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Abstract

Asynchronous task-based programming models are
gaining popularity to address the programmability
and performance challenges in high performance
computing. One of the main attractions of these
models and runtimes is their potential to automat-
ically expose and exploit overlap of computation
with communication. However, we find that in-
efficient interactions between these programming
models and the underlying messaging layer (in
most cases, MPI) limit the achievable computation-
communication overlap and negatively impact the
performance of parallel programs. We address this
challenge by exposing and exploiting information
about MPI internals in a task-based runtime sys-
tem to make better task-creation and scheduling
decisions. In particular, we present two mecha-
nisms for exchanging information between MPI and
a task-based runtime, and analyze their trade-offs.
Further, we present a detailed evaluation of the pro-
posed mechanisms implemented in MPI and a task-
based runtime. We show performance improve-
ments of up to 16.3% and 34.5% for proxy applica-
tions with point-to-point and collective communi-
cation, respectively.
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1 Introduction

The end of Dennard scaling and subsequent stagna-
tion of CPU clock frequencies has led to the rise of
multi-core systems with large core counts and heteroge-
neous systems with accelerators [29 27]. Asynchronous
Task-based Programming (ATaP) has emerged as a
popular solution to address the challenges of portable
and scalable execution on such complex architectures.
ATaP models and runtimes, such as OpenMP [23],
Charm++ [I], HPX [I7], OmpSs [10], and Legion [3]
support a data-flow execution model to orchestrate the
execution of parallel tasks while respecting their con-
trol and data dependencies. These models delegate the
responsibility of scheduling work to a runtime system,
and thus enable the user to focus on programming as-
pects related to their problem domain without worrying
about cross-platform performance issues. Under the
hood, the runtime systems are designed to automat-
ically optimize for different application scenarios and
system specifications.

One of the main attractions of ATaP models and run-
times is their potential to automatically expose and ex-
ploit overlap of computation with communication. This
refers to the benefit that comes from having multiple
tasks assigned to a physical core or process — when one
task is waiting for messages to arrive, another task can
use the idle core for useful computation. On distributed
memory systems, inter-node communication in ATaP
applications is typically handled by calls to a messag-
ing library (in most cases, MPI). Some models allow
explicit calls to MPI whereas in other models, commu-
nication primitives are translated to MPI calls by the
runtime [10} 26].



2 Background and Motivation

Message for
Task 2 arrives

MPI_Recv

M?’llickkeizg | Task | | |

| ) )
U

\

Sleall=a] ]

Y
roi [(Task 1 | [] [} (k3] ) B ) [esks) !71- [ mpirecy
\ [
catback [ Task 1| [] [Task3] [ [Task 5] qﬁ- [ catoack

Fig. 1. Early invocation of a blocking MPI_Recv by
one task can prevent other tasks from mak-
ing progress (top row). The remaining three
rows represent alternatives. In each row, the
red arrow marks the arrival in time of an
MPI message for a specific task (Task 2).

We have observed that inefficient interactions be-
tween ATaP models and MPI limit the achievable
computation-communication overlap and negatively
impact the performance of parallel programs. Let us
consider several common mechanisms used in different
ATaP models for making MPI calls from within tasks.
In one mechanism, tasks make blocking MPI calls, such
as MPI_Recv. This prevents other tasks from using the
idle core while the task in question is blocked waiting for
messages and is clearly inefficient as shown in the top
row of Figure A second mechanism, as a potential
solution to the above problem, is to use a non-blocking
MPI_Irecv and MPI_Wait. However, this still has the
problem of being blocked at the MPI_Wait if it is called
too early. A third mechanism is to periodically poll
for message arrivals; this avoids blocking but can re-
quire multiple trials. Thus, none of these mechanisms
is perfect and they all waste valuable CPU resources.
Despite such issues, the use of MPI as the underlying
communication mechanism for ATaP models is attrac-
tive, since it represents a convenient portability layer
that is available on virtually every high performance
computing platform.

In this paper, we address inefficiencies in interactions
between ATaP models and MPI. Our high level idea is
this — if the runtime system of an ATaP model is aware
of the progress or state of communication in MPI, it
can make better task-creation and scheduling decisions,
and efficiently overlap computation with communica-
tion. Our approach tracks certain events in MPI and
exposes them to the ATaP runtime system in order to
efficiently schedule blocking MPI primitives or initiate
a specific request to poll. Further, using our approach,
the runtime system can execute tasks that utilize par-
tially received data of an on-going MPI collective op-

eration, thus providing opportunities for computation-
communication overlap that were not exposed previ-
ously.

We present two mechanisms, similar to the MPI tools
interface (MPI.T) [13], for exchanging information be-
tween MPI and an ATaP runtime system and analyze
their trade-offs: 1. a fast mechanism to poll events
when idle using a lock-free queue, and 2. a delivery so-
lution based on callbacks that can benefit from a hard-
ware implementation, shown in the bottom row of Fig-
ure[ll These mechanisms allow ATaP runtimes to seam-
lessly interoperate with MPI by reducing or completely
eliminating the need for explicit polling or waiting on
specific requests, and instead deliberately invoking the
progress engine only when needed, driven by runtime
events. The main contributions of our paper are:

e We present a novel approach to optimize interactions
between an ATaP runtime system and MPI by ex-
ploiting knowledge of MPI internal events.

e We expose new opportunities to overlap MPI collec-
tives with tasks that can compute on partially re-
ceived collective data.

e We present a detailed evaluation of the proposed
ideas using MPI and OmpSs [10], an ATaP model
that follows the semantics of OpenMP 4.0 tasks.
When compared to state-of-the-art solutions with
task-based communication and dedicated communi-
cation threads, we show improvements of up to 16.3%
and 34.5% for proxy applications with point-to-point
and collective communication, respectively.

2 Background and Motivation

Below, we describe the salient features of asynchronous
task-based programming models, popular approaches
for distributed memory communication in these models,
and the challenges that undermine cooperation between
ATaP models and messaging libraries.

2.1 Overview of ATaP Models

ATaP models such as OpenMP 4.0 [23] and OmpSs [10],
conceive the execution of a parallel program as a set of
tasks that may depend upon one another. Typically,
the programmer defines code blocks (functions and/or
classes) and adds annotations to declare 1) what con-
stitutes a task, 2) what data is used by each task, called
input dependencies or input, and 3) what data is pro-
duced by each task, called output dependencies or out-
put. Based on this information, the runtime system
manages the parallel execution using a Task Depen-
dency Graph (TDG), a directed acyclic graph where



2 Background and Motivation

1. Tasks are specified

using annotations and a
TDGiis created by the task-
based runtime system

O Completed task|

@ Readytask
O Pending task

#pragma omp task \\
depend (inout:A[N])

1l Task specific code Ready queue

2. Tasks are sent to a ready queue
once their predecessors complete

3. Workers poll tasks
from the ready queue

Fig. 2: Execution flow in an asynchronous task-
based programming model that uses a task
dependency graph.

the nodes are tasks and the edges are dependencies be-
tween these tasks.

Figure [2| shows a simple example of a TDG. A task
is marked as ready or unlocked only when all its pre-
decessors have completed their execution, otherwise it
is considered a pending task. Ready tasks are added to
a ready queue (or another appropriate data structure
depending on the scheduling algorithm). When idle,
worker threads interact with the scheduler and retrieve
tasks from the ready queue for execution. When a task
completes, it is marked as such in the TDG and its suc-
cessors are unlocked. Examples of such a programming
model are tasks in OpenMP 4.0 [23] with dependency
clause extensions and Legion [3], in which dependencies
between tasks are expressed using regions.

This work uses the task constructions of OmpSs [10],
which have been adopted as the task extensions for
OpenMP 4.0. The programmer creates tasks using
pragma annotations with the input and output spec-
ified as shown in Figure[2] The compiler replaces these
annotations with calls to the runtime system, and the
tasks are dynamically created and destroyed during ap-
plication execution. In this work, we employ a reduced
version of Nanos++ 0.10a [I0], the runtime of OmpSs,
which uses pthreads bound to specific cores as worker
threads.

2.2 Inefficiencies in Distributed

Memory Communication

The de-facto standard for distributed memory commu-
nication is the Message Passing Interface (MPI) [28].
MPI implementations provide an easy-to-use, portable,
high-performing abstraction on top of most low-level
communication technologies available on distributed
memory clusters. ATaP models usually rely on MPI
when running in distributed memory environments by
explicitly making MPI calls at the source code level,
possibly inside tasks or at synchronization points. We
call this approach explicit communication. Within this
class, some runtime systems such as OmpSs [22], rely
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Fig. 3: Communication thread can become a serial
bottleneck if one thread is responsible for
many workers.

on invocation of MPI calls within tasks, and require
a manual orchestration and deployment of MPI pro-
cesses. Other programming models such as Charm-++
and Habanero, build their communication interface on
top of MPI and abstract the MPI process related or-
chestration. Alternatively, programming systems such
as Legion [3] hide communication from the program-
mer. They let the runtime system detect accesses to
remote data and perform the required data transfers.
We call this approach implicit communication.

In both explicit and implicit styles of communica-
tion, some inefficiencies prevent the interaction between
MPI and ATaP models from reaching its full poten-
tial. ATaP models seek to exploit asynchrony and to
overlap communication with computation across tasks
to improve performance. In contrast, several MPI fea-
tures have traditionally been influenced by a bulk syn-
chronous programming model, in which communication
and computation occur in phases. This results in per-
formance inefficiencies such as those shown in the top
two rows of Figure[l]- resources can remain idle if block-
ing calls are made early before the messages have ar-
rived.

ATaP models typically deploy communication
threads to improve computation-communication over-
lap. A dedicated thread is made responsible for data
transfers in order to avoid blocking worker threads.
However, a communication thread does not execute
computation tasks, which results in resource under-
utilization if the thread is assigned a dedicated core.
If communication threads are not assigned dedicated
cores, they can perform poorly. They can also become
a serial bottleneck, as shown in Figure [3] in which the
communication thread is responsible for sending, prob-
ing, and receiving messages for all workers. In this ex-
ample, worker 1 is idle for a long time because the com-
munication thread is busy processing messages for task
4 of worker 0.

Another potential source of inefficiency is the im-
plicit global synchronization that MPI collectives im-
pose. While it is possible to overlap computation and
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Fig. 4: Tasks that can begin computation with par-
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for the collective to complete.

collective communication to a certain extent by using
non-blocking collectives [15] as standardized with MPI
3.0, it is currently not possible to use partially received
data while the collective is in progress. For example, in
the MPI_Alltoall operation, although data from some
processes is received earlier than others, execution of
tasks that only need that partial data cannot begin un-
til the collective completes as shown in Figure In
this example, although each worker depends only on
data from two processes (PO, P1 -; worker 0; P2, P3
- worker 1; P4, P5 -; worker 2), all workers have to
wait until data from all processes is received and the
MPI_Alltoall call completes.

This work aims at removing the inefficiencies that un-
dermine the cooperation between task-based runtimes
and distributed memory communication libraries such
as MPI. By exposing information about events hap-
pening at the communication layer (e.g., incoming mes-
sages, data transfer completions or progress of collective
operations) to an ATaP runtime, we believe the runtime
system can schedule tasks more efficiently, reduce idle
time and maximize computation-communication over-
lap as a result. Section [3| describes the interface we
propose to achieve these goals.

3 Exposing MPI Activity to ATaP
Runtimes

We propose to make ATaP runtime systems aware
of MPI activity to overcome the performance issues
highlighted in Section Further, we propose to
drive this information sharing by triggering callbacks
in hardware or via low-level system software. This
section describes the proposed interactions between
MPI and ATaP runtimes, and a mechanism to enable
computation-communication overlap in the case of col-
lective communications.

3.1 Extending MPI to Support Event
Handling

Our approach proposes a set of events triggered by MPI
and captured by ATaP runtime systems. To be consis-
tent with the MPI standard, we implement our tech-
niques on top of existing solutions like MPI_T, the MPI
Tool Information interface introduced in MPI 3.0 [11],
as well as the recently proposed MPI_T_Events exten-
sions [I3]. The latter provides the necessary infrastruc-
ture for callbacks in MPI, intended for the support of
tracing tools, but does not define any concrete events
matching the philosophy of MPI_T. In particular, we
propose adding the following events to MPI:

e MPI _INCOMING_PTP signals the arrival of a point-to-
point message. It saves the tag and source of the
message, and the associated MPI_Request handle, if
any. For a message expected to use the rendezvous
protocol, this event may indicate the arrival of the
control message.

e MPI_QUTGOING_PTP signals the completion of a non-
blocking point-to-point send operation. It saves the
MPI Request handle.

e MPI _COLLECTIVE PARTIAL_INCOMING signals the ar-
rival of some data in the context of a collective com-
munication. It saves the source rank in the commu-
nicator being used.

e MPI _COLLECTIVE PARTIAL_OUTGOING signals the send-
ing of some data in the context of a collective com-
munication. It saves the MPI rank of the receiver.
When this event is triggered, it is safe to overwrite
the corresponding portion of the outgoing buffer.

We implement these events in the context of Intel’s
MVAPICH 2.2 [31], where PSM2 [7] is primarily re-
sponsible for conducting point-to-point communication.
Thus, in our implementation, events such as the ar-
rival of an incoming point-to-point message originate
at the PSM2 layer, which in turn notifies MPI of the
associated point-to-point event. PSM2 uses lightweight
helper threads to handle communication, which effi-
ciently share resources with other threads in the system.
Event notification to MPI is triggered by these helper
threads. On the other hand, the creation of events asso-
ciated with the progress of collective communication is
handled by MPI. In both cases, MPI is responsible for
the delivery of the events to the ATaP runtime system.

3.2 Mechanisms for Event Delivery

We consider two mechanisms to deliver the events de-
scribed in Section to the ATaP runtime: a polling-
based mechanism and a callback-based approach.
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3.2.1 Polling-based Notification

Our first approach is to add a polling interface to MPI
based on the MPI_T_Events proposal. An ATaP thread
can use this interface to query events at its convenience.
When invoked, the polling call checks if an event has
occurred and, if so, returns the data associated with the
event. This is significantly different from the polling ca-
pabilities currently available in MPI through the set of
MPI Test calls. These only return the state of a spe-
cific request, which is inefficient as it requires users to
individually poll on all outstanding requests until one
of them is in a desired state. In contrast, our approach
returns completed events across all event sources, and
therefore prevents unnecessary queries on requests that
had not experienced any change in their status. Con-
ceptually, our polling interface can be viewed as an ex-
tension of MPI_Probe: in addition to information about
the incoming message that MPI_Probe returns, our ex-
tension can also return information regarding events
related to non-blocking send/receive requests and col-
lectives.

We propose an additional function that implements
the actual polling: MPI_T_Event_poll (MPI_T_eventx
event). This function returns whether one of our de-
fined events has occurred since its last invocation and, if
yes, returns an opaque event object containing informa-
tion regarding the event. The type of this object is iden-
tical to the event object type used in the MPI_T _Events
proposal, and hence can be decoded with a matching
call to MPI_T Event_read. In our implementation, a
lock-free event queue, from the C++ Boost library [5],
is used to store the events until they are consumed by
the ATaP runtime system. We also modify the spe-
cific runtime used in this paper, Nanos++, to use its
worker threads to invoke the polling interface. These
invocations are done either between consecutive task
executions or when worker threads are idle. Figure [f]
summarizes the polling-based delivery mechanism de-
scribed in this section.

3.2.2 Callback-based Notification

Callback-based notification works by associating han-
dler functions with specific events in a way the corre-
sponding handler function is invoked to perform some
action once the event occurs. In particular, by hav-
ing the events described in Section handled by call-
backs, we release the ATaP runtime system from the
need for polling the event queue. For this functional-
ity, we directly rely on the MPI_T _Events proposal [13],
which provides generic callbacks mainly intended to im-
plement tracing tools. We use it to track the events
described in Section and notify the ATaP runtime,
which can then associate a handler function by invok-
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MPI_INCOMING_PTP

2
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Fig. 5: MPI_T event creation, addition to the event
queue, and consumption by a worker thread
in polling mode.

ing the MPI_T_FEvent_handle_alloc call, as described by
Hermanns et al. [I3]. Once invoked, the runtime re-
ceives an MPI events object, which can be decoded with
MPI_T_FEvent_read.

The primary concern with the use of callbacks is the
impossibility of knowing beforehand when an event will
occur, which makes it impossible to know which thread
will handle the event and execute the callback. Thus, to
ensure correctness, the implementation of any callback
handler must respect some restrictions:

e Callbacks should not take any locks that may already
be taken by the thread executing the callback.

e Callbacks have restricted MPI capabilities as de-
scribed in [13].

e Callbacks should not be nested.

These restrictions can be easily satisfied in our con-
text. The primary purpose of event notification is to
satisfy an dependency for a task and, once all depen-
dencies for the task are met, push it to the scheduler.
These actions just require locks that maintain the state
of runtime system metadata as well as locks that con-
trol the interaction with the scheduler queue. Neither
of these locks can be taken by a worker thread if it ex-
ecutes the callback while invoking MPI inside a task.
Similarly, a worker thread does not hold any lock if it
executes the callback while invoking MPI when idle to
progress communication. If callbacks are invoked by
MPI helper threads, no runtime system locks will be
taken by them. These actions also do not require any
calls to MPI and thus cannot invoke other callbacks.
Thus, inside the ATaP runtime, we use callbacks to
identify, unlock and push ready tasks to the scheduler.
Hardware-induced callbacks: Callbacks can also
be triggered as user-level interrupts by the Network
Hardware Interface (NIC) when it detects associated
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MPI events. Having the NIC detect events and trig-
ger callbacks can improve both flexibility and perfor-
mance by providing a more accurate and fast notifi-
cation of an incoming message, message delivery com-
pletion, and RDMA operations. For reference, Kep-
pitiyagama et al. [19] showed that Myrinet hardware
with a programmable network processor could drive the
MPI progress engine and networks like the Scalable Co-
herent Interface included remote doorbell capabilities.
In addition, some of the current Intel Xeon processors
already integrate the OmniPath NIC in the processor
package. We hope that this work will lead to the addi-
tion of such capabilities in hardware. In this paper, we
emulate this capability by using a thread running on a
dedicated core to monitor MPI state.

3.3 Changes to the OmpSs runtime

Typical implementations of ATaP models such as
OmpSs may indicate to the underlying runtime that
a task performs/depends on communication, but do
not require exposing more details. For the ATaP run-
time system to match tasks with notifications, more
information is required. To this end, we extend our
ATaP model, OmpSs, to notify its underlying runtime,
Nanos++, of messages being sent or received, as well as
of MPI requests that are accessed in a task. This infor-
mation is used to create a task dependency on the cor-
responding event. In our implementation, MPI calls in-
side tasks are identified by the OmpSs compiler, which
introduces code to inform Nanos++ of the MPI call
and its arguments such as source/destination rank and
MPI_Request object.

Enabled by this communication-related information,
the Nanos++4 runtime system creates dependencies be-
tween tasks and their corresponding MPIT events.
This implies, for example, that a task performing a
blocking MPI call is not allowed to run until the cor-
responding MPI_INCOMING PTP MPI_T event, related to
the task has taken place. Similarly, a task invoking a
blocking MPI Wait is not allowed to execute until the
completion event associated with the incoming or out-
going message request takes place (Figure |§| (a)).

When an event is delivered to Nanos++, either via
polling or execution of a callback, it is used to unlock
the associated task for execution as depicted in Fig-
ure [6] (b). For every task with an event dependency,
Nanos++ contains an entry in a reverse look-up ta-
ble based on the identifiers (message tag, source, or
the MPI_Request object). This table is used to iden-
tify the task, which is then scheduled for execution if
all its dependencies are met. In this way, by waiting
for communication events to occur before the tasks are
scheduled, we are able to avoid unnecessary blocking of
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worker threads.

Even under this scheme, use of blocking MPI calls for
sending or receiving can still block threads unnecessar-
ily when a rendezvous protocol is deployed in MPI. For
example, a receiving task is unlocked upon the arrival of
the control message of the sender-initiated rendezvous
message. Following this, the task will be active and
the thread will be blocked for the time the message
data is transferred over the network from the source.
We recommend that, in such situations, non-blocking
send/receive should be used in the task, and another
task with an associated MPI_Wait should be marked for
execution when the actual data arrives.

3.4 Overlapping Computation with
Collectives

So far, we have discussed exposing point-to-point com-
munication related MPI events to an ATaP runtime
system to potentially increase its responsiveness and
reduce the time for which threads remain blocked. We
now switch our attention to exploiting computation-
communication overlap for MPI collectives. MPI 3.0 in-
troduced non-blocking collectives, akin to non-blocking
point-to-point operations, to allow programmers to per-
form computation while the collective progresses in the
background. However, like point-to-point operations,
this can be restrictive due to the need for a wait or
frequent test calls.

Traditionally, an MPI collective call is viewed as a
monolithic operation whose intermediate progress is
not exposed to the programmer. We propose to no-
tify ATaP runtime systems of partially received data so
that they can trigger dependent computations as early
as possible and maximize computation-communication
overlap. In particular, we focus on many-to-one or
many-to-many style collectives such as MPI_Alltoall,
MPI_Gather, and MPI_Allgather, in which tasks can be
run even when partial data has been received.

Figure |Z| shows an example in which an all-to-all op-
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#pragma omp task depend (in:A[0:N]) depend(out:B[0:N])

MPI_Alltoall(A,n,MP|_DOUBLE,B,n,MP|_DOUBLE,comm)

1. Alltoall receives data from process 1.
Recv Buffer B

Data from process 1 |

0

MPI_COLLECTIVE_PARTIAL_INCOMING
(pending)

1 2. Partial collective event is delivered

MPI_COLLECTIVE_PARTIAL_INCOMING

#pragma omp task depend (in:B[0:n]) #pragma omp task depend (in:B[n:N])

/[Compute here /ICompute here

3. Task is sent to the ready queue L»I:I:I:I:I:I:I:I:I

Fig. 7: Unlocking of the right task when partial
data from process 1 is received leading to
a collective callback.

eration is used to share data among tasks on different
nodes. Tasks are created in this example such that some
tasks need only part of the data received during the
collective to start execution. For example, the left task
depends only on data received from process 0, while the
right task depends on data from process 1. With the
existing MPI semantics, all these tasks will be ready
for execution when the entire collective completes and
data from all processes is received. However, as sev-
eral collectives in MPI are typically implemented using
point-to-point communication, it is likely that data re-
quired to unlock one of these tasks is received earlier
than the remaining data. Thus it is possible to start
the execution of one task earlier, as shown in the figure.

In order to enable computation  over-
lap with collectives, we add two events:
MPI_COLLECTIVE_PARTIAL_INCOMING and MPI_COLLEC-
TIVE_PARTIAL_OUTGOING. MPI can use these events to
notify the runtime when part of the data expected in
the collective has arrived or has been sent, respectively.

The runtime system is already aware of the mem-
ory locations that a task reads or writes, as they
are specified in the task creation pragma (see exam-
ples in Section and Figure . With our exten-
sions of Section the runtime system also knows
the send/receive locations and the volume of the data
sent/received in the collectives. Hence, when the
MPI_COLLECTIVE_PARTIAL * event is triggered, the run-
time system matches the partial data received with the
task that depends on it, and if all its dependencies are
satisfied, executes it without waiting for the collective
to finish. Non-blocking collectives can also benefit from
this approach, since even for them, there is no existing
mechanism to signal when it is safe to use partial data.

4 Experimental Setup

In this section, we describe the platform and the parallel
benchmarks we consider in our experimental campaign.

4.1 Platform Used for Experiments

We use the MareNostrum 4 supercomputer at
Barcelona Supercomputing Center for running our ex-
periments. MareNostrum consists of 3,456 compute
nodes; every node has two Intel Xeon Platinum 8160
processors each with 24 cores and 96 GB of DDR4-
2667 main memory. The interconnection network is a
100 Gb Intel OmniPath full bisection fat-tree. The soft-
ware stack includes MVAPICH 2.2 running on top of
Intel PSM2 with our modifications. All benchmarks are
written in C++ and compiled with gcc 7.2.0. As the
ATaP model, we employ a reduced version of Nanos++
0.10a [10], the runtime of OmpSs, which uses pthreads
bound to specific cores as worker threads. We exper-
imented with several worker threads per process and
process per node combinations ranging from 32 pro-
cesses of 1 thread to 1 process of 32 threads. We found
that 8 threads per process is optimal for the baseline
due to the bottlenecks of MPI multi-threading support.
Thus, for all benchmarks, 4 MPI processes are spawned
per node, each of which creates 8 worker threads. Node
count is varied from 16 to 128.

4.2 Point-to-point Benchmarks

For point-to-point communication, we consider two
stencil benchmarks using task semantics. The first
benchmark is based on HPCG [9], a multi-grid Con-
jugate Gradient solver with a Gauss-Seidel precondi-
tioner. HPCG uses a 27-point stencil where every block
performs a total of 11 halo-exchanges with its neigh-
bors in each iteration due to the preconditioning step.
In addition, an MPI_Allreduce is performed at the end
of each iteration. The resulting communication pat-
tern of HPCG is shown in Figure|8| (left), where darker
colors display a larger communications volume. The
MPI_Allreduce pattern is represented by a light back-
ground color as it just involves communication of a
scalar value among all the nodes. In our experiments,
we apply weak scaling and solve global problem sizes of
1024 x 512 x 512, 1024 x 1024 x 512, 1024 x 1024 x 1024
and 2048 x 1024 x 1024 on 64, 128, 256, 512 MPI pro-
cesses respectively.

The second benchmark is based on MiniFE, a fi-
nite element solver using a non-preconditioned Con-
jugate Gradient. In contrast to HPCG, MiniFE only
performs a single halo exchange per iteration and has
a more irregular communication pattern between pro-
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Fig. 8: Communication patterns of HPCG (left)
and MiniFE (right). Darker colors indicate
higher volume of communication among
MPI processes.

cesses, as shown in Figure |8| (right). The lack of a
preconditioning step in every iteration reduces the to-
tal number of tasks, thus providing insights on how
the proposed mechanisms behave in environments with
less overlap opportunities. Similar to HPCG, each it-
eration of MiniFE also ends with an MPI_Allreduce.
As input, we use 1024 x 512 x 512, 1024 x 1024 x 512,
1024 x 1024 x 1024 and 2048 x 1024 x 1024 unstructured
implicit finite volumes.

In both benchmarks, each process is assigned a sub-
block of the initial 3D domain. Each sub-block maps
to a set of rows in the sparse matrix to be solved by
the conjugate gradient step. To overlap communication
and computation among tasks, the sub-block assigned
to a process is further overdecomposed into smaller sub-
blocks. We consider decomposition factors between 1x
(one sub-block per core) and 16x (16 sub-blocks per
core), and report execution time for the best performing
decomposition for every configuration.

4.3 Collective Communications
Benchmarks

We consider several benchmarks that intensively use
collective communication. The first benchmark is a
two-dimensional (2D) FFT using a parallel zero-copy
algorithm [I4]. In 2D FFT, we initially divide the
matrix among MPI processes using row-wise 1D block
partitioning. This enables the creation of tasks exe-
cuting 1D FFTs for each row. Next, we perform an
MPI Alltoall to transpose the matrix. Finally, 1D
FFTs are calculated again for each row of the trans-
posed matrix. The matrix is transposed during commu-
nication by using MPI derived datatypes, as described
by Hoefler and Gottlieb [14].

When  transposing the matrix wusing the
MPI Alltoall collective with derived datatypes,
each process receives partial row data from every other
process. Typically, it is not possible to overlap the

collective with the computation tasks because tasks
computing the 1D FFT require the entire matrix row.
However, it is possible to further divide the 1D FFT
into smaller tasks that process data blocks as soon
as they are received. The block size is set to be the
size of a row divided by the number of MPI processes,
allowing the execution of partial 1D FFT tasks as the
MPI_Alltoall progresses. We consider the 2D FFT for
square matrices with 163842327682, 655362, 1310722,
and 2621442 elements.

The second benchmark is a three-dimensional (3D)
FFT. Initially, the 3D volume is divided into subsets
created by 2D decomposition in y and z dimensions.
1D FFT computations are performed along the x-axis,
and are followed by MPI_Alltoall calls within subcom-
municators defined along the y-axis. This transposes
the volume such that the subsets are now decomposed
in the x and z dimensions, and 1D FFTs along the y-
axis are performed. Next, MPI_Alltoall calls within
the subcommunicators defined along the z-axis trans-
poses the grid to create the final set of subdomains in
which 1D FFT can be performed along the z dimen-
sion. We have chosen a 2D decomposition over a 1D
decomposition because of its better scalability in terms
of memory and communication [25]. For 3D FFT, we
test cubic volumes with 1024%,2048°, and 4096° ele-
ments.

We also consider two MapReduce [§] applications —
a simple word-count algorithm and a dense matrix vec-
tor product. In MapReduce, the input data is split
into independent chunks processed by the map tasks
in parallel. Each map task produces a series of tu-
ples in the form (Key, Value) (K,V). The N val-
ues associated to the same K; are coalesced in a list
(Vi,j)o<j<n. Each process sends its (K, (Vi j)o<j<n)
tuples to another process determined by a function of
the key Node;q = hash(K;) in the shuffling stage. Shuf-
fling is done using MPI_Alltoallv. Finally, every pro-
cess applies the reduction operation to the list of values
(Vi,j)o<j<n associated with each key K;. In Word-
Count, we consider random texts with 262, 524 and
1048 million words, while in the matrix vector prod-
uct, we consider square matrices with 10242, 20482, and
40962 elements.

We implement a baseline MapReduce framework
that uses MPI_AlltoAllv for data shuffling in OmpSs
and MPI. In it, the reduction of a single key list of val-
ues is a serial operation, while the reduction for different
keys can be performed in parallel. However, using pro-
posed work, reduction tasks can start to execute as soon
as the MPI_A11toAllv receives data from any process.
This leads to the creation of several parallel reduction
tasks for the same key as multiple list of values for a
single key might be received from different processes.
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In this section, we evaluate the performance impact of
using our proposed MPI events to drive the task exe-
cution in the OmpSs programming model, as described
above.

5.1 Results for Point-to-point
Benchmarks

We compare the performance of baseline task-based
executions of HPCG and MiniFE with executions in
five other resource-equivalent scenarios. These execu-
tions are performed on 16, 32, 64, and 128 nodes, with
four MPI processes running on each node. Each MPI
process can use eight cores, which is the configura-
tion that minimizes the execution time for the base-
line implementation. In the baseline scenario, eight
worker threads per MPI process are responsible for ex-
ecuting the computation as well as the communication
tasks, and for invoking the MPI progress engine. It is
worth mentioning that this is the only out-of-the-box
configuration available in OmpSs+MPI and OpenMP
4.04+MPI.

We evaluate two additional baseline scenarios with
communication threads: one in which we add a com-
munication thread that shares hardware with worker
threads on available cores, i.e., eight worker threads
and one communication thread share eight cores (CT-
SH), and the other in which a dedicated core is as-
signed to the communication thread, and the computa-
tion tasks are executed on the remaining seven cores
by seven worker threads per MPI process (CT-DE).
Such solutions represent the state-of-the-art communi-
cation model of most common ATaP models. However,
as it was mentioned before, OmpSs and OpenMP do
not integrate a communication thread in their avail-
able releases so we hope that this work can motivate
the default inclusion of such configurations for hybrid
applications.

We compare the baseline scenarios with three scenar-
ios that represent variants of our proposals : i) polling-
based notification (EV-PO), where worker threads poll
for MPI_T events when idle (Section[3.21)); ii) callback-
based event delivery in software (CB-SW); and iii) a
hardware-induced callback-based event delivery (CB-
HW, Section. The hardware support is emulated
by using an additional thread running on a dedicated
core that monitors the internal status of MPI and PSM2
to trigger the callbacks; this core never executes a task.

Figure@ (a) presents the speedups obtained with the
scenarios described above normalized to the baseline for
HPCG. The use of a dedicated core for communication
(CT-DE) provides a speedup ranging from 12.7% to

(a) Speedup of HPCG

Speedup

(b) Speedup of MiniFE

Speedup

32 64
Number of nodes

Fig. 9: Speedup for (a) HPCG and (b) MiniFE over
the baseline implementation on 16, 32, 64
and 128 nodes with 64, 128, 256 and 512
MPT processes, each with 8 threads (cores).

25.7% with respect to the baseline approach for the
16 to 128 node configurations. These improvements
are due to the early execution of communication tasks
enabled by CT-DE as well as due to the avoidance of
blocking in worker threads. On the other hand, when
the communication thread is not assigned a dedicated
core (CT-SH), performance degrades by up to 44.2%.

The polling-based event notification (EV-PO) mech-
anism yields slightly lower performance improvements
than CT-DE (9.25%, 13.5%, 10.5% and 19.7%) for the
four node counts. This is caused by computation tasks
in HPCG delaying the polling for MPI events, and
thus delaying communication. Hence, benefits of event
notifications are sometimes neutralized by the lack of
progress. With software callbacks we are able to unlock
the tasks as soon as the events arrive and performance
improvements rise to 17.4%, 21.7%, 19.0% and 27.4%
respectively. Hardware-based support for event detec-
tion and triggering of callbacks (CB-HW) is further able
to overcome the delays due to long running computa-
tion tasks and improves performance by 23.5% 27.6%,
24.3% and 35.2% (up to 9.5% over CT-DE). In CB-HW,
as soon as an MPI_T event occurs, the associated task
becomes ready for execution. Moreover, small granular-
ity of the tasks doing the pre-conditioning of the matrix
require communication to be done as early as possible,
thus improving the performance over the baseline as
the node count increases.

The time spent in communication in HPCG is ap-
proximately 10.7% of the total time executing MPI calls
without event notification. This time is reduced to 3.6%
when using callbacks as the delivery mechanism. This
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Fig. 10: Speedup for 2D FFT and 3D FFT over a
baseline implementation on 128 nodes.

is due to MPI calls being only invoked when the as-
sociated event has arrived, and effectively minimizing
waiting time. Moreover, as only ready MPI calls are ex-
ecuted, the time that was spent on checking the status
of MPI requests is now devoted to computation leading
to the aforementioned speedups.

Figure [0 (b) shows similar trends for MiniFE
as HPCG. The key difference is that due to the
smaller granularity of computation tasks in MiniFE,
the polling-based event notification (EV-PO) is able
to outperform the scenario with a dedicated com-
munication thread (CT-DE). Aided by the relatively
shorter delays for polling, the improvements for EV-
PO are 22.5%, 18.6%, 17.5% and 19.2% in compari-
son to 12.2%, 9.5%, 10.3% and 13.0% for CT-DE. As
was the case for HPCG, the presence of hardware sup-
port for callbacks further improves the performance and
achieves speedups of 28.4%, 24.6%, 22.8% and 25.2%
over the baseline and up to 16.3% over CT-DE. The
lack of a pre-conditioner in MiniFE yields a lower com-
munication frequency than HPCG, which does up to 11
neighbor communications per iteration, while MiniFE
only does one. This lower communication/computation
ratio translates into a constant scalability over the base-
line for all node counts. Finally, similarly to HPCG, the
baseline time spent in communication is 11.8% of the
total execution time and is reduced to 3.3%.

Regarding the overheads of polling and callback
based approaches, the average time spent polling for
events is 9x and 15x that of callback for MiniFE
and HPCG respectively, with polling happening around
100x more times than callbacks in both benchmarks.

5.2 Results for Collective Benchmarks

In this section, we evaluate the performance impact of
the mechanism described in Section [3:4] for exposing
the potential overlap of computation tasks with MPI
collectives.

5.2.1 Fast Fourier Transform

Similar to the point-to-point benchmarks, we compare
the performance of 2D FFT and 3D FFT benchmarks
for executions in the same five resource-equivalent sce-
narios and present speedup against the baseline execu-
tion on 128 nodes. For 2D FFT, we use square matrices
of input sizes ranging from 16384 x 16384 to 262144 x
262144, and cubic volumes of sizes 10243, 20483, and
4096° for 3D FFT.

Since our experimental results did not show signifi-
cant performance differences between the three event-
based scenarios (EV-PO, CB-SW and CB-HW), we
only present representative results for CB-SW. These
equivalent performance results, as we will show in this
section, are caused by the fact that collective calls only
block a single worker thread per process. Hence, other
worker threads are readily available for either polling
MPI for events or executing callbacks in software.
Thus, all event-based scenarios are able to promptly
handle events and therefore provide equivalent perfor-
mance. Further, since the performance for the scenario
in which the communication thread shares cores with
worker threads (CT-SH) never outperforms the scenario
in which the communication thread is assigned a dedi-
cated core (CT-DE), we do not show results for CT-SH.

Figure shows that CT-DE consistently performs
slightly worse (~4.0%) than the baseline approach for
the 2D FFT benchmark. This is because, with CT-DE,
the communication thread does not execute computa-
tion tasks once the collective communication finishes,
and thus negatively impacts performance. In contrast,
CB-SW consistently outperforms the baseline, and pro-
vides a maximum 26.8% performance gain for the ma-
trix size 65536 x 65536. The average improvement of
CB-SW for 2D FFT considering the five different input
data sets is 21.9%.

To illustrate the reasons behind the significant per-
formance improvements achieved by the CB-SW, Fig-
ure 11| presents 2D FFT parallel runs over the baseline
and the event-based communication regime. Figure
(a) shows that all computation tasks need to wait for
the MPI_Alltoall to finish before they can be executed.
In contrast, Figure[L1| (b) shows that event-based noti-
fication results in some computation tasks executing as
soon as the necessary input data is received for them.
As a result, we are able to overlap computation tasks
which can be executed with the MPI_Alltoall that is
in progress.

Results for 3D FFT are displayed in Figure
(b).  Since the 3D FFT benchmark invokes two
MPI_Alltoall operations instead of one in 2D FFT, it
exposes more opportunities for overlapping computa-
tion with the collective calls. Therefore, the CB-SW ap-
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Fig. 11: Parallel execution traces showing the ef-
fect of collective-computation overlapping
2D FFT. Same time range is shown for
both figures. A single MPI process and its
threads are shown for the sake of clarity.

proach achieves higher performance improvements for
3D FFT. Overall, CB-SW provides 21.2% average im-
provement, with a maximum improvement of 34.5% for
the 4096> sized volume. In contrast, dedicating a core
for the communication thread (CT-DE) degrades per-
formance by 9.8% on average in comparison to the base-
line approach.

In summary, the event-based exposure of a collec-
tive’s progress effectively enables an overlap between
computation and collective operations in both 2D FFT
and 3D FFT, thus providing substantial performance
gains.

5.2.2 MapReduce

Next, we evaluate the effect of overlapping computation
with MPT collectives for the MapReduce framework.
We experiments with two applications: Word Count
(WC) and a dense Matrix Vector product (MV). Fig-
ure [[2] shows the speedup results for both applications
over a baseline implementation.

For the WC application, CB-SW provides 7.2% im-
provement on an average, and a maximum gain of
10.7% for a dataset consisting of 262 million words. In
this application, reduce operations are extremely small
as they only increase the counter associated with the
key. Consequently, as the size of the dataset grows, the
map tasks consume a higher proportion of the runtime.
As a result, the impact of computation-communication
overlap decreases, and the performance gains reduce to

(a) Speedup of Word Count

(b) Speedup of Matrix Vector Product

|4 - CT-DE = CB-SW B
1.2
o |
=]
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o
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262M 524M 1048M Avg. 10242 20482 40967 Avg.
Number of words Matrix size
Fig. 12: Speedup for the MapReduce-based Word-

Count (WC) and dense Matrix Vector
product (MV) benchmarks with different
problem sizes.

4.9% for a dataset of 1048 million words.

Unlike the WC application, in the MV application, a
similar amount of time is spent in the map and the
reduce tasks. This translates to higher impact due
to dedicating a thread to communication as well as
enabling computation-communication overlap for the
reduce tasks. For CT-DE, the inability to use the
communication thread to execute tasks degrades per-
formance up to 10.7%. In contrast, performance im-
provements, ranging from 17.4% to 31.4% are obtained
as CB-SW enables overlap of reduce tasks with the
MPI_Alltoallv collective executed for aggregating keys
across processes.

5.2.3 Scalability of Collectives Benchmarks

The results presented in this section are obtained using
128 nodes. We have performed weak-scaling experi-
ments on 16, 32, and 64 nodes and have verified that
the speedup trends among the different input-sets cor-
relate in all scenarios with performance differences of at
most 4.0% in the case of the FFT 3D application. This
allows us to conclude that the collective overlapping
benefits hold regardless the node count.

5.3 Comparison with Task-Aware MPI
Library

Task-Aware MPI Library (TAMPI) [20] pro-
vides MPI with a new level of threading support
MPI_TASK MULTIPLE. TAMPI works by intercepting
blocking calls to MPI inside tasks and converting them
to the non-blocking versions. The task execution is
suspended and the MPI_Request object is added to a
waiting list. This list is iterated by the workers in
between task executions polling every request with the
MPI_Test call and tasks whose requests have completed
are rescheduled to keep executing. The key difference
is that TAMPI polls every active request while our
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Fig. 13: Performance comparison of our best per-
forming proposal with TAMPI for every
benchmark using 128 nodes

proposal only reacts to requests where the MPI layer
notifies progression.

Figure [[3] shows a performance comparison of our
proposed approach with TAMPI using 128 nodes. Re-
sults with other node counts show similar trends. For
point-to-point benchmarks with a high communication-
computation ratio such as HPCG, the worker threads
iterate over the list of requests several times delaying
the execution of useful computation by polling the sta-
tus of requests with no changes. Hence, for HPCG,
TAMPI performs 1.5% below the baseline. However, for
benchmarks with a lower communication-computation
ratio such as MiniFE, TAMPI is able to perform well
yielding a speedup of 18.7% compared to 25.2% ob-
tained by using MPI_T events. The relatively high
computation time compared to communication allows
a better overlap of the request polling with the compu-
tation task execution.

For the collective benchmarks in Figure TAMPI
performs exactly as the baseline solution. TAMPI
makes use of MPI calls to test for request completion,
but it has no means of accessing information about the
partial completion of collectives. This makes TAMPI
unable to overlap collective communications with tasks
as proposed in this work.

6 Related work

Marjanovic et al. [22] present one of the first works
focused on the interoperability of a task-based asyn-
chronous programming models, such as OmpSs, with
MPI. Chatterjee et al. [6] goes one step further and in-
tegrates MPI within Habanero providing wrapped MPI
calls that the runtime system executes asynchronously
in dedicated communication threads. The proposed
work builds on top of these ideas to make the interac-
tion more efficient. Jain et al. [I6] present mechanisms
to interoperate MPI and Charm-++, and focus on ap-
plication modules written in these models. In contrast,
the proposed work is on the use of MPI as a communi-
cation interface by task-based models.

Kamal et al. [I8] make use of User Level Threads
(ULT) in the MPICH 2 [12] to build an MPI-aware
scheduler for coroutines that are swapped in and out for
execution depending on the status of the MPI runtime.
Lu et al. [21] follow a similar approach by doing the con-
text switch of ULT's inside the MPI to avoid the expen-
sive MPI locking operations. Stark et al. [30] integrate
MPI with Qthreads and convert blocking MPI calls to
non-blocking calls, using their status to drive the sched-
uler. Labarta et al. [20] present the Task-Aware MPI
library (TAMPI), a similar approach to improve the in-
teroperability between MPI and OmpSs. Our proposal
differs from all these approaches in its use of events
and mechanisms for exposing those events to an inde-
pendent task-based runtime system. TAMPI intercepts
blocking calls to MPI and converts them into their non-
blocking counterpart. The TAMPI library then period-
ically polls for the completion of the MPI calls and en-
sures correctness. However, TAMPI is limited to point-
to-point communications and requires periodic polling,
which affects overall performance as shown in the pre-
vious section.

In MPI 3.0, collective and computation overlapping
is achieved through the use of non-blocking collec-
tives [15]. However there is no mechanism to perform
computation on the partial data already received, al-
lowing only unrelated computation to be done in par-
allel.

Overall, the proposals in this paper enhance the
interoperability between MPI and asynchronous task-
based programming models that require explicit com-
munication calls in the application code, such as
OpenMP 4.0 [23], OmpSs [10], Codelets [32], Ha-
banero [26], and StarPU [2]. For other programming
models such as Cilk [4] and TBB [24], since they do not
support data-flow annotations, collective overlapping is
not easily attainable. Legion [3] and HPX [17] hide
the communication from the programmer by delegating
that responsibility to their runtime, while Charm++ [I]
provides its own active message-based communication
semantics. These runtimes can also benefit from our
proposal of exposing MPI internals when built on top
of MPI.

7 Conclusion

In this paper, we explored mechanisms to optimize over-
lap between computation and communication in asyn-
chronous task-based programs executing on distributed
memory systems. By exposing information about MPI
communication events through the MPI_T events inter-
face to a task-based runtime system, we significantly
reduced idle time caused by waiting on specific MPI
requests for point-to-point operations. We also pro-
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posed a novel scheme to overlap communication with
computation on partially received data from collective
operations. Our detailed evaluation on a production
system provided performance improvements of up to
16.3% in benchmarks with point-to-point communica-
tion patterns, and of up to 34.5% in benchmarks with
collective communication. Overall, our approach pro-
vides a transparent solution that requires no changes
to the source code of an application programmed in
OmpSs and MPI, yet improves its performance by bet-
ter exploiting the overlap of computation and commu-
nication in such asynchronous task-based programming
models.
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