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of temperature.
Figure S5. Yield of the polarization treatment at 1000 ºC as 
a function of the cooling rate. 
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Page S13 Figure S9. TEM image of PP/HAp(a) showing the sintering 
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METHODS

Hydrothermal synthesis of hydroxyapatite (HAp)

15 mL of 0.5 M of (NH4)2HPO4 in de-ionized water were added at a rate of 2 

mL·min-1 to 25 mL of 0.5 M of Ca(NO3)2 in ethanol (with pH previously 

adjusted to 10.5 using ammonium hydroxide solution) and left aging for 1 h. The 

whole process was performed under gentle agitation (150 rpm) and at room 

temperature. Hydrothermal treatment at 150 ºC was applied using an autoclave 

Digestec DAB – 2 for 24h. The autoclave is allowed to cool down before 

opening. The precipitates were separated by centrifugation and washed with 

water and a 60/40 v/v mixture of ethanol – water (twice). Then, samples were 

freeze–drying for 3 days. For this purpose, samples were left for 3 h in the 

freezer at -87 ºC and, subsequently, the freeze-drying was performed using a 

TelStar LyoQuest pre-cooled at -53.7 ºC. The working pressure during the 

freeze–drying process was 0.089 mbar, while the temperature was kept at -53.7 

ºC, respectively. After complete the freeze-drying, the white powder obtained 

was sintered for 2 h at 1000 ºC in air and vapor atmospheres using the Carbolite 

ELF11/6B/301 furnace.

Polarization of HAp by using thermal stimulation 

Mechanical consistent discs of ~1.5 mm of thickness were obtained by 

pressing 150 mg of cHAp powder at 620 MPa for 10 min using a manual 

hydraulic press SPECAC. Thermal polarization was done placing the cHAp 

discs between two stainless steel (AISI 304) and applying a desired constant DC 

voltage for 1 h using the a GAMMA power supply at different temperatures 

using the same laboratory furnace. The discs were allowed to cool down 
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maintaining the applied electric potential for 30 minutes, and finally, all the 

system was powered off and left to cool overnight. 

X-ray photoelectron spectroscopy (XPS) 

XPS analyses were performed in a SPECS system equipped with a high-

intensity twin-anode X-ray source XR50 of Mg/Al (1253 eV/1487 eV) operating 

at 150 W, placed perpendicular to the analyzer axis, and using a Phoibos 150 

MCD-9 XP detector. The X-ray spot size was 650 µm. The pass energy was set 

to 25 and 0.1 eV for the survey and the narrow scans, respectively. Charge 

compensation was achieved with a combination of electron and argon ion flood 

guns. The energy and emission current of the electrons were 4 eV and 0.35 mA, 

respectively. For the argon gun, the energy and the emission current were 0 eV 

and 0.1 mA, respectively. The spectra were recorded with pass energy of 25 eV 

in 0.1 eV steps at a pressure below 6×10-9 mbar. These standard conditions of 

charge compensation resulted in a negative but perfectly uniform static charge. 

The C 1s peak was used as an internal reference with a binding energy of 284.8 

eV. The surface composition was determined using the manufacturer's 

sensitivity factors. 
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Table S1. Atomic percent composition (C, O, P and Ca) of HAp(a) and 

PP/HAp(a) surfaces as determined by XPS.

%Atomic ConcentrationSample
C (a) O (a) P Ca

HAp(a) 14.37 43.06 18.51 24.07
PP-HAp 15.13 40.96 17.79 26.13

(a) The content of C and O is influenced by CO2 contamination, as 
usual.
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Figure S1. XRD spectrum of HAp(a) samples showing the presence of β-TCP 

phase. Characteristic reflections of HAp and β-TCP are displayed in black and 

blue, respectively 
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Figure S2. XRD spectrum of HAp(w) samples showing the presence of β-TCP 

phase. Characteristic reflections of HAp and β-TCP are displayed in asterisks 

and crosses, respectively. The high scattering and splitting, which are associated 

to distortions in phase transformations, make difficult the assignation of many 

signals
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Figure S3. Raman spectra of HAp(a) and PP/HAp(a) samples showing the 

different vibrational modes located at (a) 2= 400-900 cm-1; (b) 3= 570-625 cm-

1; (c) 4= 1020-1095 cm-1. 
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Figure S4. Yield of the polarization treatment as a function of temperature. 

Figure S5. Yield of the polarization treatment at 1000 ºC as a function of the 

cooling rate (* refers to fast cooling down). 
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Figure S6. Evolution of the content of ACP and β-TCP crystalline phases as a 

function of the depth determined by Raman spectroscopy for (a) PP/HAp(a) and 

(b) SP1/HAp(w).
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Figure S7. High magnification SEM micrograph of HAp(w).
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Figure S8. High magnification SEM micrograph of (a) PP/HAp(a) and (b) 

SP1/HAp(w).
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Figure S9. TEM image of PP/HAp(a) showing the sintering of the particles, 

which is caused by the applied thermal stimulated polarization treatment.


