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Abstract. Constant entropy rate (conditional entropies must remain constant as the
sequence length increases) and uniform information density (conditional probabilities
must remain constant as the sequence length increases) are two information theoretic
principles that are argued to underlie a wide range of linguistic phenomena. Here we
revise the predictions of these principles to the light of Hilberg’s law on the scaling
of conditional entropy in language and related laws. We show that constant entropy
rate (CER) and two interpretations for uniform information density (UID), full UID
and strong UID, are inconsistent with these laws. Strong UID implies CER but the
reverse is not true. Full UID, a particular case of UID, leads to costly uncorrelated
sequences that are totally unrealistic. We conclude that CER and its particular cases
are incomplete hypotheses about the scaling of conditional entropies.
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1. Introduction

Uniform information density and constant entropy rate [1, 2] are two information

theoretic principles that have been put forward to explain various linguistic phenomena,

e.g., syntactic reduction [1, 3] and the frequency of word orders [4]. In order to present

these principles, we provide some definitions. Formally, u is a linguistic sequence of n

elements, e.g., words or letters, i.e. u = x1, ..., xn, where xi is the i-th elements of the

sequence. Ui is defined as the set of elements that can appear in the i-th position of the

sequence and U as the set of all possible sequences of length n, i.e. U ⊆ U1 × ......×Un.

Both U and all the Ui’s are support sets, i.e. all their members have non-zero probability

and all non-members have zero probability. Xi is the random variable that takes values

from the set of elements Ui. Hereafter, xi stands for an element of Ui or a value of Xi

by default.

The constant entropy rate (CER) hypothesis states that the conditional entropy

of an element given the previous elements remains constant [2]. To express it formally,

H(Xi|X1, ..., Xi−1) is defined as the Shannon conditional entropy of the i-th element of

a sequence given the i− 1 preceding elements. The CER states that H(Xi|X1, ..., Xi−1)

remains constant as i increases (i = 1, 2, ..., n), i.e.

H(X1) = H(X2|X1) = ... = H(Xn|X1, ..., Xn−1). (1)

The uniform information density (UID) hypothesis [1, 3] states that the conditional

probability of an element given the previous elements should remain constant. To

express it formally, p(xi|x1, ..., xi−1) is defined as the probability of xi given the preceding

elements in u. We say than a particular utterance u = x1, ..., xn satisfies the UID

condition if and only if

p(x1) = p(x2|x1) = ... = p(xn|x1, ..., xn−1). (2)

Here we will review the validity of CER and UID to the light of the real scaling

of the conditional and other entropies as n increases, or equivalently, as i, the length

of the prefix, increases [5, 6, 7, 8, 9]. We will show that the scaling of these entropies

is inconsistent with CER and two interpretations of UID, strong UID and full UID, a

particular case of strong UID. In essence, our arguments are the following. First, CER

is inconsistent with Hilberg’s law, a hypothesis on the entropy of natural language

made on the base of Shannon’s famous experiment [5]. Hilberg’s law states that

H(Xn|X1, ..., Xn−1) ∼ n−β, with β ≈ 1/2 [6], whereas CER means β = 0. Second,

strong UID, i.e., all the utterances in U satisfy the UID condition, is a particular

case of CER. The latter can be easily shown. By taking logarithms and multiplying

by p(u) = p(x1, ..., xn) on the UID condition (Eq. 2), the strong UID can be written

equivalently as

p(u) log p(x1) = p(u) log p(x2|x1) = ...

= p(u) log p(xn|x1, ..., xn−1)
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for any u = x1, ..., xn ∈ U . Summing over all u ∈ U (the utterances that do not belong

to U have no effect thanks to the convention 0 log 0 = 0 [10]) and inverting the sign, the

strong UID leads to

−
∑

u

p(u) log p(x1) = −
∑

u

p(u) log p(x2|x1) = ...

= −
∑

u

p(u) log p(xn|x1, ..., xn−1),

where each part corresponds to the definition of a Shannon (conditional) entropy, i.e.

the definition of CER in Eq. 1 is recovered.

These ideas are developed in the coming sections, which will not only examine the

meaning of strong UID but also that of full UID, a particularly degenerated version of

real language where sequences of symbols are uncorrelated and entropies are maximum.

2. The uniform information density hypothesis

First, let us inspect some consequences of the UID hypothesis. One of the major

challenges of the uniform density hypothesis is defining a criterion for the applicability

of the hypothesis. UID was originally defined on a single sequence [1]. The utility and

power of the hypothesis depends on its scope: the more sequences UID concerns, the

better. We start with a very ambitious UID hypothesis, namely that UID holds for any

sequence in U that can be formed combining the elements of Ui, i.e.

U = U1 × ...× Un. (3)

We call it full UID. We also consider a weaker but still strong version, where UID

holds also for any sequence in U but Eq. 3 does not need to be satisfied. This version

is called strong UID. In fact, full UID implies strong UID but the reverse is not

true. To see the latter, consider support set U = {(a, b), (a, c), (d, e), (d, f)}, where

p(X2 = x2|X1 = x1) = p(X1 = x1) = 1/2 for any (x1, x2) ∈ U . We thus have strong

UID but the full UID fails to hold since U 6= U1 × U2 = {a, d} × {b, c, e, f}.

The UID condition can be written in terms of the joint probability. By the chain

rule of conditional probability

pu = p(x1)p(x2|x1)...p(xn|x1, ..., xn−1). (4)

and Eq. 2 we obtain that the UID hypothesis implies

p(x1, ..., xn) = p(x1)
n. (5)

That is, strong UID means that all sequences beginning with the same word are equally

likely. Furthermore, noting that, by definition, we have

p(xi) =
∑

x1,...,xi−1,xi+1,...,xn

p(x1, ..., xn) (6)

and applying Eq. 5, we obtain

p(x1) = p(x1)
n

∑

x2, ..., xn,

(x1, ..., xn) ∈ U

1 = p(x1)
n|U(X1 = x1)|
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where U(X1 = x1) is the subset of U containing all the sequences where X1 = x1.

Therefore,

p(x1) = |U(X1 = x1)|
1

1−n . (7)

Taking in particular n = 2, we obtain that p(x1) must be a reciprocal of a natural

number.

2.1. Full UID

With the help of the properties of the UID hypothesis above it is easy to show that full

UID, implies, that for any sequence x1, ..., xn,

(i) x1, ..., xn are independent, i.e.,

p(x1, ..., xn) =
n
∏

i=1

p(xi).

(ii) The sets of elements that can appear at each position of the sequence have the same

cardinality, i.e. |U1| = ... = |Un|.

(iii) All words occurring in the same position are equally likely, i.e. p(xi) = 1/|U1|.

If UID holds for any sequence beginning with x1 that can be formed by combining

elements from U2, ..., Un, then |U(X1 = x1)| =
∏n

i=2 |Ui| and Eq. 7 becomes

p(x1) =

[

n
∏

i=2

|Ui|

]
1

1−n

. (8)

for n ≥ 2. Eq. 8 indicates that p(x1) is the same for any x1 ∈ U1. Thus, the condition
∑

x1∈X1

p(x1) = 1

gives p(x1) = 1/|U1| and the UID condition in Eq. 5 becomes

p(x1, ..., xn) = |U1|
−n. (9)

Now we will derive p(xi) for i ≥ 2. Employing Eq. 9, Eq. 6 can be written as (assuming

i ≥ 2)

p(xi) = |U1|
1−n

∏n
j=2 |Uj |

|Ui|
= |U1|

1−n
i−1
∏

j=2

|Uj |
n
∏

j=i+1

|Uj |.

Notice that, again, p(xi) is the same for any xi ∈ Xi. Thus, the condition
∑

xi∈Xi

p(xi) = 1

gives p(xi) = 1/|Ui| for any i = 1, ..., n. Now, we will show that |Ui| = |U1| for any

i = 1, ..., n. By definition, we have

p(x1, ..., xi−1) =
∑

xi

p(x1, ..., xi),
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which, thanks to UID (recall Eq. 9), becomes

p(x1, ..., xi−1) = |U1|
−i

∑

xi∈Ui

1 = |U1|
−i|Ui|.

Applying UID again (Eq. 9) to the l.h.s, gives |U1|
1−i = |U1|

−i|Ui|, an thus |U1| = |Ui| and

p(xi) = 1/|U1| for any i = 1, ..., n. Now it is easy to show that x1, ..., xn are independent.

The definition of independence, i.e. p(x1, ..., xn) =
∏n

i=1 p(xi), holds trivially under UID

since then p(x1, ..., xn) = |Ui|
n and p(xi) = 1/|Ui| for any i = 1, ..., n. Finally, notice

that full UID means that p(Xi = xi) = 1/|U1| but does not imply that the elements

of the sequences (regardless of their position) are equally likely. If all the sequences

of U = {(a, a), (a, c), (b, a), (b, c)} have probability 1/4, one then has full UID but the

probability of producing a is 4/8 while the probability of producing c is 2/8.

2.2. The relationship between CER and strong UID

Unravelling the relationship between CER and UID is also in need. For instance, [4] is

based on the idea of UID but its mathematical implementation is based on the definition

of CER. Strong UID implies CER (Section 1) but it will be shown that the reverse

implication does not hold. Consider CER with n = 2, i.e. H(X2|X1) = H(X1), and

independence between X1 and X2, i.e. H(X2|X1) = H(X2). Thus, H(X1) = H(X2).

Assume also that U1 = {a, b} and U2 = {c, d}. If one has p(X1 = a) = p(X2 = c) = 2/5,

p(X1 = b) = p(X2 = d) = 3/5, then one has CER but strong UID does not hold

because 2/5 is not the reciprocal of a natural number, a condition for strong UID

noticed beforehand.

3. The real scaling of entropies versus constant entropy rate

A serious consequence of the properties of full UID is that it is totally unrealistic with

respect to natural language for several reasons. First, full UID leads to a sequence of

independent elements, while long range correlations pervade linguistic sequences both

at the level of letters and the level of words, e.g. [11, 7, 12, 13, 14]. Second, full UID is

problematic because entropies are maximum. H(Xi) is maximum for any i = 1, ..., n as

H(Xi) = log |Ui|. The joint entropy is also maximum because [10]

H(X1, ..., Xn) ≤
n
∑

i=1

H(Xi) (10)

in general but full UID transforms the inequality of Eq. 10 into a mere equality because

the elements making a sequence are independent. Since entropy is a measure of cognitive

cost [15, 16], full UID means the entropy related costs are maximum.

Last but not least, the plausibility of UID or CER for natural language is

undermined by the results of celebrated experiments. Let He(Xn|X1, ..., Xn−1) be an

estimate of H(Xn|X1, ..., Xn−1) from real data and εn the error of the estimate, i.e.,

He(Xn|X1, ..., Xn−1) = H(Xn|X1, ..., Xn−1) + εn,
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where εn ≥ 0 in general (by the nonegativity of Kullback-Leibler divergence and Kraft

inequality, it follows that the errors εn are positive if entropy is estimated by means

of universal probability or universal coding [10]). Hilberg [6] reanalyzed Shannon’s

estimates of conditional entropy for English [5] and discovered that

He(Xn|X1, ..., Xn−1) ≈ Cen
α−1 (11)

with Ce > 0, α ≈ 0.5, and n ≤ 100 characters. Extrapolating Hilberg’s law, Eq. 11, for

n ≫ 100 requires some caution. If accepted with εn = 0, Eq. 11 would imply asymptotic

determinism of human utterances with an entropy rate h = limn→∞H(Xn|X1, ..., Xn−1)

equal to 0. Thus it is more plausible to accept that the scaling law of the true entropy

(not its estimate) is

H(Xn|X1, ..., Xn−1) ≈ Cnα−1 + h, (12)

with C < Ce and a sufficiently small constant h > 0. That the modified Hilberg law,

Eq. 12, is indeed valid for natural language for n ≫ 100 characters can be corroborated

by the following fact: the modified Hilberg’s law implies a lower bound for the growth

of V , the observed vocabulary size, as a function of the T , the text length. Namely, Eq.

12 implies that V grows at least as ∼ T α/ log T [17], which is in good accordance with

the real growth of V [18].

In contrast, CER is a competing hypothesis on H(Xn|X1, ..., Xn−1), the true

conditional entropy. Assuming that CER, Eq. 1, holds in spite of Hilberg’s law, Eq.

11, is equivalent to stating that the errors εn ≈ Cen
α−1 − H(X1) are systematically

decreasing as n increases and negative for moderate n if H(X1) is large enough. This

seems unrealistic since, as we have stated above, the errors of entropy estimates should

be positive in general and it is unlikely that the errors are systematically diminishing

(undersampling, a very important source of error, usually increases as n increases).

The disagreement between real language and CER concerning the decay of

conditional entropy can be rephrased in terms of other entropic measures: H(X1, ..., Xn)

the joint or block entropy [8, 9] and H(X1, ..., Xn)/n, the joint entropy per unit [7]. It

is easy to infer the scaling of these entropies from the modified Hilberg law, Eq. 12, by

means of the chain rule of the joint entropy [10], which yields

H(X1, ..., Xn) =
n
∑

i=1

H(Xi|X1, ..., Xi−1) ≈
∫ n

0

[Cmα−1 + h]dm = α−1Cnα + hn, (13)

and thus

H(X1, ..., Xn)/n ≈ α−1Cnα−1 + h. (14)

In contrast, CER predicts a linear growth of the joint entropy, i.e.

H(X1, ..., Xn)/n = H(X1), (15)

which can be proven by applying the definition of CER in Eq. 1 to the chain rule of

joint entropy [10].

As an independent confirmation of Shannon’s research, according to Ref. [7], the

estimates of H(X1, ..., Xn)/n for sequences of letters from an English novel show good
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agreement with Eq. 14 with α = 0.5. Furthermore, the estimates of H(X1, ..., Xn) grow

sublinearly with n not only for texts in English but also for sequences from many other

languages with different kinds of units [9, 8]. CER predicts that H(X1, ..., Xn)/n is

constant, Eq. 15, a strikingly different result. Therefore, the inconsistencies of CER are

robust in the sense that do not depend on entropic measure, the language or the units

of the sequence being considered. The same inconsistencies concern full and strong UID

as it has been shown in Sections 1 and 2 that Full UID ⇒ Strong UID ⇒ CER.

4. Discussion

We have shown that CER and the two interpretations of the UID hypothesis (full UID

and strong UID) are inconsistent with the scaling law for entropy of natural language

called Hilberg’s law. Future research should address the challenge of what modifications

of UID/CER can be consistent with real language. In order to save UID/CER, we

envisage that probabilities and conditional entropies for real language stem from a

conflict between principles: one acting towards UID/CER and another acting against

UID/CER. A similar conflict between principles has been hypothesized for Zipf’s law

for word frequencies, namely that the frequency of the i-th most frequent word of a text

is ∼ i−τ [19]: the law emerges from a conflict between two principles, minimization of

the entropy of words and maximization of the mutual information between words and

meanings where none of the principles is totally realized [20, 21]. Indeed, Refs. [17, 22]

show that there is a close relationship between Zipf’s law and Hilberg’s law so the

conflict of principles that leads to Zipf’s law may be the same that prevents UID/CER

from the full realization.

It is worth noting that there are simple information theoretic principles that lead

to UID/CER. For instance, minimization of conditional entropy, leads to Eq. 1 with

H(X1) = 0. Interestingly, entropy minimization can be easily justified as it implies

the minimization of cognitive cost [15, 16] and is used to explain Zipf’s law for word

frequencies [20, 21]. Clearly, this conditional entropy minimization could not be acting

alone as its total realization implies that all possible sequences have probability zero

except one and therefore Hilberg’s law could not hold. As the force towards UID/CER is

not working alone, the nature of the second factor in conflict must be clarified. The view

of UID/CER as a principle in conflict means that all the currently available explanations

of linguistic phenomena based upon UID/CER, e.g., [2, 1, 4], are a priori incomplete.
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