more 



SUBMERGED FLOATING TUNNEL: A REVIEW AND STUDY OF THEIR USE FOR STRAIT CROSSING.  

 

 

28 

stable platform for a long pontoon, but in return, the diagonal struts will be much 

longer which makes them more exposed to Vortex Induced Vibrations (VIV). To 

overcome this problem the bending stiffness of the diagonals must be increased. 

 

Figure  2.19 Bracing integrated weak link. 

 

Magnus Engseth et al. (2016) explains how to design a pontoon and analyses how 

would a proposed SFT subjected by pontoons and weak links within them, would react 

to certain ship and submarine crushes, and from that, makes a capacity evaluation 

of the SFT. It is talked about the concept of designing sacrificial elements to dissipate 

energy while preserving the integrity of primary structure and presents calculations 

that show how a shaft designed to break at a certain load, can reduce the load 

transferred. 

It is also mentioned that, after an event where severe deformations are caused to 

the pontoon shaft and to the pontoon itself, it is possible that the pontoon losses its 

ability to support the SFT and for that reason a SFT is designed to withstand loss of 

one pontoon in order to maintain its integrity when such an event happens. Finally, it 

is explained that to prevent a pontoon from sinking after being separated from the 

bridges, pontoons are designed with watertight compartments. 

 

 

2.1.3.2. Tethers  

 

In the case where the residual buoyancy is bigger than the SFT weight, the SFT must 

be stabilized by a foundation system together with a linking system. Obviously, first 

the foundation system would be constructed and finally the linking as in the pontoon 

system. 
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2.1.3.2.1. Foundation System 

 

There are several foundation systems, which the use of them depend on various 

factor, mentioned as follows: 

 

- The seabed condition (type of ground, seismicity and 

fouls). 

- Depth (constructability point of view). 

- Strength to support.  

- Cost.  

 

Different foundation systems proposed for SFT such as ; 

 

- Gravity foundations. 

- Suction caissons. 

- Piers. 

- Rock bolts. 

 

Even though, depending on the factors mentioned before, it will be more viable the 

use of one system or another, Panduro J. Omar (2013) says that in general any type 

of structure that could help to hold the Submerged Floating Tunnel on position can 

be considered suitable for employing while stability is guaranteed.  In this chapter, 

the gravity foundations and suction caissons will be analysed. 

 

 

2.1.3.2.1.1. Gravity Foundations. 

 

Massive blocks, which are designed to have enough, weigh in order to 

counterbalance the residual buoyancy of the SFT. Main problems related to gravity 

foundations are the need of a superficial layer with good mechanical properties and 

the low horizontal bearing capacity, which can lead to displacement and SFT stability 

problems (i.e. severe seismic events produce a combination of vertical and horizontal 

dynamic forces on the foundation which might produce permanent horizontal 

displacement on it leading to a modification on the geometrical configuration of the 

anchoring system) (Martire, 2010). 

 

These elements generally consist on initially empty concrete boxes that are precast 

in a dry yard and that thanks to their own buoyancy capacity, are transported until 

their correspondence place. There, they are filled with concrete and then sinked until 

the seabed, where finally act as gravity foundations. 
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Figure  2.20 Sequence of transport and erection of foundation (Mazzolani et al. 2007). 

 

2.1.3.2.1.2. Suction Caissons 

 

Suction caissons are most new form of offshore foundation, which have greater 

advantages than the conventional ways, mainly being easier to install and to remove 

during decommissioning.  Nowadays, suction caissons are widely used for anchoring 

large offshore installations at great depths. 

 

This technology was developed in order to maintain the installations stability under 

sever conditions where the anchorage suffered from large tensioning due to waves 

and stormy weather. The suction caissons work very well in a seabed with soft clays 

or other low strength sediments. It is important to notice that the installation is much 

easier than piles, which must be hammered into the ground and so less expensive. 

 

The installation of a suction caissons starts by its own weight penetration to the 

ground and then forced to the design penetration by pumping water out of the caisson 

in order to create under pressure/suction within the caisson. This difference in 

pressure results in a downward force on the exposed end of the caisson, which slowly 

pushed the caisson into the seafloor. 

Figure  2.21 Suction Caisson installation (Arup). 
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2.1.3.3. Linking System 

 

In order to attach the SFT to either the foundation or the pontoon, the most common 

way is by using steel tethers as cables, bars or tubes. This system is usually conceived 

as a series of cables groups, disposed in the tunnel cross-section plane and repeated 

along the tunnel axis with a fixed inter-axis. 

 

There are several types of mooring cable arrangements in order to support a SFT, the 

following picture shows some of the most proposed arrangements. 

 

 
Figure  2.22 Tether configurations. 

 

Naik Muhammad et al. (2017) evaluates the performance of a SFT supported by 

the three different cable configurations shown in Figure 2.22. and concludes after 

analysing the dynamic and the static response of the SFT, that groups made up of 

two vertical cables configuration are effective only in the vertical direction, thus 

being suitable only in a calm environment; groups made up of four inclined cables 

are the most effective. 

 

Also, Hong Y. et al. (2010) investigates the slackening phenomena; their study 

focuses on the relationship between relative dynamic tension and tether angle, where 

it is concluded that at first the dynamic tension increases sharply and then decreases 

and that if the angle is larger than 30º, the response becomes stable. Finally, the 

dynamic tension reaches its peak value around the tether angle of 15º. 

 

 

 
Table 2.8 Effect of tunnel outer diameter on SFT dynamic response (Hong Y et al. 2010). 

 

Table 2.8 indicates that the dynamic response in the current direction increases as 

tunnel outer diameter increases (or BCR increases, stiffness coefficient of tether 
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system) increases, whereas in the vertical direction, the dynamic response increases 

as the outer diameter of tunnel segment decreases (or BCR decreases). 

 

 

Table 2.9 Effect of tether system stiffness on SFT dynamic response (Hong Y et al. 2010). 

 

 

Table 2.9 shows that the dynamic responses on both current and vertical direction 

increases as the tether system stiffness decreases or BCR increases (stiffness 

coefficient of tether system). Even though net buoyancy and tether stiffness are 

essential factors with regard to SFT stability. From Table 2.8 and Table 2.9  can be 

seen that BCR is not a characteristic factor with respect to SFT dynamics (Hong Y. et 

al., 2010). 

 

Obviously, the cables must be able to resist the tensile force generated by the 

residual buoyancy. Therefore, given the permanent residual buoyancy and the cable 

length, it is chosen the diameter of the cables which determines it axial tensile 

strength, stiffness and other parameters such as the ratios between initial axial force 

and cables strength and weight. Martire (2010) considers that these two ratios are 

of great importance for the performance of each cable, as they define the axial force 

increment due to live or environmental loads that can be carried by the cable and the 

importance of non-linear effects in the cable response. 

 

So, for the design of the anchoring system made out of steel cables, it’s important to 

pay special attention to the geometrical configuration of the cable system, the 

diameter to be assigned to the cables and the restraint condition to provide at the 

ends of the cables. 
 

 

2.1.4. Joints  

 

The whole structure behaviour of a SFT has a great dependence in the joints between 

modules, as they must guarantee the linking between each of them as well as the 

whole tightness of the tube. They must assure the correct structural behaviour for 

which the SFT is designed. If the design allows displacement along the tube a flexible 

joint must be employed or if not a rigid joint has to be adopted. Finally, special joints 
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must be located at the end and entrance of the SFT, as they must allow different 

displacements according to the design carried on. 
 

There are two ways of tube joint based on stiffness and deformation: rigid joint and 

flexible joint. Table 2.10 Enumerates differences of two types of joints. 

 

 
 

Table 2.10 Comparison between rigid and flexible joints. (Zhang et al., 2010). 

 

 
Figure  2.23 (a) Schematic drawing of rigid joint design (b) Schematic drawing of flexible joint design. 

 

On the other hand, one of the most relevant issues in the design of a SFT is the 

configuration of the shore connections, as in these zones a transition between two 

different states of equilibrium happen (FEHRL, 1996): 

 

- The tunnel in equilibrium with the ground pressures and, 

eventually with the seismic pressures induced by 

earthquakes. 

- The tunnel in equilibrium with the water actions, with the 

retaining forces induced by the supports and if the SFT is 

anchored to the seabed, to the seismic actions.  
 

 

 

The following figure shows two proposed shore connections for the Messina Strait 

crossing situated in Italy by the ENI Consortium. 



SUBMERGED FLOATING TUNNEL: A REVIEW AND STUDY OF THEIR USE FOR STRAIT CROSSING. 

34 

Figure  2.24 Shore connection of the SFT Messina Strait. (a) Global longitudinal view. (b) Joint A. (c) Joint B. 

(Nicolussi and Casola, 1994). 

In order to prevent water leakage, both joints include a gasket system, also, natural 

rubber gaskets are squeezed between the surfaces of the joint elements in contact; 

and in order to reduce friction forces, Teflon sheets are stuck on the steel surfaces. 

In Joint A, a pretension system with wire ropes allows free relative movements in all 

six degrees of freedom with its release. Moreover, joint B includes a hydraulic system 

of 20 jacks distributed along the joint cross-section; these jacks absorb axial loads 

induced in quasi-static conditions. If the established threshold is exceeded due to big 

loads (earthquakes), the hydraulic system opens allowing for free axial movements; 

hydraulic accumulators connected to the jacks, meanwhile, develop a residual 

reaction to maintain the maximum relative moment within allowable design limits. 

Finally, an active back-up system, which consists on acceleration sensors, controls 

the good functionality of the hydraulic system (Nicolussi and Casola, 1994).  

2.1.5. Loads 

Like every other structure, a SFT must be designed based on expected and possible 

combinations of loading cases. 

By using partial load factors, the individual loads are combined to give the design 

loads. These factors can either be specified by the client or established in the national 

design codes. 
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The following loads are the ones that usually must be considered during the design 

stage: 

 

1. PL (Permanent Loads): Weight of the various structural and non-structural 

component (Total dead weight), the water buoyancy and the hydrostatic 

pressure. This load will be permanently present during the lifetime of the 

structure. The resulting force in the tether or pontoon system will be the 

difference between the buoyancy and total dead weight.  

 

The self-weight per unit of the cross section of the SFT can be calculated with 

the following equation (Panduro J.Omar 2013). 

 

𝑊𝐷 =  Σ𝛾𝑚𝐴𝑚 + 𝑊𝑓                                          (eq2.3) 

Where: 

 

WD : Weight of the structure per unit (kg/m). 

𝛾𝑚  : Specific weight of each material involved in the cross section (kg/m2). 

Am : Area of each material involved  in the cross section (m2). 

Wf : Facilities weight (kg/m). 

 

The water buoyancy also known as Archimedes buoyancy is obtained with the 

following equation. 

 

𝐵𝑘 =  𝛾𝑤𝐴𝑡𝑜𝑡                                                (eq2.4) 

 

Where: 

 

𝛾𝑤 : Specific weight of water. This value is related to the salinity and temperature 

of the water. The salinity is generally measured as part per million (ppm). 

Atot : Total area of the SFT cross section. 

 

Finally, the algebraic sum of the self-weight of the structure and the water 

buoyancy gives the residual buoyancy of the tunnel. This value is a fundamental 

factor for the stability of the structure. The calculation can be made with the 

following equation. 

 

  𝑅𝐵𝑘 =  𝐵𝑘 − 𝐴𝑡𝑜𝑡                                             (eq2.5) 

 

The accuracy when determining this force is very important, and in order to 

ensure that, the following uncertainties must be taken into account (Ahrens D. 

1997). 

 

- Tolerances in geometry and dimensions:   During the design 

stage, the acceptable tolerances in geometry and 
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dimensions, depending on the choice of the construction 

method, must be established. During construction, an 

experienced contractor keeps the tolerances under control.  

After construction, this parameter is no longer variable. In 

case of significant variations from the weight design value, 

the ballast quantity can be modified at the end of the 

construction. 

 

- The specific weight of concrete:  Although the specific 

weight of the concrete will vary during the construction, it 

can be easily measured. The acceptable range has to be 

established beforehand. After the construction, this 

parameter is known exactly. The weight of the structure may 

change slightly over the time, as the concrete absorbs 

water.(Alteration minimal in comparison to the capacity of 

the support system). 

 

- The specific gravity of water:  The range in the specific 

gravity of the water will be particular of the site, and should 

be obtained at an early stage in the design process. The 

variation in buoyancy resulting from the change in the 

specific gravity of the water is permanent variable, and may 

have special importance in coastal areas, where the 

amount of river runoff or melting ice or snow can change the 

value rapidly. 

 

- The amount and stability of marine growth:  marine growth 

is known to concentrate at the sea floor and at the surface. 

If the SFT is not located in the critical surface layer, the 

effects of marine growth will be minor. However, where such 

growth does occur, it will increase the weight and the 

current resistance. Therefore, accurate predictions of the 

amount of marine growth are required. 
 

The aforementioned uncertainties lead to time variations of the residual 

buoyancy; in order to keep these variations under control, avoiding negative 

effects on the structural stability, it is possible to use water as ballasting 

material (or part of it) and counteract the weight changes by varying the 

amount of ballast water. This operation can be easily made through hydraulic 

pumps (Martire, 2010). 

 

 

2. FL (Functional Loads) or variable loads: Are those caused by the usage of the 

structure, in a SFT, which are due to traffic, changes in ballast conditions and 

the variable loads during construction. 
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Depending on the destination of use of the SFT, different functional loads will 

be produced. As it is known a SFT is proposed for pedestrian, roadway, railway 

or combination of these. 

In a single day, the amount of traffic in the tunnel suffers great variations and 

so defining an associated load is quite difficult. Codes such as Eurocode 1 , part 

3, UNI ENV 1991-2, 1991 or Norma española. UNE-EN 1991-2. CAPÍTULO 4. 

ACCIONES DE TRÁFICO RODADO Y OTRAS ACCIONES ESPECÍFICAS PARA 

PUENTES DE CARRETERA define conventional loading conditions determined on 

the basis of statistical data gathering and analysis; these codes are intended to 

reproduce most critical stress conditions produced by traffic loads on the 

structure.  

 

The following table shows some load values proposed by Martire (2010) 

according to the SFTs destination of use. 

 

 
Table 2.11 Variable load values for SFT depending on its destination of use. 

 

 

 

3. DL (Deformation Loads): These are cause by geometric changes in the structure 

itself; these loads are usually associated to the material properties involved. 

Some of the causes of deformation loads are due to post and pre-tensioning, 

temperature variations, differential settlements, shrinkage, as mentioned 

before ship or submarine collision etc... 

 

 

4. Hydrodynamic loads: Hydrodynamic actions due to the interaction between the 

water and the structure in presence of waves and currents, it often represents 

the most important environmental load for a SFT. 

 

The effects of the hydrodynamic actions for a circular cross section are 

evaluated, through both static and dynamic analyses, by means of the Morison. 

(Mazzolani F.M. et al. 2008) 

 

F= FD(t)+FI(t) = 
1

2
ρ𝑊𝐷𝐶𝐷𝑢(𝑡)2 + 𝜌𝑊

𝜋𝐷2

4
𝐶𝐼𝑎(𝑡)                                   (eq2.6) 

 

with the following meaning of the symbols: 

 

- F = Hydrodynamic force 

- FD= Drag force, depending on the velocity vector u(t); 

- FI= Inertia force, depending on the acceleration vector a(t); 
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- ρw= Water mass density; 

- D = Tunnel external diameter; 

- CD = Drag coefficient  

- Ca= Added mass coefficient where for a cylinder = 1.0.  

- CI= Inertia coefficient =1 + Ca =2.0, taking into account the added mass 

of the water surrounding the tunnel, which participates to the tunnel 

motions (Efstathios Konstantinidis 2017); 

- u(t) = Velocity vector, equal to the relative velocity between the fluid 

particles and the tunnel; 

- a(t) = Acceleration vector, equal to the relative acceleration between 

the fluid particles and the tunnel. 

 

 

  
 

           Figure  2.25 Drag coefficients. 

 

4.1. Currents: There can be different types of currents in waterways, those 

generated by wind and those generated by tide variation. Wind blowing over 

the water surface transfers energy to it, creating water motion. By contrast, 

the rise and fall of the water level due to tides, leads to horizontal water 

motion. Obviously, it will depend on the site whether if current will create a 

larger or smaller load.   

 

Usually water motion due to currents take place in the horizontal plane and 

can be assumed constant, as small variations in its velocity occur in a 

sufficiently long-time period. However short and long-term fluctuations 

around the velocity mean value occur, therefore when the former ones are 

significant they should be considered. Generally, for design purposes, water 

current is modelled as a horizontal velocity distribution along the water 
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depth; this distribution can be roughly assumed to be constant or, more 

generally, can be represented by as a polyline, thus requiring observed data 

relative to the current velocity at the depths of the polyline vertices (Martire, 

2010). 

 

An analytical distribution often adopted for the current velocity can be shown 

as: 

 

𝑉𝐶(𝑧) =  𝑉𝑇 (
𝑧+𝑑

𝑑
)

1

7
+ 𝑉𝑊 (

𝑧+𝑑

𝑑
)                                                                   (eq2.7) 

 

Where: 

 

VC (z) : Current velocity at a depth equal to z (z axis with the origin in the            

free surface and directed upwards). 

 

VT : Surface current velocity generated by tides. 

 

VW : Surface current velocity generated by wind. 

  

 

4.2. Waves: Waves differ from currents because an oscillating motion of the 

water particles characterizes them. Can be of two types, they can be either 

generated by wind due to the wind blowing over the surface, or they can be 

created by the force of gravity acting on small differences in density which 

keep water particles in motion, known as internal waves. 

 

- Wind generated waves: When directly being generated by the local winds, a 

wind wave system is called a wind sea. On the contrary, wind generated waves 

that are not affected by the local wind at that time and have been generated 

elsewhere, or some time ago, are called swells.  

 

- Internal waves: Different density can exist between two fluids or between 

different parts of the same fluid because of a difference in temperature, 

salinity, or concentration of suspended sediment. 

 

Although internal waves can be important and induce significant loads on 

marine structures, in most cases wave water motion is made of wind 

generated waves (Martire, 2010). 

The size of the wind waves depends on three variables: the wind speed, the 

wind duration and the fetch the exposure of the site to wind action. 
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Small amplitude waves in deep water acquire a sinusoidal form, by contrast 

in shallow water the wave crests become steeper and the troughs (minimum) 

flatter, the form tending to become trochoidal. 

 

Figure  2.26 Sinusoidal wave.   

Figure  2.27 Trochoidal wave. 

 

In deep water a single sinusoidal wave can be described by three parameters 

(CIRIA Underwater Group, 1978). 

- Wave period(TW ): The temporal distance between two crests or two troughs. 

- Wave height: (HW ) : The vertical distance from trough to crest.  

- Wave length( 𝜆𝑊): The geometric distance between two crests or two troughs, 

measured in the direction of propagation of the wave. Wave length is closely 

associated to wave period and also to wave celerity, being 𝜆𝑊 = c · TW their 

relationship. Moreover, there is a first order relationship between 𝜆𝑊 and TW. 

 

  𝜆𝑊 = 1.56 · TW2                                                                                         (eq2.8)    

(𝜆𝑊 in metres and TW in seconds) 

 

In order to describe the motion of water particles due to waves, several 

theories have been developed, generally focusing on the determination of the 

velocity potential, satisfying the Laplace Equation and assuming an 

irrotational and incompressible fluid. The following table explains the most 

common theories used to carry out the hydrodynamic analysis due to wave 

loads. 
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Table 2.12 Linear and non-linear wave theories features (Panduro J.Omar 2013). 

 

Choosing the right and adequate wave theory, will depend on the different 

wave parameters. In fact, each wave theory can be considered reliable in 

different fields of application in terms of wave period, height and seabed 

depth. In Figure 2.28. can be seen the different behaviours of each theory. 

 

 

 
Figure  2.28 Graphical representation of the different wave theories. (Medina, 2009). 

 

Theory Features Application 

Airy Linear Wave Theory 

also called Sinusoidal 

 

The wave height Hw is small 

(Sarpkaya and Isaacson, 1981). 

 

When the wave height Hw is 

considerably smaller tan both the 

wave length Lw and the seabed 

depth d. (Sarpkaya and Isaacson, 

1981). 

 

Stokes theory 

The considered wave is 

not too steep and water 

depth is not too small 

(Sarpkaya and Isaacson, 

1981) 

 

When the wave height-to-length 

ratio is largely lower than 

one (Hw/Lw<<1; (Peregrine, 1972)) 

and when the wave length 

Lw is less than 8 times the water 

depth d (Laitone, 1962). 

 

Cnoidal Wave Theory 

 

Waves with very steep and sharp 

crests and flat roughs. 

 

In shallow waters. When 

d/Lw < 0.05. 

 

Solitary Wave Theory 

 

large wave length 

compare to the height 

 

When d/Lw < 0.05 

 

Linearized Long Wave or the 

Trochoidal Theory 

 

Circular particle orbits, rotational 

fluid and trochoidal wave surface 

profile (Gerstner, 1802; Rankine, 

1863). 

 

It serves as a link from linear theory 

to the finite amplitude oscillation 

wave theory (Wilson, 2003) . 
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There are many diagrams defining the field application of the various wave 

theories. In Figure 2.29. the range of validity of the different theories of wave. 

 
Figure  2.29 Range of validity for the wave theories. (Le Méhauté, 2008). 

 

 

Bernt Jakobsen (2010) says that it is not so much the difference in wave 

heights that causes higher wave loads on the structure from the sea waves, 

but more the difference in wave periods. Figure 2.30. illustrates the effect of 

different wave periods on the wave force as a function of the depth at which 

the tube is located. 

Figure  2.30 Wave force as a function of wave period and depth (Bernt Jakobsen ,2010). 
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5. Earthquake or seismic loads:  Strong ground motion due to release of energy 

from the accumulated earth's crust apart from volcanic and tectonic activities, 

which originate mainly at the edges of the plate. Special attention should be 

paid to the tunnel shore connections and also to the anchoring system as the 

seismic loads will propagate through (downwards residual buoyancy). A SFT 

supported from bed level by means of any anchoring method would suffer the 

seismic loads much like a bridge, but supported in any other way could be 

almost independent of seismic loads. This does not mean that seismic events 

can be ignored. So, it is necessary to assure that every structural component 

supports safely extreme seismic events. (Ahrens D. 1997)  

 

Xiao J. et al (2010) made a study of the seismic response of the Submerged 

Floating Tunnel with different types of connections between the ends of SFT and 

the shore, including the rigid connection, hinged connection, elastic bearing 

connection, bi-linear elastic bearing connection, and passive isolation 

connection. Hi concluded firstly, that the hinged connection system can greatly 

reduce the seismic response with respect to the rigid connection, and finally, 

that the elastic bearing and passive isolation connection in comparison with the 

hinged connection by choosing proper parameters of the bearings can be much 

more effective.  
  

 

Figure  2.31 (a) Hinged connection. (b) Elastic bearing connection.                                                                                       

Figure  2.32 Passive isolated connection. 
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6. AL (Accidental Loads) : Accidental loads, are not meant to happen, but they do 

happen from time to time, so they must be considered, and specified, a rational 

way of dealing with these loads must be studied. Explosions inside or outside 

the tube, loss of buoyancy, fire from burning cars or fluids, failure within the 

support system are some of the accidents that could cause this type of loads. 

On the next table can be seen several studies related to accidental events and 

how may they affect a SFT.  

 

 
            Table 2.13 Studies related to accidental event which could occur on a SFT. (Panduro J.Omar 2013). 

 

 

2.1.6. Limit States 

  

The SFT design method can be based the semi-probabilistic limit state approach, 

using partial safety coefficients on both loads and strength of materials. 

 

The semi-probabilistic approach divides the design into the following design limits 

states:  

 

SLS (Serviceability Limit State): These conditions are set to ensure that the whole 

structure meets the necessary criteria with regard to deflections, crack widths, 

factors of safety, accelerations etc. 

 

ULS(Ultimate Limit State): This condition is set to confirm that the structure has the 

necessary margin of strength to survive factored loads and load combinations, with 

the factors being set to provide acceptable risk of failure. The factors must also be 

sufficient to ensure after an unfeatured event, that the structure is capable of 

continuing to operate satisfactorily. 

 

FLS(Fatigue Limit State): Some materials lose strength due to repeated loading. The 

FLS is required to account this fact. By computing the accumulated damage in the 

material and checking the computed life of the structure against the operational life 

the sensitivity of certain components of the structure can be established. 
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2.1.7. Construction Methods. 

 

2.1.7.1. Incremental Construction and Launching. 

 

In this method, the construction takes place at one of the abutments which are 

modified and increased in size to accommodate the construction site and the 

associated plant, equipment and materials. 

 

The tube is constructed in consecutive sections on an inclined skid way in the 

abutment. After each section is completed, the tube is moved forward into the water, 

over the length of one section. For this reason, the segment is constructed in saddles 

and pushed forward by hydraulic jacks. Before it is pushed through the gate, the tube 

is coupled to the previous segments with pretension cables. The part of the tube 

pushed out into the water must be kept under control. A temporary cable system 

and/or a pontoon support system is a likely method for this purpose. 

 

If the pontoons are used for vertical support during pushout, a shore-based cable 

system may be needed to keep the SFT under control in the horizontal direction. The 

stiffness of the cable system in relation to the stiffness at the pushout gate will 

require careful consideration. New pontoons are connected to the tube as it moves 

forward. The pontoons, which may be temporary or permanent, follow the structure 

across the waterway. 

 

An alternative would be to use final tethers, installed in advance and supported by 

temporary pontoons. To allow the tube to move, a special guidance and support 

system is needed at the top end of the tethers. It may be possible to install rollers, 

guidance plates or hydro jet bearings in a saddle, which may be temporary or which 

may become part of the final construction. As the tube is pushed forward, it meets 

the guidance structure. The tether tension is then provided by the buoyancy of the 

tube (Ahrens D. 1997). 

 

Figure  2.33 Incremental construction and launching of SFT elements (Ahrens D. 1997). 
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2.1.7.2. Element Construction and Launching 

 

The SFT elements are constructed in a dock. After all, or a number of elements have 

been completed, the dock is flooded and the elements are towed to the site. 

Bulkheads used to seal the ends and to maintain positive buoyancy during 

construction, are joined at the site. The length of each element is determined partly 

by the structural capabilities of the SFT (the designed distance between the supports) 

and partly by the available length of existing ship docks, slipways or construction 

docks.  

 

After reaching the site, the installation barge supports the element during assembly 

and lowering to the intended depth: At each joint location, a set of tethers is pre-

installed and coupled in a horseshoe-shaped support. The element is lowered under 

the support while temporarily pulling the support aside. 

 

After the element has been fitted into the predetermined tether support system, it is 

de-ballasted, causing the load to transfer from the installation barge to the tether 

system. During this process, the length of the tethers is adjusted at the support shoe 

to prevent unacceptable deflections of both tethers, the position of the new element 

and of previous elements. 

An initial watertight seal is provided by a rubber gasket. After de-watering the area 

between bulkheads, the permanents join between the two elements is made and 

post-tensioned to obtain full structural strength. The rubber gasket has only a 

temporary function during construction.  

 

Several solutions may be used for the final connection between the tunnel and the 

tethers. These connections depend on the location of the connection i.e. whether 

they are external or within special chambers added to the tunnel. It also depends on 

whether the preference is to connect the tethers first to the anchor points on the bed 

or to the elements before it is lowered (Ahrens D. 1997). 

 

Figure  2.34 SFT elements being towed to the site. 
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Figure  2.35 Type of installation on site (Ahrens D. 1997). 

 

 

2.2. Suspension Bridges 
 

 

A suspension bridge is a type of bridge, which has suspended cables between towers, 

in addition to vertical suspender, cables that carry the weight of the deck below, 

destined for the crossing of traffic.  

The basic structural components of a suspension bridge system include 

girders/trusses, the main suspension cables, main towers, and the anchorages for 

the cables at each end of the bridge.  

 
Figure  2.36 Akashi-Kaikyō Bridge, Japan. 
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Figure 3.2. briefly shows the different components of a suspension bridge. In these 

type of bridges, the main cable made out of high-strength steel wires, together with 

hanger ropes, support traffic-carrying stiffening girder. Any load applied to the bridge 

turns into a direct tension that is transmitted through the cables to the towers and 

anchorages, due to this, suspension cables must be anchored at each end of the 

bridge or sometimes to the bridge itself. The intermediate vertical structure, also 

known as the main tower, support main cables at a level of optimal sag ratio and 

required clearance. These towers transfer the external loads to the bridge 

foundations. 

An anchorage is generally a massive concrete block, which anchor main cables and 

act as end supports of a bridge against horizontal movement (Lin W. et al. 2017). 

 

 
Figure  2.37 Main suspension bridge components (Lin W. et al. 2017). 

 

Suspension bridges are widely used as engineering structures to cross long distances 

and enables the use of domain under de bridge. A SFT is able to provide the crossing 

of long stretches, but is more limited in terms of crossing traffic below or above it, 

since it will depend on whether it is subject by pontoons or tethers, and thus will 

harden sea traffic passing through. However, a SFT has less environmental impact 

than a suspension bridge. 

 

 

2.2.1. History of the Suspension Bridge 

 

It is hard to say who really had the first idea of suspension bridge.  In 1433, Thangtong 

Gyalpo build several bridges in eastern Bhutan, the difference of these bridges from 

modern suspension ones is that Gyalpos iron chain bridges did not include a 

suspended deck bridge, instead, both the railing and the walking layer used wires 

and the stress points that carried the screed were reinforced by the iron chains. This 

is the reason why Gyalpo is not considered the first designer of a suspension bridge 

(Gazzola F., 2015). 
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Figure  2.38 Picture of the Chushul Chakzam suspension bridge (Gazzola F., 2015). 

 

The Italian engineer Fausto Veranzio is known to be the first one to design a modern 

suspension bridge in 1595. Veranzio proposed an iron bridge (Pons Ferreus) which 

is somehow a combination between a suspension bridge and a cable-stayed bridge. 

Even though, this bridge was never build.  

 

 

 

Figure  2.39 Picture of the Pons Ferreus by Fausto Veranzio (1595) (Gazzola F., 2015). 
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However, it was not until two centuries later in 1801, when it is thought to have been 

erected the first suspension bridge, using wrought iron chains with a level deck, 

known as Jacob Creek Bridge situated in Pennsylvania. This bridge, was built by the 

Irish judge and engineer James Finley.  

 

 

 
Figure  2.40 View of the Jacob Creek Bridge (1801). (Gazzola F., 2015). 

 

 

2.2.2. Suspension Bridge Classification. 

 
Suspension bridges can be classified according to: 

- Span Number 

- Stiffening Grinders 

- Suspenders 

- Anchoring Conditions 

 

 

2.2.2.1. Span Number  

 

Nowadays, there can be several types of suspension bridges based on the number 

of spans and towers. Single-span, two-span, three-span or multi span suspension 

bridges. Among them, the most commonly used in engineering practice is the three-

span suspension bridges with two main towers.  
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Figure  2.41 Suspension bridge classification according to span number. (a) Single-span. (b) Three-span. (c) Multi-

span (M. De Miranda, 2016). 

 

 

Typical single-span suspension bridges could be the Tsing Ma Bridge in Hong Kong 

and the Pingsheng Bridge in Guangdong. 

 

Figure  2.42 Tsing Ma Bridge in Hong Kong 

Figure  2.43 Pingsheng Bridge in Guangdong. 
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An example of a multi-span suspension bridge could be the Tamate Bridge built in 

1928 in Japan. For these type of bridges, where more than two towers are present 

the horizontal displacement of the tower tops due to live loads can be a concern and 

measures for controlling such displacement becomes necessary. 
 

Figure  2.44 Typical multi-span suspension bridge, Tamate Bridge, Japan. 

 

2.2.2.2. Stiffening Girders  

 
According to Alampalli et al. 2015 there are two types of stiffening girders, based on 

the continuity. The two-hinge or the continuous types. They can be appreciated on 

Figure 2.44 The use of one and other varies. For highway bridges the two hinge 

stiffening girders are commonly used, and the continuous stiffening girder is often 

used for combined highway-railway bridges, in order to ensure continuity between 

spans and secure the smooth operation of the trains. The longest suspension bridge 

in the world, Akashi Kaikyo bridge in Japan (see Figure 2.36 ), was designed with a 

two hinge stiffening girder system. 

Figure  2.45 Suspension bridge classification according to stiffening girders. (a) Two-hinge stiffening girder (b) 

Continuous stiffening girder (M. De Miranda, 2016). 
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2.2.2.3. Suspenders 

 
Suspenders or hangers in suspension bridges can be designed either vertical or 

diagonal. Vertical suspenders are more often used in suspension bridges. As for the 

diagonal hangers, the purpose of its use, is to increase the damping and improve the 

seismic performance of the bridge. In order to have a higher stiffness of a cable 

supported bridge, a combined suspension and cable-stayed cables system can also 

be used. A typical example for a suspension bridge with diagonal hangers would be 

the Humber bridge situated in England. 

 

Figure  2.46 Suspension bridge classification according to suspenders. (a) Vertical suspenders. (b) Diagonal 

suspenders. (c) Combination of suspenders and cable-stayed system. (M. De Miranda, 2016). 
 

Figure  2.47 Humber bridge, Kingston upon Hull, England, UK. 
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2.2.2.4. Anchoring Conditions 

 
Suspension bridges can be classified according to the anchoring conditions; they can 

be either externally anchored or self-anchored, as shown in Figure 2.48 the most 

common type of suspension bridges are externally anchored. 

In order to do so, anchorages need to be built on both ends of the bridges to sustain 

the tensile forces from the main cable. The disadvantages of Earth anchoring occur 

in the difficulty of anchoring very large horizontal forces, and transmitting them to the 

soil, as usually these forces are applied meters above the strong layers. The self-

anchored suspension bridge removes this last difficulty, as there is no need of 

anchorages, and only vertical loads are transmitted to the soil. Inversely, construction 

is more difficult, at least for long-span bridges, since the deck must be present when 

the cables are installed. Therefore, the deck must be erected on temporary supports 

(M. De Miranda, 2016). Usually for long-span bridges, external anchorages are more 

convenient (Lin W. et al. 2017). The San Francisco Oakland Bay Bridge is a typical 

example of a self-anchored suspension bridge. 

 

 
Figure  2.48 Suspension bridge classification according to anchoring conditions. (a) Externally anchored 

suspension bridge. (b) Self-anchored suspension bridge. (M. De Miranda, 2016). 

 

 

2.2.3. Design Criteria 

 

2.2.3.1. Geometry 

 

A suspension bridges geometry can vary with respect to main towers and stiffening 

girders, the use of one type or another, will depend on the site conditions and the 

load applied. 

 

 



SUBMERGED FLOATING TUNNEL: A REVIEW AND STUDY OF THEIR USE FOR STRAIT CROSSING.  

 

 

55 

 

2.2.3.1.1. Main Towers  

 

Main towers of suspension bridges can be made out of steel or concrete structures. 

Concrete structures are typically more economical, at least in areas of low seismicity 

and with good soil conditions (M. De Miranda, 2016). At the top of these pylons, cable 

saddles are accommodated; here practically all the load of the half bridge is 

concentrated.  

Figure  2.49 Typical layouts of suspension bridge towers, in size ascending order. (a) Simple frame. (b) Multiple 

frame. (c) Trussed. (d) Stain lined frame. (e) Stain lined truss (M. De Miranda, 2016). 

 

In the longitudinal direction, towers can be classified into three types; rigid, flexible, 

and locking types. Flexible towers are commonly used in long-span suspension 

bridges, rigid towers are used for multi span suspension bridges, to provide enough 

stiffness to the bridge, and locking towers occasionally for relatively short span 

suspension bridges (Okukawa et al., 1999). 

 

 

 

Figure  2.50 Towers in suspension bridges ( Okukawa et al., 1999). 
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For towers in suspension bridges, the buckling due to the large compressive forces 

deserves special attention. As for a SFT, if subjected with columns, buckling due to 

tensile forces may happen and if subjected by tethers, foundations due to the same 

forces could be displaced.  

 

In addition, the horizontal seismic performances in the tower for bridges and in shore 

connections and foundations for SFTs should be analysed.  

 

2.2.3.1.2. Stiffening Girders or decks  

 

The stiffening girder or deck is the surface of the bridge, it may be constructed of 

concrete for small spans, but they are usually made out of steel, or a combination of 

both. Usually, a railroad bed and track, asphalt concrete, or other form of pavement 

for vehicle crossing covers the deck. 

In suspension, deck grinders usually come in three types; 

 

- Truss structure 

- Plate girder or I-girders 

- Box girder 

 

 
 

Figure  2.51 Typical suspension bridge cross-sections. (a) Plate girder. (b) Truss girder. (c) Box girder. 

 (Okukawa et al., 1999). 

 

 

In comparison to other decks, plate girders are very light and simple with respect to 

their design, but are disadvantageous with regard to their aerodynamic behaviour as 

they have a relatively low flexural stiffness and, mainly, very low torsional stiffness. 

However, the use of aerodynamic fairings can improve their aerodynamic 

performance and bottom bracing can improve torsional stiffness. 

 

For modern long-span suspension bridges, trusses and box girders are more often 

used. 

The use of truss-stiffened girders, gives great stiffness to the whole structure while a 

relatively low aerodynamic drag is maintained. However, for long spans, the weight of 
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steel is higher than for other systems. These leads to an increase of the deadweight 

and with it an increase of the bending moment when temperature variations occur. 

For long-span bridges, deadweight takes up a big percentage of the load carrying 

capacity, and so it should be taken into account during the bridge design. 

The world’s longest suspension bridge, Akashi Kaikyo (see Figure 2.52) has a truss-

stiffened grinder (M. De Miranda; Lin W. et al. 2017). 

 
Figure  2.52 Akashi Kaikyo Bridge, Japan. 

 

With regard to box girders, even though, this kind of decks have a relatively high 

fabrication cost, they present many advantages, mentioned as follows; 

 

• Streamlined-aerodynamical profile 

• Aerodynamic drag is low 

• Good flutter stability 

• High flexural and torsional stiffness 

 

However, the aerodynamical stability for a classical box girder suspension bridge 

depends on its main span length. Therefore, for long spans (>1600m) or very high 

design winds, the system would not satisfy the required stability. Richardson (1984) 

says that by splitting the deck into two streamlined box girders, flutter stability is 

greatly increased. Still, Farquharson (1950-1958) states that the higher stability in 

decks is satisfied with central openings. Figure 2.53 shows the construction of a box 

girder suspension bridge situated in Guangzhou, China. 
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Figure  2.53 Second Humen Bridge, Guangzhou, China. 

 

 

As in SFT, there are several cross sections for suspension bridges, but some act 

better than others depending on the site conditions and the purpose of each 

structure. Comparing both types of cross sections, it can be appreciated, that 

suspension cross sections are much simple, in terms of materials, and SFT cross 

sections are much simpler, in terms of geometry.  

Both cross sections have to act against loads, aerodynamic and hydrodynamic loads, 

which lead to stability problems. In SFT hydrostatic loads must be considered too. 

The main problem for a SFT cross-section that does not concern a suspension bridge 

is impermeability. A poor arrangement in terms of materials or a crack in the structure 

due to specific events (ice, ships, submarine collision etc..) could eventually lead to 

collapse due to pressurized water access. 

In terms of security, for a SFT the construction of a parallel tunnel or exit towers could 

be proposed, and so, in case of an accident, traffic can be redirected and emergency 

exits are available. In suspension bridges, traffic access must be cut.  

 

2.2.3.1.3. Stability of the Bridge 

In a suspension bridge, the length and the stability of it depends on the sag ratio. 

The sag ratio of the main cables is known as; 

 

n = f/L                                                                                             eq (2.9) 

Where,  

f = vertical interval of the main cable in the main span known as the sag. 

L = length of the span. 

The sag ratio is generally taken between 1/8 and 1/12 (a generally accepted 

optimum ratio is a 1/10). A bridge with a low sag ratio or said in another way, if the 
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main cables have a flat curve, the bridge has more vertical stability but the cable 

stress is high and strong anchorages are required. On the contrary, a higher ratio or 

a deeper sag, reduces cable force, but increases the height of the main towers and 

makes them more susceptible to large forces and consequently the bulking 

increases. 

The geometrical shape of a main cable is shown in Figure 2.54. 

 
Figure  2.54 Shape of the main cable (Lin W. et al. 2017). 

 

Lin W. et al. (2017) demonstrates that generally the main cables deform as a 

parabolic curve if it is considered that the cables and the dead weight (w) of the 

stiffening grinder are uniformly distributed. 

As explained before, the stability of a SFT will depend on a similar ratio, the buoyancy 

ratio, where instead of relating the vertical interval with the length of the span to 

stabilize the deck is vertical displacement, it relates the buoyancy of the tube with its 

self-weight in order to stabilise the tube in a precise depth. 

2.2.3.2. Cables 

 

Suspension bridge cables are always made out of strong steel in parallel wires and 

are galvanized, with diameters of 5,2–5,7mm.  

Hangers are made with wire ropes, spiral cables, locked coil or parallel wire ropes. As 

previously mentioned, always in galvanized steel and protected by sheaths and often 

in high-density polyethylene. The clamps that support and anchor the hangers to the 

main cables are typically made of cast steel, with bolt anchors.  

The hangers are attached to the deck by hinge type anchorages next to the mooring 

block, as there is maximum longitudinal rotation on the hangers, and rigid type 

anchorages for the intermediate hangers. 

De Miranda 2017 analyses vertical and horizontal loads produced on suspension 

bridges, in order to make a good sizing of the cables. For vertical loads, she analyses 

permanent and moving loads and for horizontal, she focuses on the actions of the 

wind.  
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Figure  2.55 Cross section of the main cable in Akashi Kaikyo Bridge (De Miranda M., 2017). 

 

2.2.3.3. Anchorages 

 

The anchorage structure usually includes; the foundation, anchor block, bent block, 

cable anchor frames, and protective housing.  

These members receive through the main cables, most of the self-weight and other 

loads of the bridge. In order to prevent cable force concentration inside the 

anchorages, the cables are spread over a large area so that the load is distributed 

evenly. 

Bad dimensioned anchorages can suffer from rotary movement and slippage, and so 

before anything, safety check should be confirmed. 

The most often anchorage used nowadays in construction are the gravity type 

anchorage systems as shown in Figure 2.56 (A) and the tunnel type anchorage as 

shown in Figure 2.56 (B).  

 

Gravity anchorages usually consist on the construction of huge concrete blocks, 

which relies on the mass of the anchorage itself to resist the tension of the main 

cables, that is why, before their construction a precise knowledge of the total systems 

load should be given. On the other hand, the tunnel anchorage takes the tension of 

the main cables into the ground. On this type of anchorage, adequate geotechnical 

conditions are required.  
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Figure  2.56 Anchorage systems. (A) Gravity type. (B) Tunnel type. (De Miranda M., 2017). 

 

 

2.2.3.4. Loads 

 

The following loads presented as follows are based on the AASHTO specifications. In 

general, this loads can be divided into two big groups: permanent loads and transient 

loads (functional, fluid, seism, deformation and accidental loads). Additionally, 

depending on the structure type, other forces due to creep, shrinkage, or movement 

of the structure supports can take place.  

 

1. PL (Permanent Loads): 

 

Permanent loads include; 

 

• Dead weight of structural elements and non-structural elements (DC). 

• Dead weight of coating surface and accessories (DW). 

 

The structural elements are those forming part of the resistance system. Inside the 

non-structural elements include barriers, parapets, signals etc. In the case where no 

information of the technical specifications of the precise weight is given, unitary 

weights from the Table 2.14 Extracted from AASHTO specifications can be used. Dead 

weight of coating surface can be estimated taking the unitary weight for a surface 

thickness. 
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Materials Unitary weight(Kg/m3) 

Aluminium 2800 

Bituminous surfaces 2250 

Sand, clay or compacted silt 1925 

Lightweight concrete (including reinforcement) 1775 

Lightweight concrete with sand (reinforcement included) 1925 

Normal concrete 2400 

Sand, silt or loose gravel 1600 

Soft clay 1600 

Ballast 2450 

Steel 7850 

Stone masonry 2725 

Hardwood 960 

Soft wood 800 

Rail for road traffic 300 Kg/ml 

 
Table 2.14 Unitary weights. 

 

2. Fluids 

 

Structural loads due to fluid flow (water or air) are stablished as seen in the SFT 

chapter by the Bernoulli equation in combination with correction coefficients. 

 

2.1.  Wind loads  

 

Wind speed varies with the altitude and roughness of the terrain it travels. The wind 

speed increases with altitude as seen in Figure 2.57 Vg represents the limit speed, 

regardless of any surface, 𝛿 is the layer thinkness and V10 is the velocity at 10m. 

For bridges at heights less than 10m the V10 speed will be used, and for bigger 

heights the AASHTO equation will be used; 

 

VDZ=2,5V0(V10/VB)ln(Z/Z0)                                                                                     eq(2.10) 

Figure  2.57 Speed profile 
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VDZ represents the expected design speed in Km/h at an altitude Z. VB is the base 

wind speed at 160 Km/h. V0 is the friction speed and Z0 the friction length, both are 

obtained from the following table.  

 

  Open field 

Semi-

urban City  

V0(km/h) 13,2 15,2 25,3 

Z0(mm) 70 300 800 
 

Table 2.15 V0 and Z0 values. 

 

 

The wind pressure acting at the structure is related with the base wind speed VB = 

160 Km/h. 

 

PD = PB(VD/VB)2 = PBVD2/1602                                                             eq(2.11) 

 

Pressures for the base wind speed are given in Table 2.16 

 

Structural element 

Windward 

load(MPa) Leeward load (MPa) 

Columns, arches, armour etc… 0,0024 0,0012 

Beams 0,0024 N/A 

Long flat surfaces 0,0019 N/A 
 

Table 2.16 PB values corresponding to VB. 

 

A 1,6 N/mm wind load applied at 1,8m above the road surface must also be 

considered for each vehicle.  

 

2.2. Hydraulic loads 

 

The water that surrounds the substructure of the bridge creates lateral forces that 

act directly on the structure, due to that sediment can be accumulated on the bridge 

towers foundations and so increase lateral forces. The following equation represents 

this lateral forces or drag forces. 

 

FD = 1/2 𝜌WCDu(t)2                                                                              eq(2.12) 

 

Where CD as mentioned before is the drag coefficient given in Table 2.17and u(t) is 

the water velocity in m/s. If the sub-structure is at an angle to the current, corrections 

must be made in accordance with the specifications of AASHTO, the same will happen 

for sediment deposited in the substructures of the bridge, the area must also be 

corrected. This could also apply to a SFT and should be considered in its design.  
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Type  Cd 

Semi-circular pillar 0,7 

Square pillar 1,4 

Pillar with diverted flow 1,4 
 

Table 2.17 Drag coefficient values. 

 

 

3. Seismic loads 

 

Depending on the bridge location, seismic effects can be ignored or might 

influence on the bridge design. J.D. Yau et al. (2007) analyses the response of a 

suspended bridge due to moving loads and seismic loads. E.S. Manrique (2004) 

explain how to determine these charges by following a few steps. 

 

a) Preliminary design (bridge type, span number, tower height, road section, 

etc..). 

b) Acceleration coefficient, which depend on the bridge location, this coefficient 

is obtained from the seismic zoning map.  

 

c) Importance of the bridge category. Table 2.18 Summarizes the characteristics 

of the three categories of importance. 

 

Importance 

category 
Description 

Critical bridges 

After the design earthquake (475 years return period) they 

must be open to all traffic and after a long earthquake (2500 

year return period) must be open to emergency vehicles. 

Essential bridges 

After the design earthquake must be open to emergency 

vehicles. 

Other bridges Can be closed to be repaired after a long earthquake. 

 
Table 2.18 Importance category. 

 

 

d) From the acceleration coefficient determinate, the seismic operation of the 

zone. 
 

e) Determinate the place coefficient S. This coefficient depends on the soil 

conditions.  
 

f) Finally determine the response modification factor, which reduces seismic 

forces based on the elastic analysis of the bridge system.  
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4. Deformation loads. 

 

4.1. Temperature 

 

Two types of temperatures must be considered in the structural analysis. The first 

type is the uniform temperature change. This type of change in temperature affects 

long and short bridges, and if the supports are restricted it will cause forces in the 

stirrups of the bridge. This type of deformation is seen in Figure 2.58 a). The second 

type the temperature change is a non-uniform heating or cooling gradient, this 

deformation can be seen in Figure 2.58 (b).   
 

 
Figure  2.58 (a) Temperature which causes dilatation. (b) Temperature which causes curvature. 

 

 

 

Exposure to sun rays, the bridge platform will get hotter than the beams from below, 

and so beams try to bend upwards. If this movement is prevented by internal 

supports, internal forces will be induced. If the movement is completely free internal 

stress will occur, just like the simply supported beams. 

 

4.2. Creep and Shrinkage  

 

The creep and shrinkage effects in the concrete produce structural stress and 

fatigue. These effects are of special importance in prestressed concrete and in 

superstructures with large volumes of concrete. 
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4.3. Settlement 

 

Support movements can occur due to elastic deformations or inelastic deformations 

of the foundations. Elastic deformations include movements that affect the response 

of the bridge to other loads but permanent deformations will not be seen. 

 

5. Accidental loads 

 

The impact forces on a bridge during collision depend on parameters such as the 

vehicle type, size, mass, and speed as well as the circumstances of the accident 

(eccentricity of impact, size and shape of structures etc…). Normally the duration of 

action of the maximum force in vehicle/bridge collision is very brief. Z. Kamaitis 

(1997) proposes a formula to calculate the average impact force caused by vehicle. 

He also proposes a formula to determinate the same force for collision of floating 

debris, ice and marine traffic.  

 

2.2.3.5. Limit States 

 

In a suspension bridge, the same limit states are considered as in a SFT 

(Serviceability, ultimate and fatigue), the difference is that possible combinations of 

loads for each design limit state can be precisely known due to that fact that previous 

bridges have been constructed, these values can be found on Eurocode 1 – Actions 

on structures. 

 

2.2.4. Construction methods 

 

Classic suspension bridges always have to follow de same operation sequence (de 

Miranda M., 2008); 

 

• Construction of towers and mooring blocks. 

• Formation of the supporting cables and installation of hangers. 

• Installation of the girder deck. 

 

The deck installation is done by lifting the structural elements of the deck (or panels 

of the truss segments or whole segments) from the sea (or from the river or ground 

depending on the environment) by a crane positioned on the cables or on the already-

erected deck. 

The installation of box-girder decks in bridges starts from the centre line, where the 

segments are assembled initially, and proceeds symmetrically to the towers to reduce 

the risk of flutter during construction (see Figure 2.59). For bridges with trussed 

decks, truss segment installation normally starts from the towers, proceed 

symmetrically toward the middle of the central span, and toward the end of moorings 

(see Figure 2.60). 
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During the erection of adjacent segments, previous lifted segments are temporarily 

connected with devices designed to allow mutual rotation and to guarantee the 

necessary stability due to the wind dynamic effects (de Miranda and Petrequin, 

1998).   

 

 

Figure  2.59 (a) Erection sequence of typical box-girder suspension bridge, by starting from mid-span in order to 

minimize the risk of flutter during construction (Miranda M., 2008). 
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Figure  2.60 Continued. (b) Erection sequence of deck starting from pylons (Miranda M., 2008). 
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3. Comparison between a Suspension bridge and a 

SFT in different locations. 

 
In general, there can be several similarities noticed between the SFT and a 

suspension bridge. For example, the loads are analogous; the bridge deck is 

supported through vertical or inclined cables and the tunnel tube too; the gravity 

loads on the cable-supported bridges are replaced by the upward residual buoyancy 

in the SFTs and the role of wind being played by currents and waves actions. Of all 

these similarities, the most important which has not been mentioned is that, both 

infrastructures offer the possibility of crossing long distances in the fastest way. That 

is why nowadays in many cases where a suspension bridge is proposed to be build, 

the possibility of constructing a SFT may also appear. In this chapter, it will be seen 

examples of different locations where a comparison is made between both ways of 

crossing in order to obtain the most viable way. 

 

3.1. Qiongzhou Strait, China. 

 
Due to the demand traffic and development of civil engineering in China, several 

proposals of waterway crossing have been carried out. At present Qiongzhou Strait is 

frequently discussed. Qiongzhou Strait is located in the south of China, between 

Leinzhou Peninsula and Hainan Island. 

 

The Qiongzhou Strait is one of the larges three straits in China. The length is about 

80 kilometres from east to west, and the widths ranges from 18 to 35,5 kilometres 

from north to south. The water depth ranges from 80 to 120 m along the central axis. 

On the north and south shores, scraps with a maximum height of 70 metres and a 

maximum slope angle of 22º-24º are located.  

The major geological structure is made out of fractures. The submarine strata are 

mainly sedimentary shaped in the Tertiary and Quaternary Periods. The upper layer 

is filled with sludge, sandy clay or silt, and thick-bedded clay and silty sand are 

distributed on bottom layer.  

Figure  3.1 Situation map. 
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About ten earthquakes that caused lots of damage have occurred in this area, nine 

of which are over six in magnitude. The average annual temperature is 24ºC. Being 

from May to October the rainy season and from May to November the typhoon 

season, especially in September.  

 

 
Figure  3.2 Seabed topography (Yan et al. 2015). 

 
 

Figure  3.3 Geological section and bored tunnel proposition (Yan et al. 2015). 
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According to careful investigations and evaluations, in general there are three mostly 

proposed ways of crossing; the east line, the central line and the west line. 

 

Figure  3.4 Proposed ways of crossing for Qiongzhou Strait (Yan et al. 2015). 

 

 

 Jiang B. et al. (2018) make a feasibility study, he proposes three ways of crossing 

through the central line location, which would be resumed on Figure 4.5.  
 

 

Figure 4.5. Alternatives of solution: 1) Suspension bridge. 2) SFT. 3) Submarine tunnel. 

 

It is proposed a suspension bridge, a SFT and an underground tunnel, but we will 

focus only in the comparison between the SFT and the suspension bridge made.  

 

It is evaluated which is most viable, by focusing on previous studies done, like for 

example the study made by Yan et al. (2015) which make several proposals for SFT 

schemes in Qiongzhou Strait. Advantages and disadvantages with the 
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implementation of each way of crossing are pointed out in order to have a better view 

on which is more viable.  

 

Suspension Bridge 

 

Advantages  

 

• Advanced technology of design and construction 

Despite the hydrological, meteorological, geological and navigation conditions in 

the strait, China has rich experience in the construction of long-span bridges, such 

as the Zhoushan Xihoumen Bridge and the Jiangyin Yangtze River Bridge.  

In the central line location, it is feasible to construct a multiple spans bridge with 

a single span of over 1000 metres. Nevertheless, the construction of the piles is 

very difficult due to the conditions aforementioned; this problem can be solved by 

means of updated construction technology. 

 

• Better traffic conditions 

Bridges offer better lighting, ventilation, vision, comfort and so on when the 

vehicles are running on the bridge compared to tunnels.  

 

• Easier and more economical maintenance 

The bridge requires less expense on lighting and ventilation compare with 

tunnels. The bridge is easier for maintenance service.  

 

Disadvantages 

 

• Higher expense of construction 

The crossing line is around 20km. Jiang et al. says that if the bridge is designed 

with single spans of around 1000m, about 20 piles and foundations will be 

needed. Therefore, as the average water depth is around 50m, piers and 

foundations will be difficult to construct, and the cost will be extremely high. In 

order to decrease the number of piles, the span length could be increased, but 

this would affect directly the bridge main towers height. He analyses the 

relationship between the critical length of span (Lc) and the height of the main 

tower (h) taking into account only the self-weight of the cables and different 

materials. 

 

HSS: High strength steel. 

LSS: Low strength steel. 

FRP: Fibre reinforced polymer.  
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Table 3.1 Relationship between height main tower and critical length of span. 

 

 

 

From Table 3.1 we can see that if HSS is selected as cable material, when the 

single span measures 5000m, the height of the main tower increases up until 

1000m. That is another reason why the design and construction of foundations 

becomes very complicated. In addition, the current technology and economy can 

hardly support such height. 

 

• Weather  

The Strait is located in a tropical area where it is subjected to tropical monsoon 

climate. In this area, every year, from May to November is the typhoon season, 

and so an average of 5 days in September, that the wind force is stronger than 

Level 8 ( 62-74km/h). Moreover, there are more than 24 days with dense fog in 

average each year. A bridge is directly exposed to the natural environment, and 

so the traffic condition is largely affected by weather conditions. 

 

 

• Impact on air and water traffic. 

The Qiongzhou Strait is a very busy strait. The construction of a suspension bridge 

will have impact on the navigation of ships, due to the bridge piers. Moreover, the 

height from the deck to the water surface limit big ships from crossing the strait, 

and an increase of the decks height will difficult the bridges access to certain 

vehicles due to steep road access. In addition, the main tower height as seen 

before us quite tall, thus will affect flights. 
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Figure  3.5 Ship traffic of one day in the Qiongzhou Strait. 

 

 

• Environmental impact 

The construction of bridges piles and foundations will have a direct impact to the 

seabed and as a consequence to the sea flora and fauna. In addition, no matter 

how elegant and high-tech a suspension bridge can be, its construction cannot 

avoid interfering in some way with the surface environment. 

 

• Pollution  

While the main purpose of structural systems is to enable people to travel from 

one point to another, several of them litter the route. As a result, areas around 

bridges, overhang, passes often contain mounds of littler. This is why areas in and 

around these bridges are often affected, influencing local life, both flora and 

fauna. Furthermore, increased traffic over the bridges often results in chemical 

and air pollution, thereby making it harder for those residing close by. 

 

• Noise and vibrations 

In pre-construction stage, mobilization of construction equipment will generate 

noise but it will have a low impact on the environment. By contrast, a high negative 

impact will be seen at the time of construction of bridge substructure especially 

during pile driving, which generates high underwater and air noise levels that 

affect the aquatic life. Also, during the operation and maintenance stage, there 

will still be a negative noise impact to the environment. 
  

 

Submerged Floating Tunnel (SFT) 

 

Based on the geological condition of the central line and the 30m of clearance depth 

between the water surface and the submerged floating tunnel proposed by Xiang et 

al. 2017 in order satisfy the requirement of navigation space for big vessels and 
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reduce the impact from the water surface wave, Figure 3.6 represents the 

longitudinal profile for the proposed SFT. 

  

 Figure  3.6 Longitudinal profile of proposed SFT. 

 

 

Advantages 

 

• Shorter distance 

From Figure 3.6 we can clearly see that the distance of the submerge floating 

tunnel is the shortest, for it does not need to consider the slope. 

 

• Influence on air and water traffic 

Firstly, it is obvious to see that the SFT will not have any impact to air traffic. 

Besides, the gap between the SFT and the water surface where it is intended to 

be build, can guarantee the security of navigation. Big ships will still be able to 

cross.  

 

• Environmental impact  

The SFT will not interfere with the natural beauty of the surroundings. However, 

its construction will still affect the seabed flora and fauna due to the tunnels 

foundations. 

 

• Sea current 

In summer, southwest monsoon prevails and currents flow from west to east with 

a high speed. In other seasons, currents flow from east to west with low speed. 

This is a disadvantage to bridge, but such regular current flowing is an advantage 

to submerged floating tunnel, as currents vertically act on SFT, no matter flow 

from east to west or otherwise.  

 

• Lower cost 

The construction costs of a SFT, per meter length, do not increase significantly 

with the length of the crossing or with the depth of the waterway, whereas the 

cost of the suspension bridge will rapidly increase as the span increases.  

  

• Noise and vibrations  

As a suspension bridge, pre-construction stage mobilization of construction 

equipment will generate noise and construction of foundation plus the tunnel 
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colocation will have an important impact to the sea environment. But, during the 

operation and maintenance stage, the noise and vibration impact will be less than 

in a suspension bridge (World Road Association Rodiale de la Route). In 

conclusion, allows reduction of acoustic noise pollution.  

 

Disadvantages 

 

• Foundations 

The cables will need a foundation, and the requirements of such a foundation is 

strict and important. 

 

• Pollution 

Outside a tunnel, the concentrations of pollutants can be harmful to people and 

to the environment. 

 

• Experience on construction 

Until now, no SFT project has been constructed, and so the lack of relevant 

construction experience is a big challenge. 

 

Finally, he develops a numerical model by means of the FEM software ANSYS/Fluent 

considering appropriate cross section, support system, materials, joints and 

connection schemes for a SFT and analysed the way this type of crossing responds 

to different water depths, different wave loads and different current velocities. 

 

From this model, it is obtained that the proposed SFT structure is safe even under 

extreme weather conditions. By considering previous cost studies made which say 

that the construction of a SFT would suppose a lower cost than a suspension bridge 

and the viability analysis, he finally concludes, that the SFT is a better solution.  

 

3.2. The Sognefjord, Norway 
 

Until now, travelling from the southern port of Kristiansand in the south to Trondheim 

in the north of Norways (1000Km, E39) takes around 21h by car, at an average speed 

of 48km/h and thanks to the seven ferry crossings needed. 

In the past years, different studies have been made in order to upgrade this route. 

About half of Norway’s traditional export is generated by industries and companies 

from the six counties route E39 passes through. Studies show how crucial this route 

is to regional development in western Norway, as many synergy effects depend on 

how effectively the corridor interconnects areas with large populations and 

substantial trade and industry. The upgrade of this route will also enable direct 

access to hospitals by car, as until now, neighbours had to wait for helicopters. The 

new infrastructure replacing the ferry crossing could cut the travel time up to 10,5h 

by car.  
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The Sognefjord which is about 3,7 km wide and 1300m deep, is of particular interest 

as it has been used to develop and design new concepts of crossing, hitherto 

unthinkable. This fjord is considered the most difficult and challenging to cross. 

While the depth of the Sognefjord is extreme, the other fjords along the route are 

more typically some 500-600 m deep.  

 
The Norwegian Public Roads Administration which is responsible for the planning, 

construction and operation of the national and county road networks, has initiated 

several development studies in order to determine which way of crossing would be 

more viable. There are three ways proposed; through a suspension bridge, a floating 

bridge or a submerged floating tunnel, also a combination of these crossings have 

been considered as a solution. Even though there are several ways of crossing 

proposed, as on the past example, we are only going to pay attention to the 

suspension bridge and the submerged floating tunnel.  

 
 

 

Figure  3.7 Situation map of the proposed crossings. 

 

 

The studies of the suspension bridge have been undertaken by the Bridge section of 

the NPRA Directorate of Roads in Oslo, and have considered a suspension bridge with 

a main span of 3700 metres, as the very steep slopes into the fjord, require that the 

main span have the same length as the width of the fjord. There are also considered 

two main towers with a total width of 33 metres and 455-metre-high.  
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Figure  3.8  Proposed suspension bridge for crossing the Sognefjord. 

 

 

For the case of the Submerged floating tunnel, studies have been undertaken by the 

consulting groups Reinertsen/Olav Olsen, Snøhetta Architects, Rambøll, Faltinsen, 

Johansson, Arup and Berger ABAM. After studying several possibilities, they have 

found that the most feasible way of crossing through a SFT is by means of two 

separated and interconnected curved circular concrete tubes that are anchored to 

floating pontoons. The tunnel will have a length of 4083 metres, and will enter 

traditional rock tunnels at both sides of the fjord for connection to the main corridor. 

 

 

Figure  3.9  Proposed SFT for crossing the Sognefjord. 
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The overall design requirements in this area are said to be satisfied, as both ways of 

crossing have fulfilled width, depth and height sailing clearances of 400 metres and 

70 metres, respectively. In addition, both are designed to absorb collision energies 

without risk of fatal accidents for road users as well as for passengers or crew on 

board the ship. Until now, the conclusions obtained are that crossing the Sognefjord 

is feasible by means of either a single-span suspension bridge and submerged 

floating tunnel. On the other hand, O.M.K. Iversen (2014) on his master thesis, makes 

a early phase life cycle assessment considering material production, construction, 

operation and maintenance over 100 years for both ways of crossing. He focuses 

mainly on their environmental impact and finally concludes that the Submerged 

Floating Tunnel (SFT) has the highest total emissions, with about 605 900 tonnes of 

CO2-equivalents and the Suspension Bridge (SB) had emissions of 493 200 tonnes. 

Yet, the Norwegian Public Roads Administration does not seem to have completed 

the considerations of construction cost or technical optimisation of the designs on 

the technical feasibility study. 

4. Feasibility study of a SFT in the Chacao Channel.  
 

The Chacao Channel is located in Los Lagos Region, and separates Chiloé Island from 

mainland Chile. This Channel connects the Pacific Ocean and Gulf of Ancud. The new 

connection will replace the current car ferry service and will reduce travel time from 

45 minutes to under three minutes.   

 

This channel has prevented the development of the Chiloe Island. Building a new 

connection between mainland and Chiloe island, apart from reducing the time travel 

as said before, a better social development in terms of health, services, education 

and employment will be possible. In addition, this new connection will have a positive 

impact on the economic development of the island. Studies show that tourism will 

increase, there will be an improvement on the industrial sector and will influence on 

the need of more residential infrastructure. That is why, finally it has been approved 

the construction of a new suspension bridge.  

 

The aim of this chapter is to analyse the feasibility of a SFT in this specific location 

and see whether it is more viable either to construct a suspension bridge or a 

Submerged Floating Tunnel. 

 
 

4.1. Introduction to the Site  
 

This channel is approximately 26 Km long from NW-SE between Chocoi and Coronel, 

and varies between more than 2 Km wide in the Roca Remolinos and up to 5 Km 

wide between Lenqui and Pugueñun.  
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As mentioned earlier, currently, the car ferry service is responsible for the crossing of 

cars, offering a time of between an hour and a half and twenty minutes, depending 

on the weather conditions. However, the construction of a new bridge is being 

developed, this new connection will provide a less than three minutes cross by car. 

Figure 4.1. shows the actual cross and Figure 4.2. shows the future cross.  
 

 

Figure  4.1  Current car ferry service that crosses from Chile mainland to Chiloé. 

 

 

 

Figure  4.2  Crossing of the new suspension bridge. 

 

Site Conditions 

 

The Chacao Channel is known for its extreme conditions. The presence of strong 

currents, earthquakes, strong winds etc.. makes construction of infrastructure 

difficult. For this reason, FHECOR Ingenieros Consultores together with COWI and 

Ingeniería Cuatro, have carried out several studies in order to precisely know the site 
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conditions. Also, Nils Erik Miguel Lindeen de la Fuente (2012) and Herrera (2010) 

study the current behaviour of the channel for carrying out a preliminary energy 

resource assessment.  

The results of those studies have been summarized below. 
  

The studies focus on four principal areas which are of particular interest: 

 

a) Seismic conditions 

b) Marine conditions 

c) Geotechnical conditions 

d) Wind conditions 

 

a) Seismic conditions 

 

This channel is situated in the famous ring of fire, which is a major area in the basin 

of the Pacific Ocean where many earthquakes and volcanic eruptions occur. 
 

Figure  4.3  The Ring of Fire. 

 

The biggest earthquake known, had its epicentre nearby the studied area and where 

the suspension bridge is being constructed. For this reason, it is of extreme 

importance to consider this in the design. From the seismic analysis is was found that 

there were two possible origins for seismic movements: the continental fault 

(subductive seism) and an hypothetic fault parallel to the axis of the channel, but yet 

it has not been determined if it’s an active fault or not ; the fault of the Ancud Gulf. 

The following figure shows the fault of the Gulf of Ancud. 
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Figure  4.4  The fault of the Gulf of Ancud. 

 

b) Marine conditions 

 

Sea tides 

 

Different measurements were made in specific points of the channel in order to have 

more knowledge of the Channels behaviour. The specific points analysed where; 

Tique, Manao ,Carelmapu, Pihuio and finally the axis of the Chacao suspension bridge 

which will be introduced lately. The following picture shows those specific points 

placed in a map to understand better the results obtained. 

  

Figure  4.5  Map situating the different specific points of interest. 

 

Bridge axis 
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 Table 4.1 Difference between the maximum tide and the minimum tide in the different points. 

 

 

Finally, the following picture would represent the Channels situation where it is clearly 

seen how the real-time sea level at the Ancud Gulf is at a higher level than at the 

open ocean this situation is traduced on the high flow velocities analysed as follows. 

  

 
Figure  4.6  Diagram of tide level differences between both sides of Chacao Channel. 

 

Sea Currents 

 

This channel present large currents, which makes its study of great importance. 

These strong currents are linked to the filling and emptying of the channel by the rise 

and fall of tides.  
 

Due to the fact of the decrease in mean channel width and depth from one end to 

another, causes the same volume of water go through a smaller section, causing an 

increase on velocity and on power. As well, both mean and maximum velocity and 

power are larger along the Channel at ebb (exit the Channel towards open ocean) tide 

than at flood (enter the Channel from open ocean) tide, meaning flows from the ocean 

to the Gulf are lighter than those flowing the opposite direction. This can be clearly 

seen from Figures 4.7. 4.8.  4.9 and 4.10. 

 

The following figures show the current speeds and the flow patterns for the instants 

corresponding to the maximum Syzygy (full moon and new moon) and the minimum 

Quadrature (sun, earth and moon aligned in a right angle) , both filling and emptying 

of the Channel, which constitute extreme situations. These figures where extracted 

from the work done by Herrera (2010). 

Name Tidal race(m) 

Tique 6,44 

Manao 6,24 

Bridge axis 5,74 

Carelmapu 3,59 

Pihuio 3,47 
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Figure  4.7  Flow pattern emptying of the Channel (Sygyzy). 
 

 
Figure  4.8  Flow pattern filling of the Channel (Sygyzy). 
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Figure  4.9  Flow pattern emptying of the Channel (Quadrature). 

 

 

Figure  4.10  Flow pattern filling of the Channel (Quadrature). 
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These figures clearly show the main flow in the Chacao Channel, in where the high 

speed that the currents reach stands out. In condition of Syzygy, speeds close to 4 to 

5m/s are reached in the area near Roca Remolinos. 

 
Nils Erik Miguel Lindeen de la Fuente (2012) in his work pays special attention to 

how water behaves in Roca Remolinos and concludes that, there, mean flow is flood 

dominated at all depths in shallow areas, and ebb dominated in the deeper areas of 

the same cross section. This way, recirculation reflects strong divergences and lateral 

shears that translate into a relevant contribution of nonlinear terms (advection, 

horizontal and vertical friction) to the momentum balance (Cáceres, Valle-Levinson, 

& Atkinson, 2003).  
 

Conclusions seen before can be better understood from Figure 4.11 , as the arrows 

show in and out flow in different areas of the same cross section. 

 

 

 
 

Figure  4.11  Roca Remolinos section with the inflow and the out flow from the rise and fall of tides. 

 

 

 

Sea Waves 
 

Waves where analysed in three parts of the channel (entrance, bridge axis and exit) 

to understand more their behaviour inside and before entering or after leaving the 

channel.  

 

Waves at the bridge axis resulted having low height, being between 0-0,25m and 

having periods between 3 to 4 seconds. Waves in Bahia Guapacho mostly where 

about 0,5 to 2 meters with larger periods of about 15 to 16 seconds. Finally, was of 

particular interest to analyse what was the extreme case that can be generated in 
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the Gulf of Ancud as our area of study is more exposed. So, waves in the Gulf of Ancud 

resulted having heights below 1,7 meters and periods between 4 to 6 seconds. These 

values have been extracted from the UK Meteorological Office Global Wave Model.  

Until now, even though the Chacao Channel is situated in a high seismic zone, the 

largest wave recorded which was caused by the Valdivia earthquake (22th of May, 

1960) is of about 7m.  This is due to the fact the area of study is relatively protected. 

However, this wave generated currents up to 8 m/s.  
 

c) Geotechnical conditions 
 

Based on the sample visual inspection and test results, four different layers were 

identified in Roca Remolinos (W. Romberg, 18 January 2006, Figure 4.12). All 

elevations given herein are below the Mean Sea Level, in meters (K. Syngros et al. 

2008). 

 

1. A Tuffite (Caprock) layer exists (grey colour), about 40-meter-thick, comprising 

of fine to medium sands, well to highly cemented, with low to medium silt 

content. 

 

2. Below the Tuffite layer is a layer comprising of Pleistocene Sands about 35-

meter-thick, comprising of medium sand, well to low cemented, with a few 

layers of gravel. Within the same layer are sublayers with concentrated gravel 

and low silt content. The layer colours vary from medium to dark grey and grey-

brown. 

 

3. Below the Pleistocene Sand layer, there is a layer of Pliocene/Pleistocene Silt 

about 30-meter-thick, comprising of hard or cemented Silt, with light brown to 

yellow colour. 

 

4. Below the Pliocene/Pleistocene Silt there is a layer of Pliocene/Pleistocene 

Sands, comprising of very densely compacted, partly cemented medium 

sands. Both layers form the seabed of the channel. 

 

Figure  4.12  Roca Remolinos soil layers (W. Romberg, 2006). 



SUBMERGED FLOATING TUNNEL: A REVIEW AND STUDY OF THEIR USE FOR STRAIT CROSSING.  

 

 

88 

 

 

d) Wind Conditions 
 

After more than a year doing measurements of the site, the Ministerio de Obras 

Públicas de Chile, said that by using the Peak Over Threshold method, base wind 

speeds of up to 23,4m/s where recorded. 

 

Also previously, FHECOR studied how wind affected perpendicular to the bridge deck 

and obtained the following results.  

 

Table 4.2 Different winds and preasures affecting the bridge deck depending on its position 

 

4.2. The Chacao Suspension Bridge (SB) 
 

The project consists on the construction of a long double suspension bridge with  

2,754km of distance between anchor blocks.  It will have three reinforced concrete 

pylons, two exterior shoulders and a central (A-shape) tower on Roca Remolinos, a 

point where the rock reaches the surface offering a point of support for the central 

pillar; a suspended north span of 324m, two main spans (1,155m and 1,055m) and 

a south approach viaduct of 140m. Least but not last, an orthotropic box girder deck 

of 23.8m wide will carry four lanes of traffic. 

 

From Figure 4.13 we can see again represented in a landscape view the SB crossing. 

Also from Figure 4.14 and Figure 4.15 we can appreciate the SB proposed design 

and cross section respectively. 
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Figure  4.13  Current suspension bridge placement. 
 

 

 

Figure  4.14  Design of the Chacao Bridge. 

 

 

 

 

Figure  4.15  Bridge cross section. 
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4.3. The proposed Submerged Floating Tunnel 
 

4.3.1. Viability Study  

 

From the distribution of the site, it is thought to be possible the design of a submerged 

floating tunnel, the proposed way of crossing is seen in Figure 4.18 resulting to be a 

crossing of 4 Km approximately, while the crossing of a suspension bridge is 

2,754Km. A SFT will not be able to cross through the same path as the suspension 

bridge, firstly because of the depth in Roca Remolinos and secondly because it is a 

location where as seen before, extreme and recirculating currents are created. In 

order to choose the new way of crossing it has been considered the following: 

 

- Obviously, the depth of the Channel (Figure 4.16). 

- Try to use the already constructed roads in order to avoid an increase on cost 

and on environmental impact. 

- Areas of Benthonic resources extraction seen in Figure 4.17. 

- Areas of aqua farming activities seen in Figure 4.18. These would only be 

affected during the construction of the tunnel. 

 

From Figure 4.16 can be appreciated the depth of Roca Remolinos, which prevents 

the construction of a SFT but facilitates the construction of the suspension bridge, 

by offering a third support point in the middle of the channel.    

 

 

 
Figure  4.16  Bathymetry of the Chacao Channel. (Herrera, 2010). 
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Figure  4.17  Areas of aqua farming activities. 

Figure  4.18  Areas of Benthonic resources extraction. 

Figure  4.19  Current suspension bridge placement and the proposed SFT placement. 
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Figure  4.20  Bathymetry of the proposed site (Points from the graph have been extracted from the Instituto 

Geografico Militar de Chile).  

 
        

Approximately the new proposed crossing will be of 4km (Can be appreciated on 

Figure 4.31, proposed design, end of chapter). For the suspension bridge the 

distance will be less, 2,754km. The fact that the suspension bridge offers a shorter 

crossing does not mean that its construction will be more economical. Martire (2010) 

on his paper made a cost comparison between a SFT and suspension bridge with 

similar characteristic to the same crossings situated on Messina strait where the 

conditions where more severe than in the Chacao Channel. He concluded that for a 

residual buoyancy bigger than 1 (positive force) an so anchored to the sea bed, the 

cost of a SFT varied linearly for both increase on depth and length as for a suspension 

bridge constantly and exponentially respectively. He considered two types of SFT and 

suspension bridge, one with the most expensive arrangement and the other with the 

most economical, for the site.  

 

From the following figure extracted from the work done by Martire, we can clearly see 

how costs increase linearly with the increase of depth and length in a SFT and how a 

SB costs increases exponentially with length and are constant with depth 

 

Figure  4.21  SFT and suspension bridge cost curves as a function of the (a) Crossing length (b) Crossing depth. 

(Martire, 2010). 
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To see whether or not the construction of a SFT is viable, a comparison has been 

made between our weather conditions and those of sites where a SFT design has 

been proposed, to have an idea of how should be our design to be able to support all 

loads and operate in the most optimal way. 

Martire (2007,2010) analysed four different environmental conditions in his work. 

The waves and current characteristics of the Qiandao Lake, Jintang Strait, Messina 

Strait and Akashi strait, which represent mild, intermediate and severe conditions, 

and Panduro J. Omar., (2013) analysed the wave and current characteristics of the 

Gulf of California, which represent intermediate – severe characteristics. It is 

important to notice that these parameters are analysed as the wave and current 

parameters are the most important issues which define the severity of the 

hydrodynamic actions. The Table 4.3 represents the different characteristics for each 

site as well as the Chacao Channel in order to make the comparison between them.  

 

Table 4.3 Comparison between locations for SFT proposals. 

 

In the table, for the Chacao channel it has been considered 25m of clearance as 

Christin Ingerslev (2010) said, currently, few if any vessels have a draught exceeding 

25m. Even though, the traffic is mostly consisted on recreational traffic and ferries 

destined for the strait crossing. This type of boats has small drafts and so it has been 

oversized. It also has been considered the fact that there are approximately 5m 

meters of difference between high and low tides. This has influenced on the SFT 

buoyancy and so on its anchorage, as for a SFT subjected by pontoons it will be very 

difficult to have waterproof shore connections which enables rotation due to tide 

variation. So, the SFT must be anchored to the ground buoyancy by means of tethers 

and gravity foundations, having a positive buoyancy. It is important to notice that by 

Location 

site 

Condition Depth Clearance Wave 

height 

Wave 

length 

Period 

wave 

Current 

velocity 

Qiandao 

Lake 

Mild 30m 2.0m 1.0m 8.25m 2.3s 0.1m/s 

Chacao 

Channel 

Mild - 

Intermediate 

 

Severe(tsunami) 

70m 

 

70m 

25m 

 

25m 

1,4m 

 

7m 

20m 

 

-- 

4s 

 

-- 

 

2.5m/s 

 

8m/s 

Akashi 

Strait 

Severe 80m 30m 9.4m -- -- 4m/s 

Jintang 

Strait 

Intermediate 100m 25m 5.8m 76.5m 7.0s 4.1m/s 

Quiongzhou 

strait 

Intermediate 150m 30m 5m -- -- 3.5m/s 

Messina 

Strait 

Severe 200m 30m 13,5m 200m 11.5s 3.45m/s 

Gulf of 

California 

Intermediate- 

Severe 

213m 25m 9.5m 99.8m 8.0s 2.9m/s 
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having the SFT anchored to the ground, when high tides, the SFT clearance will be of 

25m and when low tides the clearance will be reduced to approximately 20m.  

 

So, from Table 4.3 we can see that the characteristics of the natural conditions of 

the crossing are among the mild (Qiandao Lake) and the intermediate (Jintang Strait). 

The wave conditions are similar to the Qindao Lake presenting a little variation. 

Moreover, the current velocity in the Channel even under extreme conditions is minor 

to the intermediate condition crossing but higher than the mild condition crossing. 

Hence, the natural conditions in the Chacao Channel at the chosen section are 

acceptable for the placement of a Submerge Floating Tunnel.  

 

On the other hand, even though for natural conditions it is acceptable, it is of extreme 

importance to be aware of the high seismicity and of the probability of a tsunami to 

take place. As seen in the table, it is not so the height of the wave produced, but the 

currents produced that may concern the placement of the SFT, as the site is relatively 

protected. The values shown in the table are from a wave created by the Valdivia 

earthquake (22th of May, 1960), this wave caused huge damage in the city of 

Maullín, situated at the entrance of the channel and so far, it is the largest we have 

recorded in this zone.   

 

4.3.2. SFT Proposed Design  

 

The design chosen is based on a comparison of our case with other similar locations 

where different designs have been proposed and see which one fits better. If more 

precise data could be available it would be possible to optimize the design.  

 

4.3.2.1. Cross Section 

 

Locations such as the Akashi strait (severe conditions), the Gulf of California 

(intermediate – severe conditions) and the Quiongzhou Strait (intermediate) have 

been considered and compared to our case. Our case normally consists of mild 

conditions but there is the possibility of tsunamis occurring and causing severe 

conditions that is why the project must be overestimate and locations with severe 

conditions have been considered. In these locations Martire (2010), Panduro J. 

Omar., (2013) and B. Jiang et al. (2018) proposed different cross sections 

respectively.   
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a) 

Figure  4.22  Martire 2010 cross section proposal for Akashi Strait. 

 

 

b) 

 
Figure  4.23  Panduro J. Omar., (2013) cross section proposal for the Gulf of California. 

 

 

 c) 

 
Figure  4.24  Jiang et al. (2018) cross section proposal for Quiongzhou Strait. 
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The idea is to offer the same operability as the suspension bridge, carrying four lanes, 

two for each direction. So, the internal dimensions of the cross section should be 

large enough to accommodate the infrastructures facilities and implants, necessary 

to guarantee the normal development of the operations inside. Also, as mentioned 

before, the tunnel cross section must be designed so that the buoyancy ratio is larger 

than the minimum value.  

 

It is easily seen that the only difference between (a) and (b) is that (a) is carrying six 

lanes and (b) four. On the other hand, the difference between (a), (b) and (c) is that 

(c) has a polygonal cross section while (a) and (b) a rectangular combined with 

hydrodynamic lateral keels.  

In terms of distribution, the three cross-sections offer an easy way to accommodate 

the traffic and facilities requirements, but for the production process of the elements 

(a) and (b) are easier. Moreover, M. Kristofersen et al. said that this types (a,b) of 

cross sections are suitable for extreme natural conditions and adding the fact that 

Martire analysed their behaviour under severe conditions considering seismic motion 

and obtained positive results and that in the Chacao Channel there is a large 

possibility of severe conditions to take place. It has finally concluded that the cross 

section proposed for the Gulf of California (b) and for Akashi Strait (a) are the ones 

that fit better to our case. However, dimensions have been adjusted to our scenario 

taking into consideration the Spanish regulations for road sizing, established in El 

Boletin Oficial del Estado (BOE).  

The final cross-section proposed can be appreciated on the following figure. 

 

 
Figure  4.25  Proposed cross section for the SFT (all in meters). 

 

The cross section combines a rectangular shape, which facilitates its production and 

the versatility in the organisation of the internal spaces and facilities, with a 

hydrodynamic lateral keel, that improves the fluid dynamic behaviour of the SFT, 

preserving the advantage of the rectangular cross section. In addition, the length of 

each module is established of 200 m to assure the anchorage system with a 

distribution of symmetric spans.  
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4.3.2.2. Joints  

 

Inter-modular Connections 

 

The connection between the elements is fundamental for the SFT behaviour. 

Therefore, there will be flexible connections between the elements allowing a 

minimum flexion and extension between modules. In our case, it is proposed the 

normal practice for immersed tunnels, which consist on attaching and sealing each 

element by means of the Gina gasket and Omega seal. The combination of both not 

only allows for sealing but also for transfer of hydrostatic loads and movements 

between elements. The normal practice adopted is described below, following the 

Trelleborg Baker instructions, as they are expert suppliers on this type of joints. 

 

To ensure that the tunnel elements are watertight and capable floating, elements are 

temporary provided with bulkheads at both ends. On one end of each tunnel element, 

an endless Gina gasket is mounted. Once on site, the tunnel element is pulled firmly 

up against the preceding floating element with hydraulic jacks.  

 

When the gasket has full contact around the total section of the adjacent element, 

the water between bulkheads is pumped, normally inside the tunnel. Due to the 

different pressure between bulkheads and the hydrostatic pressure on the outside of 

the tunnel, the GINA profile compresses and seals the joint. 

The Omega seal is then clamped across the joint on the inside faces of the two 

elements. In general, after the approval of the pressure test between Gina and 

Omega, bulkheads are removed. The following figure shows an outline of the steps 

previously described.  

 

Figure  4.26  J Construction steps of the inter-modular joints (Trelleborg Baker). 

Figure  4.27  Details of the inter-modular joints. (a) Before installing contact (b) After installation of Omega.  

(Bistoon Baspar LTD) 
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Shore Connections 

 

Due to the high seismicity of the site and considering the great length of the SFT 

proposed, the shore connections must allow free rotation and axial displacement as 

the displacement and the affectations produced by natural events must be 

considered as local issues. The proposed joint adopted in our design was the one 

proposed in the Qiandao Lake, China (Mazzolani et al. 2007). This shore connection 

allows the structure to expand in presence of thermal variations and acts well against 

water tightening. The general concept is based on separating the waterproof and 

mechanical functions of the device (Panduro J. Omar., 2013). 

 

 

 

Figure  4.28  ptual design for the shore connection (Mazzolani et al., 2007). 

 

 

4.3.2.3. Anchorage System 

 

The anchorage system will consist of steel cables subjected to gravity foundations as 

seen in Figure 4.29 It is important to see that the distance between the foundations 

and the SFT modules will vary depending on the depth of the crossing, being the 

distance shorter in shallow depths and so having stiffer cables and bigger distances 

in deeper parts of the crossing. Martire’s results show that, anchoring systems gets 

considerably more involved in carrying the external loads as the crossing length 

increases due to the reduction of tunnel bending stiffness, so that , the critical point 

in larger crossings is generally ensuring enough strength to the anchorages and/or 

reducing their maximum axial forces induced by hydrodynamic loads. In our case, it 

is considered a long cross and so, this has been considered. 
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Figure  4.29  Transversal anchorage configurations. 

 

Having this type of cable configuration brings relevant advantages to our design in 

terms of maximum displacement and reduce maximum moments, if two cable 

systems are provided per module as seen in Figure 2.26. It is also seen that 

increasing the number of cables more than two per tunnel module produces no 

relevant advantages in terms of maximum displacements (Martire, 2010).  As Hong 

Y. et al. (2010) concluded the tether angle must be larger than 30º. As in similar 

cases such as in the Qiongzhou strait or in California Gulf, the tether angle employed 

has been of 60º and 45º, the same angles have been considered.   

 

Finally, four anchorage systems have been considered along the longitudinal axis as 

seen in Figure 4.30 this means that for each 200m module there will be a total of 

sixteen cables and between each anchorage system a distance of 50m.  

 

Figure  4.30  Longitudinal anchorage configuration. 
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Figure  4.31  Proposed design set on site. 

 

 

In order to deal with seismicity, Martire proposes a simple and economic solution, as 

the anchorage groups located close to the shore have reduced lengths (less length, 

greater stiffness), they will be subjected to extremely larger axial forces. The idea to 

build the shorter anchorages by means of structural elements able to yield and 

dissipate energy through a stable post-elastic behaviour, or alternatively to introduce 

specific mechanical devices providing special dissipative connection between the 

tunnel and the anchorages.  

 

 

4.4. Multi-criteria Analysis  
 

The main objective of this chapter is to evaluate whether it is more feasible or not the 

construction of a SFT in the Chacao Channel. To do so a multi-criteria analysis has 

been carried out, based on the doctoral thesis by Casanova, M (2014). This 

methodology allows to the administration, or any another entity, in the bidding phase 

of a project, to quantify and compare the value of the different alternatives evaluated, 

prioritize them and choose the best one.  

 

This multi-criteria analysis will evaluate and compare, objectively, both construction 

processes integrating diverse aspects such as costs, environmental impact, safety, 

social impact and functionality. Aspects will be referred as categories and categories 

will be divided into different criteria as seen on Table 4.4. Both terminologies are an 

adaptation of the work done by Casanova (2014). 

 

For each category and criteria, different weights will be assigned depending on their 

importance within the project. Casanova (2014) carried out a series of interviews with 

different experts in the sector in order to stablish the different weights for each 

category and criteria. To have more precise results, similar ones have been 

considered.  
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Due to the framework of this project, indicators for each infrastructure have been 

wisely estimated considering different scientific publications and the authors criteria 

himself. Indicators are the way to measure or value the alternatives with respect to 

the categories and criteria. As the diverse indicators will measure in different units, 

in order to evaluate each alternative, it is necessary to stablish a value function. This 

function will transform the different measuring units of the indicators into satisfactory 

or value units.    

 

For each construction process (SB, SFT) an indicator between 1-0 will be assigned. 

The value of 1 will be assigned to the structure which the least value is obtained 

during its lifecycle (more satisfactory) and 0 to the one that obtains the highest value 

(less satisfactory).  

 

Casanova 2014 says that the value functions can adopt different trends and forms 

depending on how the satisfaction varies with the indicator response variation.  In 

our case to simplify our analysis, a linear variation has been considered.  

 

The following figure shows this relationship between indicators. On the y axis the 

value for each indicator, while on the x axis, the indicators response.  

 
 

 

Figure  4.32  Lineal relationship between indicators. (Casanovas, M. 2014) 

 

From Figure 4.32 the following equation (eq 4.1) can be deducted. This equation 

represents the relationship between both indicators and which would be used to 

calculate the less satisfactory indicators.  

 

 

Ratio = 1*lowest value/highest value                                                                     eq 4.1 
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Table 4.4 Impact table for the construction process evaluation. 

 

 

4.4.1. Indicator Estimation 

 

Construction cost 

Given that there are no experiences in the construction of tunnels in the marine 

environment and that there are no records of costs for already constructed immersed 

tunnels, the price will be estimated from a land-based tunnel and applying a factor to 

take into account that it is an infrastructure to be built in the sea. In order to obtain 

this factor, it is necessary to study the relationship between a terrestrial structure 

and its counterpart built in the sea. One case that is currently common is the 

construction of wind turbines on land and at sea and, therefore, it has been 

Global 

weights 

(%) 

Category 

Criteria 

weights 

(%) 

Criteria 

21.3 
Economic 

Impact 

29.5 Construction Costs 

33.2 Maintenance Costs 

37.3 Durability 

20.1 
Environmental 

Impact 

19.1 Landscape Impact 

19.5 Fauna and Flora Impact 

20.3 Sea water Impact 

20 Air Impact 

21.1 Noise Impact 

19.1 Social 

31.8 Execution Time 

36.5 Travel Affectation 

31,7 

Inconvenience to 

neighbours during 

construction 

20.5 Safety 

40.2 Against Earthquake 

29.4 Against Tsunami 

30.4 Against Collision 

19 Functionality 

40.2 Cross section 

13.5 Extension Possibility 

46.3 
Connectivity to existing 

road network 
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considered that the relationship between their costs gives us an approximate idea of 

the relationship between the cost of a conventional tunnel and one at sea.  

Before calculating the sea factor, we must see if the sections of both tunnels 

coincide, since the price will not only vary with the length, but also with the section. If 

they don’t coincide, a correction factor between the different areas will have to be 

stablished.  

The cost of the conventional tunnel constructed in Barcelona for the new AVE line, 

using an EPB type TBM, with 11 m external diameter, was about 200M euros with a 

length of 5Km and a section of 85m2 with approximately 40.000 euros per m. 

At first glance, it can be appreciated that our section is larger, so it will be necessary 

to calculate a corrector.  

After calculating our section obtaining a value of 200m2, the correction factor will be 

200/85=2,35. 

The construction of an offshore wind tower costs approximately 11M euros and the 

construction of a inshore wind tower cost approximately 3,5M of euros; this prices 

have been extracted from the work done by Moraleda M. (2013) and Hoyo L. (2018) 

respectively. Finally, the sea factor obtained is 3.14.   

Multiplying the approximated cost per m of the construction of the AVE by our total 

distance (4000m) and by both factors, we obtain that the price of the SFT is about 

1125M of euros.  

Knowing that the Chacao bridge cost will be approximately 900M of euros we can 

now calculate the indicator. For the SB = 900/900 = 1 and for the SFT = 900/1125 

= 0.8 

Construction SB SFT 

Indicator 1 0.8 
Table 4.5 Construction cost indicator. 

 
 

Maintenance cost 
 

The usual maintenance costs related to tunnels in general, such as lighting, 

ventilation, traffic control, drainage, interior cleaning etc... which are expected to be 

low, usually in tunnels is estimated to be an annual 1,5% of the total cost (Egil 

Lundebrekke, 2014). On the other hand, as bridge is directly exposed to the natural 

environment there are additional costs. Maintenance task such as dehumidification, 

protection against scour, improvement on paintings are extra costs compared to a 

tunnels maintenance and adding the fact that the Chacao Channel is situated in a 

place with a lot of humidity, strong winds and where it rains a lot, maintenance costs 
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increase. Approximately maintenance costs for a suspension bridge is around an 

annual 2% of the total cost (Abed, M. 2009). Then, the indicators are, for SFR = 

1.5/1.5=1 and for SB = 1.5/2=0.75 

 
 

Maintenance SB SFT 

Indicator 0.75 1 
Table 4.6 Maintenance cost indicator. 

 

 

Durability 
 

It is very difficult to estimate the durability of both structures without a deep and 

precise study. However, it is considered to be an important criteria inside the 

economic impact, and so it has been considered in this final project, but it cannot be 

assessed within the framework of this project. Then, it is assumed than both solutions 

will be designed for the same life span and so they have both the same indicator of 

1. 
 

 

 

Durability SB SFT 

Indicator 1 1 
Table 4.7 Durability indicator. 

 

 

 

Environmental impact 

 

a) Landscape impact 
 

No matter how elegant and high-tech a suspension bridge can be, its construction 

cannot avoid interfering in any way with the surface environment; its construction has 

a visual impact on the surroundings. It is inevitable not to witness such a large 

infrastructure. Its presence changes the way people looks to the environment, takes 

away the natural essence of the landscape. This does not mean that it has a total 

negative impact on the environment; some people believe that it can bring charm to 

the site. By contrast, a SFT, as the name says, will go under the sea surface and so it 

is invisible. That is why the following indicators have been considered: 

 

Landscape SB SFT 

Indicator 0.1 1 
Table 4.8 Landscape impact indicator. 

 

 

b) Flora and fauna impact  

 

The Chacao Bridge will have three main towers, one supported in seabed (North 

Tower), another in Roca Remolinos and the last one in land (South Tower). The SB 
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anchorages plus the North Tower and the road extension constructed to provide 

access to the infrastructure, will have direct impact on flora and fauna. Trees have 

been transplanted and grassland has been destroyed, also, the new road will make 

animal cross much more difficult due to the high traffic and speeds of vehicles. In 

addition, the North Tower and the Roca Remolinos tower will have an impact on the 

sea flora and fauna. However, even though the SFT construction will only have an 

impact on the sea flora and fauna, 4km will be affected by approximately 160 gravity 

foundations laid on the seabed. Tethers attached to the foundations and subjecting 

the tunnel will difficult sea animal cross and sediments accumulations on each 

gravity foundation will cause variations on the ecosystem and as a consequence 

nearby flora and fauna will be affected. In addition, the tunnel pipe could obstruct the 

water flow, which could cause a variation of the mixing process among the different 

water layers, unbalancing the habitat for some biological species. 

 

Flora and Fauna SB SFT 

Indicator 1  0.8 
Table 4.9 Flora and fauna impact indicator. 

 

 

c) Sea water impact 

 

During construction, in a suspension bridge, main towers will be constructed on site, 

and so the possibility of dropping harmful substances or materials such as concrete 

will increase.  

Even though the construction of a SFT is underwater, no workforce is needed outside 

the tube, thus reduces the possibility of dropping materials. Elements will be precast 

on land and then transported to site, minimizing the possibility of pouring concrete 

onto water or other materials. Boats responsible for transporting elements and decks 

will have a direct impact on water contamination. As the SFT is longer, more boat 

traffic will be needed to place the elements on site and so it is thought that the 

construction of a SFT will have a greater impact onto the sea. 

 

Sea water SB SFT 

Indicator 1 0.7 
Table 4.10 Sea water impact indicator. 

 

 

d) Air impact 

 

A study made by Ole Magnus Kålås Iversen (2014) showed how during production 

phase most CO2 emissions were produced and that during construction operation 

and maintenance still were produced, but much less. The production of the emissions 

depended on the length of the crossing due to the need of more segments and so, 

materials. In this case, as the SFT will have 4Km approximately and the SB 2,754Km, 

the SFT will have a higher impact. Approximated values are obtained by considering 
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the results from Iversen study and correlating them to our case.   Then, the indicators 

are, for SB= 367,092/367,092=1 and for SFT = 367,092/605,895=0.6 

 

 

 SB SFT 

Production 348,671 571,361 

Construction 10,789 18,311 

Operation and Maintenance 7,632 16,223 

Total 367,092 589,672 

 

Table 4.11 Tonnes of CO2-equivalents 

 

 

 

 

 
Table 4.12 Air impact indicator 

 

 

e) Noise impact 

 

As mentioned earlier in Chapter 3, in a SFT as in a SB, the mobilization of construction 

equipment in the pre-construction stage will generate noise and the construction of 

the foundations, but in addition to the placement of the tunnel, it will have a major 

impact on the marine environment. By contrast, during operation and maintenance 

stage, the impact of noise and vibration will be less than on a suspension bridge 

(World Road Association Rodiale de la Route, 2018) and considering that actually 

there is a huge traffic crossing the strait. The following indicators have been 

considered: 
 

 

 

 

 

 

Table 4.13 Noise impact indicator 

 

 

 

Social impact 

 

a) Execution time  

 

The bridge was intended to be built in 6 years and the SFT is estimated to be built in 

8 years, A comparison between the Messina Strait (3300m) has been made which 

was estimated to be 7 years, so approximately 2 years/km. Then, the indicators are, 

for SB = 6/6=1 and for    SFT =6/8=0.75 

 

Air SB SFT 

Indicator 1 0.6 

Noise SB SFT 

Indicator 0.3 1 
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Table 4.14 Execution time indicator. 

 

 

b) Travel affectation 

 

To calculate an approximate indicator, it has been considered two random points in 

order to evaluate the cross time. It is clearly seen, that an increase of distance will 

suppose an indicator variation as the difference between crossings is of about 5,5 

minutes. The velocity considered for the Chacao Bridge crossing was 100Km/h 

(Dirección General de Concesiones del Ministerio de Obras Públicas de Chile) 

established and for the SFT 80km/h, due to the long and claustrophobic cross which 

cause ease to get distracted. Having higher speeds would increase probability of 

accidents and as a consequence its impact, as a reference Spanish tunnels have 

been considered such as the Viella tunnel in Lerida (Barios, J., 2005). Also, it has 

been considered that the SFT alternative will cross through Pargua and so velocity 

will have to be reduced to 50Km/h before accessing the tunnel. Then, the indicators 

are, for SB = 9/9=1 and for SFT =9/14.5=0.62  

  

Figure  4.33 Different cross times for the different infrastructures.  

 

 

 

 
Table 4.15 Travel affectation indicator. 

 

 

 

 

 

Time SB SFT 

Indicator 1 0.75 

Travel SB SFT 

Indicator 1 0.62 

Pargue 



SUBMERGED FLOATING TUNNEL: A REVIEW AND STUDY OF THEIR USE FOR STRAIT CROSSING.  

 

 

108 

c) Inconvenience to neighbours during construction 

 

During the tunnel construction, all the material will have to be transported by truck 

through Pargua, which will cause great inconveniences, such as noise, traffic, close 

of streets and so more withholdings. By contrast, the bridge construction is far apart 

from cities. 

 

 

 

 
 

Table 4.16 Neighbours inconvenience indicator. 

 

Safety 

 

a) Against earthquake 

 

The structure of the SFT is much more flexible than the bridge structure. The idea to 

build the shorter anchorages by means of structural elements able to yield and 

dissipate energy through a stable post-elastic behaviour and the combination of Gina 

gasket and Omega seal between elements will allow a minimum bending and 

extension between modules. Even though, a suspension bridge is considered one of 

the most flexible bridges, it has still considered that a SFT has a better behaviour.  

 

 

 

 
Table 4.17 Earthquake indicator. 

 

 

b) Against tsunami 

 

The design of this SFT is considering currents up to 4,5m/s, the fact that the largest 

tsunami recorded until now created currents up to 8m/s could create loads, which 

SFT anchors would not be able to support and would eventually collapse. Waves of 

7m though, do not suppose any inconvenience, as similar designs are able to support 

constant bigger waves. For FHECOR Ingenieros Consultores (2002), this tsunami 

does not represent to be a big problem to the security of the bridge structure.  

 

 

 

 

 
Table 4.18 Tsunami indicator. 

 

Inconvenience SB SFT 

Indicator 1 0.3 

Inconveniences SB SFT 

Indicator 0.3 1 

Tsunami SB SFT 

Indicator 1 0.6 
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c) Against collision 

 

It is thought to be more probable that the proposed SFT collapses by collision than 

the Chacao Bridge. There are more possibilities of things that can collide the SFT than 

the bridge, and so probability increases. Firstly, the collision of an anchor dragged by 

a ship it is thought to be the most probable thing to collide. Secondly, the presence 

of whales in these zones are very common and so the collision of a disoriented whale 

it is believed to be possible. Finally, but least probable, the collision of a sinking ship.  

On the other hand, a ship collision with the main towers suspended on the seabed’s 

channel, it is thought to be very improbable as the tower which is thought to be more 

likely to be collided, is only accessible during high tides. During small tides, the main 

tower is protected by what stands out from Roca Remolinos. 

 

 

 

 
Table 4.19 Collision indicator. 

Functionality 

 

a) Cross section 

 

Even though a rectangular cross section is used for the proposed SFT, which would 

be one of the most effective in terms of functionality within tunnel cross sections; 

still, height would be a restrictive characteristic of it (In the European Union, vehicles 

with a gauge greater than 4 to 4,3m are not allowed in tunnels). By contrast, a bridge 

would obviously not be affected as vehicles circulate in open air, more space will be 

offered for facility distribution and will be able to guarantee access to every vehicle 

(weight restriction).  However, el Ministerio de Transportes y Telecomunicaciones de 

Chile in his last resolution of the articles 56º and 57º of the law Nº 18.696 

(http://bcn.cl/1vg3n) establishes 4,2m as the maximum height permitted and for 

special vehicles 4,3m, such as trucks destined to the transport of vehicles. Steer 

Davies Gleave consultancy in 2002 studied the increase of traffic over time and 

estimated the future demand of the new suspension bridge. Considering his 

estimation for 2018, a total of 6762 vehicles crossed the channel, being 1130 heavy 

vehicles, a 16,7% of the total traffic. If we consider that five percent of this traffic 

exceed the tunnels maximum height stablished in 4,3m, 56,5 vehicles will have not 

been able to cross through the SFT, 0,83% of the total traffic and would have to use 

ferries to cross. (In this case, the less has considered being the worst). Then, the 

indicators are, for SB = 6762/6762=1 and for SFT =6756 /6762=0.99.  

 

 

 

 
Table 4.20 Cross section indicator. 

Collision SB SFT 

Indicator 1 0.8 

Cross section SB SFT 

Indicator 1 0.99 
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b) Extension possibility  

 

It is obvious that the extension of a SFT is not possible; the solution would be building 

a parallel tunnel. On the other hand, even though is complicated, the extension of a 

suspension bridge, is possible. A recent example of a bridge extension would be the 

Rande Bridge in Vigo (Bernardo, H. et al. 2019). 

 

  

 

 
Table 4.21 Extension indicator. 

 

c) Connectivity to the existing network 

 

As seen in previous situation maps, the SFT will end up connecting to the existing 

roads, and so, an extension of the existing road will not be needed. On the other hand, 

for the correct connection of the new suspension bridges, the construction of an extra 

13,27 Km approximately of road will be needed, and so in comparison the new bridge 

offers a bad connectivity. 

 

 

 

 
Table 4.22 Connectivity indicator. 

 

 

 

4.4.2. Value Calculation 

 

We will now proceed to calculate the different values considering de different weights 

established for each criteria.  

 

   Indicator W*I 

Category 
Criteria 

Weight(%) 
Criteria SB SFT SB SFT 

Economic Impact 

29.5 Construction Costs 1 0.8 0.21 0.30 

33.2 Maintenance Costs 0.75 1 0.25 0.33 

37.3 Durability 1 1 0.37 0.37 

Value     0.92 0.94 

 
Table 4.23 Economic value. 

 

 

Extension SB SFT 

Indicator 1 0.1 

Connectivity  SB SFT 

Indicator 0.1 1 
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From the calculated results, we can appreciate that the SB alternative is more 

unfavourable with respect to the economic impact. In addition, it is also seen how the 

SFT cost does not vary exponentially with length. Durability should be more deeply 

investigated in order to have more precise conclusions.  

 
Table 4.24 Environmental value.  

 

 

From the results obtained it can be seen that the SFT will have a less environmental 

impact, considering the fact that a noise impact has more weight than a sea water or 

fauna and flora impact. Noise will be a part of the whole lifecycle for both 

infrastructures. On the other hand, it is thought that seawater, flora, and fauna will 

only be affected during the construction of both, as once infrastructures are on its 

operation phase, the impact will be already caused. In addition, landscape impact it 

is thought to have the least weight, as a view impact will only affect the natural 

concept of the site.  

 

   Indicator W*I 

Category 

Criteria 

 Weight 

(%) 

Criteria SB SFT SB SFT 

Social Impact 

31.8 Execution Time 1 0.75 0.32 0.24 

36.5 Travel Affectation  1 0.62 0.37 0.23 

31.7 

Inconvenience to 

neighbours during 

construction 

1 0.3 0.32 0.10 

Value     1.00 0.53 

  
Table 4.25 Social value. 

 

 

From the table can be appreciated how the construction of the Chacao bridge will 

more satisfying value. Less time for its construction will be needed as the crossing is 

   Indicator W*I 

Category 

Criteria 

Weight 

(%) 

Criteria SB SFT SB SFT 

Environmental 

Impact 

19.1 Landscape Impact 0,1 1 0.02 0.19 

19.5 Fauna and Flora Impact 1 0.8 0.20 0.16 

20.3 Sea water Impact 1 0.6 0.20 0.12 

20 Air Impact 1 0.6 0.20 0.12 

21.1 Noise Impact 0.3 1 0.06 0.21 

Value     0.68 0.80 
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shorter and there is more experience on the construction of bridges. Its less lower 

time of construction means its access will be guaranteed before. In addition, 

disturbances on the surroundings will last less. As seen in the table and analysed 

previously, the bridge will provide a quicker crossing and so vehicles will be able to 

get to their destinations before, even though there is only a difference of 5,5minutes 

which is not much depending on the drivers destination. Finally, fewer 

inconveniences to neighbours will be caused, as its construction will take place far 

apart from the nearest village.  

 

   Indicator W*I 

Category 
Criteria 

Weight (%) 
Criteria SB SFT SB SFT 

Safety 

40.2 Against Earthquake 0.3 1 0.16 0.40 

29.4 Against Tsunami 1 0.6 0.29 0.18 

30.4 Against Collision 1 0.8 0.30 0.24 

Value     0.72 0.82 

 
 

Table 4.26 Safety. 

 

From the calculated results, we can appreciate that the SB alternative is more 

unfavourable with respect to the safety of the infrastructures. Weights have been 

stablished considering the probability of occurrence and affectation. It can be 

appreciated, it has been considered a much bigger weight for safety against 

earthquakes as it is more probable for an infrastructure to fail due to the high 

seismicity of the zone, and SFT appears to have a much better response against 

them. It has also been considered the probability of failing due to collision and 

tsunamis, but its occurrence and affectations are considered minor. It is thought that 

the SB will be less affected by both as explained before.  

 

 
Table 4.27 Functionality.   

 

 

Finally, it can be appreciated from Table 4.27 that the proposed SFT will be a much 

more favourable alternative in comparison with the SB in terms of functionality. 

   Indicator W*I 

Category 
Criteria 

Weight (%) 
Criteria SB SFT SB SFT 

Functionality 

40.2 Cross section 1 0,95 0.40 0.38 

13.5 Extension Possibility 1 0,1 0.14 0.01 

46.3 
Connectivity to existing 

road network 
0.1 1 0.05 0.46 

Value     0.58 0.86 
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Connectivity to existing roads it is thought to be of great importance inside the 

functionality of these infrastructures. The need of new roads will have a direct impact 

on the environment, on the construction cost and on the execution time of the project. 

Therefore, taking advantage of the existing roads reduces these impacts.  

 

The infrastructure cross section has also thought to be of great importance in terms 

of functionality. Depending on the section considered, the arrangement of facilities 

can be much more difficult and could determine if using a bigger or smaller section, 

this will have a great influence on the production cost variation.  In our case, the most 

important fact that has been considered between infrastructures has been the height 

restriction, as both cross sections are considered to easily accommodate facilities 

and offer a width cable to support all types of traffic. As analysed before, the SFT due 

to the height restriction it is thought that is not able to allow the crossing of a small 

percentage of special vehicles. Therefore, it is believed that its section with respect 

to that of the SB, has a slightly worse functionality. It has not been considered of great 

importance the extension of both infrastructures, as considering the future and 

actual traffic crossing the channel (Steer Davies Gleave consultancy, 2002), the 

design of both are capable of offering a good service. 

 

Once evaluated each impact for both infrastructures and having a better 

understanding of the results obtained, we can proceed to calculate the global value 

in order to obtain a final conclusion.  
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Global 

weight 

(%) 

Category 

Impact Global value 

SB SFT SB SFT 

21.3 Economic Impact 0.92 0.94 0.20 0.20 

20,.1 Environmental Impact 0.68 0.80 0.14 0.16 

19.1 Social Impact 1.00 0.53 0.19 0.10 

20.5 Safety 0.72 0.82 0.15 0.17 

19 Functionality 0.58 0.87 0.11 0.17 

 
Total value   0.78 0.80 

 

 
Table 4.28 Final Global value. 

 

 

The result obtained by the product of each category with its corresponding global 

weight and the final sum of all, shows a very small variation between infrastructures 

global values. It appears that the SFT has a slightly higher global value, but the 

difference is so small that it could be concluded that both infrastructures are feasible 

for the site. In this case, it should be more deeply analysed to come up with more 

precise indicators in order to have a better perspective of their value and on whether 

it is more viable the construction of the Chacao bridge or the proposed SFT design.  
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5. Conclusions. 
 

The objective of this thesis is to understand how Submerged Floating Tunnels work, 

how they are designed and constructed, find advantages and disadvantages and, 

when all that is clear, to see a possible application of this type of crossing on the 

Chacao Channel. All this in comparison with a much more common structure such as 

a long span bridge, in this case a suspension bridge.  

 

During the project, several similarities have been noticed between the SFT and a 

suspension bridge. Nevertheless, those that have really helped us to understand why 

in many cases where a suspension bridge is proposed to be build, the possibility of 

constructing a SFT may also appear, have been summarized below. 

 

The bridge deck is supported and the Submerged Tunnel is anchored through vertical 

or inclined cables, being the gravity loads on the cable-supported bridge replaced by 

the upward residual buoyancy in the SFTs. The most important parameters 

responsible for the stability of a Floating Tunnel are waves and currents, by contrast, 

the stability of the bridge will be determined by wind. We could then say that the loads 

to which both infrastructures will be subjected, are analogous. Finally, to all this, can 

be added the fact that both structures are capable of offering long crossing distances. 

 

Many advantages with the construction of a SFT were identified, most of them solving 

problems that conventional infrastructures cannot deal with. The clearest 

advantages that were present in many SFT cases are the following;  

 

- The cost of a SFT will not vary exponentially with an increase in depth or length 

which makes such infrastructure very competitive in the construction world. 

Until now, both parameters were the main restrictions in many water 

crossings. 

- In many cases it presents to offer a shorter and quicker way of crossing, 

because unlike a suspension bridge, end slopes are not considered part of 

the crossing.  

- Air and sea traffic would not be affected by its construction and operability.  

- The SFT will not interfere with the natural beauty of the surroundings.  

 

To sum up, SFT will be able to offer an invisible, quick and economical way of crossing 

between sites hitherto unthinkable. However, disadvantages are also present, the 

most interesting found are listed below;   

 

- In many studies, it has been found that the SFT has the highest total CO2 

emissions and have concluded that was due to the high material 

consumption.  

- A seabed anchored SFT can provoke a very high sea water impact, this impact 

can increase with the distance and the type of foundations used. However, a 
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SFT can also be anchored by means of pontoons on the sea surface so less 

impact will be caused.  

 

So, watching the great advantages and the possible solution or minimization of the 

main disadvantages that such a structure could offer, the reason why until now no 

SFT has been constructed was seek. 

 

The answer was that, in addition to the many possible positive impacts that a SFT 

can cause, since no SFT prototype has been built so far, it has not yet been possible 

to prove the possible problems and difficulties that we could encounter with the 

structure interaction with water, the mooring to the tunnel, the anchoring to the water 

bed, the installation, the connection to the shore etc. and therefore, it has not been 

possible to establish safety coefficients yet.  

 

In the past years, an attempt was made to build a 100m long prototype on Lake 

Qiandao in China, however due to some extra technical problems it was not possible 

to make it a reality.  Moreover, many countries have proposed a SFT as an aquatic 

crossing solution in their territories.  

 

In conclusion, studies are being developed (Recently in Madrid a conceptual design 

congress took place to discuss future directions for research inside the field of the 

floating tunnels. This congress was organized by ACHE (Asociación Española de 

Ingeniería Estructural) and fib) and pre-projects have been developed, but there is 

still no established body of doctrine for the construction of SFT. 

 

In the final part of the project, the feasibility of a SFT at a given location has been 

evaluated in comparison to a Suspension Bridge. 

 

To do so, an objective and systematic method has been chosen, such as the multi-

criteria analysis. This analysis method has evaluated and compared, both 

construction processes integrating diverse aspects such as costs, environmental 

impact, safety, social impact and functionality.  

 

From the analysis, we can see the benefits a SFT can contribute to these aspects. 

Even though it is seen that in comparison with the SB it has a unfavorable social 

value. We must say though, that this effect was due to the proposed designs location; 

its proximity to a village increased its social value (possible disturbances being 

caused during material transportation). A different location on a rural site would had 

varied the value obtained and a more satisfactory result would had been achieved. 

(in this case it is not possible as shown in chapter 4, due to bathymetry, benthonic 

resources extraction areas and aquafarming activities).   

 

Finally, the results obtained for both structures have been considered to be very 

similar, being 0.78 for the Suspension Bridge and 0.80 for the Submerged Floating 
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Tunnel. It can be concluded so, that the construction of either a SFT or a SB in the 

Chacao Channel is feasible. 

 

Nonetheless, in order to obtain a more precise result, a more in-depth study should 

be carried out, since the quality of the analysis has been limited by the availability of 

data. Consequently, the indicators had to be estimated, which were the way to 

measure the alternatives with respect to the different aspects. Therefore, the results 

reached are approximate. 

 

However, with these approximated results, it is already demonstrated how 

competitive a SFT can be. In conclusion, with this thesis it has been proved, by 

watching the successful results, the possibility of having obtained better ones in a 

different location, and considering all the benefits a SFT could contribute to the water 

crossing concept, how viable could be the construction of such an infrastructure in a 

nearby future, once a body of doctrine is stablished and its construction is possible.  
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