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ABSTRACT Adapting to recent trends in mobile communications towards 5G, infrastructure owners
are gradually modifying their systems for supporting the network programmability paradigm and for
participating in the slice market (i.e., dynamic leasing of virtual network slices to service providers).
Two-fold are the advantages offered by this upgrade: i) enabling next generation services, and ii) allowing
new profit opportunities. Many efforts exist already in the field of admission control, resource allocation and
pricing for virtualized networks.Most of the 5G-related research efforts focus in technological enhancements
for making existing solutions compliant to the strict requirements of next generation networks. On the
other hand, the profit opportunities associated to the slice market also need to be reconsidered in order
to assess the feasibility of this new business model. Nonetheless, when economic aspects are studied in the
literature, technical constraints are generally oversimplified. For this reason, in this work, we propose an
admission control mechanism for network slicing that respects 5G timeliness while maximizing network
infrastructure providers’ revenue, reducing expenditures and providing a fair slice provision to competing
service providers. To this aim, we design an admission policy of reduced complexity based on bid selection,
we study the optimal strategy in different circumstances (i.e., pool size of available resources, service
providers’ strategy and traffic load), analyze the performance metrics and compare the proposal against
reference approaches. Finally, we explore the case where infrastructure providers lease network slices either
on-demand or on a periodic time basis and provide a performance comparison between the two approaches.
Our analysis shows that the proposed approach outperforms existing solutions, especially in the case of
infrastructures with large pool of resources and under intense traffic conditions.

INDEX TERMS Communication networks, 5G mobile communication, network slicing, infrastructure as a
service, traffic control, admission control, queuing analysis, Markov processes, pricing, profitability.

I. INTRODUCTION
In the last decades we have assisted to the frequent emergence
of new use cases for wireless networks proposed by indus-
trial actors and governmental bodies. Consequently, network
infrastructure owners have been motivated to explore new
architectures and technologies for upgrading their networks
and support new services, while seeking economic incentives
for amortizing the associated costs. 5G, the next generation
of mobile networks, is still far from its maturity in terms
of deployment, however, requirements have been proposed
by standardization bodies [1]–[3], and new technologies
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are being fine-tuned by the research community, while the
resulting architectures and mechanisms are being integrated
in 3rd Generation Partnership Project (3GPP) specifications
[4]–[7]. In particular, network function virtualization (NFV)
and software defined networking (SDN) have been pro-
posed as the keystones for scalable and programmable
networks with Quality of Service (QoS) support [6]–[8].
Besides, they are considered as the enablers of the net-
work slicing paradigm, according to which, QoS-tailored
portions of the network resources are dynamically isolated
into customized virtual networks, namely network slices, that
coexist within the same infrastructure. Therefore, an alter-
native business model has been introduced [3], [4], [9],
named slice market, between infrastructure providers (InPs),
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that is, access, transport and cloud infrastructure own-
ers, and service providers (SPs), which include mobile
virtual network operators (MVNOs), over-the-top (OTT)
players (e.g., streaming providers), and vertical indus-
tries (e.g., e-health, surveillance, automotive). More pre-
cisely, slices can be leased by InPs to SPs (also known
as slice tenants) through fine-scale service level agree-
ments (SLAs) that substitute current long-term sharing
agreements.

The concept of slice market is expected to introduce a
strong competition between different InPs and SPs, thus
oxygenating the typically closed and monolithic ecosystem
of telecommunication services and introducing the precon-
ditions for fast innovation. Indeed, independently from the
ownership of network resources, any SP could possibly enter
the market of wireless services, while InPs could better man-
age and monetize the utilization of their resources. Therefore,
from an economic point of view, the enablers of a healthy
slice market for 5G are: i) the monetary incentives to InPs
for building the next generation network, and ii) the fairness
in the service of competing SPs. On the other hand, from
a purely technical point of view, the requirements for 5G
are: i) the slice isolation [8], ii) heterogeneous End-to-End
(E2E) QoS guarantees for 5G use cases [1]–[6], and, iii) a
prompt slice provision, suitable for short-lived services such
as emergency services or surveillance [1], [2].

Excluding architectural and technological aspects that have
been extensively studied in the literature, the promptness in
the slice provision is mainly regulated by two factors, that is,
the communication protocol adopted between SPs and InPs,
and the mechanisms used at the InPs’ side for admission
control, resource allocation and pricing. In this context, two
macro categories of slice provision approaches exist in the
literature, the on-demand and periodic slicing where, respec-
tively, slice allocation is enforced upon each slice request
arrival (e.g., policy-based approaches) or periodically (e.g.,
auction-based approaches). In on-demand slicing, the typical
communication flow for the slice provision process consists
in the uncoordinated slice request submission by SPs, fol-
lowed by the broadcasting of the admitted tenants by InPs.
On the other hand, in periodic slicing, an intrinsic latency is
systematically added by the time window used for collecting
slice requests.

Within this categorization, two strategies are mainly used
in the literature for resource pricing. In on-demand slicing,
prices are typically set by InPs for a given bundle of resources.
On the other hand, in periodic slicing, prices are determined
in relation to the resource availability as well as InPs’ and
SPs’ strategies. Besides, a biddingmodel is generally adopted
where the minimum and maximum bid represent, respec-
tively, the reserve price (i.e., the minimum price accepted by
the InPs), and the SPs’ budget (i.e., the maximum affordable
price).Many contributions exist in the literature for admission
control, resource allocation and billing mechanisms in virtu-
alized wireless networks [10], however, as detailed in the next
section, most of the existing approaches do not meet neither

the economic conditions for a healthy slice market, nor the
5G requirements.

In this work, we propose a timely admission control mech-
anism for network slicing that maximizes InPs’ revenues,
reduces operational expenditures and guarantees slice iso-
lation, QoS and fairness towards SPs. In this context, InPs
have the joint objective of maximizing the tenants’ admis-
sion rate while prioritizing the most rewarding slice requests.
Therefore, from a technological point of view, InPs have the
incentive to perform the slice allocation process as fast as
possible once triggered by the arrival of a slice request, since
every request represents a potential source of revenue. On the
other hand, from a strategical point of view, the InPs have the
incentive to prioritize those slice requests with higher bids
and characterized by a high ratio among arrival and service
rates.

In order to maximize the slice provision promptness and
reduce the computational cost of the allocation process,
we propose a policy-based approach, named Above Thresh-
old (AT) policy, that maximizes InPs’ revenues by admitting
slice requests with associated bids greater or equal than a
given threshold tariff. In this regard, we consider two kinds
of policies differing in the admission strategy with respect
to the resource utilization, named State Dependent (SD) and
State Independent (SI) policies, respectively. In particular,
the former guarantees a maximum revenue for every number
of instantiated slices, that is, it depends on the available
resources, while the second maximizes revenues only in
the long term and, therefore, requires lower computational
expenses.

In conclusion, the main contributions of this work are the
proposal of an AT admission control mechanism (both SD
and SI) for network slicing in 5G together with its benchmark-
ing with reference strategies when different resource pool
sizes, traffic loads, and slicing frequencies are considered.
Besides, to the best of our knowledge, this is the first effort
in comparing on-demand and periodic slicing with respect to
fairness towards SPs, resource utilization, InP’s profit, and
timeliness. In particular, we compare AT policies with the
Always Admit (AA) policy in the on-demand case, and with
the First-Come-First-Served (FCFS) and Best Bid (BB) poli-
cies in the periodic case. Results illustrate that the proposed SI
solution is capable of outperforming the evaluated reference
mechanisms in terms of revenue rates to the InPs, mostly in
case of intense traffic conditions, while reducing the resource
utilization in exchange for a negligible loss in terms of
admission rate. Besides, it requires the lowest computational
expenses and guarantees the promptest admission control,
especially when complex infrastructures are examined.

In the remaining of the paper, we first present the related
works (Section II) and system model (Section III). Then we
introduce the mathematical framework for studying the per-
formance of on-demand slicing when both SD and SI policies
are employed (Section IV). The system analysis concludes
with considerations on the optimal policies and on the com-
plexity of the evaluated solutions. Afterwards, we introduce
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the system setup and the results of the performance compari-
son between on-demand and periodic slicing, when different
policies are employed (Section V). Finally, we present the
conclusions of this work (Section VI).

II. RELATED WORK
Many contributions exist in the literature for admission con-
trol, resource allocation and billingmechanisms in virtualized
wireless networks [10], however, rarely both the economic
conditions for a healthy slice market and 5G requirements are
met. Consequently, the discussion remains open in the scien-
tific community with respect to automated mechanisms for
slice provision and pricing in 5G. In particular, [9] and [11]
propose on-demand solutions to the admission control prob-
lem that maximize the InPs’ profit by means of Semi-Markov
Decision Processes and optimization theory, respectively.
Moreover, [9] introduces the concepts of inelastic and elastic
services, that will be used in the following, and which are
associated to SLAs characterized by constant or average QoS
requirements, respectively. However, both contributions lack
in the review of other performance metrics relevant for 5G,
for instance, fairness towards competing SPs.

On the other hand, among the proposed periodic
approaches, [12], [13] employ auction theory for the study
of the single/heterogeneous resource allocation problem,
respectively, nevertheless, neither of the works puts a focus
on network isolation, QoS support or fairness. Besides,
although InPs are the entities entitled to build next generation
networks, many contributions only take into account the
economic return for SPs. For instance, this is the case of the
spectrum leasing optimization framework presented in [14],
the Fisher market slice allocation approach with strategic
tenants in [15], the auction-based approach in [13] and,
in general, the VCG-based auctions [16]. Finally, only limited
efforts have been produced in the study of pricing schemes
suitable for 5G, for instance, [17], [18] propose auction-based
solutions for heterogeneous resource slicing with a per-access
pricing scheme. However, in [17] the authors highlight the
need for a pricing scheme based on slices’ lifetime in order
to account for the real resource occupation, and to reduce the
risk of exaggerated slice requests and unused resources.

In conclusion, research efforts focusing in on-demand and
periodic slicing tend to study complementary aspects related
to the 5G slice market, therefore, we consider interesting
a direct comparison between the two strategies through the
same analytical framework. In this context, [19] extends
the on-demand approach in [9] for the study of InPs’ profits
to the periodic case with heterogeneous resources. However,
static InP strategies are adopted with no hint on the optimal
admission strategy, nor on the fairness towards competing
SPs. Reference [11] partly completes the contribution in [19]
by proposing a genetic-based algorithm for online computa-
tion of the admission policy that maximizes InP’s profit.

In this work, we propose a timely admission control mech-
anism for network slicing that takes into account the eco-
nomic conditions for a healthy slice market and addresses

the requirements of next-generation networks by maximiz-
ing InPs’ revenues, reducing operational expenditures, and
guaranteeing fairness towards SPs, slice isolation and QoS.
In particular, we adopt the promptness offered by on-demand
approaches for the admission of new slices, combined with
pricing features typical of periodic slicing, where tariffs are
set depending on the resource availability, the InPs’ strategy
and SPs’ behavior. Indeed, we assume that SPs may have
a different perception of the market and, therefore, make
different bids for the same kind of slice. However, as SPs’
strategies have been abundantly studied in the literature and
our focus remains on InPs’ perspective, we assume that SPs
are irrational entities that follow a random bidding model.
Moreover, we assume that tenants pay for the slices they use
only if the associated SLA is met during their permanence
in the network, therefore, InPs can reallocate resources only
after voluntary tenants’ departures.

In order to maximize the slice provision promptness and
the InPs’ revenue while reducing the computational cost
associated to the admission decision, we propose the AT
policy-based approach that admits slice requests with associ-
ated tariff-bids greater or equal than a given threshold. Such
an approach is capable of maximizing tenants’ admission rate
while prioritizing themost rewarding slice requests and, at the
same time, it minimizes the admission delay as policies can
be enforced instantaneously upon each slice request arrival.
In this regard, we compare the performance of both SD and
SI admission strategies, which use admission thresholds that
can adapt to the current resource utilization, or remain static,
respectively. In this study, we model only SLAs associated to
inelastic services as they are the strictest class of SLAs. Either
way, an extension of this study to include elastic services
can be achieved by following the modeling approach in [9].
Finally, we provide a benchmark of the proposed admission
control mechanism for network slicing in 5G by comparing
on-demand and periodic slicing performance (i.e., fairness
towards SPs, resource utilization, InP’s profit, and timeliness)
with that of reference strategies (i.e., AA in the on-demand
case, and FCFS and BB in the periodic case) when different
resource pool sizes, traffic loads, and slicing frequencies are
considered.

III. SYSTEM MODEL
In this section, we introduce the systemmodel adopted for the
analysis and, to this aim, we refer to Fig. 1. In the considered
scenario, multiple user equipments (UEs) coexist within the
coverage area of a given base station (BS), which belongs
to a given InP. The BS represents the access point towards
other network resources, such as backhaul, IP networks and
cloud infrastructures. UEs can access multiple services at a
time, each provided by a different SP, for instance, a given UE
can surf the Internet while streaming a song in background.
In Fig. 1, the different colors identify different SPs, as well as
the portion of InP’s resources accessed and the UEs served by
different slice tenants. Within this context, different service
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FIGURE 1. System model for slice provision when one InP leases resources to multiple SPs competing for
providing service to their UEs. Colors identify the portion of resources used (e.g., channel capacity C) and
the UEs served by different slice tenants. Rejected slice requests are marked with a red cross.

instances of the same UE are represented as different logi-
cal UEs.

Resources are sliced independently at different BS loca-
tions and SPs are allowed to actively request network slices
on a continuous time scale, while InPs monitor the resource
availability and decide whether to admit them, either in
real-time (i.e., on-demand slicing) or on a discrete time-scale
(i.e., periodic slicing). Whenever InPs welcome a new SP,
named slice tenant, a SLA is stipulated defining the terms for
the customization and pricing of the requested slice. In other
words, each SLA defines both the QoS to be guaranteed and
the tariff βs in monetary units per second (e.g., [euros/s]) to
be paid by tenant SPs during its permanence in the system.
Finally, no distinction is provided in the system model for
the labeling of different UEs or SPs, therefore, in Fig. 1,
a specific tenant can be licensee of multiple network slices
simultaneously, especially when SPs opt for serving different
UEs by means of separate slices.

In order to specify a clear model for the SLAs, we first
introduce the concept of service (or slice) class that we define
as c = {rc, λc, µc}. In this context, rc = (r0, · · · , rρ−1)
represents the requirements vector, that is, the set of require-
ments ri on the ρ resources accessible from the considered
service area, while λc and µc are the average arrival and
service rates of slice requests for the specific service class c,
respectively. In particular, Tc = 1/µc is the average holding
(or service) time for a specific class c, that is, the average time
interval during which resources are retained by SPs providing
such service. In other words, it holds Tc = E[Tc|s], where
Tc|s is the holding time of a specific tenant SPs. Besides,
we assume that InPs support a finite number ν of service
classes describing the services in the slice market. Finally,
if nc is the number of slices instantiated for class c at a given
time instant t , then n represents the total number of network
slices instantiated in the network, that is, n =

∑ν
c=1 nc. Fixed

a specific service class c, the SLA for a given tenant SPs is
defined as the tuple {c, βs}, where βsTc|s is the price paid to
the InPs if the resource requirements are guaranteed during
the whole holding time. As introduced in Section I, we exam-
ine only the strictest kind of SLAs, that is, those associated to

inelastic services [9], characterized by constant requirements
during the whole holding time. Besides, we assume that the
tariff-bid βs of a generic SPs can vary within the interval
[βcm, β

c
M ], that changes for different slice classes c as they are

characterized by different associated resources and perceived
value. In particular, the extremes of the bid interval represent,
respectively, the minimum tariff accepted by the InP (i.e.,
the reserve tariff βcm) and the maximum tariff that SPs can
afford to pay for the considered slice class (i.e., the tariff
budget βcM ). In this context, we model one resource type,
that is, the channel capacity C of the access link to the
BS, measured in [bit/s], and we leave for future studies the
extension to the case of multiple InPs with heterogeneous
resources and service classes.

Hence, the definition of service class can be projected
into a single resource dimension, by substituting the require-
ments vector with the scalar rc, that represents the aggregate
nominal rate asked by tenants for the service of UEs in the
considered coverage area. Finally, in the rest of the paper,
we admit only one service class, that is, all SPs ask the
InPs for the same requirement on the aggregate nominal rate,
thus, the notation can be simplified by removing subscript
c, while SLAs of different tenants are fully described by the
corresponding bids βs.
In this case, the maximum number of slices that can be

allocated simultaneously is N = bC/rc, and it holds 0 ≤ n ≤
N . In the following, we assume that the slice request arrivals
can be modeled as a Poisson stochastic process with average
rate λ, and the tenants’ departure as a general stochastic
process with average rate µ. With regards to the pricing
model, we describe different SPs’ behaviors by adopting a
bidding model where βs is a random variable following a
general distribution fβ over the sample space [βm, βM ].

The proposed system model is valid for both on-demand
and periodic slicing, that is, when n is updated at each
new admission and departure, or regularly every Tslicing sec-
onds. Thus, in Fig. 2, we depict an instance of the slice
request, tenants’ departure and bidding processes for both
approaches. Besides, we highlight the possibility for the InP
to reject slice requests depending on the resource availability,
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FIGURE 2. Instance of the slice request, tenants’ departure and bidding processes in: a) on-demand and b) periodic slicing, when only one service
class is supported and N = 2. Different colors identify requests and departures of different SPs, moreover, rejected requests are marked by a red
cross.

FIGURE 3. Markov chain for on-demand slicing systems, where a different number of instantiated slices n and policy Pn is associated to each state, while
transitions are jointly represented by a transition rate qnn+ and a reward rnn+ .

the received bids, and the adopted admission policy. More-
over, in the periodic case, slice requests received during a
given slicing interval can be admitted at the beginning of
the next interval only, when SLAs are enforced. In particu-
lar, tenants pay for slices only when they utilize resources,
therefore, InPs get no revenue in the time interval between
tenants’ departure and following slicing interval. We remind
that, as we model the problem in function of the aggregate
resource demand from the InP perspective only, multiple slice
instances can correspond to the same tenant, as represented
in Fig. 2.

IV. SYSTEM ANALYSIS FOR ON-DEMAND SLICING
In this section, we present the mathematical analysis for
on-demand slice provision mechanisms when different poli-
cies are adopted. Regardless of the policy, the infrastructure
can be represented as a cloud server farm with capacity to
instantiate N equal virtual servers (i.e., the network slices)
that share a common pool of jobs to be executed (i.e., the ser-
vice requests of a given class). New jobs are characterized by
an average arrival and service rate equal to λ and µ, respec-
tively, and the number n of jobs executed is updated upon
every new job’s arrival and completion. Besides, we assume
that each virtual server can handle one job at a time, in order to
model the slice isolation requirement and the QoS guarantee.
Therefore, thanks to the memoryless assumption on arrivals
and departures, we can model the system as a M/G/k/k

queue.1 Even in cases where these assumptions do not apply
(e.g., non-Markovian behavior of SPs), discrete-timeMarkov
chains could be applied. However, the needed transforma-
tions lie outside the scope of this work.

The mathematical framework offered by continuous-time
Markov chain (CTMC) can be used for the mathematical
analysis of the considered problem. In particular, we can
refer to Fig. 3, where each state corresponds to a differ-
ent tuple (n,Pn), whose elements describe the number of
instantiated slices and the admission policy adopted at that
state, respectively. Besides, the generic transition from state
n to n+ coincides either with the admission or departure of
a slice tenant, and is associated with the tuple (qnn+ , rnn+ )
representing the transition rate conditioned to the initial state
and the associated reward, respectively.

The state policy Pn represents any possible bid-based cri-
terion for admitting or rejecting incoming slice requests at
state n:

Pn =
{
Admit, if β ∈ Dn ⊂ [βm, βM ]
Reject, otherwise

(1)

whereDn is the admitted bid interval at state n. Consequently,
the probability for a new slice request to be admitted at state n

1It shall be noticed that, in the case of periodic slicing, the system can
be modeled as a MX /G/k/k queue, since we could consider that the slice
requests received within a given slicing interval arrive in batches at the
beginning of the next interval.

VOLUME 7, 2019 128287



M. Vincenzi et al.: Maximizing Infrastructure Providers’ Revenue Through Network Slicing in 5G

can be defined as pn(fβ ,Pn) = p{β∈Dn} =
∫
Dn

fβ (β) dβ.
State policies Pn can be arbitrarily chosen by the InP when
resources are available in the system, that is, for states 0 ≤
n ≤ N − 1. On the other hand, when the system faces
resource shortage (i.e., n = N ), the only applicable policy
is the rejection of any slice request, that is, DN = ∅ and,
thus, pN = 0. Finally, the tuple (qnn+ , rnn+ ) associated to
a transition at state n can be written as (λpn, β) in case of
admission, and as (nµ, 0) in case of departure. In conclusion,
for the generic transition nn+ it holds:

qnn+ =


λpn, if 0 ≤ n ≤ N − 1, n+ = n+ 1
nµ, if 1 ≤ n ≤ N , n+ = n− 1
0, otherwise

(2)

rnn+ =

{
β, if 0 ≤ n ≤ N − 1, n+ = n+ 1
0, otherwise

(3)

As introduced in Section I, we assume that the InP can
adopt either SD or SI policies, which differ in the capability
of adapting the admission strategy to the number of slices
isolated in the system. In particular, different or equal policies
Pn are enforced at different states n, respectively. Hence,
InP’s strategy is represented with the policy vector P =

(P0, · · · , PN−1) in the SD case, while it can be fully
described by the generic state policy P when SI approaches
are adopted (i.e., P = P).

A. STATE-DEPENDENT POLICIES
In CTMC, the stationary probability πn associated to the
generic state n of the system can be calculated through the
following balance equations, when SD policies are enforced:

• 0 : π0λp0 = π1µ
• 1 : π1(λp1 + µ) = π0λp0 + π22µ
• n : πn(λpn + nµ) = πn−1λpn−1 + πn+1(n+ 1)µ
• N :

∑N
n=0 πn = 1

leading to:

π0

( λ
µ
, fβ ,N ,P

)
=

1

1+
∑N

i=1(
λ
µ
)i/i!

∏i−1
l=0 pl

πn≥1

( λ
µ
, fβ ,N ,P

)
=

( λ
µ
)n/n!

∏n−1
j=0 pj

1+
∑N

i=1(
λ
µ
)i/i!

∏i−1
l=0 pl

(4)

Intuitively, in a low-load regime (i.e., when λ
µ
→ 0), the sys-

tem most likely operates in states corresponding to low val-
ues of n (i.e., π0 → 1), independently from the bidding
distribution fβ , the maximum number of slices N , and the
InP’s strategyP . The same result is obtained under high-load
regime (i.e., λ

µ
>> N ), and when a very conservative admis-

sion strategy is adopted by the InP (i.e., βm is increased so
that most of the bid distribution lies outside Dn). Conversely,
when a more permissive policy is used in high-load regime,
the system behavior can be reversed (i.e., πN ≈ 1).
Following, we obtain the analytical expression for the

performance metrics used to measure the efficiency of such

slice provision system. The admission probability can be
expressed as:

Padmit
( λ
µ
, fβ ,N ,P

)
=

N−1∑
n=0

πnpn (5)

and represents the probability for a new slice request to be
admitted independently from the number of slices already
instantiated in the system. According to (4) and (5), Padmit
totally depends on the admission probability at state n = 0
in low-load regime (i.e., Padmit → p0, when λ

µ
→ 0).

Therefore, according to (1) and to pn’s definition, the InP can
improve the system’s fairness (i.e., the general satisfaction
of competing SPs) by widening the admission interval D0.
In particular, the maximum admission probability in low-load
regime can be reached when the state policy P0 admits every
request (i.e., p0 = 1) or, in other words, when the admission
interval D0 includes the entire support of fβ .

The average resource utilizationU in the system is defined
as the ratio between the average and the maximum number of
slices instantiated in the system:

U
( λ
µ
, fβ ,N ,P

)
= E[n]/N =

( N∑
n=0

n · πn
)
/N (6)

Subsequently, we introduce the expected tariff E[β|β ∈
Dn] paid by those slice tenants that are admitted at state n
according to state policy Pn:

E[β|β ∈ Dn] =
∫
∞

−∞

β p{β|β∈Dn} dβ

=
1
pn

∫
Dn

β f (β) dβ (7)

where p{β|β∈Dn} = (fβ (β) · 1|β∈Dn )/pn.
The average revenue rate Rβ in [euros/s] for an InP

applying a specific policy vector P can be calculated by
averaging, over all the states, the admission rate λpn in
[admissions/s], times the expected price paid by admitted
tenants over the average holding time, that is,E[β|β ∈ Dn]/µ
in [euros/admission]:

Rβ
( λ
µ
, fβ ,N ,P

)
=
λ

µ

N−1∑
n=0

πnpnE[β|β ∈ Dn] (8)

B. STATE-INDEPENDENT POLICIES
The analytical expressions for stationary probabilities and
performance metrics of a SI system can be obtained as a
particular case of the SD case. In particular, by definition of
SI policy, it holds Pn = P , Dn = D and pn = p for every
state 0 ≤ n ≤ N −1. Therefore, we can rewrite the stationary
probabilities in (4) as:

πn

( λ
µ
, fβ ,N ,P

)
=

( λ
µ
p)n/n!∑N

i=0(
λ
µ
p)i/i!

, n ≥ 0 (9)
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Similarly, the system admission probability in (5) can be
rewritten as:

Padmit
( λ
µ
, fβ ,N ,P

)
= (1− πN )p (10)

Finally, the definitions of U and E[β|β ∈ D] remain
unchanged, while the expression for the average revenue rate
in (8) can be simplified as below and expressed as an explicit
function of Padmit :

Rβ
( λ
µ
, fβ ,N ,P

)
=
λ

µ
PadmitE[β|β ∈ D] (11)

A particular SI admission strategy is the AA policy intro-
duced in Section I that admits every slice request regardless
of the associated bid (i.e., D = [βm, βM ] and p = 1), such
that, according to (7), E[β|β ∈ D] = E[β].

C. OPTIMAL POLICY AND COMPLEXITY
In Section I, we motivated the maximization of the average
revenue rate as the main InP’s objective, therefore, we seek
the solution Popt of the following maximization problem:

Popt

( λ
µ
, fβ ,N

)
= argmax

P
Rβ
( λ
µ
, fβ ,N ,P

)
Pn : Dn ⊂ [βm, βM ], n ∈ N < N

(12)

The problem highlights the dependency of the optimal policy
on λ/µ, fβ and N , therefore, the InP has to compute Popt
offline for values of λ/µ and fβ that are representative of SPs’
behavior in its network in order to adopt convenient strategies
accordingly.2

In order to define the search space for the optimal policy,
we remind that, according to (1), the admission interval of a
generic state policy Pn can be any subset of the bid interval.
Hence, the admission interval can be generically represented
as the composition of multiple disjoint admission intervals.3

However, in order to reduce the complexity of the problem
described in (12), we propose the adoption of AT policies
where an admission threshold β̇n is set at state n, such that
Dn = [β̇n, βM ] and β̇n ≥ βm. Accordingly, the system
policy P can be fully described by the threshold vector
β̇ = (β̇0, · · · , β̇N−1) in the SD case and by the scalar
β̇ in the SI case, respectively. Thus, the search space for
the optimal policy is reduced, and the problem in (12) can
be transformed into an N-dimensional or mono-dimensional
continuous optimization problem for SD and SI policies,
respectively. On the other hand, a reduction in the achieved
revenue rate is expectedwhen compared to the optimal policy.
However, as we demonstrate in the next section, the rela-
tive loss remains constrained with respect to different load
regimes. Please refer to Appendix for the performance met-
rics’ expressions adapted for AT policies, and note that AA

2The InP can estimate the SPs’ traffic patterns using network tracing,
and employ traffic forecasting mechanisms [20]–[22] together with machine
learning tools for adapting the strategy on-the-fly.

3i.e., Dn =
⋃
iDi

n, with Di
n = [βim, β

i
M ] ⊂ [βm, βM ] and Di

n ∩ Dj
n =

∅, ∀i 6= j.

policies can be considered as a particular case of SI AT
policies with threshold β̇ = βm.
In order to further improve the tractability while con-

serving accuracy, we convert the problem into a combi-
natorial optimization problem by discretizing the sample
space [βm, βM ] into a finite number h of intervals. Hence,
the thresholds that can be used for the state policies’ defini-
tion are:

β̇n = βm + j
(βM − βm)

h
, j ∈ N < h (13)

and the choice of a suitable value of h guarantees results’
accuracy while keeping computational costs at acceptable
levels, as it is demonstrated in the following section. Please
find in Appendix the combinatorial version of the problem
presented in (12) adapted for AT policies, whose solution will
be referred to as optimal AT policy in the following.
We remind that, as introduced in Section I, the objective

of this work is to propose a prompt admission control mech-
anism for network slicing in 5G and to compare its perfor-
mance with that of baseline solutions. Because proposed AT
policies enable admission strategies at reduced complexity,
we adopt in this study an exhaustive search of the optimal pol-
icy for demonstration purposes only, leaving for future exten-
sions the search of a more computational efficient method.
Fixed the size of the pool of resources N , the complexity of
an exhaustive search for the optimal AT policy in SD and
SI systems is polynomial (i.e., O(hN )) or linear (i.e., O(h)),
respectively, with regards to the discretization levels h. Note
that, depending on the value of h, multiple solutions of the
problemmay exist, and, in those cases, we choose the solution
that maximizes Padmit ; that is, the solution that minimizes the
Euclidean norm of the threshold vector (i.e., ||β̇||2 or β̇ for
SD and SI systems, respectively).

V. SYSTEM SETUP AND RESULTS EVALUATION
In this section, we present and compare the performance of
different slice provision mechanisms for both on-demand and
periodic slicing when different policies are employed. For
the system setup, we examine different pool of resources
and the extreme case where SPs follow a per-UE slicing
strategy. In the case of small cells, according to [23] up to
5 simultaneously active UEs can be served, hence, we assume
a maximum number of slices N = 6. For the traffic model,
we consider low, medium and high arrival rates λ, ranging
from 0.5 to 100. On the other hand, we adopt only one
service class with exponentially distributed departures and
unitary average service rate µ. The bid interval varies within
the range [βm, βM ] = [0, 100] representing, respectively,
the minimum tariff accepted by the InP and the SPs’ budget.
Finally, we provide results for the case where SPs make uni-
form bids over the admitted interval (i.e., β ∼ U[βm, βM ]).
For the solution of the combinatorial problem for AT poli-

cies associated to the problem described in (12), we employ
a number h of discretization levels for the bidding region that
ranges from a minimum of 2 (i.e., low and high bid region)
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up to a maximum of h = 10, allowing a higher precision.
Besides, we develop a tool in Matlab for the performance
evaluation of the different considered mechanisms. In partic-
ular, for the case of on-demand slicing with uniformly dis-
tributed bids, AT and AA performance is evaluated according
to the expressions introduced in Appendix. On the other hand,
for periodic slicing, a simulator generates instances of the
request arrivals, tenants’ departure and bidding processes,
and enforces AT, FCFS and BB policies accordingly for
different slicing intervals. Finally, we remind that the optimal
AT policy is computed by means of exhaustive search, and,
in the periodic case, it is obtained separately for different
values of the slicing interval Tslicing.

In the remaining of this section, first we focus in
on-demand slicing, computing the optimal AT policy and
comparing SD and SI approaches, when AA policy is used
as a benchmark. Lastly, for the periodic case, we study the
optimal AT policy for different slicing intervals, and we
compare the performance with that of FCFS and BB policies.

A. ON-DEMAND SLICING EVALUATION
In Section IV-C, we anticipated that a reduced-complexity
solution to the problem introduced in (12) exists in the form of
AT policy with discretized thresholds, but this approach may
suffer some penalty on the revenue. Consequently, we now
study the limits of its performance by comparing the average
revenue rate of the optimal AT policy with that of an ideal tool
we named Oracle. In particular, in this context, we consider
the most flexible type of AT policy, that is, the SD approach
with maximum definition over the bid interval (i.e., h = 10).
Oracle, on the other hand, is capable of recognizing the most
rewarding bids. Oracle is applied a posteriori (i.e., once the
simulation is finished) and, therefore, it can apply admission
decisions based on its full knowledge of all the events in the
simulation (i.e., slice requests, tenants’ departures and bids).
Hence, Oracle is only used for benchmarking purposes as it
cannot be implemented in practice.

In Fig. 4, we present the average revenue rate for both
optimal AT policy and Oracle with respect to the load regime
(i.e., λ/µ) in logarithmic scale. To this aim, we study themost
resource-limited case (i.e., N = 1), which leaves AT policies
with the least flexibility in terms of resource availability,
for counterbalancing Oracle’s knowledge of future events.
We remind that InPs aim at the joint maximization of admis-
sion rate and prioritization of highest bids and that, according
to Section IV-A, resources are exhausted (i.e., πN ≈ 1)
in high-load regime (i.e., when λ

µ
>> N ). Consequently,

when a larger pool of slice requests is received by InPs,
the latter are motivated to adopt a more selective admission
criterion by raising the bid threshold, which leads to a revenue
enhancement at the expense of the admission probability (i.e.,
according to (5) it holds Padmit ≈ 0). It can be observed
from the figure that both Oracle and AT policies can achieve
a logarithmic increase with respect to λ

µ
. On the other hand,

a loss in revenues is expectedwith respect toOracle, as raising
the admission threshold translates in revenue maximization

FIGURE 4. Assessment of the revenue loss for AT policy with respect to
an ideal Oracle, when SD systems are considered, N = 1, and h = 10.

FIGURE 5. Average revenue rate for SD and SI AT policies with respect to
the discretization granularity h, for different values of N , and λ/µ.

in the long term, while Oracle is capable of selecting best
bids over each realization of the slice request process. The
graph shows that the loss in revenues remains bounded for any
load regimes, and, in particular, a 14.3% loss is experienced
when few revenue opportunities are available (i.e., λ

µ
→ 0),

it increases to 19.5%when arrivals areN times the departures
(i.e., λ

µ
≈ N ), while it reduces for high-load regimes (i.e.,

λ
µ
>> N ). For instance, AT policies undergo a loss in revenue

of 10% when λ
µ
= 100. Therefore, AT policies offer a

sub-optimal but viable solution to the generic optimization
problem represented in (12).

Before comparing the optimal strategies in SD and SI
systems, we study the influence of discretization over the
complexity of the optimization problem and the accuracy
of results. In particular, in order to study the feasibility of
adopting an exhaustive search for benchmarking analysis,
we provide the computation times associated to an exhaustive
search of the optimal AT policy in our system setup for an
infrastructure capable of hosting up to six slice tenants (i.e.,
N = 6). To this aim, we employ an Intel(R) Core(TM)
i9-7900X CPU @ 3.30GHz with 64GB of RAM, and results
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FIGURE 6. Optimal AT policy β̇opt in a) SD and b) SI systems with different N and λ/µ, and c) stationary probabilities πn in SD and SI systems with N = 6
and different λ/µ. Besides, it is represented the interpolation of πn corresponding to the average state E[n] (i.e., πE[n]). h = 10 in all the graphs.

reveal that when h = 4, 1.8 ms are necessary for a SI system
against the 4.5 ms for a SD system. Besides, when h = 10,
6.6 s are necessary for a SI system against the 64.5minutes for
SD systems. Therefore, within the considered system setup,
computation times remain limited for both systems, although
SI systems are preferable when big infrastructures are being
studied, and when many combinations of λ

µ
and fβ have to be

considered for modeling SPs’ behavior.
Comparing the performance accuracy for SD and SI sys-

tems, we represent in Fig. 5 the average revenue rate offered
by AT policies when different discretization levels h are
used. The figure proves that both systems react the same
way to discretization, except for some specific values of h
showing very small differences in revenue due to the lower
degrees of freedom of SI systems. For instance, for N = 6
and h = 8, a 1.2% difference in revenue rate can be observed
between the two systems. Besides, a floor exists for Rβ when
a minimum number of discretization levels h is used, or,
in other words, that a solution to the problem described in (12)
can be sought in the discrete domain with no significant
performance loss when a suitable accuracy is adopted. In par-
ticular, the constraint on h is approximately independent of
the size of the resource pool (i.e., N ), however, it is more
evident in high-load regimes, as a better granularity allows
a more rewarding bid selection over a bigger pool of service
requests. For instance, according to Fig. 5, InPs may decide
to apply a minimum number of discretization levels equal
to h = 2 and h = 4 when λ/µ = 0.5 and λ/µ = 100,
respectively, in order to jointly minimize complexity and
the loss in revenue opportunities. However, in the following,
we adopt h = 10 for a better graphical detail.

In order to study the behavior of SD and SI systems adopt-
ing AT policies under different load regimes and systems
sizes, we represent in Fig. 6a and 6 the optimal policies for
both solutions, when h = 10 discretization levels are used for
all values of N and λ/µ. When comparing the two graphs,
it can be observed that, independently of the load regime λ/µ

and of the size of the resource pool N , similar AT policies
are optimal for SD and SI systems. In particular, in low-
load regime (i.e., λ/µ = 0.5), the low arrival rate of service
requests and the small holding time of slice tenants encourage
the InPs to adopt in both systems low admission thresholds,
thus, maximizing revenues by increasing the admission prob-
ability. On the other hand, in high-load regime (i.e., λ/µ =
100), the system is saturated (i.e., E[n] ≈ N ) and suffers
from resource scarcity due to the high arrival rate of slice
requests and the big holding time of slice tenants. Hence, InPs
are motivated to increase the admission threshold in order to
block the less rewarding slice requests.

In both load regimes, the higher flexibility of SD systems
enables step-like policies, where lower admission thresh-
olds are adopted when the system is far from saturation,
while higher ones are employed when the system is about
to exhaust its resources. Moreover, with increasing size of
the resource pool N , SD systems tend to be less selective
by relaxing the policy when far from saturation, in order to
achieve a better balance between admission probability and
revenue rate. Despite different strategies can be generally
considered optimal for SD and SI systems, it can be noted
that the difference in the admission thresholds adopted at
each state n is, at most, equal to the discretization step (i.e.,
|β̇SDn − β̇

SI
n | ≤ (βM − βm)/h, n ∈ N < N ). Therefore,

independently from the load regime and the pool of resources,
the optimal policy for the two approaches leads to the same
system behavior, on average, that is, to the same stationary
probabilities πn, as illustrated by Fig. 6c for the case N =
6. This aspect, in turn, translates into a close performance
matching, as demonstrated below.

After having computed the optimal admission thresholds
for on-demandAT policies, we now compare the performance
of SD and SI approaches with that of an AA policy when
different load regimes and pools of resources are considered.
In particular, in Fig. 7, we study the admission probability
Padmit , the average revenue rate Rβ and the average resource
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FIGURE 7. Performance of on-demand systems: a) admission probability, b) average resource utilization and c) average revenue rate. SD and SI AT
policies with h = 10 and AA policies are compared.

utilization U when h = 10 bid levels are used. Firstly, it can
be observed that, by enforcing the constraint on the discretiza-
tion accuracy (i.e., h ≥ 4), a close performance match can
be obtained between SD and SI approaches not only for
the average revenue rate but also for the other performance
metrics. This result holds independently from the load regime
λ/µ and the size of the resource pool N .

In low-load regime (i.e., λ/µ = 0.5) it can be observed
that the performance metrics of different admission strategies
(i.e., AT or AA) are very close and tend to coincide when
big resource pools are considered. Indeed, due to the limited
revenue opportunities, AT strategies imitate the behavior of
the AA approach by admitting as many requests as possible
(see Fig. 6a and 6b), resulting in high admission probabilities
(Fig. 7a). However, in resource-limited systems (i.e., N = 2),
the higher flexibility of SD approaches is capable of guaran-
teeing a slightly higher admission probability when compared
to SI strategies. At the same time, due to the low rate of
service requests, the average number of instantiated slices
(i.e., E[n]) remains approximately constant, independently
from the size of the pool of resources (i.e., N ). Therefore,
according to (6), the average resource utilization decreases
with respect to N (Fig. 7b), while the average revenue rate
does not vary (Fig. 7c).

In high-load regime (i.e., λ/µ = 100), the average admis-
sion probability decreases with respect to the low-load regime
for AT policies in both SD and SI systems (Fig. 7a). How-
ever, as results coincide with those for the AA policy, this
is not the consequence of the adoption of higher admission
thresholds in AT policies, but rather of the limited resources
with respect to the demand. Consequently, both the admission
probability and the average operational expenditures (i.e.,
E[n]) increase linearly with the size of the resource pool N ,
as more resources can be accessed by competing SPs. There-
fore, according to its definition in (6), the average resource
utilization U remains approximately constant with respect to
N (Fig. 7b). However, the more restrictive admission strategy

of AT policies is demonstrated by a slightly lower utilization
when compared to AA policy, especially for SD systems due
to their greater flexibility. Likewise, because of the higher
revenue opportunities, the revenue rate is higher than the one
achievable in low-load regime and increases linearly with
respect to the resource pool size N , as represented in Fig. 7c.
Besides, due to the higher admission thresholds, AT policies
are capable of admitting themost rewarding slice requests and
consistently offer much higher revenue rates when compared
to the AA strategy (i.e., 68.6% improvement).

In conclusion, AT policies provide a great advantage in
terms of revenue rate and resource utilization while conserv-
ing the admission probability of less restrictive strategies,
such as the AA policy. Besides, when sufficient accuracy is
adopted for the bid interval discretization (i.e., h ≥ 4), SI AT
policies are reduced complexity solutions of the problem rep-
resented in (12) when compared to SD policies, at the expense
of a slightly lower admission probability for resource-limited
systems.

B. ON-DEMAND AND PERIODIC SLICING COMPARISON
In the remaining of this section, we first compare the perfor-
mance of on-demand and periodic slicing mechanisms when
AT policy is adopted. Afterwards, the comparison is extended
to reference admission control strategies (i.e., the AA policy
in on-demand case and the FCFS and BB policies in the
periodic case). The analysis introduced in Section IV can be
extended to the periodic case by using discrete-time Markov
chains (DTMCs), where transitions among states take place at
regular time intervals. Therefore, Padmit , U , Rβ and the opti-
mal AT policy β̇opt become dependent on the slicing interval
Tslicing. In this context, extending the model introduced in
Section III, n represents the number of slices instantiated
and reserved during a given slicing interval, considering also
those tenants that fulfilled their SLA within the considered
interval (i.e., tenants leaving the system and interrupting their
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FIGURE 8. Performance of on-demand and periodic slicing with respect to the admission threshold β̇ when SI AT policies are adopted and: a) λ/µ = 0.5,
b) λ/µ = 100. N = 6 and h = 10 are considered in all the graphs, and, in the periodic case, performance metrics are estimated over Nslicing = 10000
slicing intervals.

contribution to InPs’ revenues). Therefore, the definition ofU
in (6) takes on a connotation of average resource reservation
for periodic slicing, however, for the sake of comparability,
we maintain same name and symbol as for on-demand slic-
ing. As shown in previous paragraphs, both SD and SI AT
strategies can be utilized for this comparison when sufficient
discretization accuracy is guaranteed, thus, in the following,
we consider only SI policies due to the lower complexity
needed for computing the optimal policy.

In Section I, we highlighted that, once policies are defined,
the promptness of a specific slice admission method strictly
depends on the delay added by the communication flow
between SPs and InPs and the complexity for computing the
admission decision. In order to provide a complete compari-
son between on-demand and periodic systems, we introduce
in this context a new performance metric measuring the delay
added by the admission control mechanism. In particular,
we define the average waiting time τ̄ as the average time
delay from service request arrivals, up to their admission or
blockage. For on-demand slicing, it holds τ̄ = 0 because,
according to Section I, slice requests are evaluated right upon
arrival. On the other hand, in periodic slicing, τ̄ is the average
time interval between slice request arrivals and the beginning
of next slicing interval. Therefore, exploiting the properties
of Poisson processes, the instants ta corresponding to slice
requests arrivals within the k-th slicing interval are uniformly

distributed (i.e., ta ∼ U[kTslicing, (k + 1)Tslicing], with
k ∈ N0). Hence, τ̄ = E[Tslicing − ta] = Tslicing/2
independently from the adopted policy. With respect to the
computation of the admission decision, both AA and FCFS
strategies introduce null delay, as they only enforce the admis-
sion decision whenever resources are available. Assuming
that the optimal admission thresholds are pre-computed for
different values of λ/µ, fβ , and N , the same holds for AT
policies. Finally, the BB admission mechanism implies the
implementation of sorting algorithms with higher computa-
tional expenses than previous strategies, however, as better
processors are made available every year, we assume that
the dominant component of the total delay is τ̄ for all the
analyzed strategies.

In order to compare how AT policies behave in on-demand
and periodic strategies, we analyze how the performancemet-
rics vary with respect to the admission threshold β̇ defined
in (13) and slicing interval Tslicing. In particular, in Fig. 8,
we provide the representation of the admission probabil-
ity Padmit , the average resource utilization U , revenue rate
Rβ , and waiting time τ̄ for the whole range of admission
thresholds and slicing intervals defined in the system setup.
On the other hand, without loss of generality, only a fixed
system dimension is considered (i.e., N = 6). Finally, Fig. 8a
and 8b illustrate the cases with low and high-load regimes
(i.e., λ/µ = 0.5 and λ/µ = 100), respectively.
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FIGURE 9. Optimal threshold β̇opt for on-demand and periodic slicing when SI AT policy is used and different values of N are considered. h = 10 is
considered in all graphs and, in the periodic case, the optimal threshold is computed over Nslicing = 10000 slicing intervals.

With respect to the system’s fairness Padmit and the uti-
lization of resources U , it can be observed from Fig. 8 that
both are monotonically decreasing functions of β̇, for every
load regime and admission strategy (i.e., either on-demand
or periodic). Therefore, a global maximum exists for both
performance metrics over the admitted bid interval and it
coincides with the most permissive threshold (i.e., β̇ = 0),
while they tend to decrease when less permissive strategies
are enforced. Besides, periodic slicing provides same perfor-
mance as on-demand slicing when a small number of arrivals
takes place per slicing period (i.e., λTslicing = 0.5). On the
other hand, when slices are offered less frequently than the
service rate (i.e., Tslicing ≥ 1/µ), the number of SPs compet-
ing within the same slicing interval increases, and a higher
optimal AT threshold is adopted. Accordingly, the admission
probability decreases, and the resource reservation deviates
from the resource utilization of the on-demand case. Note
that for very high values of λTslicing the level of saturation is
comparable to that of on-demand slicing mechanisms in case
of high-load regimes (i.e., Padmit → 0 and U → 1).
On the other hand, Rβ manifests different behavior and

shows a global maximum depending on the load regime and
slicing strategy. When the number of competing SPs is low
(i.e., λ/µ = 0.5 in the case of on-demand slicing, joint to
Tslicing < 1/µ for the periodic slicing case), Rβ is a mono-
tonically decreasing function of β̇. As limited revenue oppor-
tunities exist, the unconditional admission (i.e., β̇ = 04)
outperforms any other admission criterion. However, when
the load regime increases in on-demand slicing, or when
lower slicing frequencies are adopted in periodic slicing (i.e.,
Tslicing ≥ 1/µ), the competition among SPs increases and
Rβ becomes a concave function of β̇. We remind that InPs
have the joint objective of maximizing the admission rate
and the resulting revenue, hence, when slice requests exceed

4We highlight that, even though a null threshold is enforced, positive
revenue rates are possible, on average, as SPs’ behavior is modeled according
to a uniform random bid distribution.

the resource availability, on the one hand, revenue opportu-
nities increase, on the other hand, the resources tend to be
exhausted. Therefore, an optimal admission threshold exists
as a tradeoff between the maximization of the admission rate
and the prioritization of the most rewarding requests. To con-
firm what we just said, independently from the load regime,
the horizontal coordinate that maximizes Rβ corresponds to
a value of Padmit not too far from its maximum. Besides,
the optimal AT threshold also reduces U with respect to its
maximum, thus limiting the operational expenditures while
guaranteeing maximum revenue. Finally, it is confirmed that
the average waiting time τ̄ is null for on-demand slicing,
while it increases with respect to the slicing interval for
periodic slicing (i.e., τ̄ = Tslicing/2).
After having studied how the performance metrics vary

with respect to the adopted threshold and to the enforced
slicing interval, we analyze now the properties of the optimal
AT policy for on-demand and periodic cases. In particular,
in Fig. 9, we represent β̇opt as a function of λTslicing, while
considering different resource pool sizes (i.e., N = 2, N = 4,
and N = 6), as well as low and high-load regimes (i.e.,
λ/µ = 0.5 and λ/µ = 100). First, we can observe that, for
small values of λTslicing, the optimal AT policy for periodic
slicing is well approximated by the one for on-demand slicing
for all pools of resources and load regimes. Indeed, the high
slicing frequency makes periodic slicing systems receive
fewer slice requests per slicing interval, thus approximating
the behavior of on-demand slicing. Besides, we can observe
how, for increasing number of arrivals per slicing interval
(i.e., λTslicing), the optimal AT policy for periodic slicing
becomes more selective than in the on-demand case, tending
to the maximum admitted threshold for every λ/µ and N .
In order to benchmark the optimal AT policy in both the

on-demand and periodic cases, we compare its performance
with that of reference slicingmechanisms. In particular, in the
on-demand case, we consider the AA policy that admits
all slice requests, independently from the associated bids,
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FIGURE 10. Performance metrics for network slicing with respect to λTslicing when SI AT and AA policies are adopted for on-demand approaches and AT,
FCFS and BB policies for periodic approaches. For the periodic case, the optimal threshold is calculated for each value of λTslicing, over Nslicing = 50000
slicing intervals, besides results are provided for: a) λ/µ = 0.5, b) λ/µ = 10 and c) λ/µ = 100. N = 6 and h = 10 are considered in all graphs.

whenever resources are available. Note that, in the case
of inelastic slices only, AA coincides with the admission
strategy proposed in [9]. On the other hand, in the peri-
odic case, we study the adaptation of AA to discrete time
case, which operates as a FCFS policy within a given slic-
ing interval. Finally, for periodic slicing we also provide
comparison with the BB policy that, within a given slicing
interval, admits requests with highest bids up to resource
exhaustion. Hence, in Fig. 10, we represent the admis-
sion probability Padmit , the average resource utilization U ,
the average revenue rate Rβ , and the average waiting time
τ̄ as a function of λTslicing. The comparison is performed
over the whole range of slicing intervals according to the
system setup, while, without loss of generality, only a fixed
system dimension is adopted (i.e., N = 6). Besides, low,
medium and high-load regimes (i.e., λ/µ = 0.5, λ/µ = 10
and λ/µ = 100) are illustrated in Fig. 10a, 10b and 10c,
respectively.

First, it can be observed how, in on-demand slicing,
AT always outperforms AA in terms of offered revenues and
resource utilization at the cost of a small loss in admission
probability. Besides, AT and AA policies for on-demand
slicing act as best-case scenario for their natural exten-
sions to periodic slicing, that is, periodic AT and FCFS
policies, respectively. In particular, FCFS well approxi-
mates the AA performance for low values of λTslicing, while
it provides worse performances for less frequent slicing
(i.e., Tslicing ≥ 1/µ).

Observing into more detail the performances of different
periodic slicing schemes, periodic AT proves to be more
selective and resource efficient than the other two policies,
in the sense that it is characterized by a slightly lower admis-
sion probability and by the reservation of less resources
for the revenue maximization. Besides, FCFS represents the
lower bound in terms of revenue rate with respect to peri-
odic AT and BB policies. Indeed, for low values of λTslicing,
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BB behaves like a FCFS policy, while periodic AT improves
revenues by rejecting low bids and keeping resources for
future requests with higher bids. On the other hand, when
sufficient service requests are received within a given slic-
ing interval, BB outperforms the unconditional admission of
FCFS and tends to the revenue rate offered by the periodic
AT policy. Finally, for slicing intervals greater than one tenth
of the service time (i.e., Tslicing ≥ 0.1/µ), periodic AT
and BB offer comparable revenue rates. The effectiveness
of the most rewarding policies (i.e., periodic AT and BB)
is emphasized when high values of λ/µ are explored, that
is, when more revenue opportunities exist. On the other
hand, independently from the adopted policy, the admission
probability decreases and the resource utilization increases
inevitably due to the limited resources with respect to the
demand. With respect to the average waiting time τ̄ , it is null
for on-demand strategies and for very frequent slicing (i.e.,
Tslicing ≈ 0), while it increases linearly with Tslicing for peri-
odic slicing (i.e., τ̄ = Tslicing/2), regardless of the analyzed
mechanism.

In conclusion, a slicing system that employs the optimal
AT admission policy (with respect to load regime, bid dis-
tribution and pool of resources) outperforms all the consid-
ered reference mechanisms, either on-demand or periodical.
Indeed, it offers the highest revenue rate and smallest resource
utilization, with a negligible loss in terms of admission rate.
Besides, on-demand slicing solutions enable null waiting
time for slice requests.

VI. CONCLUSION
In this work, we proposed a slice provision mechanism
for enabling the slice market envisioned for 5G. The pro-
posed approach consists in a policy that selects the most
rewarding bids offered by SPs (i.e., AT policy), and a
reduced complexity solution is provided for adapting the
optimal policy to different resource pool sizes, traffic loads
and SPs behavior. We demonstrated that it enhances the
slice provision promptness, with QoS guarantees and fair-
ness towards SPs, while guaranteeing two-fold economic
incentives to InPs: revenue maximization and reduction of
operational expenditures. Besides, we presented a compar-
ison of the proposal’s performance with reference strate-
gies, both when enforced upon every service request (i.e.,
on-demand slicing) or at regular time-intervals (i.e., peri-
odic slicing). In particular, we adopt always-admit policy
(i.e., AA) in on-demand slicing, and first-come-first-served
(i.e., FCFS) and best bid (i.e., BB) policies in periodic
slicig.

Provided that the optimal bid threshold is chosen for
the current network conditions, the proposed AT policy in
on-demand slicing outperforms the other considered mech-
anisms, including a best bid selection strategy for periodic
slicing. Our optimal AT policy offers the highest revenue
rates while reducing operational expenditures and offering
real-time slicing, in exchange for a negligible loss in terms

of fairness towards SPs. On the other hand, if only peri-
odic slicing is possible, AT policy still offers the same
advantages, however, slice requests experience a waiting
time different from zero, which is independent from the
adopted strategy and it decreases with the slicing frequency.
Finally, AT approaches enable reduced complexity solutions
when compared to other strategies, such as the BB pol-
icy. The effectiveness in terms of revenues is highlighted
especially in systems characterized by limited resources
and high-load regimes. In our future studies, we plan to
include the case with elastic services, when different service
classes are examined. Besides, we consider modeling SPs as
fully rational entities that adapt their bidding strategies to
their perception of the market. Finally, computational effi-
cient methods for the search of optimal admission policies
will be examined and proposed for the integration in real
systems.

APPENDIX
ON-DEMAND SLICING WITH AT POLICY
We adapt here to the case of AT policies the expressions
provided in Sections IV-A and IV-B for the performance
metrics of on-demand slicing, and of the combinatorial ver-
sion of the optimization problem in (12) for such policies.
In particular, as the InP admits slice requests at state n only
when the tariff-bid is higher than threshold β̇n, the admission
probability at state n is pn(fβ , β̇n) = 1 − CDF(β̇n). It is
straightforward that pn is a monotonically decreasing func-
tion of β̇n as dpn

d β̇n
= −fβ (β) ≤ 0. Besides, for the most

conservative and permissive admission strategies it holds,
respectively, pn(fβ , βm) = 1 and pn(fβ , βM ) = 0.
The admission probability Padmit , the average resource

utilization U and the average revenue rate Rβ remain
unchanged. On the other hand, the expected tariff-bid for
tenants admitted at state n equals E[β|β ≥ β̇n] =
1
pn

∫ βM
β̇n

β fβ (β) dβ, that is a non-negative function of β̇n

(i.e., according to Leibniz’s integral rule dE[β|β≥β̇n]
d β̇n

=

fβ (β)
pn

(
E[β|β ≥ β̇n] − β̇n

)
≥ β̇n

fβ (β)
pn

(
1
pn

∫ βM
β̇n

fβ (β) dβ −

1
)
= 0). For the most conservative and permissive admission

strategies it holds E[β|β ≥ βm] = E[β] and E[β|β ≥ βM ] =
βM ≥ E[β|β ≥ βm], respectively.
In the particular case of uniformly distributed bids, it holds

for AT policies pn =
βM−β̇n
βM−βm

, E[β|β ≥ β̇n] =
βM+β̇n

2 and for

AA policy p = 1, E[β|β ≥ β̇] = E[β] = βM+βm
2 . Finally,

the average revenue rate for the three policies can be written
as:

RSDβ =
1
2
λ

µ

1
βM − βm

N−1∑
n=0

πn(β2M − β̇
2
n )

RSIβ =
1
2
λ

µ
(1− πN )

β2M − β̇
2
n

βM − βm

RAAβ =
1
2
λ

µ
(1− πN )(βM + βm)
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In conclusion, we introduce the combinatorial version of
the problem described in (12) for AT policies:

β̇opt

( λ
µ
, fβ ,N

)
= argmax

β̇

Rβ
( λ
µ
, fβ ,N , β̇

)
β̇n

= βm + j
(βM − βm)

h
,

n, j ∈ N and n < N , j < h
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