
August, 2019

IRI-TR-19-03

Robots and IoT devices for assistive automation
IRI Technical Report

Kévin Bedin

Sergi Foix

Guillem Alenyà

Abstract

In recent years, we live every day in an ever more connected world. This phenomenon has de-
veloped the technologies of the Internet of Things (IoT). At the same time, advances in robotics
now make it possible to have autonomous service robots in their mobility and in the accom-
plishment of their missions. So far the question is whether it might be useful to unite these two
areas.
Just as humans do, how do these service robots integrate the objects of IoT into their environ-
ment to facilitate the fulfillment of their mission?
This report focuses on how it is possible to integrate IoT objects into the environment of a PAL
Robotics robot, TIAGo. It is the result of twelve weeks of internship within the laboratory of
Perception and Manipulation of the Institut de Robòtica i Informàtica Industrial of Barcelona.

Institut de Robòtica i Informàtica Industrial (IRI)
Consejo Superior de Investigaciones Cient́ıficas (CSIC)

Universitat Politècnica de Catalunya (UPC)
Llorens i Artigas 4-6, 08028, Barcelona, Spain

Tel (fax): +34 93 401 5750 (5751)

http://www.iri.upc.edu

Corresponding author:

Guillem Alenyà
tel: +34 93 401 5751

galenya@iri.upc.edu

http://www.iri.upc.edu/staff/galenya

Copyright IRI, 2019

http://www.iri.upc.edu
galenya@iri.upc.edu
http://www.iri.upc.edu/staff/galenya

Section 1 Introduction 1

1 Introduction

“The Perception and Manipulation Group investigates in service robotics and has two TIAGo
mobile manipulation robots and a laboratory simulating an apartment. This project wants to
investigate the benefits of adding smart devices to this environment and making them available
to the robot. In recent years, a wide variety of IoT (Internet of Things) domestic devices have
appeared that can monitor environmental variables and control active parts, as well as several
initiatives that try to standardize protocols and access methods to these devices. On the other
hand, service robotics has advanced enormously thanks to the existence of robust solutions for
critical parties, such as voice recognition or navigation avoiding obstacles. Now is the propitious
moment to unite these two worlds and interconnect the robot with the environment. The robot
would not only multiply its action capabilities but also increase its data acquisition capacity.
For example, if you do not have enough information with your own sensors and cameras or it is
ambiguous, you could connect to the surrounding network of cameras and obtain images from
different points of view and places.”[1]
The purpose of my internship was to know if it was possible to integrate in the Lab’s apartment
smartdevices using various protocols within the environment of a TIAGo robot so that it can
use it to enrich its range of actions.
The first necessity was to define the subject. It was necessary that I highlight various problems
in order to better understand the expectations of the project as well as the exploitable technical
solutions. The first problem was:

• How to use these sensors?

Indeed before being able to connect it to the robots, you must know how to extract the informa-
tion. The next question is to know if you can use a single tool that can integrate a wide variety
of IOT protocols, ie the existence of a hub for connected objects.

• Is it possible to standardize these protocols ?

After that it would be a question of how the robot interacts with its environment:

• What environment does the robot use?

And then of course it would be necessary to know how to connect the world of IoT via a potential
HUB and the environment interpretable by the robot:

• How to integrate these sensors into the robot environment?

Finally, in order not to lose any functionalities as well on the side of the robot as on the side of
the connected objects the last question is to know if these two systems can evolve independently
while having a capacity of communication:

• Is it possible to decouple the IOT part and the robot while having an activatable link if
necessary?

So after having arisen this set of problems I was able to focus on researching existing technical
solutions by making a state of the art. The world of IoT being born by definition on the Internet,
it is relatively easy to find many software allowing to use various protocols of the IoT as well
as having a user-friendly Human Machine Interaction (HMI). My choice fell on a very popular
software in the world of IoT: OpenHAB version 2 (OH2). This software acts as a hub, being
able to use most of the domotic protocols currently used. I have integrated various sensors and
actuators from the world of home automation as well as a choosen IP camera from Amcrest
company. Subsequently I looked at how to connect the environment of the robot to OpenHAB.

2 IRI Technical Report

It is through the Robot Operating System (ROS) middleware and the iot bridge package, that I
have upgraded for this implementation, that this link was set up. Then I developed algorithms,
in the form of a ROS package, for the camera: amcrest ip camera. The main algorithm allows
to scan the apartment in search of a binary image (Aruco) and provides its location in the
apartment. Finally a mission to find an Aruco has been tested with TIAGo. To do this, it can
use both his own camera but also use the IP camera with the developed package. So, the main
solutions used will be explained in this technical report.

Section 2 Architecture overview 3

2 Architecture overview

Figure 1: Global IOT architecture developed
Each blue description of the legend is a project or tutorial developed available on Gitlab and /
or Github:

• Alexa skill: alexa openhab turorial

– This tutorial explains how to link an IoT device to an echodot using OpenHAB. I
explain in this technical report how to do that - see Link OpenHAB device to
Alexa - [TUTORIAL]

– https://gitlab.iri.upc.edu/perception/lab/iot_apartment/alexa_openhab

• Database saving: OpenHab-MySQL project

– This project shows how to use the MySQL persistence from OpenHAB to save the
data from IoT devices into a MySQL Database. I explain in this technical report how
I used it - see Data saving

– https://gitlab.iri.upc.edu/perception/lab/iot_apartment/openhab-mysql

• IoT bridge: iot bridge upgrade project

– This project is an upgrade of the existing iot bridge ROS package that makes the
bridge between ROS and OpenHAB. I explain in this technical report how it works
- see iot bridge: link the devices to ROS

– https://gitlab.iri.upc.edu/perception/lab/iot_apartment/iot_bridge_

upgrade

• Python Amcrest module: python-amcrest ros used branch

https://gitlab.iri.upc.edu/perception/lab/iot_apartment/alexa_openhab
https://gitlab.iri.upc.edu/perception/lab/iot_apartment/openhab-mysql
https://gitlab.iri.upc.edu/perception/lab/iot_apartment/iot_bridge_upgrade
https://gitlab.iri.upc.edu/perception/lab/iot_apartment/iot_bridge_upgrade

4 IRI Technical Report

– This project is an upgrade of the existing python-amcrest module that implementes
the Amcrest’s API in Python. I explain in this technical report what I have added
and how to install it: see IP Camera strategy redefinition

– https://github.com/KevinBdn/python-amcrest/tree/ros_used

• Amcrest ROS package: amcrest ip camera project

– This project is a ROS package which allows to use an Amcrest’s IP Camera its
API through ROS. I explain in this technical report how it works - see am-
crest ip camera ROS package architecture - and how to use it - see Package
use - [TUTORIAL].

– https://gitlab.iri.upc.edu/perception/lab/iot_apartment/amcrest_ip_

camera

• Scripts generator: ip camera openhab project

– This project allows to generate the necessary scripts to integrate the camera in Open-
HAB. I explain in this technical report how it works - see OpenHAB integration.

– https://gitlab.iri.upc.edu/perception/lab/iot_apartment/ip_camera_

openhab

In addition, some tests and simulators used are available here:

• Tests performed: Tests performed project

https://gitlab.iri.upc.edu/perception/lab/iot_apartment/tests_performed

And the global view of my work is available in the main project:

• Global view: main
https://gitlab.iri.upc.edu/perception/lab/iot_apartment/main

A description of each project and tutorial is made in the README.md on the corresponding
Gitlab/Github repository.

https://github.com/KevinBdn/python-amcrest/tree/ros_used
https://gitlab.iri.upc.edu/perception/lab/iot_apartment/amcrest_ip_camera
https://gitlab.iri.upc.edu/perception/lab/iot_apartment/amcrest_ip_camera
https://gitlab.iri.upc.edu/perception/lab/iot_apartment/ip_camera_openhab
https://gitlab.iri.upc.edu/perception/lab/iot_apartment/ip_camera_openhab
https://gitlab.iri.upc.edu/perception/lab/iot_apartment/tests_performed
https://gitlab.iri.upc.edu/perception/lab/iot_apartment/main

Section 3 Rapsberry PI configurations 5

3 Rapsberry PI configurations

3.1 Hardware

I decided to use a Raspberry Pi 3B+ to be the IoT system. In this Rapsberry is installed:

• Ubiquity Robotics Raspberry Pi Image: Ubuntu 16.04.6 LTS (GNU / Linux 4.14.98-v7 +
armv7l) + ROS

• OpenHAB version 2.4 as software

Currently the IP address of the Raspberry in the local network is 172.16.0.3 . You can access
to the Rapsberry Pi via SSH:

1 ssh ubuntu@172 .16.0.3 #password= ubuntu

By default the Raspberry with Ubiquity OS shares its own Wifi Network

1 SSID: ubiquityrobotXXXX #Where XXXX is part of the MAC address

2 Password: robotseverywhere

I disabled it to avoid external connection to the Lab network, you can manage it using pifi.

3.2 Add the devices to OpenHAB - [TUTORIAL]

You can manage OpenHAB through the local Network using the port number 8080:

1 RASPBERRY_IP_ADDRESS :8080

You can add new devices using the corresponding Binding from OpenHAB and Paper UI. Lot
of tutorials are available in the official website. To add a Z-Wave Plus IoT device you can follow
this tutorial.

1. Make sure that the Z-Wave Plus stick is well plugged to the Raspberry Pi

2. Using Paper UI check if the Z-Wave Binding is well installed

3. Launch the paired mode of your Z-Wave devices

4. Check in the Inbox if the new device appeared and add it

https://downloads.ubiquityrobotics.com/
https://github.com/rohbotics/pifi

6 IRI Technical Report

5. You can know manage the device in the Configure -> Thing window

6. You have to associate an Item for each Channel that interests you

Section 3 Rapsberry PI configurations 7

7. To create an Item you can use the Configure -> Item window

8. Then you can manage the device using the Control window and through the other
available UI.

8 IRI Technical Report

3.3 Link OpenHAB device to Alexa - [TUTORIAL]

The link between OpenHAB’s paired devices and Alexa is made through this process:

So you can link devices to Alexa following these steps:

1. Install the OpenHAB Cloud connector

2. Get the UUID and the Secret generated using this location:

File Location

UUID /var/openhab2/uuid

Secret /var/lib/openhab2/openhabcloud/secret

3. Create an account on https://myopenhab.org/ using the UUID and the Secret

4. On the Amazon Alexa account used by the echodot add Alexa skill and configure item

5. Now you can tag in OpenHAB the desired Items. Currently few tags are available on the
official Alexa skill but a new version is developed. It increases the variety of Items that
can be used. Here are the current tags:

https://myopenhab.org/

Section 3 Rapsberry PI configurations 9

Tag

Lighting
Switchable
CurrentTemperature
Thermostat
CurrentTemperature
HeatingCoolingMode
TargetTemperature

To add a tag the easier solution is to use the OpenHAB’s console on the Raspberry:

1 $ openhab -cli console

2 $ openhab > items list #In order to remind the items names

3 $ openhab > items addTag item_name the_tag

4 $ openhab > items list #In order to check if the tag has been well added

5

6. On Amazon Alexa using Smart Home you can now search the new devices and add it to
appropriate groups

Once these steps are done, it is possible to interact with the objects connected via Alexa. Here
are some sentences that can be used:

• Alexa, switch on the Kitchen.

• Alexa, what is the temperature in the Lab ?

For more details see my tutorial on Gitlab.
In the appendix you can have the current accounts and configurations used.

3.4 iot bridge : link the devices to ROS

This ROS package written in python uses the OpenHAB JSON database accessible on the
local network to read and write the data of the various integrated devices. This data is then
distributed via topics on the ROS middleware.

https://gitlab.iri.upc.edu/perception/lab/iot_apartment/alexa_openhab

10 IRI Technical Report

Although functional, this package is based on version 1.0 of OpenHAB - based only on
the concept of Item (an actuator or sensor) - that became almost obsolete in favor of ver-
sion 2.0 - that incorporates the concept of Thing (a device) on which several Items are connected.

In order to better meet the needs of the laboratory and to be consistent with the ver-
sion of OpenHAB used (2.4), I therefore upgraded this package creating a new project:
iot bridge upgrade.

3.4.1 Package architecture

I integrated the notion of OH2 and a diagnostic topic to monitor all devices via rqt robot monitor.

Figure 2: Overview diagram of the iot bridge upgrade package
There are four topics:

• /iot command (diagnostic msgs/KeyValue)
When iot bridge receives a name/value pair from the ROS iot command topic, it publishes
those to OpenHAB and OpenHAB sends that command to the device specified.

• /iot set (diagnostic msgs/KeyValue)
When the iot bridge receives a name/value pair from the ROS iot set topic, it publishes
those to OpenHAB and OpenHAB updates the status for the item specified (e.g. indicates
that a switch is now ON).

• /iot updates (diagnostic msgs/KeyValue)
The IoT bridge receives updates from OpenHAB and publishes those as name/value pairs
to the iot updates ROS topic.

• /diagnostics (diagnostic msgs/DiagnosticArray)
The IoT bridge receives updates from OpenHAB and publishes those under a Diagnosti-
cArray message to the /diagnostic agg ROS topic to be monitored by rqt robot monitor.

Section 3 Rapsberry PI configurations 11

You can see the wiki for more explanations about the topics.

3.4.2 Use the package

The configuration of OpenHAB is made in the config/items.yaml file from the package.
The managed Items must be part of the ROS group.
To create the ROS group in OpenHAB you have to create the file /etc/open

hab2/items/ros.items and add:

1 Group ROS (All)

2 String ROS_Status "ROS [%s]"

Then you can attach the ROS group to the desired Items using PaperUI for instance. They will
then be available on ROS.

To use the package you can:

• Launch it:

1 roslaunch iot_bridge iot.launch

It will start the iot node and rqt robot monitor to monitor the linked Items.

• Run it:

1 rosrun iot_bridge iot_bridge

You can both use it on the Raspberry Pi or on a computer connected to the same network. To
do that you can simply export the ROS Master of the Raspberry to the computer and then
launch it. Start a roscore on the computer and on the Raspberry run:

1 $ export ROS_MASTER_URI=http :// COMPUTER_IP_ADDRESS :11311

2 $ roslaunch iot_bridge iot.launch

3.5 Data saving

The sensors and actuators now integrated into the OpenHAB2 software and available on ROS,
it seems so worthwhile to save the sensor data so that they can be used by the robot if necessary.
To do this I created a project on the gitlab of the laboratory OpenHab-MySQL.
The MySQL persistence is an openHAB plugin that allows you to save data from Items.

http://wiki.ros.org/iot_bridge
https://www.openhab.org/addons/persistence/mysql/

12 IRI Technical Report

The OpenHAB database created contains two kind of tables:

• Items: links an item with a primay key ID

• Item*: where * is the item’s ID from the Items table, contains all the values and the
corresponding date from the item.

Figure 3: OpenHAB database from MySQL Persistence

So I created a configuration that records all sensor and actuator data associated with the
ROS group at each new data and every 30 minutes. This configuration comes from the file
mysql.persist located in the /etc/openhab2/persistence/ folder.

Section 3 Rapsberry PI configurations 13

1 Strategies {

2 everyMinutes: "0 */1 * * * ?"

3 every10Minutes: "0 */10 * * * ?"

4 every30Minutes: "0 */30 * * * ?"

5 default = everyChange

6 }

7

8 Items

9 {

10 ROS* : strategy = everyChange , every30Minutes , restorOnStartup

11 }

This database being local, I made it accessible for all IPv4 addesses to the network changing
into /etc/mysql/mysql.conf.d/mysqld.cnf the bind address:

1 ‘‘‘bind_address : 0.0.0.0 ‘‘‘

Then I created a user for the external connections:

1 sudo mysql -u root -p

2 mysql > CREATE USER ’new_user ’ @ ’IP_address ’ IDENTIFIED BY ’password ’;

3 mysql > GRANT SELECT , INSERT , UPDATE , DELETE ON OpenHAB. * TO ’new_user ’ @ ’

IP_address ’;

4 mysql > FLUSH PRIVILEGES;

E.g. for all local IP addresses:

1 sudo mysql -u root -p

2 mysql > CREATE USER ’openhab ’@’172.16.0.% ’ IDENTIFIED BY ’MySQLOH2 ’;

3 mysql > GRANT SELECT , INSERT , UPDATE , DELETE ON OpenHAB .* TO ’ openhab ’@’

172.16.0.% ’;

4 mysql > FLUSH PRIVILEGES;

Here are the created accounts:

1 Id: root

2 Pwd: OpenHAB2MySQL

3

4 Id: openhab

5 Pwd: MySQLOH2

Now the data acquired via OpenHAB are now saved in the OpenHAB local MySQL database
and accessible from the local network. By this way, the robot increased its sensor data and it
can acquire information from devices that are present in the apartment.

14 IRI Technical Report

4 IP Camera

My biggest project was to integrate an IP Camera in the environment of the robot so that the
robot can fulfill missions such as locating an object in the apartment using its own cameras and
the IP camera in place. The IP camera was positioned on the ceiling above the apartment.

4.1 Choosen IP Camera

Having chosen OpenHAB as an IoT controller, the choice of the camera was made in the interests
of the software integration. A plugin - IpCamera - , in development but usable, allows to connect
some IP cameras to OpenHAB2. Here is the list of cameras tested and approved by this plugin:

Brand Amcrest Dahua Foscam Hikvision Instar

Model IP2M-841EW IPC-HDBW4433R-AS FI9831W DS-2CD2385FWD-I IN-8015 Full HD
IP2M-841B IIPC-HFW4431R-Z FI9821P DS-2CD2042WD-I
IP2M-844 IPC-HDW4421E-AS FI9900P DS-2CD2142FWD-IWS
IP3M-943B IPC-HDW2431R-ZS Fosbaby P1 DS-7208HUI-K2
IP8M-2493EW DH-SD22404T-GN PTZ C1 Lite DS-7208HQHI-F1 / N

C1 DS-2CD2383G0-I
C2 DS-7616NI-K2 / 16P

DS-2DE3304W-DE

Table 1: IP Camera used by the OpenHAB IP Camera addon

Having not found a more robust solution already existing we chose a cheap camera in terms of
price / quality ratio to perform integration tests.
The camera we bought is an Amcrest IP3M-941W IP camera at a cost of $ 75. The features of
the camera are available in the annex.

4.2 IP Camera strategy redefinition

When choosing the adopted strategies and the camera, the connection between the camera
and the robot should be via iot bridge. The camera had to be linked to OpenHAB and
communicates via ROS through the bridge. However, after having configured the associ-
ated blinding, the speed and the possible action panel were very bad. This did not allow
to use the camera dynamically by the robot. So I had to adapt the strategy regarding the camera.

I developed a set of programs so that the chosen IP camera is both usable by the robot
via ROS, but also usable directly from the network, while being integrated with OpenHAB.
The advantage of the chosen camera is that it has an integrated API in the form of HTTP GET
requests. This API allows you to configure videos, control the movement of the PTZ (Pan, Tilt,
Zoom) camera, take snapshots, etc. After some research, a Python module - python-amcrest-
already existing, I turned to use this language to create the amcrest ip camera ROS package.

The module does not include all the integrated features so I upgraded it so that it can
be integrated into ROS with the necessary features. Two features have been added:

• Possibility of audio recording for a given duration

• Possibility of saving a PTZ position (preset point)

The version incorporating these changes is available in a Git repository on my account: python-
amcrest ros used branch. The second feature has resulted in a merge request with the official
module. To install it you can use pip:

https://github.com/Skinah/IpCamera
https://s3.amazonaws.com/amcrest-files/Amcrest+HTTP+API+3.2017.pdf
https://github.com/tchellomello/python-amcrest
https://github.com/KevinBdn/python-amcrest/tree/ros_used
https://github.com/KevinBdn/python-amcrest/tree/ros_used

Section 4 IP Camera 15

1 sudo pip install -e git :// github.com/KevinBdn/python -amcrest.git@ros_used#

egg=python -amcrest

4.3 amcrest ip camera ROS package architecture

The package aims to interact with the HTTP API of the camera through different topics. It is
therefore a question of making a second API usable via ROS.

Here is the class diagram of the developed package:

Figure 4: Class diagram of the amcrest ip camera package

Here is how you can interact with the camera via ROS:

16 IRI Technical Report

Figure 5: Graph node of the amcrest ip camera package

Here are short descriptions of the topics and services used:

• ip camera position - [Subscriber] -Point message
Move the camera to the PTZ configuration ordered using the controller

– x : Pan angle between 0 and 360 (float)

– y : Tilt angle between -10 and 108 (float)

– z : Zoom level between 0 and 8 (int) [0 is zoom out maximun]

• ip camera order - [Subscriber] -KeyValue message

Key Description

Goto Move the camera to a saved Place
SaveAs Save the current PTZ configuration as a Place
Remove Remove a saved Place
RTSP Enable/Disable the RTSP stream
AudioRec Record audio for a predefined time
AudioPlay Play an audio file
Mirror Configure the Image as the mirror of the current Image
Flip Flip the Image
Scan Scan the apartment looking for an Aruco
ScanImgPub Enbale/Disable the analyzed images during the scan routine
SetTarget Define the Aruco targeted during the scan routine
SetRoutine Define the place order during the scan routine
AddTarget Add an Aruco to the targeted Aruco list
RemoveTarget Remove an Aruco from the targeted Aruco list
Reboot Reboot the camera
VideoMode Change the video configuration
Move Change the PTZ configuration - Up/Down/Left/Right/etc
Zoom Zoom In or Out

Section 4 IP Camera 17

For the possible values you can check the GitLab project.

• ip camera rtsp/image raw - [Publisher] -Image message
Publisher running when the associated variable is ”True”.

• ip camera rtsp/image raw - [Publisher] -CameraInfo message
Publisher running when the associated variable is ”True”.

• ip camera motion alarm - [Publisher] -DiagnosticStatus message
The possible values are:

– 0: No detection

– 1: Motion detected (less than 15s ago)

– -1: Alarm trouble

• ip camera scan/result/position - [Publisher] -Point message
Publisher running when scan is running and when a targeted Aruco is identified. It
publishes the (x,y,z) position of the Aruco in the apartment frame.

• ip camera scan/result/place - [Publisher] -KeyValue message
Publisher running when scan is running and when a targeted Aruco is identified. It
publishes the Place location of the Aruco. The key is the Aruco’s ID and the value is the
Place.

• diagnostics - [Publisher] -DiagnosticArray message
Messages monitored by rqt robot monitor. See below for more details.

• snapshots ip camera - [Service] -Trigger message
The service gets and provides snapshots from the ip camera as TriggerResponse message
when it is called.

The current status of the camera is published in the diagnostics topic that can monitor whether
or not it works via rqt robot monitor.

Figure 6: rqt robot monitor from amcrest ip camera package

I invite you to check the GitLab project to have more details about the displayed messages.

https://gitlab.iri.upc.edu/perception/lab/iot_apartment/amcrest_ip_camera
https://gitlab.iri.upc.edu/perception/lab/iot_apartment/amcrest_ip_camera

18 IRI Technical Report

4.4 Meet the missions

The camera is now integrated with ROS so it is possible to meet the missions that will be
entrusted to it. For that, I will go back in more details on some of the developed functionalities.

4.4.1 PTZ controller: controller.py

A proportional controller has been integrated. The manufacturer’s HTTP API allows to send a
single start or stop command in one direction (left, right, up, down) with a speed ranging from
1 to 8. The same applies for the zoom. The API also provides the possibility of getting the
current PTZ configuration.
However, even when sending a start then stop request with a minimum speed, the camera taking
a while to process the HTTP requests - the minimum step is about 0.3◦for the pan or the tilt.
In addition you should know that the camera has a ”no-go” area at the Pan angle between
180◦ and 185◦. Regarding the zoom, there are 5 levels of current state but the level between
two levels is very wide so that for the same zoom value the actual magnification can be different.
Thanks to these various elements I was able to create a regulator allowing to position the
camera in a desired PTZ configuration. In reality, there are three separated regulators because
the camera can only handle one type of movement at a time.
Here is the simplified algorithm implemented for the Pan angle controller:

Section 4 IP Camera 19

Algorithm 1 Simplified Pan angle controller

1: function Sawtooth(α) . Implementation in degrees
2: β ← (α+ 180) mod (360)− 180
3: return β

4:

5: function Pan error(θ, θ̄)
6: ε← Sawtooth(θ − θ̄)
7: if ε < 0 and no-go zone is between θ and θ̄ then
8: ε← ε+ 360
9: else if ε > 0 and no-go zone is between θ̄ and θ then

10: ε← ε− 360

11: return ε
12:

13: function Pan controller(θ̄,∆θ,∆t,K)
14: if θ̄ is in the no-go zone then . θ̄: Goal Pan angle
15: θ̄ ← 180◦or 185◦according to the nearest angle

16: θ ← Reading the current Pan angle
17: ε← Sawtooth(θ − θ̄)
18: while |ε| > ∆θ do . ∆θ: maximum error
19: u← bmin(8,K.|ε|)c . K: proportionality coefficient
20: if ε < 0 then
21: Move the camera to the right at speed set to u
22: else
23: Move the camera to the left at speed set to u

24: Wait for ∆t seconds . ∆t: time interval
25: if |ε| < 7 then
26: Stop the camera . Step by step when the error is low

27: θ ← Reading the current Pan angle
28: ε← Sawtooth(θ − θ̄)

20 IRI Technical Report

Here is schematically the utility of the Pan error function:

Figure 7: Illustration of the Pan error function

4.4.2 Place saving

Now able to position the camera in a desired configuration thanks to the controller, I set up an
association between a particular position and a place. Thus after configuration, using the Order

topic with Goto as key, you can point the camera on the Kitchen, Living room, Bedroom, TV,
etc., of the apartment. And save it using the Order topic with SaveAs as key. The dictionaries
thus created are saved in local .yaml files to keep in memory these associations.

1 conf/preset_coords.yaml #Preset point association - Place :

preset_point_number

2 conf/preset_position.yaml #PTZ configuration association - Place : (Pan ,Tilt

,Zoom)

4.4.3 Calibration

The camera has been calibrated using the MonocularCalibration tutorial from the officale ROS
wiki (http://wiki.ros.org/camera calibration/Tutorials/MonocularCalibration). The result is
saved in the file:

1 conf/ost.yaml

4.4.4 Aruco detection

Now that the IP camera is calibrated, it can be used to detect Aruco. Two possibilities could
be exploited:

• Use OpenCV which has an ArUco library, do the processing via this library directly in the
package and publish the result

• Use the ROS package aruco detect which must first have an already corrected image

Schematically here are the two solutions:

http://wiki.ros.org/aruco_detect

Section 4 IP Camera 21

Figure 8: Aruco detection directly using OpenCV library

Figure 9: Aruco detection using aruco detect ROS package

ROS consuming many resources, I chose to do the treatment internally in the package and not
to use the existing package. The OpenCV function gives the translation and the rotation vector
of the Aruco in the camera’s reference frame. With a change of base and using the Rodrigues’
formula [2], it is possible to locate the Aruco in the apartment’s reference frame.

4.4.5 Scan algorithm: scan.py

The camera is now able to:

• Point in a desired direction

• Detect an Aruco and locate it in the camera reference frame

We can now consider an algorithm allowing the camera to scan the apartment in search of an
Aruco and providing its location in the reference frame of the apartment.
Here is the simplified algorithm implemented in the form of a flowchart:

22 IRI Technical Report

Figure 10: Flowchart of the simplified scan algorithm

It is therefore divided into two main threads:

• The first is to make two turns of the different places defined in arguments. For each
place we capture K (integer in argument) photos (from the stream RTSP) to have slightly
different images for the same place. These captures are stored in an image queue to be
analyzed. During the first turn, the camera configuration is in a first mode in Black and
White with a high contrast, which allows to see better the Aruco. During the second turn,
the camera is in a color mode. Thus we finally capture 2 * K images including K of each
mode.

• The second is to scroll through the queue of images to be analyzed from the first thread.
As soon as a new image appears, it is analyzed to detect an Aruco. If this is the case, then
one calculates its position in the reference frame of the apartment having the configuration
in Pan and Tilt of the camera, knowing its initial position and obtaining the position of
the Aruco in the reference frame of the camera. We can then make a change of reference
and publish the position of the calculated Aruco and the place in which it was detected.

The use of threads allows you to go faster by doing parallel operations. Thus the analysis of the

Section 4 IP Camera 23

images can be done while the scan routine continues. For instance, the scan of the apartment
in 9 places with K = 8, so 144 images, is in about 2 minutes.

4.5 Package use - [TUTORIAL]

4.5.1 Requirement

• amcrest ip camera package installed

• python-amcrest upgraded package installed

• OpenCV version > 3.2: The scan algorithm use it to detect the Aruco.

4.5.2 Configurations

In the conf/ repository you can find the several files of configuration:

• Diagnostics Publisher: conf/amcrest analyzers.yaml

• ROS and Camera configuration: conf/parameters.yaml

• Preset saved: conf/preset coords.yaml and conf/preset position.yaml

• Camera rectification: conf/ost.yaml

• RViz configuration: conf/ip camera.rviz

• Lab’s map configuration: conf/pm lab/*

To change the number of analyzed images for each place and to change the time between the
move and the snapshot taking, the variables are in src/scan.py:

1 class Scan(object):

2 def __init__(self):

3 [...]

4 self._routine_delay =4#Delay between a motion and a snapshot capture

5 self._rtsp_snap_number =3#Number of taken snapshot

6 [...]

4.5.3 Run the package

To run the amcrest ip camera you just have to launch it:

1 roslaunch amcrest_ip_camera amcrest_ip_camera.launch

It will launch:

• amcrest ip camera: the main node

• map server : publication of the lab’s map avalaible in the /conf/pm lab/ folder

• RViz : display the lab’s map loaded and the three TF (center,Camera and Aruco) when
an Aruco is detected

• Image viewer : display the RTSP and the analyzed images during the scan routine if
enabled

• Robot Monitor: display the diagnostics messages from the package

24 IRI Technical Report

On the Raspberry Pi you have to save resources to use effectively the package:
First disable the diagnostic and alarm topics. In the conf/parameters.yaml file:

1 DIAG_RUNNING : False

2 ALARM_RUNNING : False

Then you can take only one snapshot from each place and set the delay between the motion and
the taking to 5 seconds. In the in src/scan.py file:

1 class Scan(object):

2 def __init__(self):

3 [...]

4 self._routine_delay =5

5 self._rtsp_snap_number =1

6 [...]

You can export the ROS master to have access to the topics on another computer:

1 $ export ROS_MASTER_URI=http :// COMPUTER_IP_ADDRESS :11311

To finish, you can directly run it using rosrun:

1 $ rosrun amcrest_ip_camera amcrest_ip_camera.py

4.5.4 Known issues

Some trouble might occur using the package.

• Network bandwidth trouble: when there are too much devices connected to the local
network, the HTTP request used by the package to communicate by the Camera are long
to treat. The request queue increases faster than it decreases. In rqt robot monitor appears
trouble with IDLE state and the RTSP stream freezes. It occurs when the RTSP stream
is running. First you can disable it using the implemented Order. Furthermore, it is
possible to decrease the bit rate of the stream (the better is to set it below 2048 kb/s)
using the camera server software IP CAMERA ADDRESS:80. If you are using the package
on the Raspberry and the scan routine, make sure that you have set the parameters as
described above and increasing the delay can probably help.

• Aruco location: when the Place is defined by a PTZ configuration in which the Zoom
is more than 1, the Aruco location cannot be provided. Only the place is available in
the ip camera scan/result/place topic. This is because the real Zoom, for a particular
measured level, can be any one between two consecutive levels. A second trouble can
occurs with the Aruco location. Sometimes the rotation matrix of the founded Aruco
appears as wrong. In reality it is a singularity problem with the OpenCV function. You
can have more information about it online.

4.6 OpenHAB integration

The camera can be managed from the online HMI provided by the manufacturer and now from
ROS. It seemed interesting to me to control it from OpenHAB2, the initial idea. So I created a
new Gitlab project: ip camera openhab.
This project consists in generating the necessary scripts to integrate the camera, used by Open-
HAB2 from two configuration files:

• The first being the necessary information for its use ie: IP address, user, password, port.

• The second is the dictionary of Places and preset points that can be generated and modified
via ROS (see above)

https://github.com/opencv/opencv/issues/8813

Section 4 IP Camera 25

The principle is then to generate switches for each recorded place making it possible to point
the camera according to the corresponding place. But also to have a visual via MJPG stream
that can be enabled or disabled (to save the bandwidth of the network). It is by directly
using the HTTP GET requests of the manufacturer’s API that it is possible to integrate these
elements to OH2.

Thus the generator program resulting from this project is based on Parser techniques in
order to generate codes. I used Python3.6 and the Jinja2 module for their ease of use to
generate scripts based on templates. In addition, this program allows you to add several
different cameras using different configuration files, that can be useful if the laboratory decides
to buy new IP cameras.

The generated scripts are:

• The interrupter - .items - associated with the camera: Multi-choice switch for the places
and the switch for activating or deactivating the MJPG stream.

• An entity - .sitemaps regrouping these switches, as well as the video stream.

(a) (b)

Figure 11: The script generator process (a) and its result in HABPanel (b)

After comparison, this method allows a much faster camera management via OpenHAB2 than
when using the developing binding initially considered.

To use it you have to run:

1 python3 generator

The configuration files are in the conf/ repository and the result files in the results/ repository.
You have to copy/paste the scripts in the corresponding repository in the Raspberry : /etc/open
hab2/.

26 IRI Technical Report

5 Implementation of a mission

After having implemented the scan algorithm in the ROS package, we are now able to use it
with TIAGo in a mission of Aruco detection. Here is, under a flowchart form, an algorithm
tested to success this kind of mission.

Figure 12: Flowchart of the algorithm used in the mission of Aruco detection

To make it possible I used the Lab’s API on a computer making the bridge be-
tween the Raspberry Pi and TIAGo and providing a way to monitor the mission.

Section 5 Implementation of a mission 27

Figure 13: Architecture used in the mission of Aruco detection
Here is the process used in the performed test:

• An Aruco number 582 is placed on the table in the living room near to the sofa. The
TIAGo is the bedroom.

Figure 14: Initial position of TIAGo

• A kitchen point and a living room point are saved in the TIAGo’s map.

28 IRI Technical Report

Figure 15: TIAGo’s map

• TIAGo does not find the Aruco using its own camera and the ROS package aruco detect.
The scan routine from the amcrest ip camera package on the Raspberry Pi is started
with a ROS export on the monitoring computer. When the scan routine finds an Aruco,
it publishes its location on the ip camera scan/result/place topic.

Figure 16: Result of the scan routine algorithm

• Through the Lab’s API, TIAGo is ordered to go to the corresponding place.

http://wiki.ros.org/aruco_detect

Section 5 Implementation of a mission 29

Figure 17: TIAGo’s positioning according to the scan routine algorithm

• TIAGo finds the Aruco by itself using aruco detect package.

http://wiki.ros.org/aruco_detect

30 IRI Technical Report

Figure 18: Aruco detection from TIAGo

This example of implementation shows that it is useful to use IoT devices in a mission for
assistive automation. We can now imagine more complex algorithms and missions where IoT
devices are part of the robot’s environment.

Section 6 Conclusions 31

6 Conclusions

This project has shown that it was currently possible to integrate the many devices of the world
of IoT within a service robot using the ROS middleware. Such an implementation not only
enriches the robot’s sensors but also increases its range of actions. The use of IoT in robotics
thus makes it possible to increase the speed with which a robot can take information by providing
it with new tools. As we do it, the robot can - according to the mission which has been given to
him - use or not this information. I was able to highlight this phenomenon through the mission
of detection and location of an Aruco in the apartment. However, using several IoT devices such
IP cameras can consume more resources than a Raspberry Pi 3B+ is able to provide. It would
be interesting to study other hardware solutions and compare it.

32 IRI Technical Report

A Amcrest IP3M-941W IP camera features

Section A Amcrest IP3M-941W IP camera features 33

34 IRI Technical Report

B Accounts and configurations

• Raspberry access:

– IP address: 172.16.0.3

– User: ubuntu

– Password: ubuntu

• Raspberry Wifi hotspot:

– SSID: ubiquityrobotXXXX where XXXX is part of the MAC address

– Password: robotseverywhere

• OpenHAB access:

– Local access: 172.16.0.3:8080

• myopenhab.org account:

– User: perceptionmanipulationlab@gmail.com

– Password: 5uX7QNw9Go9u

• Amazon Alexa account:

– User: perceptionmanipulationlab@gmail.com

– Password: pmlab1234

• OpenHAB MySQL database:

– Database name: OpenHAB

– Root access: User: root - Password: OpenHAB2MySQL

– Other access: User: openhab - Password: MySQLOH2

• IP Camera:

– IP address: 172.16.0.9

– Admin access: User: admin - Password: 5uX7QNw9Go9u+

– OpenHAB access: User: openhab - Password: IpCameraOH2

– ROS access: User: ros - Password: IpCameraROS8+

REFERENCES 35

References

[1] “IRI - Robots and IoT devices for assistive automation.” [Online]. Available:
https://www.iri.upc.edu/pfc/show/179

[2] J. S. Dai, “Euler–rodrigues formula variations, quaternion conjugation and intrinsic connec-
tions,” Mechanism and Machine Theory, vol. 92, pp. 144–152, 2015.

https://www.iri.upc.edu/pfc/show/179

36 REFERENCES

Acknowledgements

Thanks to Guillem Alenyà Ribas and Sergi Foix Salmerón for their welcome, support and trust
throughout this project.
The research leading to these results has received funding from the BIoTRoS project (CSIC-
201850I098).

IRI reports

This report is in the series of IRI technical reports.
All IRI technical reports are available for download at the IRI website
http://www.iri.upc.edu.

http://www.iri.upc.edu

	Introduction
	Architecture overview
	Rapsberry PI configurations
	Hardware
	Add the devices to OpenHAB - [TUTORIAL]
	Link OpenHAB device to Alexa - [TUTORIAL]
	iot_bridge : link the devices to ROS
	Package architecture
	Use the package

	Data saving

	IP Camera
	Choosen IP Camera
	IP Camera strategy redefinition
	amcrest_ip_camera ROS package architecture
	Meet the missions
	PTZ controller: controller.py
	Place saving
	Calibration
	Aruco detection
	Scan algorithm: scan.py

	Package use - [TUTORIAL]
	Requirement
	Configurations
	Run the package
	Known issues

	OpenHAB integration

	Implementation of a mission
	Conclusions
	Amcrest IP3M-941W IP camera features
	Accounts and configurations

