
A user-centric mobility management scheme for
high-density fog computing deployments

Zeineb Rejiba∗, Xavier Masip-Bruin∗, Eva Marı́n-Tordera∗
∗Advanced Network Architectures Lab (CRAAX), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

{zeinebr, xmasip, eva}@ac.upc.edu

Abstract—The inherent mobility characterizing users in fog
computing environments along with the limited wireless range
of their serving fog nodes (FNs) drives the need for designing
efficient mobility management (MM) mechanisms. This ensures
that users’ resource-intensive tasks are always served by the
most suitable FNs in their vicinity. However, since MM decision-
making requires control information which is difficult to predict
accurately a-priori, such as the users’ mobility patterns and
the dynamics of the FNs, researchers have started to shift
their attention towards MM solutions based on online learning.
Motivated by this approach, in this paper, we consider a bandit
learning model to address the mobility-induced FN selection
problem, with a particular focus on scenarios with a high FN
density. Following this approach, a software agent implemented
within the user’s device learns the FNs’ delay performances via
trial and error, by sending them the user’s computation tasks and
observing the perceived delay, with the goal of minimizing the
accumulated delay. This task is particularly challenging when
considering a high FN density, since the number of unknown
FNs that need to be explored is high, while the time that can be
spent on learning their performances is limited, given the user’s
mobility. Therefore, to address this issue, we propose to limit the
number of explorations to a small subset of the FNs. As a result,
the user can still have time to be served by the FN that was
found to yield the lowest delay performance. Using real world
mobility traces and task generation patterns, we found that it
pays off to limit the number of explorations in high FN density
scenarios. This is shown through significant improvements in the
cumulative regret as well as the instantaneous delay, compared
to the case where all newly-appeared FNs are explored.

Index Terms—Fog computing, Edge computing, Fog Node
selection, mobility management, multi-armed bandits

I. INTRODUCTION

In the recent years, the landscape of consumers’ applications
has witnessed an increased popularity of a new class of
applications, including Internet of Things (IoT) applications,
augmented reality (AR) and virtual reality (VR), to name a
few. An important characteristic of such applications is their
strict Quality of Service (QoS) requirements, which cannot
be successfully met when using the conventional cloud-based
provisioning model. Moreover, these applications usually gen-
erate massive amounts of data that need to be sent over the
core network for further processing in the cloud, which adds
a significant burden on the underlying infrastructure.

Therefore, in order to cope with the afore-mentioned limita-
tions, new computing paradigms have been proposed, namely
fog [1] and edge [2] computing. These computing paradigms
rely on the use of spare computational resources provided by
distributed nodes at the edge of the network, generally referred

to as fog nodes (FNs)1 (or MEC servers in the multi-access
edge computing terminology). Leveraging the ubiquity of such
nodes and the ability of the users to access them using a
one-hop wireless access, the required QoS levels mandated
by highly-interactive applications can be met.

However, users of such applications could be on the move,
and as a result, the fog nodes that serve the tasks generated by
their applications should be appropriately selected to cope with
their continuously-changing locations. That is why, mobility
management (MM) is seen as one of the main research
problems that need to be addressed in the fog computing
context.

Many contributions have been recently proposed to address
this problem. More specifically, the relevant literature reveals a
noticeable trend towards adopting user-centric approaches that
rely on embedding smartness and decision-making capabilities
onto the user’s device side (as envisioned in [3]). In line with
this, the trend towards using online MM mechanisms (i.e.
having no prior knowledge about the system parameters) is
also gaining in popularity. Such a trend is motivated by the
need to cope with the uncertainty characterizing the users’
mobility, the FNs’ availabilities and their capabilities. In fact,
continuously requesting such information whenever a MM
decision needs to be made would lead to a high control
overhead. That is why, learning via trial and error was instead
envisioned to support the decision making, at the cost of
incurring occasional losses due to the learning process.

Even though the works that have been proposed in this
context are promising, they are generally characterized with
the following limitations. First, they consider a limited user
mobility ([4], [5], [6]) and as such, they do not address
the problems that may arise from longer mobility durations,
such as the continuously-changing set of FNs. Second, they
consider scenarios with a limited number of FNs, where the
user can have enough time to learn the best one among them
([7], [8]), which may not always be the case. In fact, as will
be shown in our collected data, a user usually has to learn the
performances of a high number of FNs in a very short time
frame, since the set of nearby FNs changes due to mobility.

Therefore, with such observations in mind, the aim of this
work is to design a fog node selection scheme in a high-density
fog deployment, while taking the effects of the user’s mobility
into account. To this end, we adopt a learning approach

1We will adopt the term Fog Node for the remainder of the paper.

inspired by the many-armed bandit learning model[9], where
the number of FNs approaches the number of trials, for a fixed
FN availability duration. This distinguishes our work from the
rest of the literature that considers standard bandit learning
with a number of trials that is much greater than the number of
FNs. Then, in order to avoid the time-consuming exploration
of the delay performances of the whole set of the newly-
appeared FNs, we reduce the number of exploration candidates
to a subset of FNs and then proceed to the exploitation of
the FN offering the lowest delay. To evaluate this approach,
we derive the task generation rate for a typical edge/fog
application and use it along with a realistic mobility trace. The
obtained results show significant reductions in the cumulative
regret of the learning algorithm and the instantaneous delay
perceived by the user.

The remainder of this paper is organized as follows: Sec-
tion II provides an overview of the related works. Section
III describes the considered system model and the research
problem that we intend to address. In section IV, we present
the details of our proposed solution. We then highlight the
obtained results and discuss some implications of the proposed
approach in sections V and VI, respectively. Finally, we
conclude the paper.

II. RELATED WORK

Given the growing interest shown by the research com-
munity to mobility management in edge and fog computing
scenarios, several contributions have been proposed to address
this problem.

Some of these contributions are network-centric, i.e. the
decision of selecting the target FN is implemented within a
specific entity in the network. For instance, authors in [10] pro-
pose a task offloading scheme for ultra-dense edge computing
environments with the goal of reducing the task duration, while
keeping the device’s energy consumption low. The proposed
scheme is implemented within a controller attached to a
macro base station having global information about the system.
Similarly, authors in [11] propose a mobility-aware offloading
algorithm which is envisioned to be implemented within the
SDN controller. The algorithm decides the offloading size as
well as the communication path for the offloaded task, using
predicted near-future information about tasks and network
conditions. Other works in this category have been extensively
reviewed in [12].

In contrast to these network-centric approaches, there has
been a noticeable trend towards using user-centric decision-
making, where users’ devices can host the “smartness” al-
lowing them to perform advanced decision-making. Such a
trend is coupled with using online learning approaches, since
information about the considered system dynamics cannot be
predicted accurately a-priori.

One relevant work in this direction is [4], where authors
address the problem of selecting the optimal BS to serve a
user’s task in an ultra-dense MEC deployment, such that the
delay and the device’s energy consumption are minimized.
An online solution based on the multi-armed bandit (MAB)

theory is presented to solve the problem. In particular, a
Volatile MAB approach is adopted to deal with the volatility
of BSs. However, authors consider that the number of learning
trials is large enough compared to the number of BSs whose
performances need to be learnt. Focusing on a vehicular
edge computing scenario instead, authors in [7] consider the
problem of task offloading from one vehicle to neighboring
serving vehicles (SeVs) with the goal of minimizing the overall
delay. Similar to [4], a volatile MAB approach is used to
deal with the SeVs’ volatility, in addition to including load-
awareness in the selection decision process. Subsequent work
[8] considers task replication, where the same task can be
processed simultaneously by multiple vehicles to improve
reliability. In [13], authors consider a fog network where a task
node needs to offload tasks to a helper node such that the long-
term latency is minimized. Authors focused on the problem
of the non-stationarity affecting the system parameters, and as
such mobility-related aspects were not addressed.

Instead of relying on the MAB learning model, authors
in [5] propose to use Q-learning for addressing mobility-
management in a dense MEC environment. In the proposed
solution, the user observes the current state, i.e. the serving
BS and the channel conditions and decides on the target BS
based on previously-observed task execution speeds. However,
evaluation results have been carried out considering a small
number of BSs and a limited mobility area. In [6], authors
propose a user-centric computation offloading scheme for
virtual edge computing systems based on double Q-learning.
More specifically, offloading decisions are made based on
the task queue state, the energy queue state and the channel
quality, but with no specific focus on user mobility.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Legend:

Mobile user

Fog Node

Fig. 1. System model

As shown in Fig. 1, we consider a representative user
moving within a high-density fog computing deployment
comprised of a setA of fog nodes. From the user’s perspective,
the set of visible FNs is time-varying due to the mobility.
Therefore, if we denote by Tc the period characterizing the
change of the visible FNs, the sets of FNs seen by the user
can be represented as ATc ,A2Tc , . . . ,AnTc . Naturally, given

the limited range of the FNs, the transition from AiTc
to

A(i+1)Tc
can result in new FNs appearing for the first time,

some FNs disappearing and others remaining available for two
consecutive periods.

The considered user runs an application that continuously
generates a sequence of computation-intensive tasks that need
to be served by the encountered FNs (e.g. a location-based
mobile AR game). We denote by M the number of tasks that
the application generates within Tc.

An intelligent software agent is implemented within the
user’s device (or as part of the application) to select the most
suitable FNs that should serve the user’s tasks. In order to
assess the quality of a given selection, we consider the total
delay perceived by the user as a performance indicator. Such a
delay is comprised of multiple components, as we detail next:

• The transmission delay, i.e. the delay for transmitting the
task input data to FN a over the wireless channel. It can
be calculated as follows:

dtr(t, a) =
N

Rt,a
(1)

where N is the task’s input data size and Rt,a is the
transmission rate.
Given the channel bandwidth W , the transmit power
PTX , the channel gain to FN a Ht,a, the noise power
σ2 and the interference level IFt,a, the transmission rate
can be derived as follows:

Rt,a =Wlog2

(
1 +

PTXHt,a

σ2 + IFt,a

)
(2)

• The computation delay is the delay taken by a FN to
process a task with an input size I and a computational
intensity N . It can be determined as follows:

dcmp(t, a) =
N ∗ I
ft,a

(3)

where ft,a is the available computation capacity at FN a
at time t.

• The switching delay. It refers to the delay incurred when
the newly-selected FN is different from the previous one.
It can be seen as the time that the newly-selected FN
takes to start a container with the user’s service2.

Considering the aforementioned delay components, the overall
delay observed by a user served by FN a at time t can be
expressed as3:

dtot(t, a) = dtr(t, a) + dcmp(t, a) + dswi(t, a) (4)

2We assume that the container engine is already started at the new FN and
that the considered service is popular in the considered area and as a result
the container image is already downloaded. As a result, the delays that may
result from these two processes are not considered.

3Similar to previous works[4], [5], we do not consider the downlink
transmission delay in this paper.

Our objective is then to find the optimal sequence of FNs that
should serve the user’s tasks in order to minimize the average
delay over the total service duration T :

min
a∈A

1

T

T∑
t=1

dtot(t, a) (5)

Since solving this problem requires having prior knowledge
about time-varying information such as the FNs’ availabilities
and their expected delay performances, we address it using an
online learning approach based on the MAB theory, as detailed
in the following section.

IV. PROPOSED APPROACH: LIMITED EXPLORATION FOR
BANDIT-BASED FN SELECTION (LIMEXP)

In this section, we first review the foundations of the
bandit theory, in order to provide a better understanding of
our approach. Then, we explain how our considered scenario
differs from the standard bandit model and the issues that may
arise in the resulting setup. Finally, we present the solution that
we propose to address these issues.

A. MAB Foundations

In Multi-Armed Bandits, a learning agent is presented with
multiple actions to choose from, each leading to receiving an
initially-unknown reward. This process is similar to the way a
gambler would have to choose among different slot machines
in order to maximize its total reward. The agent follows a
trial and error approach to learn the reward distributions of the
different actions. Ideally, the agent’s action selection strategy
needs to balance exploration, i.e. selecting different actions to
learn an accurate estimate of their rewards and exploitation, i.e.
selecting actions having the best known reward so far. Upper
Confidence Bound (UCB) [14] algorithms are commonly
used in the literature to address this exploration-exploitation
tradeoff. In UCB, each action a has an index ia that combines
its mean reward r(a) and a confidence term4 that takes into
account the current decision slot t and the number of times
that action has been selected up to that decision slot Nt(a):

ia = r(a) +

√
log(ξt)

Nt(a)
(6)

The algorithm will then select the action having the highest
index. The result is that actions having indices with low values
and those which have been sufficiently selected in the past will
be selected less often in the future.

In order to measure the efficiency of such bandit algorithms,
the concept of the cumulative regret Rn, defined below, is
generally used:

Rn =

n∑
i=1

(µ∗i − µi) (7)

where n is the nth decision slot, whereas µ∗i and µi denote
the reward of the optimal action at the ith decision slot and

4Also called padding function or exploration bonus.

the reward of the action selected at the ith decision slot,
respectively.

As it can be noted, the cumulative regret measures the
difference between the agent’s accumulated reward and the
accumulated reward that could have been achieved if the opti-
mal actions were selected, assuming their reward distributions
were available a-priori.

When the MAB problem also involves a switching cost
when the actions taken at two consecutive decision slots are
different, the cumulative regret also includes the switching
regret ([15], [4]), as follows:

Rn =

n∑
i=1

(µ∗i − µi) +

(
C

n∑
i=2

1{ai 6= ai−1}
)

(8)

where C is the switching cost.

B. Beyond the standard MAB

Based on the above-defined bandit model, we define the
following mappings between the different bandit components
and our system components:
• Agent: The software agent implemented within the user’s

device in order to perform the FN selection decisions.
• Action: The FN to be selected to serve a user’s task.
• Reward: The delay, which needs to be minimized.
Since we focus on the case of a user on the move, the set of

visible FNs changes over time. This is usually referred to as
a sleeping[16] or volatile[17] bandit problem in the literature.
Such a problem is particularly challenging in our case, since
the user has a very limited time to learn before new FNs
become available and others disappear, thus disrupting the
learning process.

The afore-mentioned volatile bandit model has been first
used in the context of edge computing in [4]. In this work,
authors used the concept of an epoch5 as the duration in which
the set of available MEC-enabled BSs remains unchanged.
Within this epoch, the number of tasks that can be used for
learning purposes is high compared to the number of BSs. This
makes the exploration of each newly-appeared BS possible.
However, our scenario is different in that we consider a high
FN density, where the number of FNs may be greater than
or equal to the number of tasks in a given epoch (as it can
be seen in our collected data). In most cases, there will be
a high number of new FNs that need to be explored in each
epoch. Yet, if all such FNs are explored, there will be no trials
left for exploitation. This situation can be approached to the
(infinitely) many-armed bandits[9] extension of MABs, which
is characterized by a large (or infinite) number of actions
compared to the possible number of trials.

C. Proposed solution: Limited exploration for bandit-based
FN selection (LimExp)

Inspired by the UCB-based solutions proposed for the
infinitely many-armed bandits in [9], we propose to consider

5We will also use this term to refer to the duration in which the set of FNs
remains unchanged.

only a fixed number K of FNs for exploration and therefore
avoid the exploration of all newly-appeared FNs in a given
epoch. After those K FNs have been explored, the user
can spend the remaining trials within the considered epoch
connected to the FN having the best known delay performance.
The rationale for our approach comes from the fact that,
since we have a high number of FNs, we may end up with
multiple FNs resulting in similar delay performances. There-
fore, discarding some of them from the exploration process
is not likely to degrade the performance. In addition, this
results in a decreased probability of selecting an FN having a
bad performance. Finally, limiting the number of explorations
allows the user to avoid frequent switching from one FN to
the other, thus ensuring a seamless task execution.

The proposed LimExp algorithm, depicted in Alg.1, is
described next. For each epoch i, the agent retrieves the
list of FNs in range Ai. Then, it creates a list B of FNs
which have not been explored yet. If the number of such FNs
is lower than K, all of them are considered as exploration
candidates. Otherwise, only a subset of B of size K is
considered for exploration. Following this, and as long as
there are tasks generated in the considered epoch, the agent
will check whether the FN that will serve the current task
should be selected via exploration or via exploitation. To this
end, it checks the list of exploration candidates. If this list is
empty, it will select the FN that resulted in the lowest delay
in the previous trials, taking into account its corresponding
confidence term (Line 15 in in Alg.1). Once the FN performs
the task and sends the result back to the user, the agent will
observe the delay dtot(am,i) and update the accumulated delay
for the chosen FN zam,i

6 as well as the number of times it
has been chosen up to the current decision slot nam,i

.

V. EVALUATION RESULTS

In this section, we provide an overview of our data collec-
tion approach, which is followed by an analysis of the obtained
results.

A. Data collection approach

1) Mobility data collection: In order to emulate the chang-
ing availabilities of the FNs from a mobile user’s perspective,
we used an Android mobile application to log the list of
detected Wi-Fi access points as a user moves in the downtown
area of the city of Vilanova I La Geltrù7 where our lab is
located. The user was walking for a duration of 30 minutes
approximately. Such a duration may correspond to a common
session length of a mobile augmented reality game such as
Pokémon Go[18]. Within this duration, scans were performed
every 30s, since as stated in the Android documentation8, each
foreground app is allowed to scan four times in a 2-minute
period for Android 9 and later versions.

6Since the switching delay is not an indicator of the quality of a certain
FN, it is subtracted from dtot(am,i) in Line 18 of Alg.1.

7The city has a population of ∼ 66.000 residents.
8https://developer.android.com/guide/topics/connectivity/wifi-scan

Algorithm 1: LimExp
input: K: The number of FNs to explore

1 for i← 1 to n do
2 Ai ← The set of FNs in range
3 B ← get all unexplored(Ai)
4 exploration candidates← {}
5 if |B| > 0 then
6 if |B| < K then
7 exploration candidates← B
8 else
9 exploration candidates← sample(K,B)

10 end
11 for m← 1 to M do
12 if |exploration candidates| > 0 then
13 am,i = random(exploration candidates)

exploration candidates←
exploration candidates \ {FNselected}

14 else
15 am,i = argmina∈Ai

(za
na
−

√
ξlog(m+M∗(i−1))

na
)

16 end
17 Observe delay dtot(am,i)
18 zam,i ← zam,i + (dtot(am,i)− dswi(am,i))
19 nam,i ← nam,i + 1
20 end
21 end

After completing the data collection phase, we performed
a basic data analysis to extract general statistics from the
obtained trace. More specifically, we found that a single scan
resulted in the detection of 33 APs on average, while the
minimum number of APs per scan was 19 and the maximum
was 55. Based on this trace, we defined two scenarios to
emulate different FN densities, as described below:

• The first scenario, corresponds to a medium FN den-
sity, where all APs having SSIDs representing freely-
accessible Wi-Fi networks (i.e. corresponding to public
city facilities) are considered as having FN capabilities.
This results in an average of 10 FNs per scan, where 3
FNs are new compared to the previous scan. The resulting
distribution of FNs in this scenario is depicted in Fig. 2

• The second scenario, corresponds to a high FN density
(i.e. the case that we focus on in this paper), where we
consider all APs from the previous scenario in addition
to 50% of the remaining ones. It is worth noting that
the remaining APs have SSIDs indicating a private Wi-
Fi network (generally starting with an internet service
provider name and could correspond to corporate/home
networks). So, for the purposes of this work, we consider
that only half of them are upgraded by their owners to
have FN capabilities. We found that in this case, 21 FNs
are detected on average in each scan, 9 out of which are
new compared to the previous scan. The corresponding
distribution of FNs in this case is shown in Fig. 3.

2) Task generation rate: For the purposes of this work,
we considered object recognition (OR) as a typical resource-
intensive task that may require fog capabilities. In fact, object
recognition is an essential component of mobile augmented

TABLE I
SIMULATION PARAMETERS

Parameter Value
Task input size N 1 MBits
Task computation intensity I 2640 ∗N [19]
Switching cost (e.g. container start-up time) 50ms[20]
Bandwidth W 20MHz
Transmit power PTX 0.5 W

Channel gain Ht,a
127 + 30log(d), where d is
the user-FN distance[4]

Noise power σ2 2.10−13W

Computation capacity ft,a
Uniformly distributed within
[1, 25] GHz [4]

Tc
30s (in line with the scan
interval in the mobility trace)

UCB constant ξ 8 [16]

reality applications, which are typical use cases for fog/edge
computing[19].

In order to determine the rate at which such tasks would
be generated, we used an Android-based Image labeling
application provided by Firebase ML Kit9. This application
continuously sends requests to annotate the contents of live
video frames obtained from the smartphone camera. OR al-
gorithms provided by Google’s Cloud Vision API are invoked
to serve the application’s requests. The task generation rate
can then be derived from the API’s dashboard. In fact, we
found that the Image Annotation method was invoked by the
mobile application 29 times (on average) in a 30s interval.
Therefore, we consider M = 29 to represent the number of
tasks generated within a period Tc = 30s.

B. Obtained results

Using the collected mobility trace and the derived task
generation pattern, simulations have been conducted in a
custom simulator built in Python using the models defined in
Section III and the parameters shown in Table I. We compare
our algorithm to the Auer algorithm[16] which was originally
proposed for sleeping bandits. As opposed to our algorithm,
Auer performs explorations of all newly-appeared FNs. We
also compare to an Oracle algorithm having exact prior knowl-
edge about the FNs’ availabilities and their corresponding
delay distributions. The presented results were averaged over
50 runs.

Fig. 4 depicts the cumulative regret (as defined in (8))
obtained by Auer and LimExp for different values of K. As
it can be seen, the limited number of explorations performed
in LimExp leads to a significant regret reduction compared
to Auer. Choosing K = 4 in the considered high FN density
scenario yields the lowest regret. However, when K = 3, the
regret increases (while still being much lower than the one
obtained by Auer), which may be attributed to the fact that
some FNs having very good delay performances were missed
(not explored) when K was small.

For reference purposes, we show in Fig. 5 the cumulative
regret obtained by the same algorithms in the medium density
scenario (for the distributions shown in Fig. 2). As it can be

9https://firebase.google.com/docs/ml-kit/label-images

Fig. 2. FN distributions - Medium density case

Fig. 3. FN distributions - High density case

0 500 1000 1500 2000
Iteration number

0

50000

100000

150000

200000

C
u
m

u
la

ti
v
e
 r

e
g
re

t

LimExp, K=3
LimExp, K=4
LimExp, K=5
Auer

Fig. 4. Cumulative regret - High density case

seen, since the number of newly-appeared FNs in each epoch
is low, it is more beneficial to explore them all (as done in
Auer), thus leading to a lower regret. The gap between Auer
and LimExp for K=3, indicates that the latter has repeatedly
missed an FN with an optimal performance in multiple epochs.

To further highlight the benefits achieved by our proposed
approach, we depict in Fig. 6 the instantaneous delay within
a epoch where a high number of newly-appeared FNs has
been observed. In this case, while Auer spends most of the
time exploring the delay performances of the new FNs, thus
leaving only a few trials for exploiting the best FN, LimExp
spends only K trials performing an exploration phase, then it
starts exploiting the best FN that it found. We note that even
though this best FN is actually sub-optimal with regards to

0 500 1000 1500 2000
Iteration number

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

C
u
m

u
la

ti
v
e
 r

e
g
re

t

LimExp, K=3
LimExp, K=4
LimExp, K=5
Auer

Fig. 5. Cumulative regret - Medium density case

the one selected by the Oracle, it leads to a much better delay
performance compared to the costly explorations in Auer. We
also note that in this considered epoch, the best FN has been
discovered in (a) previous epoch(s) and not in the current one.
As a result, although the explorations performed in the current
epoch may seem wasteful since they did not reveal an FN
having a better performance, they are necessary for balancing
exploration and exploitation.

Finally, in Fig. 7, we show the total number of FN switches
performed by each approach for the whole simulated duration.
Such FN switches highly depend on the number of FNs to
explore. Then, as expected, since Auer explores every new
FN, this results in the highest number of switches. However,
reducing the number of explorations in LimExp considerably
reduces the number of switches, thus providing a seamless

0 5 10 15 20 25 30
Trial number

100

150

200

250

300

350

400

450

500

550
In

st
a
n
ta

n
e
o
u
s

d
e
la

y
 (

m
s)

LimExp, K=3
LimExp, K=4
LimExp, K=5
Auer
Oracle

Fig. 6. Instantaneous delay

Oracle LimExp
K=3

LimExp
K=4

LimExp
K=5

Auer

Algorithm

0

100

200

300

400

500

600

700

800

N
u
m

b
e
r

o
f

FN
 s

w
it

ch
e
s

Fig. 7. Total number of FN switches

experience to the user.

VI. DISCUSSION

In the following, we discuss some of the questions that may
arise from the adoption of our proposed approach, namely with
regards to the definition of the right context to use LimExp
and the definition of the ideal value of K.

A. When to use LimExp?

As shown previously in Fig. 4, using LimExp when the
number of newly-appeared FNs is high improves the learning
performance significantly. In contrast, Fig. 5 reveals that
limiting explorations (as done in LimExp) when the number
of newly-appeared FNs is low does not lead to a performance
enhancement. Thus, to avoid any potential losses due to
the improper use of LimExp, context-awareness mechanisms

should be implemented within the agent, as illustrated in
the tentative scheme in Fig. 8. More specifically, when the
application requiring FN capabilities starts, the agent will
check previous execution statistics for this app and determines
the average number of tasks that it is likely to generate within
an epoch. Then, the agent will check if there are any changes
in the user context (i.e. changes in the location due to mobility)
and retrieves the average number of new FN appearances for
the detected context. In case the average number of tasks is
much larger than the number of new FN appearances, FNs
will be fully explored (as done in Auer). In the opposite case,
LimExp will be used.

Application
started

Get average number of
new appearances per
epoch for this context

Get average number
of tasks per epoch

for this app

Check for changes
in user context

of tasks >> # of new
appearances

Use LimExp Use full
exploration

YesNo

Fig. 8. Envisioned flow to determine when to use LimExp

B. What is the ideal value of K?

As it can be noticed, LimExp uses a defined number K of
FNs for exploration. Therefore, it is important to define K
appropriately in order not to affect the learning performance.
In fact, a low value of K may lead to missing optimal fog
nodes, whereas a large K is almost equivalent to the full
exploration setting. According to [9], K can be calculated
based on a parameter β that characterizes the distributions
of the suboptimal actions. Indeed, a small β corresponds to a
high chance of selecting a good action, therefore, there is no
need to select many actions (i.e. a low K is sufficient). [9] has
also provided the theoretical regret bounds corresponding to
different values of β. Then, leveraging these theoretical results,
the agent in our case can determine the value of K to be used
in LimExp by inferring the characteristics of the distributions
of suboptimal FNs based on historical executions.

VII. CONCLUSION

In this paper, we studied the mobility management problem
in a high-density fog computing environment. More specifi-
cally, we proposed a user-centric fog node selection scheme
where a mobile user learns the best FN to serve its tasks
using the multi-armed bandit approach. The key aspect that
distinguishes our study from the rest of the literature is that we
consider learning epochs where the number of newly-appeared
FNs is close to the number of tasks that can be used to learn.
As a result, inspired by the many-armed bandit variant, we
proposed to consider only a fixed subset of FNs for exploring
their performance. The rest of the time is spent connected
to the best known FN. To support our results, we collected
realistic user mobility data and task generation patterns and we
found that limiting explorations when the FN density is high
significantly improves the performance. As a future work, we
will investigate ways to extend our scheme with smart service
and computation caching at the FNs’ side in order to obtain
additional delay reductions.

ACKNOWLEDGMENT

This work was supported by the Spanish Ministry of Econ-
omy and Competitiveness and the European Regional De-
velopment Fund under contract RTI2018-094532-B-100 and
TEC2015-66220-R (MINECO/FEDER), and by the H2020 EU
mF2C project Ref. 730929.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing - MCC ’12, p. 13, ACM,
2012.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision
and Challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–
646, 2016.

[3] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5G,” IEEE Communications
Magazine, vol. 52, no. 2, pp. 74–80, 2014.

[4] Y. Sun, S. Zhou, and J. Xu, “EMM: Energy-aware mobility management
for mobile edge computing in ultra dense networks,” IEEE Journal on
Selected Areas in Communications, vol. 35, no. 11, pp. 2637–2646,
2017.

[5] J. Wang, K. Liu, M. Ni, and J. Pan, “Learning based mobility manage-
ment under uncertainties for mobile edge computing,” in 2018 IEEE
Global Communications Conference (GLOBECOM), pp. 1–6, IEEE,
2018.

[6] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet of Things Journal, 2018.

[7] Y. Sun, X. Guo, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Learning-Based
Task Offloading for Vehicular Cloud Computing Systems,” in 2018 IEEE
International Conference on Communications (ICC), pp. 1–7, may 2018.

[8] Y. Sun, J. Song, S. Zhou, X. Guo, and Z. Niu, “Task Replication
for Vehicular Edge Computing: A Combinatorial Multi-Armed Ban-
dit Based Approach,” 2018 IEEE Global Communications Conference
(GLOBECOM), pp. 1–7, dec 2018.

[9] Y. Wang, J.-Y. Audibert, and R. Munos, “Algorithms for infinitely many-
armed bandits,” in Advances in Neural Information Processing Systems,
pp. 1729–1736, 2009.

[10] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE Journal on Selected Areas
in Communications, vol. 36, no. 3, pp. 587–597, 2018.

[11] F. Yu, H. Chen, and J. Xu, “DMPO: Dynamic mobility-aware partial
offloading in mobile edge computing,” Future Generation Computer
Systems, vol. 89, pp. 722–735, 2018.

[12] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628–1656.

[13] Z. Zhu, T. Liu, S. Jin, and X. Luo, “Learn and Pick Right Nodes to Of-
fload,” 2018 IEEE Global Communications Conference (GLOBECOM),
pp. 1–6, dec 2018.

[14] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of
the multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3,
pp. 235–256, 2002.

[15] R. Agrawal, M. Hedge, and D. Teneketzis, “Asymptotically efficient
adaptive allocation rules for the multiarmed bandit problem with switch-
ing cost,” IEEE Transactions on Automatic Control, vol. 33, no. 10,
pp. 899–906, 1988.

[16] R. Kleinberg, A. Niculescu-Mizil, and Y. Sharma, “Regret bounds for
sleeping experts and bandits,” Machine learning, vol. 80, no. 2-3,
pp. 245–272, 2010.

[17] Z. Bnaya, R. Puzis, R. Stern, and A. Felner, “Social network search as a
volatile multi-armed bandit problem,” HUMAN, vol. 2, no. 2, pp. pp—
-84, 2013.

[18] A. B. O. de Gortari, “Empirical study on Game Transfer Phenomena in
a location-based augmented reality game,” Telematics and Informatics,
vol. 35, no. 2, pp. 382–396, 2018.

[19] A. Al-Shuwaili and O. Simeone, “Energy-efficient resource allocation
for mobile edge computing-based augmented reality applications,” IEEE
Wireless Communications Letters, vol. 6, no. 3, pp. 398–401, 2017.

[20] K. Kaur, T. Dhand, N. Kumar, and S. Zeadally, “Container-as-a-service
at the edge: Trade-off between energy efficiency and service availability
at fog nano data centers,” IEEE wireless communications, vol. 24, no. 3,
pp. 48–56, 2017.

