
DEEPCODE phase 1: Defining optimised compiled
language for Code-set Summarization

A Degree Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de
Barcelona

Universitat Politècnica de Catalunya

by

Miquel Puig i Mena

In partial fulfilment

of the requirements for the degree in

 TELECOMMUNICATIONS TECHNOLOGIES AND

SERVICES ENGINEERING

Advisor: Jose Antonio Lazaro Villa

Barcelona, January 2020

Abstract

Yet being immersed in the globalisation era, we can still perceive isolation and
rivalry between software developing teams that share ambitions.

Regardless of the nature of the research, a common denominator can be spotted:
they all try to get the best existing ideas on the field and apply some new improvement/s
that makes their own implementation the best in a specific set of “tangible” aspects (i.e.
performance, efficiency).

Nonetheless, DeepCode proposes a cooperation between parties in order to
achieve greater results. DeepCode is a tool that, by processing a data-set formed by
source codes representations performing a generic task A, learns how to implement task
A and outperform every individual from studied data-set. Given the complexity of
DeepCode, two stages are defined: Phase 2, that, with artificial intelligence techniques,
learns which ideas in the data-set imply good code performance and Phase 1, which
studies and builds customised code representation in order to provide phase 2 an
optimised and workable data-set.

2

Resum

Tot i viure en l’era de la globalització, encara podem percebre cert aïllament i
rivalitat entre equips de desenvolupament de software què comparteixen objectius.

Per a una reserca genèrica, un comú denominador pot ser detectat: tots intenten
filtrar les millors idees del camp en qüestió i aplicar-ne noves millores què fagin de la
seva implementació la millor del mercat en un seguit d’aspectes «tangibles» (i.e.
rendiment, eficiència).

No obstant, DeepCode proposa una cooperació entre rivals per aconseguir
resultats més trascendents. DeepCode és una eina què, processant un data-set format
per codis fonts què executen certa tasca A, aprèn com implementar esmentada tasca A i
aconseguir resultats superiors a qualsevol individu en el data-set. Donada la complexitat i
natura de DeepCode, dugues fases són definides: Phase 2, què, amb capes d’AI, aprèn
quines idees en el data-set comporten bons resultats; i Phase 1, què estudia i munta una
representació original del codi font amb l’objectiu de proveïr la Phase 2 un data-set
procesable i òptim.

3

Resumen

Aún viviendo en la era de la globalización, podemos percibir cierto aislamiento y
rivalidad entre equipos de desarrollo de software que comparten objetivos.

Para un estudio genérico, un común denominador puede ser detectado: todos
intentan filtrar las mejores ideas del campo en cuestión i aplicarle nuevas mejoras que
hagan de su implementación la mejor del mercado en un seguido de aspectos
«tangibles» (i.e. rendimiento, eficiéncia).

No obstante, DeepCode propone una cooperación entre rivales para lograr
resultados más trascendentes. DeepCode es una herramienta que, procesando un data-
set compuesto por códigos fuente que ejecutan cierta tarea A, aprende como
implementar dicha tarea A y consigue resultados superiores a cualquier individuo en el
data-set. Dada la complejidad y naturaleza de DeepCode, dos fases son definidas:
Phase 2, que, con capas de inteligéncia artificial, aprende que ideas en el data-set
conllevan buenos resultados; y Phase 1, que estudia i monta una representación original
del código fuente con el objetivo de proveer a la Phase 2 un data-set procesable y
óptimo.

4

Revision history and approval record

Revision Date Purpose

0 01/12/2019 Document creation

1 dd/mm/yyyy Document revision

DOCUMENT DISTRIBUTION LIST

 Name e-mail

 Miquel Puig i Mena miquel.puig.mena@estudiant.upc.edu

 Jose Antonio Lazaro Villa jose.lazaro@tsc.upc.edu

Written by: Reviewed and approved by:

Date 01/12/2019 Date dd/mm/yyyy

Name Miquel Puig i Mena Name Zzzzzzz Wwwwwww

Position Project Author Position Project Supervisor

5

Table of contents

Abstract ... 2

Resum ... 3

Resumen ... 4

Revision history and approval record ... 5

Table of contents ... 6

List of Figures .. 8

List of Tables ... 9

1. Introduction .. 10

1.1. Project scope .. 11

1.2. Phase 1: Defining optimal compiled language for Code-set Summarization 12

1.2.1. Statement of purpose ... 13

1.2.2. Requirements and specifications .. 14

 1.2.3. Work plan and milestones ... 15

 1.3. Deviations and incidencies ... 16

2. State of the art of the technology used or applied in this thesis 17

3. Methodology .. 18

 3.1. Architecture ... 18

 3.2. Building source code data-set ... 19

 3.2.1. Gathering the data-set with web scraping tools ... 19

 3.2.2. Homogenising a data-set under the same distribution & labeling the data-set 20

 3.3. Building custom AST data-set from source code data-set 21

 3.3.1. Gathering a the Abstract Syntax Tree ... 22

 3.3.2. Traversing the AST ... 22

 3.3.3. Filtering nodes .. 23

 3.3.3.1. Disallowing aliases .. 23

6

 3.3.3.2. Minimizing number of entities in AST .. 23

 3.3.3.3. Minimizing number of nodes in AST .. 24

 3.3.4. Enriching the AST ... 24

 3.3.4.1. Discriminating method calls .. 24

 3.3.5. Representing the customised AST .. 24

4. Results ... 25

 4.1. DeepCode Phase 1 Evaluation ... 25

 4.1.1. Custom & simple test code ... 25

 4.1.2. Custom & complex test code .. 26

 4.1.3. T ransforming a 10k files data-set .. 26

 4.2. Evolution of a singular source code sample .. 27

5. Budget ... 29

6. Conclusions and future development ... 30

Appendices .. 32

1. DeepCode Phase1: Compilers approach ... 32

2. Grouping strategy from Python’s original entities ... 39

3. Web scraping HackerRank’s “Capitalize!” challenge .. 42

4. H omogenising and labeling source code data-set ... 46

4.1. Implementation: h omogenising data-set .. 46

4.2. I mplementation: homogenising, profiling, and labeling source code 47

5. Implementation evaluation tool .. 49

Glossary .. 52

7

List of Figures

Illustration 1: Architectural schema representing DeepCode's full scope. Notice the
contribution provided by each phase of DeepCode to the full project. Input of phase 1 is a
data-set formed by text source code samples and it’s output is an optimised data-set....12

 Illustration 2: GANTT diagram depiciting mimlestones followed while building DeepCode
phase 1: Defining optimal compiled language for Code-set Summarization....................16

 Illustration 3: Left screen contains a view of "Capitalize!" challenge explanation at
hackerrank platform. Right screen depicts the set of solutions DeepCode is interested in.
.. 19

 Illustration 4: Representation of test code (Code 1) as AST...21

 Illustration 5: Representation of test code(Code 1) as cAST...21

8

List of Tables

Index of Tables

Table 1: Milestones of DeepCode phase 1: Defining optimal compiled language for Code-
set Summarization...15

Table 2: Project cost..29

Index of Graphs

 Graph 1: Accumulation of number of entities seen in each sample in the data-set.........26

 Graph 2: Accumulation of number of nodes seen in each sample in the data-set...........27

Index of Codes

Code 1: Snippet of code chosen to depict a generous example that includes: Disallowing
Aliases (Section 3.3.3.1), Minimizing number of Entities (Section 3.3.3.2), Minimizing
number of Nodes (Section 3.3.3.3), Discriminating method Calls (Section 3.3.4.1), and
Representing the cAST (Section 3.3.5)..22

Code 2: Random code peeked from gathered data-set under the same distribution.This
sample achieves a maximum score at HackerRank platform...27

Code 3: AST build by Python’s core compiler from source code at Code 2.....................28

Code 4: cAST build by Python’s core compiler from source code at Code 2...................28

Index of Evaluations

Evaluation 1: Analysis extracted from Deepcode phase 1 evaluator logs. Notice that AST
is formed by a total of 22 nodes with 13 different entities while cAST cuts it up to 15
nodes representation including only 9 different entities..25

Evaluation 2: Analysis extracted from Deepcode phase 1 evaluator logs. Notice that AST
is formed by a total of 1151 nodes with 55 different entities while cAST cuts it up to 865
nodes representation including 51 different entities...26

9

1. Introduction

This project is carried out both at the Computer Science and Language
Technology departments in Lunds Tekniska Högskola (LTH) in colaboration with
Universitat politècnica de Catalunya (UPC). This project is based on the previous
theoretical courses Language Technology (EDAN65, LTH) and Compilers (EDAN20,
LTH) from same LTH. Combination of knowledge gained in listed courses, leads to a
solid background to use as a base point in order to complete Project in computer science
(EDAN70, LTH) and author’s bachelor thesis at UPC.

After an intense week coursing a Cybersecurity program (NeCS PhD School)
mainly focused in Deep Learning applications for cybersecurity, my colleague, Marc Roig
Lama, and I came up with an original idea, DeepCode.

While waiting at Mezzocorona’s train station, we were talking about how we face a
new project implementation when we realized that a systematic process was always
followed, regardless of project’s background. Research similar implementations within the
community, discriminate best implemented ideas, build skeleton from seen concepts and,
finally, fit it to own project’s demands. Why not bulk a great amount of data and let
Artificial Intelligence (AI) make the process of understanding where the good ideas are?
Why not let AI build an original sample summarizing all individuals in the data-set?

It is my personal job to develop the system from scratch by myself but originality
custody is shared by Marc Roig and me. To guide and help I’ll be backed by Görel Hedin,
from LTH’s Computer Science department, Pierre Nugues, from LTH’s Language
Processing department, and José Antonio Lázaro, from Signal Theory and
Communications department at UPC.

10

1.1. Project scope

Coders, Group of coders, Departments, Companies or Group of companies
compete every day to get the most efficient algorithm for a specific problem. Regardless
of the nature of the research, a common denominator can be spotted: they all try to get
the best existing ideas on the field and apply some new improvement/s that makes their
own implementation the best in a specific set of “tangible” aspects (performance,
usability, efficiency, etc.). In that sense, enormous amount of time and effort is spent by
each researcher analyzing and mastering the field. Additionally, told hypothetical
researcher won’t have any kind of assurance that a competitive approach has been
discarded during the process of mastering.

In this thesis, DeepCode phase 1: Defining optimal compiled language for Code-
set Summarization is presented. Naturally, this thesis is a partition of a bigger project:
DeepCode.

DeepCode is an innovative tool that will try to auto-generate unique and original
code. DeepCode system aims to generate code that solves a generic task A by learning,
from a large set of different codes, data-set, how to solve task A. Notice that each
element in the data-set tries, as well, to solve task A. Therefore, the concept data-set
under same distribution, references a group of different code implementations that
perform the exact same job such as compressing a file, processing a signal or solving
mathematical paradigms. Furthermore, DeepCode’s potential innovative objective is the
ability to overcome best test-performance reached by any individual from the data-set it’s
been learning from.

Given the complexity and nature of DeepCode, two stages are defined: phase 2,
that, with Artificial Intelligence (AI) techniques, learns which ideas in the data-set imply
good code performance and phase 1, which studies and builds customised code
representation in order to provide phase 2 an optimal and workable data-set. This thesis
is exclusively focused in first task of the process while second task is proposed as future
work. Consequently, the objective of this thesis is to build a manageable data-set under
the same distribution.

1.2. Phase 1: Defining optimal compiled language for Code-set Summarization

Building and normalizing a data-set can be very tedious and time consuming.
However, all the results achieved by subsequent layers will directly depend on the quality
of that same data-set.

This subsection deeply describes phase 1 of DeepCode but not phase 2.
Nevertheless, phase 2 is relevant for this section since it defines what kind of
transformation has to be applied to the source code data-set in order to accomplish future
intelligent decisions (See architectural model of DeepCode in Illustration 1).

In that sense, this section introduces an original code representation to be utilised
afterwards by artificial intelligence processes.

11

1.2.1. Statement of purpose

Most generally, source codes, irrespective of it’s original language, can be
represented in lower abstractions levels. From machine code 1, unintelligible from human
perspective, until low level code such as Assembly. For DeepCode’s purposes, a middle
level representation of source code must be designed. Such intermediate depiction of the
code will permit any data-set under the same distribution to be homogenized, allowing,
this way, to make fair comparisons among code samples under the same distribution.

Since source code can be ambiguous from a machine’s point of view (i.e., In Java
code, ‘+’ symbol can be a sign of mathematical summation and a key word that
concatenates Strings), a formal analysis has to be performed against the source code in
text format by a compiler.

Simplistically, a compiler for a specific language will find language’s accepted
corpus, this action is referenced as tokeninzing. This way, every single word in the source
code is categorised as a functionallity of the language. Notice that if some part of the

1 Machine code, also called machine language, is a computer language that is directly understandable by a computer’s
Central Processing Unit (CPU), and it is the language into which all programs must be converted before they can be run.
Each CPU type has its own machine language, although they are basically fairly similar.[Pro06]

12

Illustration 1: Architectural schema representing DeepCode's full scope.
Notice the contribution provided by each phase of DeepCode to the full
project. Input of phase 1 is a data-set formed by text source code samples
and it’s output is an optimised data-set.

code could not be categorised, an error will be rised. Furthermore, an Abstract Syntax
Tree[JON03] (AST) format is build by relating found tokens in a tree manner structure.

Aforementioned analysis follows a methodology composed by following steps:

• Lexical Analyzer *

• Syntactic Analyzer *

• Semantic Analyser *

• Intermediate Code Generation *

• Optimizer

• Target code generator

* This set of operations were deeply studied during LTH’s EDAN65 compiler course.
Without this base knowledge it would be impossible to accomplish thesis’ objectives.

Concretely, at semantic analyzer layer, the system achieves a non-ambiguous
representation of a source code, AST. Generally, an AST abstraction format is fed to
subsequent compiler’s layers such as optimization of code or Assembly code generation.
For that reason, this work takes the AST representation as it’s baseline. Further designed
momdels will be build on top of the AST.

By default, in Python packages, an in-build Python compiler written in C
Programming language is included. Additionally, Python packages include in-build front-
end libraries enabling, from Python code itself, to access compiler’s internals. Among
other modules, ast front-end can be found, which converts a Python source code into it’s
AST representation. From ast object, a rich AST context is accessible, providing, this
way, a great entry point to customise a generic AST.

By DeepCode’s means, tree representation of the code (AST) is very profitable.
Due to time consuming processes in phase 2, every redundant information in the AST
must be eliminated. In other words, internal AST generated by the compiler includes
neglectable nodes from DeepCode’s perspective. In that sense, AST generated by the
compiler must be simplified as much as possible without loosing valuable information.
Moreover, additional important information can be appended to the original AST in order
to highlight assets in the code that are not conceived by the AST. Hence, a compression
followed by an enrichment strategy will satisfy sought middle level representation of
source code by this thesis.

Summarizing, DeepCode phase 1 suggests and provides a compressed and
enriched code representation of the AST. Furthermore, a python tool is created which
consists in gathering a data-set under the same distribution and homogenises the data-
set by applying the pre designed transformation to every sample in it.

1.2.2. Requirements and specifications

DeepCode phase 1 establishes a set of requirements and specifications for each
sub-division of the project. Listed below, project requirements by section:

A) Code-set retrieval formed by samples of different coding languages:

I. List of accepted coding languages for the data-set.

13

• LLVM compiler for C language has been deeply studied but difficulties
where encountered while developing applications on top.

• For simplicity’s sake, only Python2.X and Python3.X files will be taken into
account when building the data-set.

II. Build data-set of N samples from online open coding challenge platforrms.

• Extraction of data-set is performed via HackerRank2 platfrom with the help
of an original web parsing tool.

• Selenium v3.141.0 for python3.6 is utilised in order to build web parsing
tool.

B) Test code performance:

I. Formatting samples in data-set in a manner that they all provide same
functionallity.

• File text transformation with the help of Python's regex v2019.8.19
package.

II. Define set of tests to grade each individual sample inside the data-set.

• Automation of tests performed by custom cycle code in python3.6.

C) Code normalization:

I. Define optimal custom compiled form for future analytics processes.

• Usage of python's inner compiler. Concretely, python3.6 ast front-end.

II. Homogenize Code-set with custom source code representation.

• Transformation of source code implented in python3.6 and backed in
following packages:

i. json5 v0.8.5

ii. argparse v1.1

iii. logging v0.5.1.2

1.2.3. Work plan and milestones

The project is an original implementation, desgined and build from scratch. For
that reason, biggest block of hours are computed under study and implementation tasks.
Due to deviations during the project, knonwledge used in Task 0, Natural Language
Technology, has not been directly applied in the project. However it has been incredibly
important in order to decide final asset of the project.

2 HackerRank is a very well known online coding challenge platform. Find it at
https://www.hackerrank.com.

14

Task # Task name Task type Start date End date Hours
0 Natural Language

Technology
Study 01/09/2019 25/11/2019 60

1 Compiler
Research

Study 01/09/2019 25/11/2019 100

2 Define optimal compiler’s
output format for Phase 2

Design 25/10/2019 25/11/2019 40

3 Gathering the
data-set

Implement 01/11/2019 25/11/2019 20

4 Testing and profiling
the data-set

Implement 15/11/2019 30/11/2019 40

5 Customizing
compiler

Implement 01/11/2019 31/12/2019 80

6 Applying customisation to
data-set

Implement 25/12/2019 05/01/2020 40

7 Compiler
Documentation

Writing 15/12/2019 15/01/2020 70

Table 1: Milestones of DeepCode phase 1: Defining optimal compiled language
for Code-set Summarization.

1.3. Deviations and incidencies

My first intention was to build from scratch DeepCode. Luckily, by advise of
Professor Pierre Nugues from LTH, I decided to present a theoretical approach of
DeepCode phase 2 while optimising the data-set presentation and truly understanding

15

Illustration 2: GANTT diagram depiciting mimlestones followed while building
DeepCode phase 1: Defining optimal compiled language for Code-set
Summarization.

the potential of posessing a high quality set of data. Project proposal and workplan was
agreed according to aforementioned status.

The first introduction to EDAN65 compilers course at LTH, was useful in order to
recognise the considerations I had to take in order to achieve a good solution. However, I
discovered that the complexity was higher than expected and not much previous work
existed to rely on. In that sense, design of customised representation of the AST took
more than expected and delayed following tasks.

EDAN70 project in computer science included in it’s agenda a release
implementation of the tool and an academic paper describing such tool that had to be
delivered. Due to my unexperience in both, tagging a final release of an implementation
with it’s formalities and writing a paper, vast amount of time was consumed in this stages.
Consequently, author decided to focus exclusevly in the process of building a data-set
and provide a tool capable of gathering a data-set under the same distribution and
optimise it from the point of view of future artificial intelligence layers.

Concluding, final work plan was deviated from author’s first idea by only
conceiving the formation of an optimised data-set. Hence, the author will propose second
phase of DeepCode for future research.

2. State of the art of the technology used or applied in this thesis

Source code analysis has drastically evolved since AI's reborn. While code
processing tools were exclusively based in complex and deterministic techniques, AI
provides another dimension to existing tools. By gathering information from user
experience, AI enables code processing tools to optimize itself on the fly. Currently,
there's a big interest and investment from a well established community. Specifically, a
big effort is invested by Integrated Development Environment (IDE) and code analysis
applications such as bug finders or providing interesting and personalised hints while
coding.

 [APS16] provides a brief text summary of what an inputted code intends to do
while [ABS14] provides a tool to learn which non-written conventions and patterns are
followed by developers. Both studies have in common that they treat source code as
simple text instead of utilising standardised representations such as ASTs or machine
code.

Furthermore, finest results were achieved by studies utilising abstracted
representations of source code. Code clone detection application [Whi+16] overcame
state-of-the-art of the moment by extracting AST of it's source code data-set.

An original suggestion is found in [Moub+14], where they propose an encoded
version of the AST based in [Moua+14], that converts tree structures in vectorised
information. Great improvement on bug localisation was achieved by [Lia+19] by adopting
the program representation proposed by [Moua+14]. Additionally, [Lia+19] included the
concept of compressing the AST as much as possible in order to facilitate AI layers to
complete their job with optimal results. In consequence, [Lia+19] is used as the
inspiration to fulfil project’s objectives.

Commonly, each programming language has it’s own AST generator engine and,
in many cases, more than one. This paper attempts to corroborate that an intelligent filter
in current Python AST can be extremely beneficial for post processing techniques.

16

Low Level Virtual Machine[LA04] (LLVM) is a compiler framework that uses a
build in intermediate human readable code language with slightly higher level
abstractions than Assembly. Although LLVM code can be written from scratch, it's typical
to produce it when compiling source code, as intermediate step for code optimization
layers and/or optimal machine code generation.

Clang project provides a language front-end and tooling infrastructure for
languages in the C language family for the LLVM project[UCa]. Clang is an open source
project well established in the community, having up to 79k commits by the time this
report is written. Although Clang is backed by a huge community and provides reliable
services, this paper will choose python compiler[PDCc], a less complex compiler engine
system that demands less time to familiarise with.

3. Methodology

Arrived to this point, the project has been introduced and contextualised. This
work can be divided by independant modules that sequentially communicate with each
other. Hence, this section describes in a technical manner how each functional block in
the system is build.

3.1. Architecture

Within DeepCode's scope, DeepCode phase1 commences once the text data-set
is assembled (See architectural depiction at Illustration 1). For that reason, first stage
involved would be how the data-set under the same distribution is gathered. From this
point on, the reader should assume that the data-set formed by text source codes
performing task A is accessible.

A data-set gathered from a code challenge platform is very useful but, some
homogenisation processes need to be applied before continuing. The implementation has
to be sure that every or most of the individuals in the data-set follow a similar schema. In
other words, given two samples that are supposed to solve task A in a correct manner,
they should be able to do it by being triggered with the same command. For that reason,
second challenge for the project has been accomplishing an homogenised data-set under
the same distribution.

Thirdly, each source code must be scored with a value from 0 to 1 where 1 is
maximum score. To achieve so, this thesis analyses two parameters: score provided by
the coding challenge platform and an average execution time for N executions of the
sample. Notice that a unit test has to be defined for task A in order to extract an average
execution time of the sample. Reached this stage, the homogenised data-set under the
same distribution has been labeled.

Source code in text format has to be transformed to customised AST
representation. Proposed tool by this report handles each element in the source code
data-set individually. In this regard, the tool has been developed so it takes a single file

17

as input and applies a set of transformations so it can output an optimised version of
Python’s AST.

Python's inner compiler engine produces an AST that will be trust and used by
subsequent modules. Such dependency on Python's compiler core can be assumed
given the reliability provided by the existence of a vast community along Python itself
using it massievly.

Parallel, python's engine is bound to report's tool in a way that AST context is
shared and accessible. Thereafter, every node in retrieved AST is traversed following a
visitor strategy in order to forge pursued custom AST (cAST). While visiting a node,
DeepCode phase 1 implementation decides which information is relevant from that node,
if any at all, and persists it in the cAST. Notice that personalised tree carries a one to one
connection between cAST nodes and their AST node pair. Concluding, fourth stage is the
actual transformation of source code to cAST.

Finally, DeepCode phase1 application grants to the user the functionality to store
or output created cAST in diverse formats. This report contemplates JSON, encoded
JSON3 (eJSON), or pickle format (PyPickle) to be shown at console or saved in a file.

3.2. Building source code data-set

By all means, most important step to keep the project rolling is to build a suitable
data-set under the same distribution. Such task is not trivial and can be attacked from
many points of view.

Nowadays enormous amount of implementations are hosted in Git based tools.
Even though it could seem like a feasible source of codes, it complicates the scraping
process since it’s challenging to filter task A from a massive Git tool based like Github. In
consequence, deeper study in the field was needed in order to find an online platform that
groups numerous sample of codes by it’s intrinsic objective. Happily, online coding
challenge platfroms were encountered.

Online coding platforms consist in uploading a list of challenges with different
difficulties that any subscribed user can solve and, afterwards, share it’s solution.
Additionally, most of the platforms allow non-premium users to see all the solutions
uploaded by other people for a certain task A.

3\ Encoded JSON directly depends in final global DeepCode data-set. Depending in the
different node entities sighted in data-set, the eJSON will cipher accordingly.

18

3.2.1. Gathering the data-set with web scraping tools

Next step must be which platform will be scraped according to the strategy of
gathering the data-set under the same distribution from an online code challenge
platform. Several platforms are available but, because of author’s proximity,
www.hackerrank.com will be chosen. Notice that such platform doesn’t provide higher
quality than the rest. Nevertheless, they provide excellent services while being respected
and used by a large community.

A challenge within the challenge platform must be chosen. By thesis constraints,
only Python samples will be considered. Hence, due to numerous Python solutions in the
platform, “Capitalize!” challenge from www.hackerrank.com is selected. Notice that
mentioned challenge hosts up to 79k solutions.

Building a bot capable to extract every code sample in the challenge is not
straightforward. For that reason, the implementation relies in Selenium library. Selenium
provides a set of atomic methods which enables the developer to automate browser
searchs. In that sense, the web scraping module, tries to simulate a click on “View
solution” for every solution stored in aforementioned challenge. See Appendix 3 or visit
https://github.com/miquelpuigmena/DeepCodeDataset/blob/master/parser.py for actual
implementation.

Bot’s workflow starts by visiting the user name list of solutions available for that
challenge. Notice that maximum entries per page is 100 so, when the bot finishes a page,
it has to check wether it was in the last page or not and, if not, go to next page and redo
the same cycle. After some investigation, it was found that utilising the bot workflow
(browser click simulation) to visit a solution for each user name found ended up
overloading the webpage and loosing some code samples. However, a pattern when
calling the source code solution was spotted. In order to reach the actual solution, the

19

Illustration 3: Left screen contains a view of "Capitalize!" challenge explanation at
hackerrank platform. Right screen depicts the set of solutions DeepCode is
interested in.

https://github.com/miquelpuigmena/DeepCodeDataset/blob/master/parser.py
http://www.hackerrank.com/
http://www.hackerrank.com/

final link follows:
“https://www.hackerrank.com/rest/contests/master/challenges/ {challenge_name}/hackers/
{hacker_name}/download_solution”. Where challenge_name and hacker_name are
variables. Additionally, certain parameters had to be appended to the GET query like a
funcitonal cookie.

3.2.2. Homogenising a data-set under the same distribution & labeling the data-set

 Owning a full set of source codes that claim to perform task A is a magnific first
step. However, the application has to make sure that all source codes actually call the
implemented task by a generic user. In other words, it could be possible that a sample
was scraped but only a function definition is included in the file, without being called
nowhere.

To avoid such situation, an homogenisation action to each sample in the data-set
is performed. Aforementioned action consists in verifying if function call si present and, if
not, implant it to the code as text (find implementation at Appendix 4.1).

Next, source codes have to be tested and profiled. For this first approach, only
execution time is taken into account but, in function of task A being processed, might be
useful to include more measurements. Every individual in the data-set is tested N=10
times and an average time of execution is calculated. Subsequently, value representing
the execution time of the sample is ponderated with the score achieved at HackerRank
and extracted when web scraping it.

Finally, when every sample has been profiled and labled, it’s useful to normalise it
according to the values seen in the data-set. For that reason, a normalisation process is
applied taking the maximum and minimum profiled values. See full implementation at
Appendix 4.2 or visit
https://github.com/miquelpuigmena/DeepCodeDataset/blob/master/profiler.py for actual
implementation.

3.3. Building custom AST data-set from source code data-set

This section deeply describes meaningful steps involved in the transformation of
the data-set. Notice that told conversion is achieved by applying the same algorithm to
each sample inside the data-set, modifying, this way, each individual at a time. By the
end of this section, an optimised set of code representations for DeepCode will be
accessible. Refer to https://bitbucket.org/edan70/2019-deepcode-miquel/src/FinalB/ for
first release of the tool.

20

https://bitbucket.org/edan70/2019-deepcode-miquel/src/FinalB/
https://github.com/miquelpuigmena/DeepCodeDataset/blob/master/profiler.py
https://www.hackerrank.com/rest/contests/master/challenges/capitalize/hackers/
https://www.hackerrank.com/rest/contests/master/challenges/

In order to provide a better depiction of the optimisations suggested by this paper,
the reader can find AST's and cAST's final graphical representations (see Illustration 4
and Illustration 5 respectively) extracted from snippet of code (Code 1).

21

Illustration 4: Representation of test code (Code 1) as AST.

Illustration 5: Representation of test code(Code 1) as cAST.

3.3.1. Gathering the Abstract Syntax Tree

AST is a hierarchical representation of the abstract syntactic structure of source
code written in a programming language. Each node of the tree denotes a construct
occurring in the source code[JON03]. As stated in Section 2, state-of-the-art tools that
process source code utilise AST as their inputted data format.

This project only considers Python AST abstraction, constraining, this way, to only
take into account python source code.

Python's in-build front-end class ast hosts a method parse() which takes as input
a string and returns an AST tree object. Internally, ast.parse() method call
builtin.compile() including, as argument, _ast.PyCF_ONLY_AST. Stated constant implies
that only AST representation is calculated while other compiler computations are skipped
such as optimization filters.

Injecting ast's functionalities in report's tool is straight-forward by binding them in
code. Consequently, a fine AST object and it's context is reachable from DeepCode
phase 1's operations.

3.3.2. Traversing the AST

Multiple approaches to traverse trees are known. Concretely, this implementation
considers recursive visitors technique while other approaches such as AST
matchers[TEA] or cursor traversing[TEB] are also functional.

By visiting nodes, the reader should think of walking through each node in the
AST from north-to-south direction. For each encountered node, the node must be
analysed and, afterwards, visit() function called for every of it's childs.

Visitor class, inherited from ast.NodeVisitor, is defined. Among others, Visitor
implements visit_{NODE_ENTITY}() method for every conceivable node entity in the
AST. Moreover, given the case where a node entity couldn't match any pre-defined visit
method, generic_visit() will match as a last instance. Notice that latter visit method is
defined to provide robustness to the implementation and to apply a default logic.

22

Code 1: Snippet of code chosen to depict a generous example that includes:
Disallowing Aliases (Section 3.3.3.1), Minimizing number of Entities (Section
3.3.3.2), Minimizing number of Nodes (Section 3.3.3.3), Discriminating
method Calls (Section 3.3.4.1), and Representing the cAST (Section 3.3.5).

import pprint as alias_pprint

from src.my_pretty import
my_print

def foo(list1):

 for i in list1:

 alias_pprint(my_print(i))

Recursive traversal of nodes enables the Visitor class to build up the cAST and
provide access to it from other points of the implementation.

3.3.3. Filtering nodes

Selecting substantial information from a node is crucial in order to reach report's
goals. An intelligent filtering logic is applied in order to maximise compression of an AST
without loosing important information.

Filtering cycle will be prompt for each traversed node in the original AST.
Depending in node's entity and it's near context, different information will be persisted in
the cAST. Following, an overview of the filters considered by report's implementation.

3.3.3.1. Disallowing aliases

Aliases are extremely useful in terms of smoothing the readability of a source
code by humans. However, they add a counterproductive link between nodes inside the
tree which must be erased.

Visitor class keeps track of aliases assigned in source code and performs a
translation to it's original name when persisting information in cAST.

3.3.3.2. Minimizing number of entities in AST

Grouping related entities can be very productive for following processing
techniques. By minimizing the number of conceivable entities in the cAST, the natural
number of combinations that AI layers have to deal with will decay following Equation

Where N is the total number of entities and M is the amount of nodes the tree is
composed of.

Followed, a set of the most repeated groups:

• Loop group includes For, AsyncFor, and While node entities.

• Name group includes Name, and NameConstant node entities.

• Import group includes Import, and ImportFrom node entities.

• Op group includes BoolOp, BinOp, and UnaryOp node entities.

To see full grouping strategy for Python programming language, refer to Appendix
2 .

Grouping strategy entities entails a relative compression rate of expressions of
0.63 (27 AST expressions and 17 cAST expressions) and a relative compression rate of
statements of 0.7 (27 AST statements and 19 cAST statements). Notice that it doesn't
necessarily lead to an absolute compression rate as the ones stated before since
absolute compression rate directly depends on the probability of appearance of each
entity. provides absolute compression rates.

23

Number Combinations=NM

3.3.3.3. Minimizing number of nodes in AST

Naturally, compression can be achieved if nodes can be neglected without loosing
information.

This paper understands a negligible node as the ones that, once dropped, can be
re-injected again by deterministic means. For instance, a function Call node entity
emerges from an Expr node with no other substantial information from post processing
layers perspective. In this case, we can conclude that Expr node can be neglected from
the AST.

3.3.4. Enriching the AST

Yet an enrichment of the AST can contradict the goal of maximising the
compression of the AST, this report suggests that some extra information can be
exceptionally advantageous for DeepCode phase 2.

3.3.4.1. Discriminating method calls

Knowing the origin of a function call can be convenient in order to decide which
nodes should gain more attention or, even, to treat them differently. DeepCode phase 1
classifies method calls by the ones coming from a method system (SYS), the ones
created by the user (USR), and python buildins methods (NATIVE).

Firstly, the tool has to find potential python libraries accessible from the system.
Such non-trivial task is performed with the help of python's modulefinde package. Once
potential SYS and NATIVE method calls are constructed, it's a trivial problem of
classifying traversed nodes whose entities are directly related to method calls (e.g., call
or import nodes).

3.3.5. Representing the customised AST

Subsequent treatment of cAST by a generic group of consumers can be very
heterogeneous. From consumer's point of view, could be interesting to decide which
format the tool should output the cAST. Ergo, implemented tool offers three options to
specify application’s output format.

By default, JSON format is used, which fits the tree representation in to a JSON
object. Extending it, an encoded JSON representation can be demanded, which codifies
every node representation depending in the importance of such node in the global data-
set. In contrast, PyPickle option enables a way to output a python object representation
as a pickle representation.

Lastly, DeepCode phase 1 application allows the consumer to specify if chosen
cAST representation will be outputted in console or written in a file.

24

4. Results

A great asset was achieved in the form of a data-set of ~80k source code labled
samples represented with custom AST format. Even though the data-set was ready to
process, it was imposible to apply studied artificial inteleligence techniques due to lack of
time. For that reason, while phase 2 has been attacked from a theoretical point of view
only Phase 1’s results were performed .

4.1. DeepCode Phase 1 Evaluation

The experiments and evaluations are sequentially divided and sorted by
increasing significance to the report.

4.1.1. Custom & simple test code

In order to provide an specific example for each of report's implementations,
custom source code (Code 1) is analysed. Illustration 4 represents the original AST while
Illustration 5 illustrates the transformation applied by DeepCode phase 1's core.

Utilising DeepCode phase 1's analysis tool (See Evaluation 1) the report defines
that it's been achieved a compression rate of rate_entities=0.692, and rate_nodes=0.682.

25

Evaluation 1: Analysis extracted from Deepcode phase 1 evaluator logs. Notice
that AST is formed by a total of 22 nodes with 13 different entities while cAST
cuts it up to 15 nodes representation including only 9 different entities.

DeepCode - Evaluation - INFO - Analysis AST:
total_entities=13, total_nodes=22

DeepCode - Evaluation - INFO - Analysis cAST:
total_entities=9, total_nodes=15

4.1.2. Custom & complex test code

Secondly, this paper tries to adjust difficulty of code by analysing a more
elaborated implementation. For that reason, big integer factorising algorithm4 implmented
in python is studied.

One more time, from DeepCode phase 1's analysis tool (See Evaluation 2), a
compression rate of rate_entities=0.927, and rate_nodes=0.751 have been reached.

4.1.3. Transforming a 10k files data-set

Finally, this report analyses AST transformation quality in a real data-set under the
same distribution. DeepCode includes a web parsing module in order to gather such
amount of data.

4 Find author’s big integer factorising implementation at
https://github.com/miquelpuigmena/cryptography/blob/master/factorising/factoring.py.}

26

Evaluation 2: Analysis extracted from Deepcode phase 1 evaluator logs. Notice
that AST is formed by a total of 1151 nodes with 55 different entities while cAST
cuts it up to 865 nodes representation including 51 different entities.

DeepCode - Evaluation - INFO - Analysis AST:
total_entities=55, total_nodes=1151

DeepCode - Evaluation - INFO - Analysis cAST:
total_entities=51, total_nodes=865

Graph 1: Accumulation of number of entities seen in each
sample in the data-set.

After studying and comparing every pair of AST and cAST from each individual in
the data-set, we can foresee promising results regarding the amount of needed nodes in
order to represent the same information (See Graph 2). In reference to number of
entities, a successful behaviour can be spotted (See Graph 1).

4.2. Evolution of a singular source code sample

In a random manner, a sample has been extracted from the data-set under the
same distribution performing the task “Capitalizing!” from HackerRank. This section
shows how the extracted source code evlves until it’s completely treated by the
application.

Firstly, the random sample that will be considered is:

27

Graph 2: Accumulation of number of nodes seen in each
sample in the data-set.

Code 2: Random code peeked from gathered data-set under the same
distribution.This sample achieves a maximum score at HackerRank platform.

Enter your code here. Read input from STDIN.
Print output to STDOUTo

import string

print (string.capwords(raw_input(), ' '))

Selected code is assigned a mean execution type of 0.0011495
seconds by the application. Ergo, this sample achieves a 0.02299 value by the profiler
(mean_execution_type * HackerRank_score).

From that sample code, the following original AST is obtained:

And the following cAST is build:

Concluding, the cAST depicted at Code 4 is persisted under the name of
“username_0.02299_20200101-192032529292.deepcode.py.cAST” and placed
under the folder where the new data-set will be saved.

28

Code 4: cAST build by Python’s core compiler from source code at Code 2.

{"CAST_type": "Module", "CAST_body": [{"CAST_type": "Import",
"CAST_body": [{"origin": "SYS"}, {"name": "string"}]}, {"CAST_type":
"Expr", "CAST_body": [{"CAST_type": "Call", "CAST_body": [{"origin":
"NATIVE"}, {"CAST_type": "Name", "CAST_body": [{"id": "'print'", "ctx":
"Load"}]}, {"CAST_type": "Call", "CAST_body": [{"origin": "UNK"},
{"CAST_type": "Attribute", "CAST_body": [{"attr": "capwords"},
{"CAST_type": "Name", "CAST_body": [{"id": "'string'", "ctx": "Load"}]},
{"CAST_type": "Load", "CAST_body": []}]}, {"CAST_type": "Call",
"CAST_body": [{"origin": "UNK"}, {"CAST_type": "Name", "CAST_body":
[{"id": "'raw_input'", "ctx": "Load"}]}]}, {"CAST_type": "Str", "CAST_body":
["' '"]}]}]}]}]}

Code 3: AST build by Python’s core compiler from source code at Code 2.

{"_type": "Module", "body": [{"_type": "Import", "col_offset": 0, "lineno": 2,
"names": [{"_type": "alias", "asname": null, "name": "string"}]}, {"_type":
"Expr", "col_offset": 0, "lineno": 7, "value": {"_type": "Call", "args":
[{"_type": "Call", "args": [{"_type": "Call", "args": [], "col_offset": 23, "func":
{"_type": "Name", "col_offset": 23, "ctx": {"_type": "Load"}, "id":
"raw_input", "lineno": 7}, "keywords": [], "lineno": 7}, {"_type": "Str",
"col_offset": 36, "lineno": 7, "s": " "}], "col_offset": 7, "func": {"_type":
"Attribute", "attr": "capwords", "col_offset": 7, "ctx": {"_type": "Load"},
"lineno": 7, "value": {"_type": "Name", "col_offset": 7, "ctx": {"_type":
"Load"}, "id": "string", "lineno": 7}}, "keywords": [], "lineno": 7}],
"col_offset": 0, "func": {"_type": "Name", "col_offset": 0, "ctx": {"_type":
"Load"}, "id": "print", "lineno": 7}, "keywords": [], "lineno": 7}}]}

5. Budget

This project mainly requires a Junior engineer with a base knowledge in Python
programming. Consequently, main cost of the project is due to person’s salary. When it
comes to proprietary software, this thesis utilises open source tools under Python
language, meaning that no added cost is needed. Finally, the worker will need a
computer in order to implement the solution.

Index Concept
(unit)

Details Number of
units

1 Project dedication
(hours/week)

22,5

2 Project duration
(weeks)

20

3 Total worked
(hours)

Cell1 * Cell2 450

4 Junior engineer salary
(€/hour)

Brute salary for junior
software developer

13

5 Worked time
cost

Cell3 * Cell4 5850

6 Computer 1000

TOTAL
(€)

6850

Table 2: Project cost

29

6. Conclusions and future development

This thesis has investigated an original manner of assembling an optimal data-set
of source codes for future artificial intelligence processing layers. During the study
process, a lack of relation between post-processing techniques and the source code text
has been spotted. Thus, DeepCode phase 1 has decided to use Abstract Syntax Tree
format as it’s source code representation baseline to produce an optimised data-set.

 Subsequently, mimicking best results found in the field, report’s solution focuses
in maximizing the compression rate of the AST whilst keeping intact the information
contained in the original tree object. DeepCode phase 1 tool achieves promising results
in terms of absolute number of nodes needed in customised AST against a generic AST
extracted from compiler’s engine. Additionally, the report introduces a grouping strategy
that, with further fine tuning adjustments, can be extremely beneficial for AI related
applications.

Lastly, this work includes the concept of appending auxiliary information to source
code representations in order to facilitate and flatten the learning curve of a generic AI
system. In future, new paradigms are worth studying such as subtasking a concrete task
utilising deterministic means or statistically studying the impact of entity grouping strategy
towards the compression rate and compression quality achieved by the tool.
Nonetheless, this paper offers a unique bridge for AI systems to work in an optimal
manner with source code datasets.

30

Bibliography

[JON03] : Jones, Joel. "bstract Syntax Tree Implementation Idioms". (2003). URL:
http://hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf. Last visited on .

[APS16] : Miltiadis Allamanis and Hao Peng and Charles A. Sutton. "A Convolutional
Attention Network for Extreme Summarization of Source Code". In: CoRR (2016). URL:
http://arxiv.org/abs/1602.03001.

[ABS14] : Miltiadis Allamanis and Earl T. Barr and Charles A. Sutton. "Learning
Natural Coding Conventions". In: (2014). URL: http://arxiv.org/abs/1402.4182.

[Whi+16] : M. White and M. Tufano and C. Vendome and D. Poshyvanyk. "Deep
learning code fragments for code clone detection". In: (2016). URL: .

[Moub+14] : Lili Mou and Ge Li and Zhi Jin and Lu Zhang and Tao Wang. "Tree-Based
Convolutional Neural Network for Programming Language Processing". In:
CoRR (2014). URL: http://arxiv.org/abs/1409.5718.

[Moua+14] : Lili Mou and Ge Li and Yuxuan Liu and Hao Peng and Zhi Jin and Yan Xu
and Lu Zhang. "Building Program Vector Representations for Deep Learning". In: CoRR
(). URL: http://arxiv.org/abs/1409.3358.

[Lia+19] : H. Liang and L. Sun and M. Wang and Y. Yang. "Deep Learning with
Customized Abstract Syntax Tree for Bug Localization". In: IEEE Access (2019). URL:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8809752.

[LA04] : C. Lattner and V. Adve. "LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation". 2004

[UCa] : University of Illinois at Urbana-Champaign. "Clang: a C language family
frontend for LLVM". (). URL: https://clang.llvm.org/. Last visited on .

[PDCc] : Python Documentation. "Python compiler package". URL:
https://docs.python.org/2/library/compiler.html. Last Visted on .

[TEA] : The Clang Team. "Matching the Clang AST". URL:
https://clang.llvm.org/docs/LibASTMatchers.html. Last Visted on 06/12/2019.

[TEB] : The Clang Team. "Traversing the AST with cursors". URL:
https://clang.llvm.org/doxygen/group__CINDEX__CURSOR__TRAVERSAL.html. Last
Visted on 06/12/2019.

31

Appendices

1. DeepCode Phase1: Compilers approach

32

DeepCode phase 1: Compilers approach
1st Miquel Puig i Mena

Student at Universitat Politècnica de Catalunya (UPC)
Lunds Tekniska Högskola (LTH)

Lund, Sweden
miquel.puig.mena@lu.lth.se

Abstract—Yet being immersed in the globalisation era, we can
still perceive isolation and rivalry between software developing
teams that share ambitions. Nonetheless, DeepCode proposes a
cooperation between parties in order to achieve greater results.
DeepCode is a tool that, by processing a data-set formed by source
codes performing a generic task A, learns how to implement
task A and outperform every individual from studied data-set.
Unfortunately, no existing tool is capable of homogenizing a
source code data-set in a manner that can be post processed
by AI tools. DeepCode phase 1 targets to fill this gap in the
field by offering a standardised data structure representing a
generic source code. Furthermore, this paper presents a practical
application that generates aforementioned representation given a
well-formed source code file.

Index Terms—Abstract syntax tree, Tree traversal, Code auto-
generation, Deep Learning.

I. INTRODUCTION

Coders, Group of coders, Departments, Companies or Group
of companies compete every day to get the most efficient
algorithm for a specific problem. Regardless of the nature
of the research, a common denominator can be spotted: they
all try to get the best existing ideas on the field and apply
some new improvement/s that makes their own implementation
the best in a specific set of “tangible” aspects (performance,
usability, efficiency, etc.). In that sense, enormous amount of
time and effort is spent by each researcher analyzing and
mastering the field. Additionally, told hypothetical researcher
won’t have any kind of assurance that a competitive approach
has been discarded during the process.

In this paper, DeepCode is presented, a new tool that will try
to auto-generate unique and original code. DeepCode system
aims to generate code that solves a generic task A by learning,
from a large set of different codes, data-set, how to solve
task A. Notice that each element in the data-set tries, as well,
to solve task A. Therefore, the concept data-set under same
distribution, references a group of different code implementa-
tions that perform the exact same job such as compressing a
file, processing a signal or solving mathematical paradigms.
Furthermore, DeepCode’s most innovative objective is the
ability to overcome best test-performance reached by any
individual from the data-set it’s been learning from.

Given the complexity and nature of DeepCode, two stages
are defined: Phase 2, that, with Artificial Intelligence (AI)
techniques, learns which ideas in the data-set imply good code
performance and phase 1, which studies and builds customised

code representation in order to provide phase 2 an optimal and
workable data-set.

This paper deeply describes phase 1 of DeepCode but not
phase 2. Nevertheless, phase 2 is relevant for this paper since
it defines what kind of transformation has to be applied to the
source code data-set in order to accomplish future intelligent
decisions (See Figure 1). In that sense, this paper suggests,
builds and provides an original code representation to be
utilised afterwards by AI processes.

Most generally, source codes, irrespective of it’s original
language, can be represented in lower abstractions levels. From
machine code1, unintelligible from human perspective, until
low level code such as Assembly. For DeepCode’s purposes, a
middle level representation of source code must be generated.
Such intermediate depiction of the code allows any data-set to
be homogenized, allowing, this way, to make fair comparisons
among code samples under the same distribution.

Arbitrary code analysis and transformation is accomplished
by generating an abstraction of the source code called Abstract
Syntax Tree [2] (AST). Generally, AST abstraction format
is fed to subsequent compiler’s layers such as optimization
of code or Assembly code generation. This paper is highly
focused in AST generation stage.

Installed Python packages include an in-build Python com-
piler written in C Programming language. Additionally, Python
packages include in-build front-end libraries enabling, from
Python code, to access compiler’s internals. Among other
modules, ast [3] front-end can be found, which converts a
Python source code into an AST. From ast object, a rich AST
context is accessible, providing, this way, a great entry point
to transform the AST.

By DeepCode’s means, tree representation of the code
(AST) is very profitable. Due to time consuming processes
in phase 2, every redundant information in the AST must
be eliminated. In other words, internal AST generated by
the compiler includes neglectable nodes from DeepCode’s
perspective. In that sense, AST generated by the compiler must
be simplified as much as possible without loosing valuable
information. Hence, above strategy satisfies sought middle
level representation of source code.

1Machine code, also called machine language, is a computer language that
is directly understandable by a computer’s Central Processing Unit (CPU),
and it is the language into which all programs must be converted before they
can be run. Each CPU type has its own machine language, although they are
basically fairly similar. [1]

Fig. 1: Architectural schema representing DeepCode’s full
scope. Notice the contribution provided by each phase of
DeepCode to the full project.

Summarizing, this paper suggests and provides a com-
pressed and enriched code representation that will be used
to feed further post-processes layers within DeepCode scope.

The rest of this paper is organized as follows. Section II
introduces similar existing ideas in the field. Section III charac-
terizes AST architecture and suggests a feasible transformation
while section IV describes how to achieve customised AST.
Section V evaluates results achieved by testing the application
against realistic use cases. Suggested extensions to paper’s
work are found in section VI and, finally, section VII con-
cludes with a summary of report’s achievements.

II. RELATED WORK

Source code analysis has drastically evolved since AI’s
reborn. While code processing tools were exclusively based
in complex and deterministic techniques, AI provides another
dimension to existing tools. By gathering information from
user experience, AI enables code processing tools to optimize
itself on the fly. Currently, there’s a big interest and investment
from a well established community. Specifically, a big effort
is invested by Integrated Development Environment (IDE) and
code analysis applications such as bug finders or providing
interesting and personalised hints while coding.

[4] provides a brief text summary of what an inputted code
intends to do while [5] provides a tool to learn which non-
written conventions and patterns are followed by developers.
Both studies have in common that they treat source code as
simple text instead of utilising standardised representations
such as ASTs or machine code.

Furthermore, finest results were achieved by studies utilising
abstracted representations of source code. Code clone detec-
tion application [6] overcame state-of-the-art of the moment
by extracting AST of it’s source code data-set.

An original suggestion is found in [7], where they propose
an encoded version of the AST based in [8], that converts
tree structures in vectorised information. Great improvement
on bug localisation was achieved by [9] by adopting the

program representation proposed by [7]. However, [9] included
the concept of compressing the AST as much as possible in
order to facilitate AI layers to complete their job with optimal
results.

Commonly, each programming language has it’s own AST
generator engine and, in many cases, more than one. This
paper attempts to corroborate that an intelligent filter in
current ASTs can be extremely beneficial for post processing
techniques.

Low Level Virtual Machine [10] (LLVM) is a compiler
framework that uses a build in intermediate human readable
code language with slightly higher level abstractions than
Assembly. Although LLVM code can be written from scratch,
it’s typical to produce it when compiling source code, as
intermediate step for code optimization layers and/or optimal
machine code generation.

Clang project provides a language front-end and tooling
infrastructure for languages in the C language family for the
LLVM project [11]. Clang is an open source project well
established in the community, having up to 79k commits by
the time this report is written. Although Clang is backed by a
huge community and provides reliable services, this paper will
choose Python compiler [12], a less complex compiler engine
system that demands less time to familiarise with.

III. ARCHITECTURE

Within DeepCode’s scope, DeepCode phase 1 commences
once the text data-set is assembled (Figure 2). Proposed tool by
this paper handles each element in the data-set individually. In
this regard, CLI module provides an entry point to DeepCode
phase 1 where each sample is injected in an iterative way.

Python’s inner compiler engine produces an AST that will
be trust and used by subsequent modules. Such dependency
on Python’s compiler core can be assumed given the reliability
provided by the existence of a vast community along Python
itself.

Fig. 2: Architectural model of DeepCode phase 1. From
gathered python text files2, DeepCode’s CLI triggers transfor-
mation cycle for each individual sample in the data-set. Notice
that final version of cAST can be outputted in JSON, eJSON,
or as PyPickle.

Parallel, Python’s engine is bound to report’s tool in a way
that AST context is shared and accessible. Thereafter, every
node in retrieved AST is traversed following a visitor strategy
in order to forge pursued custom AST(cAST). While visiting
a node, paper’s implementation decides which information
is relevant from that node, if any at all, and persists it in
the cAST. Notice that personalised tree carries a one to one
connection between cAST nodes and their AST node pair.

Finally, DeepCode phase 1 application grants to the user
the functionality to store or output created cAST in diverse
formats. This report contemplates JSON, encoded JSON3

(eJSON), or pickle format (PyPickle) to be shown at console
or saved in a file.

IV. IMPLEMENTATION

This section deeply describes meaningful steps involved in
the transformation of the data-set. Notice that told conversion
is achieved by applying the same algorithm to each sample
inside the data-set, modifying, this way, each individual at
a time. By the end of this section, an optimal set of code
representations for DeepCode will be accessible.

In order to provide a better depiction of the optimisations
suggested by this paper, the reader can find AST’s and cAST’s
final graphical representations extracted from snippet of code
(Listing 1) at Figure 3 and Figure 4 respectively.

A. Gathering the Abstract Syntax Tree

AST is a hierarchical representation of the abstract syntactic
structure of source code written in a programming language.
Each node of the tree denotes a construct occurring in the
source code [2]. As stated in section II, state-of-the-art tools
that process source code utilise AST as their inputted data
format.

This project only considers Python AST abstraction, con-
straining, this way, to only take into account Python source
code. Even though it might appear a limitation, it is enough
to proof paper’s objective.

Python’s in-build front-end class ast hosts a method parse()
which takes as input a string and returns an AST tree object.
Internally, ast.parse() method calls builtin.compile() including,
as argument, ast.PyCF ONLY AST. Named constant implies
that only AST representation is calculated while other com-
piler computations are skipped such as optimization.

Injecting ast’s functionalities in report’s tool is straight-
forward by binding them in code. Consequently, a fine AST
object and it’s context is reachable from DeepCode phase 1’s
operations.

B. Traversing the AST

Multiple approaches to traverse trees are known. Concretely,
this implementation considers recursive visitors technique

3Encoded JSON directly depends in final global DeepCode data-set. De-
pending in the different node entities sighted in data-set, the eJSON will cipher
accordingly.

while other approaches such as AST matchers [13] or cursor
traversing [14] are also functional.

By visiting nodes, the reader should think of walking
through each node in the AST from north-to-south direction.
For each encountered node, the node must be analysed and,
afterwards, visit() function called for every of it’s childs.

Visitor class, inherited from ast.NodeVisitor, is defined.
Among others, Visitor implements visit {NODE ENTITY}()
method for every conceivable node entity in the AST. More-
over, given the case where a node entity couldn’t match any
pre-defined visit method, generic visit() will match as a last
instance. Notice that latter visit method is defined to provide
robustness to the implementation and to apply a default logic.

Recursive traversal of nodes enables the Visitor class to
build up the cAST and provide access to it from other points
of the implementation.

C. Filtering nodes

Selecting substantial information from a node is crucial in
order to reach report’s goals. An intelligent filtering logic is
applied in order to maximise compression of an AST without
loosing important information.

Filtering cycle will be prompt for each traversed node in
the original AST. Depending in node’s entity and it’s near
context, different information will be persisted in the cAST.
Following, an overview of the filters considered by report’s
implementation.

1) Disallowing Aliases: Aliases are extremely useful in
terms of smoothing the readability of a source code by
humans. However, they add a counterproductive link between
nodes inside the tree which must be erased.

Visitor class keeps track of aliases assigned in source code
and performs a translation to it’s original name when persisting
information in cAST.

2) Minimizing number of entities in AST: Grouping related
entities can be very productive for following processing tech-
niques. By minimizing the number of conceivable entities in
the cAST, the natural number of combinations that AI layers
have to deal with will decay following equation 1.

num combinations = NM (1)

Where N is the total number of entities and M is the amount
of nodes the tree is composed of.

Followed, a set of the most repeated groups:
* Loop group includes For, AsyncFor, and While node

entities.
* Name group includes Name, and NameConstant node

entities.
* Import group includes Import, and ImportFrom node

entities.
* Op group includes BoolOp, BinOp, and UnaryOp node

entities.
Grouping strategy entities entails a relative compression rate

of expressions of 0.63 (27 AST expressions and 17 cAST
expressions) and a relative compression rate of statements of
0.7 (27 AST statements and 19 cAST statements). Notice

Fig. 3: Representation of test code(1) as AST.

Fig. 4: Representation of test code(1) as cAST.

that it doesn’t necessarily lead to an absolute compression
rate as the ones stated before since absolute compression rate
directly depends on the probability of appearance of each
entity. Section V provides absolute compression rates.

3) Minimizing number of nodes in AST: Naturally, com-
pression can be achieved if nodes can be neglected without
loosing information.

This paper understands a negligible node as the ones that,
once dropped, can be re-injected again by deterministic means.
For instance, a function Call node entity emerges from an
Expr node with no other substantial information from post
processing layers perspective. In this case, we can conclude
that Expr node can be neglected from the AST.

import p p r i n t a s a l i a s p p r i n t
from s r c . m y p r e t t y import m y p r i n t

def foo (l i s t 1) :
f o r i in l i s t 1 :

a l i a s p p r i n t (m y p r i n t (i))

Listing 1: Snippet of code chosen to depict an example of
Disallowing Aliases (IV-C1), Minimizing number of Entities
(IV-C2), Minimizing number of Nodes (IV-C3), Discriminating
method Calls (IV-D1) and Representing the cAST (IV-E)

D. Enriching the AST

Yet an enrichment of the AST can contradict the goal of
maximising the compression of the AST, this report suggests
that some extra information can be exceptionally advantageous
for DeepCode phase 2.

1) Discriminating method Calls: Knowing the origin of a
function call can be convenient in order to decide which nodes
should gain more attention or, even, to treat them differently.
DeepCode phase 1 classifies method calls by the ones coming
from a method system (SYS), the ones created by the user
(USR), and Python buildins methods (NATIVE).

Firstly, the tool has to find potential Python libraries acces-
sible from the system. Such non-trivial task is performed with
the help of Python’s modulefinder package. Once potential
SYS and NATIVE method calls are constructed, it’s a trivial
problem of classifying traversed nodes whose entities are
directly related to method calls (e.g., call or import nodes).

E. Representing the customised AST

Subsequent treatment of cAST by a generic group of
consumers can be very heterogeneous. From consumer’s point
of view, could be interesting to decide which format the tool

Fig. 5: Accumulation of number of nodes seen in each sample
in the data-set.

Fig. 6: Accumulation of number of entities seen in each sample
in the data-set.

should output the cAST. Ergo, implemented tool offers three
options to specify application’s output format.

By default, JSON format is used, which fits the tree repre-
sentation in to a JSON object. Extending it, an encoded JSON
representation can be demanded, which codifies every node
representation depending in the importance of such node in the
global data-set. In contrast, PyPickle option enables a way to
output a Python object representation as a pickle representation
[15].

Lastly, DeepCode phase 1 application allows the consumer
to specify if chosen cAST representation will be outputted in
console or written in a file.

V. EXPERIMENTS

The experiments and evaluations are sequentially divided
and sorted by increasing significance to the report.

A. Custom-simple test code

In order to provide an specific example for each of report’s
implementations, custom source code (Listing 1) is analysed.
Figure 3 represents the original AST while Figure 4 illustrates
the transformation applied by DeepCode phase 1’s core.

Utilising DeepCode phase 1’s analysis tool (see
results in box below) the report defines that it’s been
achieved a compression rate of rate entities=0.692, and
rate nodes=0.682.

DeepCode - Evaluation - INFO - Analysis AST:
total entities=13, total nodes=22

DeepCode - Evaluation - INFO - Analysis cAST:
total entities=9, total nodes=15

B. Custom-complex test code

Secondly, this paper tries to adjust difficulty of code by
analysing a more elaborated implementation. For that reason,
big integer factorising algorithm4 is studied.

One more time, from DeepCode phase 1’s analysis
tool (see results in box below), a compression rate of
rate entities=0.927, and rate nodes=0.751 have been reached.

DeepCode - Evaluation - INFO - Analysis AST:
total entities=55, total nodes=1151

DeepCode - Evaluation - INFO - Analysis cAST:
total entities=51, total nodes=865

C. Transforming a 10k files data-set

Finally, this report analyses AST transformation quality in
a real data-set under the same distribution. DeepCode includes
a web parsing module in order to gather such amount of data.

After studying and comparing every pair of AST and cAST
from each individual in the data-set, we can foresee promising
results regarding the amount of needed nodes in order to
represent the same information (Figure 5). In reference to
number of entities, a successful behaviour can be spotted
(Figure 6).

VI. FUTURE WORK

This section suggest two lines of work that can directly
benefit paper’s implementation.

This report suggests that there’s margin of improvement
regarding current grouping techniques. Adding new group or
fine tuning existing groups might lead to higher compression
rate in terms of number of entities in cAST.

Moreover, DeepCode phase 2 tries to discover every sub
task A that constructs task A. When distinguished, each sub
task is processed independently with the aim to identify how
beneficial, compared to aligned sub tasks in the data-set, the
sub task is to accomplish task A. From this perspective, custom
AST can be enriched in a manner that identifies and divides
each sub task within task A’s code.

VII. CONCLUSIONS

This paper has investigated an original manner of assem-
bling an optimal data-set of source codes for future artificial
intelligence processing layers. During the study process, a
lack of relation between post-processing techniques and the
source code text has been spotted. Thus, DeepCode phase 1
has decided to use Abstract Syntax Tree format as it’s source
code representation baseline to produce an optimised data-set.

Subsequently, mimicking best results found in the field,
report’s solution focuses in maximizing the compression rate
of the AST whilst keeping intact the information contained
in the original tree object. DeepCode phase 1 tool achieves
promising results in terms of absolute number of nodes
needed in customised AST against a generic AST extracted

4Find big integer factorising implementation at
https://github.com/miquelpuigmena/cryptography/blob/master- /factoris-
ing/factoring.py.

from compiler’s engine. Additionally, the report introduces a
grouping strategy that, with further fine tuning adjustments,
can be extremely beneficial for AI related applications.

Lastly, this paper includes the concept of appending aux-
iliary information to source code representations in order to
facilitate and flatten the learning curve of a generic AI system.

In future, new paradigms are worth studying such as sub-
tasking a concrete task utilising deterministic means or statis-
tically studying the impact of entity grouping strategy towards
the compression rate and compression quality achieved by the
tool. Nonetheless, this paper offers a unique bridge for AI
systems to work in an optimal manner with source code data-
sets.

REFERENCES

[1] T. L. I. Project. (2006) Machine code definition. [Online]. Available:
http://www.linfo.org/machine code.html

[2] J. Jones, “Abstract syntax tree implementation idioms,” Pattern
Languages of Program Design, 2003. [Online]. Available: http:
//hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf

[3] P. Documentation. Abstract syntax trees. [Online]. Available: https:
//docs.python.org/3/library/ast.html

[4] M. Allamanis, H. Peng, and C. A. Sutton, “A convolutional attention
network for extreme summarization of source code,” CoRR, vol.
abs/1602.03001, 2016. [Online]. Available: http://arxiv.org/abs/1602.
03001

[5] M. Allamanis, E. T. Barr, and C. A. Sutton, “Learning natural coding
conventions,” CoRR, vol. abs/1402.4182, 2014. [Online]. Available:
http://arxiv.org/abs/1402.4182

[6] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE),
Sep. 2016, pp. 87–98.

[7] L. Mou, G. Li, Y. Liu, H. Peng, Z. Jin, Y. Xu, and L. Zhang,
“Building program vector representations for deep learning,” CoRR, vol.
abs/1409.3358, 2014. [Online]. Available: http://arxiv.org/abs/1409.3358

[8] H. Zhang, S. Wang, X. Xu, T. W. S. Chow, and Q. M. J. Wu,
“Tree2vector: Learning a vectorial representation for tree-structured
data,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 29, no. 11, pp. 5304–5318, Nov 2018.

[9] H. Liang, L. Sun, M. Wang, and Y. Yang, “Deep learning with cus-
tomized abstract syntax tree for bug localization,” IEEE Access, vol. PP,
pp. 1–1, 08 2019.

[10] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis transformation,” 04 2004, pp. 75– 86.

[11] U. of Illinois at Urbana-Champaign. Clang: a c language family
frontend for llvm. [Online]. Available: https://clang.llvm.org/

[12] P. Documentation. Python compiler package. [Online]. Available:
https://docs.python.org/2/library/compiler.html

[13] U. of Illinois at Urbana-Champaign. How to write recursiveastvisitor
based astfrontendactions. [Online]. Available: https://clang.llvm.org/
docs/RAVFrontendAction.html

[14] T. C. Team. Traversing the ast with cursors. [On-
line]. Available: https://clang.llvm.org/doxygen/group CINDEX
CURSOR TRAVERSAL.html

[15] P. Documentation. Python object serialization. [Online]. Available:
https://docs.python.org/3/library/pickle.html

http://www.linfo.org/machine_code.html
http://hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
http://hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
http://arxiv.org/abs/1602.03001
http://arxiv.org/abs/1602.03001
http://arxiv.org/abs/1402.4182
http://arxiv.org/abs/1409.3358
https://clang.llvm.org/
https://docs.python.org/2/library/compiler.html
https://clang.llvm.org/docs/RAVFrontendAction.html
https://clang.llvm.org/docs/RAVFrontendAction.html
https://clang.llvm.org/doxygen/group__CINDEX__CURSOR__TRAVERSAL.html
https://clang.llvm.org/doxygen/group__CINDEX__CURSOR__TRAVERSAL.html
https://docs.python.org/3/library/pickle.html

2. Grouping strategy from Python’s original entities
-- ASDL's 5 builtin types are:

-- identifier, int, string, object, constant

module Python

{

 mod = Module(stmt* body, type_ignore *type_ignores)

 | Interactive(stmt* body)

 | Expression(expr body)

 | FunctionType(expr* argtypes, expr returns)

 -- not really an actual node but useful in Jython's typesystem.

 | Suite(stmt* body)

 stmt = FunctionDef(identifier name, arguments args,

 stmt* body, expr* decorator_list, expr? returns,

 string? type_comment)

 | AsyncFunctionDef(identifier name, arguments args,

 stmt* body, expr* decorator_list, expr? returns,

 string? type_comment)

 | ClassDef(identifier name,

 expr* bases,

 keyword* keywords,

 stmt* body,

 expr* decorator_list)

 | Return(expr? value)

 | Delete(expr* targets)

 | Assign(expr* targets, expr value, string? type_comment)

 | AugAssign(expr target, operator op, expr value)

→ Assign

 | AnnAssign(expr target, expr annotation, expr? value, int simple)

→ Assign

 -- use 'orelse' because else is a keyword in target languages

 | For(expr target, expr iter, stmt* body, stmt* orelse, string? type_comment)

→ Loop

 | AsyncFor(expr target, expr iter, stmt* body, stmt* orelse, string? type_comment)

→ Loop

 | While(expr test, stmt* body, stmt* orelse)

→ Loop

 | If(expr test, stmt* body, stmt* orelse)

 | With(withitem* items, stmt* body, string? type_comment)

39

→ FlowMgmt

 | AsyncWith(withitem* items, stmt* body, string? type_comment)

→ FlowMgmt

 | Raise(expr? exc, expr? Cause)

→ FlowMgmt

 | Try(stmt* body, excepthandler* handlers, stmt* orelse, stmt* finalbody)

→ FlowMgmt

 | Assert(expr test, expr? msg)

→ FlowMgmt

 | Import(alias* names)

 | ImportFrom(identifier? module, alias* names, int? level)

→ Import

 | Global(identifier* names)

→ Identifier

 | Nonlocal(identifier* names)

→ Identifier

 | Expr(expr value)

 | Pass | Break | Continue

 -- XXX Jython will be different

 -- col_offset is the byte offset in the utf8 string the parser uses

 attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)

 -- BoolOp() can use left & right

expr = BoolOp(boolop op, expr* values)

 | NamedExpr(expr target, expr value)

 | BinOp(expr left, operator op, expr right)

 | UnaryOp(unaryop op, expr operand)

 | Lambda(arguments args, expr body)

 | IfExp(expr test, expr body, expr orelse)

 | Dict(expr* keys, expr* values)

 | Set(expr* elts)

 | ListComp(expr elt, comprehension* generators)

→ List

 | SetComp(expr elt, comprehension* generators)

→ Set

 | DictComp(expr key, expr value, comprehension* generators)

→ Dict

 | GeneratorExp(expr elt, comprehension* generators)

 -- the grammar constrains where yield expressions can occur

 | Await(expr value)

 | Yield(expr? value)

 | YieldFrom(expr value)

→ Yield

 -- need sequences for compare to distinguish between

40

 -- x < 4 < 3 and (x < 4) < 3

 | Compare(expr left, cmpop* ops, expr* comparators)

 | Call(expr func, expr* args, keyword* keywords)

 | FormattedValue(expr value, int? conversion, expr? format_spec)

 | JoinedStr(expr* values)

→ List

 | Constant(constant value, string? kind)

 -- the following expression can appear in assignment context

 | Attribute(expr value, identifier attr, expr_context ctx)

 | Subscript(expr value, slice slice, expr_context ctx)

 | Starred(expr value, expr_context ctx)

 | Name(identifier id, expr_context ctx)

 | List(expr* elts, expr_context ctx)

 | Tuple(expr* elts, expr_context ctx)

 -- col_offset is the byte offset in the utf8 string the parser uses

 attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)

 expr_context = Load | Store | Del | AugLoad | AugStore | Param

 slice = Slice(expr? lower, expr? upper, expr? step)

 | ExtSlice(slice* dims)

 | Index(expr value)

 boolop = And | Or

 operator = Add | Sub | Mult | MatMult | Div | Mod | Pow | LShift

 | RShift | BitOr | BitXor | BitAnd | FloorDiv

 unaryop = Invert | Not | UAdd | USub

 cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn

 comprehension = (expr target, expr iter, expr* ifs, int is_async)

 excepthandler = ExceptHandler(expr? type, identifier? name, stmt* body)

 attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)

 arguments = (arg* posonlyargs, arg* args, arg? vararg, arg* kwonlyargs,

 expr* kw_defaults, arg? kwarg, expr* defaults)

 arg = (identifier arg, expr? annotation, string? type_comment)

 attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)

41

 -- keyword arguments supplied to call (NULL identifier for **kwargs)

 keyword = (identifier? arg, expr value)

 -- import name with optional 'as' alias.

 alias = (identifier name, identifier? asname)

 withitem = (expr context_expr, expr? optional_vars)

 type_ignore = TypeIgnore(int lineno, string tag)

}

42

3. Web scraping HackerRank’s “Capitalize!” challenge
import logger

from selenium.webdriver import Firefox

from selenium.webdriver.firefox.options import Options

from selenium.webdriver.common.by import By

from selenium.common.exceptions import NoSuchElementException

from datetime import datetime

from urllib.request import Request, urlopen

persisted = 0

failed = 0

logger = logger.get_logger("WebParser")

def parse_challenge(driver, challenge, summary, page_number=1) -> dict:

 assert 'persisted' in summary

 assert 'failed' in summary

 URL_BY_CHALLENGE_PAGE = "https://www.hackerrank.com/challenges/{challenge}/leaderboard?
limit=100&page={page_number}"

 css_path_to_table_body = 'html body#hr_v2.hr-community div#content div.ui-kit-root ' \

 'div.body-wrap.community-page.challenges-page.leaderboard-page div.theme-m.new-design ' \

 'div.community-content div.challenge-view.theme-m div.challenge-leaderboard ' \

 'div.container.panes-container div.left-pane div.ui-tabs-wrap ' \

 'div.tab-list-content.tab-content section.theme-m.ui-leaderboard ' \

 'div.general-table-wrapper ' \

 'div.general-table div.ui-table.ui-leaderboard-table.first-col-raised div.table-body > div'

 max_page_number = get_max_page(driver, URL_BY_CHALLENGE_PAGE.format(challenge=challenge,
page_number=page_number))

 while page_number < max_page_number:

 logger.debug("="*100)

 logger.debug("Page number: {}.".format(page_number))

 url = URL_BY_CHALLENGE_PAGE.format(challenge=challenge, page_number=page_number)

 driver.get(url)

 table_body = driver.find_elements(By.CSS_SELECTOR, css_path_to_table_body)

 parse_ranking_table(table_body, summary)

 page_number += 1

 logger.debug("-"*100)

 return summary

def get_max_page(driver, url) -> (int, Exception):

 css_path_to_last_page = 'html body#hr_v2.hr-community div#content div.ui-kit-root ' \

 'div.body-wrap.community-page.challenges-page.leaderboard-page div.theme-m.new-design ' \

43

 'div.community-content div.challenge-view.theme-m div.challenge-leaderboard ' \

 'div.container.panes-container div.left-pane ' \

 'div.pagination-wrap.clearfix.pagination-wrapper.mlT.leaderboard-pagination ' \

 'div.ui-pagination.theme-m ul li.page-item.last-page a.page-link'

 driver.get(url)

 try:

 last_page_num = driver.find_element(By.CSS_SELECTOR, css_path_to_last_page).get_property("textContent")

 except Exception:

 raise Exception("Couldn't find last page number. Might be triggered by new page format, url migration, ...")

 return int(last_page_num)

def parse_ranking_table(table: list, summary: dict) -> (None, Exception):

 csspath_from_table_to_hackername = 'div.table-row-wrapper ' \

 'div.table-row.flex div.table-row-column.ellipsis.hacker ' \

 'div.d-flex.justify-content-between.ellipsis a'

 csspath_from_table_to_hackerrank = 'div.table-row-wrapper div.table-row.flex ' \

 'div.table-row-column.ellipsis.rank div.ellipsis'

 csspath_from_table_to_hackerscore = 'div.table-row-wrapper div.table-row.flex ' \

 'div.table-row-column.ellipsis.score div'

 for i, row in enumerate(table):

 try:

 hacker_name = row.find_element(By.CSS_SELECTOR, csspath_from_table_to_hackername)\

 .get_property("textContent")

 hacker_rank = row.find_element(By.CSS_SELECTOR, csspath_from_table_to_hackerrank)\

 .get_property("textContent")

 hacker_score = row.find_element(By.CSS_SELECTOR, csspath_from_table_to_hackerscore)\

 .get_property("textContent")

 hacker_info = [hacker_name, hacker_rank, hacker_score]

 new_file_name = "_".join(hacker_info) + '_' + datetime.now().strftime("%Y%m%d-%H%M%S%f")

 hacker_code = get_code_from_hacker(hacker_name)

 str2file(string=hacker_code, file_name=new_file_name, summary=summary)

 except NoSuchElementException:

 summary.update({'failed': int(summary.get('failed')) + 1 })

 logger.error("Selenium element not found.")

 except Exception:

 summary.update({'failed': int(summary.get('failed')) + 1 })

 logger.warning("Couldn't parse challenge from user '{}'.".format(hacker_name))

 else:

 summary.update({'persisted': int(summary.get('persisted')) + 1 })

def get_code_from_hacker(hacker_name: str) -> (str, Exception):

 URL_CODE_BY_HACKER_PRIMARY = 'https://www.hackerrank.com/rest/contests/master/challenges/capitalize' \

 '/hackers/{hacker_name}/download_solution?primary=true'

44

 URL_CODE_BY_HACKER_NOT_PRIMARY = 'https://www.hackerrank.com/rest/contests/master/challenges/capitalize/
hackers' \

 '/{hacker_name}/download_solution'

 MY_COOKIE = 'Cookie: hackerrank_mixpanel_token=1e57a69d-f61d-439f-a5df-feee2ca14447; ' \

 '_ga=GA1.2.1424175566.1568020400; ' \

 '_mkto_trk=id:487-WAY-049&token:_mch-hackerrank.com-1568020400269-75078; ' \

 '_fbp=fb.1.1568020400679.1722645904; ' \

 '__utma=74197771.1424175566.1568020400.1568020411.1568725370.2; ' \

 '__utmz=74197771.1568020411.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); ' \

 '_biz_uid=aca96a3b00d548e08eb62c3e3f88bf5e; ' \

 '_biz_nA=1; ' \

 '_biz_pendingA=%5B%5D; ' \

 'show_cookie_banner=false; ' \

 'hrx_candidate=BAhJImt7InRlc3RfaGFzaCI6IjZkamJjdGdsbDVoIiwiZW1haWwiOiJtaXF1ZWxwdWlnbWVuYUBnb
WFpbC5jb20iLCJjcmVhdGVkX2F0IjoiMjAxOS0wOS0yMVQxNDo0Mjo1MC44MTVaIn0GOgZFVA%3D%3D--
d280e3f7353c5e718b6074478aced782f1ab5da7; ' \

 'userty.core.p.6bd7b3=__2VySWQiOiI0M2Q2NDI5Yzc3YTRhN2YwMWI5ZGViMDQxZTM4NGRkOSJ9eyJ1c; ' \

 '_gaexp=GAX1.2.2u09ecQTSny1HV02SEVoCg.18292.0; ' \

 '_gid=GA1.2.1505727548.1577189209; ' \

 'hrc_l_i=T; ' \

 '_hrank_session=65210a8e26e55a2725b74db9d29e20fdb98cd3e2249e8973443ce6db5c12a9e14a15465e84bd
b71c814793920c6e3b92634ee9d8e36792563874b9cc48ec9aba; ' \

 'user_type=hacker; ' \

 'h_r=university_recruiting; ' \

 'h_l=header_top; ' \

 'mp_bcb75af88bccc92724ac5fd79271e1ff_mixpanel=%7B%22distinct_id%22%3A%20%221e57a69d-f61d-439f-
a5df-feee2ca14447%22%2C%22%24device_id%22%3A%20%2216d154c77247c-02e693c3de5c0c-7e2c6752-100200-
16d154c7726b%22%2C%22%24user_id%22%3A%20%221e57a69d-f61d-439f-a5df-feee2ca14447%22%2C
%22%24search_engine%22%3A%20%22google%22%2C%22%24initial_referrer%22%3A%20%22https%3A%2F
%2Fwww.google.com%2F%22%2C%22%24initial_referring_domain%22%3A%20%22www.google.com%22%7D; ' \

 'mp_86cf4681911d3ff600208fdc823c5ff5_mixpanel=%7B%22distinct_id%22%3A%20%2216d154cb0ec37d-
0ac00a0b0ef8138-7e2c6752-100200-16d154cb0ed220%22%2C%22%24device_id%22%3A%20%2216d154cb0ec37d-
0ac00a0b0ef8138-7e2c6752-100200-16d154cb0ed220%22%2C%22%24initial_referrer%22%3A%20%22https%3A%2F
%2Fwww.hackerrank.com%2Faccess-account%2F%3Fh_r%3Dhome%26h_l%3Dheader%22%2C
%22%24initial_referring_domain%22%3A%20%22www.hackerrank.com%22%7D; ' \

 'react_var=false__cnt2; ' \

 'react_var2=false__cnt2; ' \

 'metrics_user_identifier=318f5f-00e1551a1309dee6aa6946772f0862b191df1dae'

 try:

 req_not_primary = Request(URL_CODE_BY_HACKER_NOT_PRIMARY.format(hacker_name=hacker_name))

 req_not_primary.add_header('Cookie', MY_COOKIE)

 return urlopen(req_not_primary).read().decode('utf-8')

 except Exception:

 logger.debug("Request failed without PRIMARY: " +

 URL_CODE_BY_HACKER_NOT_PRIMARY.format(hacker_name=hacker_name))

 try:

 req_primary = Request(URL_CODE_BY_HACKER_PRIMARY.format(hacker_name=hacker_name))

 req_primary.add_header('Cookie', MY_COOKIE)

 return urlopen(req_primary).read().decode('utf-8')

 except Exception:

45

 logger.debug("Request failed with PRIMARY: " +

 URL_CODE_BY_HACKER_PRIMARY.format(hacker_name=hacker_name))

 raise Exception("Imposible to establish connection")

def str2file(string: str, file_name: str, summary: dict) -> (None, Exception):

 path = 'samples/' + file_name + '.deepcode'

 logger.info("Persisting '{}'. Summary status: Persisted={}, Failed={}"

 .format(file_name, summary.get('persisted'), summary.get('failed')))

 try:

 with open(path, 'w') as file:

 file.write(string)

 file.close()

 except Exception as e:

 logger.warning("Unable to write '{}' in file.".format(file_name), e)

 raise e

if __name__ == "__main__":

 options = Options()

 options.headless = True

 summary = {'persisted': 0, 'failed': 0}

 try:

 logger.debug("WebParser Succesfully Started")

 driver = Firefox(options=options)

 parse_challenge(driver, challenge='capitalize', summary=summary)

 driver.close()

 except Exception as e:

 logger.error("Unable to parse challenge", e)

 except KeyboardInterrupt:

 pass

 finally:

 logger.debug("WebParser Finished. Persisted={}, Failed={}".format(summary.get('persisted'),
summary.get('failed')))

46

4. Homogenising and labeling source code data-set

4.1. Implementation: homogenising data-set

def add_main_function_call(dir: str, file_name: str, test_word: str):

 import regex as re

 function_def_pattern = re.compile('def .+\(.+\):')

 path = "{path}{file}".format(path=dir, file=file_name)

 with open(path, 'r') as file:

 s_file = file.read()

 # Check if solve function is in file but not called

 func_def = function_def_pattern.search(s_file)

 if func_def:

 # get_func_name where format is 'def foo(oof):' get foo

 func_name = func_def.group(0).replace("def ", "").split("(")[0]

 function_calls = re.findall(func_name+'\(.+\)', s_file)

 # If no more than 1 call to func_name(.*), meaning the definition, append a call to that function

 if len(function_calls)<=1:

 to_append = "\nprint({func}('{test}'))".format(func=func_name, test=test_word)

 appender = open(path, 'a')

 appender.write(to_append)

4.2. Implementation: homogenising, profiling, and labeling
source code

import os

import subprocess

import logger

from numpy import mean as npmean

logger = logger.get_logger("Profiler")

expected_test_output = "Myword Is Here"

test_input = "myword is here"

def profile(dir="samples/", extensions=('.py')):

 for subdir, dirs, files in os.walk(dir):

 N = 10

 num_files = len(files)

 for iteration, f in enumerate(files):

 times = list()

 ext = os.path.splitext(f)[-1].lower()

 if ext in extensions:

47

 add_main_function_call(dir, f, test_input)

 for _ in range(N):

 out = strace_to_file(dir, f)

 out_lines = out.split('\n')

 test_output = out_lines.pop(0)

 try:

 assert (expected_test_output in test_output)

 except AssertionError:

 msg = "Wrong output provided by file '{}'. Obtained='{}', Expected='{}'."\

 .format(f, test_output, expected_test_output)

 logger.debug(msg)

 break

 else:

 total_line = out_lines[-2] # get second last position (total)

 total_time = total_line.split()[1] # get float value of total time

 times.append(float(total_time))

 average_time = npmean(times)

 new_python_file_name = f.split('_')

 new_python_file_name[1] = str(average_time) # Put average time in name

 s_new_python_file_name = "_".join(new_python_file_name)

 os.rename(dir + f, dir + s_new_python_file_name)

 logger.debug("{curr}/{max} File '{f}' profiled and saved under '{o}'. "

 .format(curr=iteration, max=num_files, f=f, o=s_new_python_file_name))

 if(iteration%10==0 and iteration != 0):

pass

 #exit(1)

def strace_to_file(dir: str, file_name: str) -> str:

 b_error = bytes("Error", 'utf-8')

 path = "{path}{file}".format(path=dir, file=file_name)

 out, strace_file = execute_strace(path, test_in=test_input, python_v="python2")

 if b_error in out:

 out, strace_file = execute_strace(path, test_in=test_input, python_v="python3")

 if b_error in out:

 logger.error("Couldn't run python file: '{}'".format(path))

 if os.path.exists(file_name):

 os.remove(file_name)

 s_out = out.decode('utf-8')

 return s_out

def execute_strace(file_path: str, test_in: str, python_v: str) -> (bytes, str):

 strace_file_name = file_path.replace("py", "strace")

48

 cmd = ["strace", "-c", python_v, file_path]

 ps = subprocess.Popen(('echo', test_in), stdout=subprocess.PIPE)

 out = subprocess.Popen(cmd, stdin=ps.stdout, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)

 stdout, _ = out.communicate()

 return stdout, strace_file_name

def add_main_function_call(dir: str, file_name: str, test_word: str):

 import regex as re

 function_def_pattern = re.compile('def .+\(.+\):')

 path = "{path}{file}".format(path=dir, file=file_name)

 with open(path, 'r') as file:

 s_file = file.read()

 # Check if solve function is in file but not called

 func_def = function_def_pattern.search(s_file)

 if func_def:

 # get_func_name where format is 'def foo(oof):' get foo

 func_name = func_def.group(0).replace("def ", "").split("(")[0]

 function_calls = re.findall(func_name+'\(.+\)', s_file)

 # If no more than 1 call to func_name(.*), meaning the definition, append a call to that function

 if len(function_calls)<=1:

 to_append = "\nprint({func}('{test}'))".format(func=func_name, test=test_word)

 appender = open(path, 'a')

 appender.write(to_append)

if __name__ == "__main__":

 profile()

49

5. Implementation evaluation tool
from src.logger import get_logger

logger = get_logger('evaluation')

def analyse(original_tree, custom_tree):

 import json

 original_tree_dict = json.loads(original_tree)

 node_appearances_AST = dict()

 iter_tree(original_tree_dict, node_appearances_AST, type_key="_type")

 num_entities_ast = len(list(node_appearances_AST.keys()))

 num_nodes_ast = sum(list(node_appearances_AST.values()))

 ast_analysis = {'total_entities': num_entities_ast,

 'total_nodes': num_nodes_ast,

 'entities': list(node_appearances_AST.keys())}

 custom_tree_dict = json.loads(custom_tree)

 node_appearances_cAST = dict()

 iter_tree(custom_tree_dict, node_appearances_cAST, type_key="CAST_type")

 num_entities_cast = len(list(node_appearances_cAST.keys()))

 num_nodes_cast = sum(list(node_appearances_cAST.values()))

 cast_analysis = {'total_entities': num_entities_cast,

 'total_nodes': num_nodes_cast,

 'entities': list(node_appearances_cAST.keys())}

 logger.debug("Analysis AST: Different entities '{}', Total nodes '{}'".format(num_entities_ast, num_nodes_ast))

 logger.debug("Analysis cAST: Different entities '{}', Total nodes '{}'".format(num_entities_cast, num_nodes_cast))

 return {'ast': ast_analysis, 'cast': cast_analysis}

def iter_tree(d, entities_tree, type_key):

 for k, v in d.items():

 if k == type_key:

 if v in entities_tree:

 curr_value = entities_tree.get(v)

 entities_tree.update({v: curr_value + 1})

 else:

 entities_tree.update({v: 1})

 if isinstance(v, dict):

50

 iter_tree(v, entities_tree, type_key)

 elif isinstance(v, list):

 [iter_tree(element, entities_tree, type_key) for element in v if isinstance(element, dict)]

if __name__ == "__main__":

 #D1={"CAST_type": "Module", "CAST_body": [{"CAST_type": "Import", "CAST_body": [{"origin": "SYS"}, {"name":
"pprint"}]}, {"CAST_type": "Import", "CAST_body": [{"origin": "UNK"}, {"name": "src.my_pretty.my_print"}]}, {"CAST_type":
"FunctionDef", "CAST_body": [{"CAST_type": "arguments", "CAST_body": [{"CAST_type": "arg", "CAST_body": ["'list1'",
"None"]}]}, {"CAST_type": "Loop", "CAST_body": [{"CAST_type": "Name", "CAST_body": [{"id": "'i'", "ctx": "Store"}]},
{"CAST_type": "Name", "CAST_body": [{"id": "'list1'", "ctx": "Load"}]}, {"CAST_type": "Expr", "CAST_body": [{"CAST_type":
"Call", "CAST_body": [{"origin": "SYS"}, {"CAST_type": "Name", "CAST_body": [{"id": "'pprint'", "ctx": "Load"}]},
{"CAST_type": "Call", "CAST_body": [{"origin": "UNK"}, {"CAST_type": "Name", "CAST_body": [{"id": "'my_print'", "ctx":
"Load"}]}, {"CAST_type": "Name", "CAST_body": [{"id": "'i'", "ctx": "Load"}]}]}]}]}]}]}]}

 D1 = {"CAST_type": "Module","tests":{"inner":1}, "CAST_body": [{"CAST_type":"Name", "CAST_body": [{"origin": "SYS"},
{"name": "pprint"}]}]}

 node_appearances = {}

 iter_tree(D1, node_appearances)

 print(node_appearances)

51

Glossary

Glossary Index

AI: Artificial Intelligence..10

LTH: Lund Tekniska Högskola...10

UPC: Universitat Politècnica de Catalunya..1o

AST: Abstract Syntax Tree..13

LLVM: Low Level Virtual Machine..14

json: JavaScript Object Notation...15

IDE: Integrated Development Environment..17

LLVM: Low Level Virtual Machine..14

52

	Abstract
	Resum
	Resumen
	Revision history and approval record
	Table of contents
	List of Figures
	List of Tables
	1. Introduction
	1.1. Project scope
	1.2. Phase 1: Defining optimal compiled language for Code-set Summarization
	1.2.1. Statement of purpose
	1.2.2. Requirements and specifications

	1.2.3. Work plan and milestones
	1.3. Deviations and incidencies
	2. State of the art of the technology used or applied in this thesis
	3. Methodology
	3.1. Architecture
	3.2. Building source code data-set
	3.2.1. Gathering the data-set with web scraping tools
	3.2.2. Homogenising a data-set under the same distribution & labeling the data-set
	3.3. Building custom AST data-set from source code data-set
	3.3.1. Gathering the Abstract Syntax Tree
	3.3.2. Traversing the AST
	3.3.3. Filtering nodes
	3.3.3.1. Disallowing aliases
	3.3.3.2. Minimizing number of entities in AST
	3.3.3.3. Minimizing number of nodes in AST
	3.3.4. Enriching the AST
	3.3.4.1. Discriminating method calls
	3.3.5. Representing the customised AST
	4. Results
	4.1. DeepCode Phase 1 Evaluation
	4.1.1. Custom & simple test code
	4.1.2. Custom & complex test code
	4.1.3. Transforming a 10k files data-set
	4.2. Evolution of a singular source code sample
	5. Budget
	6. Conclusions and future development
	Appendices
	1. DeepCode Phase1: Compilers approach

	Introduction
	Related work
	Architecture
	Implementation
	Gathering the Abstract Syntax Tree
	Traversing the AST
	Filtering nodes
	Disallowing Aliases
	Minimizing number of entities in AST
	Minimizing number of nodes in AST

	Enriching the AST
	Discriminating method Calls

	Representing the customised AST

	Experiments
	Custom-simple test code
	Custom-complex test code
	Transforming a 10k files data-set

	Future work
	Conclusions
	References
	1.2.3. Work plan and milestones
	1.3. Deviations and incidencies
	2. State of the art of the technology used or applied in this thesis
	3. Methodology
	3.1. Architecture
	3.2. Building source code data-set
	3.2.1. Gathering the data-set with web scraping tools
	3.2.2. Homogenising a data-set under the same distribution & labeling the data-set
	3.3. Building custom AST data-set from source code data-set
	3.3.1. Gathering the Abstract Syntax Tree
	3.3.2. Traversing the AST
	3.3.3. Filtering nodes
	3.3.3.1. Disallowing aliases
	3.3.3.2. Minimizing number of entities in AST
	3.3.3.3. Minimizing number of nodes in AST
	3.3.4. Enriching the AST
	3.3.4.1. Discriminating method calls
	3.3.5. Representing the customised AST
	4.1. DeepCode Phase 1 Evaluation
	4.1.1. Custom & simple test code
	4.1.2. Custom & complex test code
	4.1.3. Transforming a 10k files data-set
	4.2. Evolution of a singular source code sample
	1. DeepCode Phase1: Compilers approach
	2. Grouping strategy from Python’s original entities
	3. Web scraping HackerRank’s “Capitalize!” challenge
	4. Homogenising and labeling source code data-set
	4.1. Implementation: homogenising data-set
	4.2. Implementation: homogenising, profiling, and labeling source code
	5. Implementation evaluation tool
	Glossary

