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5
Abstract6

Given a convex polygon of n sides, one can draw n disks (called side disks) where each disk7

has a different side of the polygon as diameter and the midpoint of the side as its center. The8

intersection graph of such disks is the undirected graph with vertices the n disks and two disks9

are adjacent if and only if they have a point in common. We introduce the study of this graph10

by proving that it is planar for every convex polygon.11
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1 Introduction14

Let Pn be a convex polygon of n sides denoted s0, s1, . . . , sn−1 counter-clockwise. For each side si,15

let Di denote the disk with diameter the length of si and center the midpoint of si. Since Di is16

constructed on the side si of Pn, we say that Di is a side disk of Pn. The intersection graph of the17

side disks D0, D1, . . . , Dn−1 is the undirected graph G = (V,E), where V = {D0, D1, . . . , Dn−1}18

and {Di, Dj} ∈ E if and only if the intersection of Di and Dj is not empty. In this paper, we prove19

that for any convex polygon the intersection graph of the side disks is planar, introducing the study20

of this new class of geometric intersection graphs.21

Geometric intersection graphs are a research topic in combinatorics and discrete and compu-22

tational geometry (see for instance [1]). Furthermore, results on disjoint and/or intersecting disks23

in the plane are among the most classical ones in discrete geometry. For example, a theorem of24

Danzer [3] says that if any two of a given family of n disks intersect, then there exists a set of four25

points which intersects each disk. Intersections of disks have also been considered in the context26

of intersection graphs: each disk represents a vertex of the graph and two vertices are adjacent if27
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Figure 1: (a) P lies outside the disks with diameters AB, BC, and DE. (b) Two disjoint disks with
diameters AB and CD.

and only if the corresponding disks intersect. By the Koebe-Andreev-Thurston theorem [10], every28

planar graph is an intersection graph of disks, where every pair of intersecting disks have only one29

point in common, that is, they are tangent. In this paper, the disks are in special position and we30

prove that their intersection graph is planar.31

The problem studied here, specifically the case of a pentagon, has been motivated from an32

attempt to improve the known lower and upper bounds on the minimum number of triples of33

points defining an obtuse angle, in a finite point set in the plane. Refer to the works of Conway34

et al. [2] and Fabila-Monroy et al. [4] for this combinatorial problem. This apparent easy case of a35

pentagon, where one has to show that two of the five side disks are disjoint, received the attention36

of several researchers of the discrete and computational geometry community, and turned out to be37

non-trivial to solve [8]. A quite natural approach is to connect an interior point P of the pentagon38

with the five vertices and consider the angles at P . It follows from Thales’ Theorem that P lies in39

the disk with, say, diameter AE if and only if the angle ∠APE is non-acute (i.e., ∠APE ≥ π/2),40

and this reflects the relation with the above mentioned combinatorial problem. In Figure 1a, P lies41

outside the disks with diameters AB, BC, and DE. Clearly, no point P lies in more than three42

of the five disks, since otherwise the five angles around P would sum more than 2π. One could43

then use a fractional version of Helly’s theorem (Theorem 12 in [14]), which states that if among44

all the 10 triples of the five disks, more than 6 triples have a point in common, then there exists a45

point contained in 4 disks. We conclude that there are at least 4 triples of disks without a common46

intersection. However, it remained elusive to us to solve this particular case with a Helly-type47

approach. Another tentative approach that fails is the following: Let us consider the example in48

Figure 1b. The two side disks corresponding to sides AB and CD are disjoint. This is equivalent49

to saying that the distance between the midpoints MAB and MCD of the segments AB and CD,50

respectively, is larger than the sum of the radii of the disks, equal to half of the sum of the lengths51

of AB and CD. Thus, a natural approach is to prove that the sum of the five distances between52

the midpoints (that is, the dotted edges in Figure 1b) is bigger than the perimeter of the pentagon.53

But this is not always the case: for example, consider the pentagon with vertices at (1, 9), (0, 3),54

(0,−3), (1,−9), and (60, 0).55
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Further notation: Given three different points p, q, and r in the plane, let `(p, q) denote the56

straight line containing both p and q, pq ⊂ `(p, q) the segment with endpoints p and q, h(p, q) the57

halfline emanating from p and containing q, ∆pqr the triangle with vertex set {p, q, r}, and ∠pqr58

the angle not bigger than π with vertex q and sides h(q, p) and h(q, r). For a line `, let dist(p, `)59

denote the distance from p to `. Given a segment s, let |s| denote the length of s, `(s) the line60

that contains s, and Ds the disk that has diameter |s| and center the midpoint of s. We say that a61

(convex) quadrilateral is tangential if each of its sides is tangent to the same given disk contained62

in the quadrilateral. Every time we define a polygon by enumerating its vertices, the vertices are63

given in counter-clockwise order. We will also refer to a polygon by giving a sequence of its vertices64

in counter-clockwise order.65

2 Preliminaries66

Let s0, s1, . . . , sn−1 denote in counter-clockwise order the sides of a convex polygon Pn. Let67

D0, D1, . . . , Dn−1 be the side disks of Pn at s0, s1, . . . , sn−1, respectively, and G = (V,E) the68

intersection graph of D0, D1, . . . , Dn−1. Note that {Di, Di+1} ∈ E for every i ∈ {0, 1, . . . , n − 1},69

where subindices are taken modulo n. Then, G is Hamiltonian, with cycle (D0, D1, . . . , Dn−1, D0).70

Every Hamiltonian graph G = (V,E) with a Hamiltonian cycle c = (v0, v1, . . . , vn−1, v0) can be71

embedded in the plane as follows: v0, v1, . . . , vn−1 are different points of the unit circle so that the72

edges of the cycle are the circular arcs between consecutive points, and any other edge {vi, vj} ∈ E73

is the straight chord of the circle, denoted ci,j , that connects the points representing vi and vj ,74

respectively. We call such an embedding as the circular embedding of G, using c. The chords induce75

the intersection graph Gc = (Vc, Ec) (known as circle graph), where Vc is the set of chords, and76

{ci,j , ck,`} ∈ Ec if and only if the chords ci,j and ck,` have an interior point in common. Observe77

that subindices i, j, k, and ` must be different. See Figure 2 for examples.78

Kuratowski [11] and Wagner [13] theorems are well-known characterizations of planar graphs,79

but they are oriented to general graphs. On the other hand, in most of the cases when proving80

that a graph is planar, one tries to find a way of drawing (i.e., embedding) the graph in the81

plane without crossings between the edges. In our particular case, we consider the condition82

that the intersection graph of the side disks of a convex polygon is always Hamiltonian, and use83

a particular characterization. Let G = (V,E) be a Hamiltonian graph of n vertices, and let84

c = (v0, v1, . . . , vn−1, v0) be a Hamiltonian cycle of G. Assume that G is also planar. Note that85

any planar embedding planar(G) of G satisfies the next conditions: The cycle c is a Jordan curve,86

v0, v1, . . . , vn−1 are consecutive points along c, and every edge {vi, vj} ∈ E not in c (i.e., j 6= i+ 1)87

is a curve connecting points vi and vj through either cin or cout, where cin and cout are the interior88

and exterior regions of the plane defined by c, respectively. Color every edge through cin in red,89

and every edge through cout in blue. Consider now the circular embedding circ(G) of G, using c. If90

we map planar(G) to circ(G), then every chord of circ(G) is colored red or blue, and only chords91

of different colors can have an interior point in common. This shows that the chord intersection92

graph Gc is bipartite. Furthermore, the following characterization holds:93

Theorem 1 ([9]). Let G = (V,E) be a Hamiltonian graph, and Gc = (Vc, Ec) the intersection94

graph of the chords in a circular embedding of G. Then, G is planar if and only if Gc is bipartite.95

Any convex n-gon is the intersection of n halfplanes, where the boundary of each halfplane96

contains a side of the n-gon. In general, the intersection of n halfplanes is not always a convex97
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Figure 2: Two examples of an hexagon withs sides s0, s1, . . . , s5, together with the circular embedding of
the intersection graph of the side disks.

polygon: it can be a convex unbounded set whose boundary is a connected polyline with the first98

and last sides being halflines instead of segments. We say that such a convex set is an unbounded99

convex n-gon, and if s0, s1, . . . , sn−1 denote the sides in counter-clockwise order, then s0 and sn−1100

are the first and last sides, that is, s0 and sn−1 are halflines and s1, . . . , sn−2 are segments. We101

consider in the case of an unbouded convex n-gon that s0 and sn−1 are not consecutive sides, and102

the side disks at them are halfplanes as degenerated disks. In our proof we use both convex n-gons103

and unbounded convex n-gons. Given two sides of an (unbounded) convex polygon, the bisector is104

the line that contains the points of the polygon that are equidistant from the two sides.105

To prove that Gc is bipartite, we will show that it does not have cycles of odd length, and the106

main results that we obtain in this direction are the following ones:107

Lemma 2 (1-Chord). Let Pn be an (unbounded) convex n-gon, n ≥ 5, with sides denoted108

s0, s1, . . . , sn−1 in counter-clockwise order. Let D0, D1, . . . , Dn−1 be the side disks of Pn at s0, s1, . . . ,109

sn−1, respectively. Then, there exists a side si such that the disk Di intersects at most one disk110
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Figure 3: (a) Illustration of Theorem 5. (b) Illustration of Lemma 6.

among the disks Di+2, Di+3, . . . , Di−3, Di−2 not neighbouring Di, where subindices are taken mod-111

ulo n. That is, there is at most one chord with endpoint the point representing Di in the circular112

embedding of the intersection graph of D0, D1, . . . , Dn−1.113

Lemma 3 (No-3-Cycles). Let Pn be an (unbounded) convex n-gon, n ≥ 6, and a, b, c, d, e, f six114

sides appearing in this order counter-clockwise. At least one of the following statements is satisfied:115

(a) Da and Dd are disjoint.116

(b) Db and De are disjoint.117

(c) Dc and Df are disjoint.118

That is, the intersection graph of the chords in the circular embedding of the side disks of Pn does119

not have 3-length cycles.120

Theorem 4 (Main). In any convex polygon, the intersection graph of the side disks is planar.121

We prove the above three results in sections 3, 4, and 5, respectively. In each section, we also122

prove several technical lemmas. The next basic results will be used:123

Theorem 5 (Apollonius’ Theorem). Let P , Q, and R be three different points of the plane, and124

let M denote the midpoint of the segment QR (see Figure 3a). Then, the length |PM | satisfies:125

|PM | =
1

2

√
2 (|PQ|2 + |PR|2)− |QR|2.126

A known fact that we will also use is the following one: Given a disk and a point outside it, the127

two lines passing through the point and tangent to the disk define two segments of equal lengths.128

Each segment connects the point with a point of tangency between one of the lines and the disk.129
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Lemma 6 (Diagonal of a tangential quadrilateral [5]). Let P , Q, R, and S be the vertices of a130

tangential quadrilateral, tangent to the disk C. Let T1, T2, T3, and T4 denote the tangent points131

between the sides PQ, QR, RS, and SP and C, respectively. Let a = |PT1| = |PT4|, b = |ST4| =132

|ST3|, c = |RT3| = |RT2|, and d = |QT2| = |QT1| (see Figure 3b). Then, the length |PR| satisfies:133

|PR| =

√
a+ c

b+ d
·
(
(a+ c)(b+ d) + 4bd

)
.134

3 Part I: Proof of 1-Chord lemma (Lemma 2)135

Lemma 7. Let C be a disk and let P be a point not contained in C. Let T1 and T2 be the points of136

the boundary of C such that the lines `(P, T1) and `(P, T2) are tangents to C. Let A be a point in137

the segment PT1 and B a point in the segment PT2 such that the segment AB is tangent to C (see138

Figure 4). Then, the disk DAB is contained in the disk with center P and radius |PT1| = |PT2|.139

Proof. Let a = |PT1| = |PT2|, b = |AT1|, and c = |BT2|. Let M denote the midpoint of the140

segment AB, and note that |PA| = a− b, |PB| = a− c, and |AB| = b+ c. To prove the result, it141

suffices to prove that142

|PM |+ |MA| ≤ a.143

Note that |PM | = (1/2)
√

2((a− b)2 + (a− c)2)− (b+ c)2 by Theorem 5, and that |MA| = (b +144

c)/2. Since b ≤ a and c ≤ a, which implies (b+c)/2 ≤ a, verifying the above inequation is equivalent145

to proving that146

4 · |PM |2 = 2((a− b)2 + (a− c)2)− (b+ c)2 ≤ (2a− (b+ c))2 .147

This last equation holds since the following inequalities are equivalent148

2((a− b)2 + (a− c)2)− (b+ c)2 ≤ (2a− (b+ c))2149

4a2 − 4ab− 4ac− 2bc+ b2 + c2 ≤ 4a2 + b2 + c2 − 4ab− 4ac+ 2bc150

0 ≤ 4bc.151

The result thus follows.152
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Lemma 8. Let C be a disk centered at the point O, and let P be a point not contained in C. Let T1153

and T2 be the points of the boundary of C such that the lines `(P, T1) and `(P, T2) are tangents to154

C. Let E be a point in the halfline h(P, T1) \ PT1 and D a point in the halfline h(P,O) such that:155

`(E,D) does not intersect the interior of C, and ∠EDP ≤ π/2 (see Figure 5). Then, the disk DDE156

does not intersect the disk with center P and radius |PT1| = |PT2|.157

Proof. Let CP be the disk with center P and radius |PT1| = |PT2|. Let S ∈ h(P, T1) \ PT1 and158

R ∈ h(P,O) \ PO be the points such that the line `(S,R) is parallel to `(E,D) and tangent to C159

at the point T4. Let Q denote the reflection point of S about the line `(P,O), and note that the160

quadrilateral with vertices P , Q, R, and S is a tangential quadrilateral, tangent to C. Let T3 be161

the point of tangency between the segment QR and C, and a = |PT1| = |PT2|, b = |ST1| = |ST4| =162

|QT2| = |QT3|, and c = |RT3| = |RT4|. Then, by Lemma 6 used with d = b, we have that163

|PR| =
√

(a+ c)(a+ c+ 2b).164

Let M denote the midpoint of the segment SR, which satisfies that |MS| = (b + c)/2. We claim165

that166

|PT1|+ |MS| = a+ (b+ c)/2 < |PM |.167

Indeed, by Theorem 5, we have that168

|PM | =
1

2

√
2 (|PS|2 + |PR|2)− |SR|2169

=
1

2

√
2 ((a+ b)2 + (a+ c)(a+ c+ 2b))− (b+ c)2,170

and the inequalities171

2a+ b+ c < 2 · |PM |172
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(2a+ b+ c)2 < 2
(
(a+ b)2 + (a+ c)(a+ c+ 2b)

)
− (b+ c)2173

4a2 + b2 + c2 + 4ab+ 4ac+ 2bc < 2(2a2 + b2 + c2 + 4ab+ 2ac+ 2bc)− (b2 + c2 + 2bc)174

4a2 + b2 + c2 + 4ab+ 4ac+ 2bc < 4a2 + b2 + c2 + 8ab+ 4ac+ 2bc175

0 < 4ab,176

are all equivalent and hold given that a, b > 0, which imply the claim. Let M ′ denote the midpoint177

of the segment ED. Since triangles ∆PRS and ∆PDE are similar, we have that |PM ′| = λ · |PM |178

and |M ′E| = λ · |MS|, where λ = |PE|/|PS| = |PD|/|PR| = |ED|/|SR| ≥ 1 is the similarity ratio179

between these triangles. Then, since |PM | − |MS| > |PT1| > 0, we have that180

|PT1| < |PM | − |MS| ≤ λ(|PM | − |MS|) = |PM ′| − |M ′E|.181

This immediately implies that the disk DDE does not intersect the disk CP .182

Lemma 9. Let C be a disk centered at the point O, and let P be a point not contained in C. Let183

T1 and T2 be the points of the boundary of C such that the lines `(P, T1) and `(P, T2) are tangents184

to C. Let E be a point in the halfline h(P, T1) \ PT1 and D a point in halfline h(P,O) such that:185

`(E,D) does not intersect the interior of C, and ∠EDP > π/2 (see Figure 7). Then, the disk DDE186

does not intersect the disk CP with center P and radius |PT1| = |PT2|.187

Proof. Let S ∈ h(P, T1) \ PT1 and R ∈ h(P,O) \ PO be the points such that the line `(S,R) is188

parallel to `(E,D) and tangent to the disk C at the point T3. Note that T3 belongs to the wedge189

bounded by h(P,O) and h(P, T2). Let CS be the disk with center S and radius |PT1| = |PT3| (see190

Figure 6). Since CP and CS have disjoint interiors and DSR ⊂ CS , then CP and DSR are disjoint.191

Similar as in the last arguments of the proof of Lemma 8, DDE does not intersect CP .192

8



D

E

P
O

T1

T2

a

a

C

E ′

α

β
τ

β
2

γ

T3

Figure 7: Illustration of Lemma 10.

Lemma 10. Let C be a disk centered at the point O, and let P be a point not contained in C. Let193

T1 and T2 be the points of the boundary of C such that the lines `(P, T1) and `(P, T2) are tangents194

to C. Let E be a point in the halfline h(P, T1)\PT1 and D 6= E a point in the interior of the convex195

wedge bounded by h(P, T1) and h(P,O) such that: h(E,D) does not intersect with h(P,O), and196

`(E,D) does not intersect the interior of C (see Figure 7). Then, the disk DDE does not intersect197

the disk with center P and radius |PT1| = |PT2|.198

Proof. Let α ∈ (0, π/2) denote the angle formed by h(P,E) and h(P,O), and β ∈ (0, α] the angle199

formed by h(P,E) and `(E,D) (see Figure 7). Let E′ be the point in h(P, T1) \ PT1 such that200

the line different from `(P,E′) containing E′ and tangent to C, denoted γ, is parallel to the line201

`(E,D). Let τ be the line perpendicular to γ that contains E′, and T3 denote the point of tangency202

between γ and C. Let a = |PT1| = |PT2|, b = |E′T1| = |E′T3|, and r denote the radius of C. Since203

the lines γ and τ are perpendicular, the angle formed by the lines `(P,E′) and τ is equal to π/2−β.204

Then, the distance dist(P, τ) from the point P to the line τ satisfies205

dist(P, τ) = |PE′| · sin(π/2− β) = (a+ b) · cosβ.206

Note that ∠T1E′T3 = π− β. Then, since the line `(O,E′) bisects the angle ∠T1E′T3, we have that207

∠T1E′O = π/2− β/2, which implies that208

b = r · cot(∠T1E
′O) = r · tan(β/2)209

because the segment OT1 satisfying |OT1| = r is perpendicular to the line `(P,E′). On the other210

hand, note that a = r · cotα. Putting the above observations together, the next inequalities211

|PT1| ≤ dist(P, τ)212

a ≤ (a+ b) · cosβ213

9



E

DP
O

T1

T2

C

τ

D′

Figure 8: Illustration of Lemma 11.

r · cotα ≤ (r · cotα+ r · tan(β/2)) · cosβ214

cotα ≤ cosβ · tan(β/2)

1− cosβ
=

cosβ · sin(β/2)cos(β/2)

2 sin2(β/2)
=

cosβ

2 sin(β/2) cos(β/2)
215

cosα

sinα
≤ cosβ

sinβ
216

0 ≤ sin(α− β)217

are all equivalent and hold given that β > 0 and 0 ≤ α − β < α < π/2. Since by construction the218

line τ either does not intersect the disk DDE or is tangent to DDE at the point E′ 6= T1, we can219

guarantee that the disk DDE does not intersect the disk with center P and radius |PT1| = |PT2|.220

The lemma thus follows.221

Lemma 11. Let C be a disk centered at the point O, and let P be a point not contained in C. Let222

T1 and T2 be the points of the boundary of C such that the lines `(P, T1) and `(P, T2) are tangents to223

C. Let D be a point in the halfline h(P,O) \ PO and E a point in the interior of the convex wedge224

bounded by h(P, T1) and h(P,O) such that h(D,E) does not intersect with h(P, T1) (see Figure 8).225

Then, the disk DDE does not intersect the disk CP with center P and radius |PT1| = |PT2|.226

Proof. Let τ be the line throughD that is perpendicular toDE. LetD′ be the orthogonal projection227

of D into h(P, T1), that is, lines `(D,D′) and `(P, T1) are perpendicular at D′. By the definition228

of E, the distante from P to τ is at least |PD′| and at most |PD|. Since |PT1| < |PD|, then the229

disks DDE and CP are disjoint.230

Lemma 12. Any (unbounded) convex n-gon, n ≥ 5, contains a disk C tangent to three consecutive231

sides, such that: the lines containing the first and third sides, respectively, are not parallel and232

further their intersection point and the interior of C belong to different halfplanes bounded by the233

line containing the second side.234

Proof. Let Pn be a convex n-gon with sides denoted s0, s1, . . . , sn−1 counter-clockwise. In the235

following, every disk will be considered to be contained in Pn, and for every side s, let `(s) denote236

10
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Figure 9: Proof of Lemma 12. (a) The medial axis of a convex pentagon with sides s0, s1, s2, s3, s4, and
a disk C tangent to the sides s4, s0, and s1 and centered at a vertex of the medial axis. (b) If `(s4) and
`(s1) are not parallel and their intersection point and the interior of C are at the same halfplane bounded by
`(s0), and C is not tangent to both s2 and s3, then there exists a disk C̃ with smaller radius tangent to three
consecutive sides. (c) If `(s4) and `(s1) are parallel and C′ is not tangent to s3, then there exists a disk C̃
with smaller radius tangent to three consecutive sides.

the line containing s. There exist disks tangent to three consecutive sides and centered at a vertex237

of the medial axis of Pn [12]. The medial axis of a simple polygon is the locus of the points of the238

polygon that have more than one closest point in the boundary. If the polygon is convex, the medial239

axis is a tree made of line segments, each contained in the bisector of two sides (see Figure 9a).240

Then, let C be a disk of minimum radius among those disks, tangent to the sides sn−1, s0, and241

s1 w.l.o.g. If `(sn−1) and `(s1) are not parallel and their intersection point and the interior of C242

are at different halfplanes bounded by `(s0) (see Figure 9a), then the lemma is proved. Otherwise,243

if `(sn−1) and `(s1) are not parallel and their intersection point and the interior of C are at the244

same halfplane bounded by `(s0) (see Figure 9b), then by the minimality of C every side among245

s2, s3, . . . , sn−2 must be tangent to C, which implies that every triple of consecutive sides among246

s1, s2, . . . , sn−1 together with C satisfy the conditions of the lemma. Finally, if `(sn−1) and `(s1)247

are parallel (see Figure 9c), then by the minimality of C the disk C′ with radius equal to that of248

C and tangent to the sides s1 and sn−1, and to at least one side si for some i ∈ [2 . . . n− 2], must249
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be tangent to all the sides s2, s3, . . . , sn−2. Since n ≥ 5, every triple of consecutive sides among250

s1, s2, . . . , sn−1 and the disk C′ prove the lemma.251

Lemma 13. Let Pn be an (unbounded) convex n-gon, and a, b, and c three consecutive sides of Pn252

such that: the lines `(a) and `(c) intersect at point P , the line `(b) separates the interior of Pn and253

P , and there exists a disk C with center O, contained in Pn, and tangent to a, b, and c. Then, for254

any side x /∈ {a, b, c} of Pn such that the bisector `(P,O) of a and c does not intersect the interior255

of x, we have that Db and Dx are disjoint (see Figure 10).256

Proof. Let T1 and T2 denote the points of tangency between C and the sides a and c, respectively,257

and CP the disk with center P and radius |PT1| = |PT2|. Assume w.l.o.g. that x is contained258

in the convex wedge bounded by h(P, T1) and h(P,O). By Lemma 7, we have that Db ⊂ CP .259

Furthermore, according to the relative position of x with respect to h(P, T1), h(P,O), and C, we260

can use Lemma 8, Lemma 9, Lemma 10, or Lemma 11 by considering x ⊆ DE in every of them, to261

obtain that CP ∩Dx is empty. Hence, we have that Db and Dx are disjoint.262

Proof of 1-Chord lemma (Lemma 2). Using Lemma 12, we can ensure that Pn contains a disk C263

tangent to three consecutive sides, say the sides si−1, si, and si+1 for some i ∈ {0, 1, . . . , n − 1},264

such that: the lines `(si−1) and `(si+1) are not parallel, and their intersection point and the interior265

of C belong to different halfplanes bounded by the line `(si). The bisector of si−1 and si+1 will266

cross the interior of at most one side sj of the set S = {s0, s1, . . . , sn−1} \ {si−1, si, si+1}. For any267

other side sk ∈ S \ {sj} we have Di ∩Dk = ∅, by Lemma 13. The lemma thus follows.268

4 Part II: Proof of No-3-Cycles lemma (Lemma 3)269

Lemma 14. Let ABCD be a convex quadrilateral with vertices A, B, C, and D, so that the lines270

`(B,C) and `(A,D) intersect at the point P , and the line `(A,B) separates P and the interior of271

ABCD (see Figure 11(left)). The disk C with center O is contained in ABCD and tangent to the272

sides AB, BC, and DA, the line `(A,O) intersects the side BC, and the line `(B,O) intersects273

the side DA. Then, the disks DAB and DCD are disjoint.274
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Proof. (Refer to Figure 14(right) throughout the proof) Let E be the point of tangency between275

C and BC, and C ′ = `(A,O) ∩ BC, and D′ = `(B,O) ∩DA. Let r be the radius of C, b = |C ′E|,276

z = dist(D′, `(E,O)), h = dist(D′, `(P,C)), s = |C ′D′|/2, α = ∠OPA = ∠OPB, β = ∠OBA =277

∠OBC, and γ = ∠OAD = ∠OAB. Assume w.l.o.g. that β ≥ γ. Observe that γ > 2α since `(A,O)278

intersects BC. Analogously, β > 2α since `(B,O) intersects DA. Note also that π+ 2α = 2β+ 2γ.279

The disk CP with center P and radius |PE| contains DAB, by Lemma 7. Then, it suffices to280

prove that CP and DCD are disjoint, which follows by proving that CP and DC′D′ are disjoint. The281

reason of this last statement is that any point Q of DCD in the triangle ∆PCD also belongs to282

DC′D′ . Indeed, Q ∈ DCD ∩ ∆PCD implies that ∠CQD ≥ π/2 by Thales’ theorem, and we also283

have ∠C ′QD′ > ∠CQD. Then, Q also belongs to DC′D′ by Thales’ theorem. We will prove in the284

following that `(E,O) separates the interior of CP from the whole DC′D′ .285

We need to prove that the radius s of DC′D′ is less than the distance dist(MC′D′ , `(E,O)) =286

(b+z)/2, where MC′D′ denotes the midpoint of C ′D′. That is, we need to show that (b+z)2 > (2s)2,287

where (2s)2 = h2 + (b− z)2. This is equivalent to proving that 4bz > h2, with288

b = r · cot(γ − 2α) = r · cot(π/2 + α− β − 2α)) = r · tan(β + α),289

z = |D′O| · cosβ =

(
r

sin(β − 2α)

)
cosβ,290

291

and292

h = r + |D′O| · sinβ = r +

(
r

sin(β − 2α)

)
sinβ.293
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This is equivalent to verifying294

4 · tan(β + α) cosβ

sin(β − 2α)
>

(
1 +

sinβ

sin(β − 2α)

)2

.295

Since 2α < β we have sin(β − 2α) > 0. On the other hand, given that π + 2α = 2β + 2γ and296

γ > 2α, we have β + α < β + γ − α = π/2, and then cos(β + α) > 0. Hence, the above inequation297

is equivalent to298

4 · sin(β + α) sin(β − 2α) cosβ > (sin(β − 2α) + sinβ)2 cos(β + α). (1)299

Since the sine function is concave in [0, π/2], for all x, y ∈ [0, π/2] we have300

sinx+ sin y

2
≤ sin

(
x+ y

2

)
,301

by Jensen’s innequality, and then302

(sin(β − 2α) + sinβ)2 ≤
(

2 · sin
(
β − 2α+ β

2

))2

= 4 · sin2(β − α).303

Hence, we have304

4 · sin2(β − α) cos(β + α) ≥ (sin(β − 2α) + sinβ)2 cos(β + α).305

and then to prove inequation (1) it suffices to prove306

sin(β + α) sin(β − 2α) cosβ > sin2(β − α) cos(β + α). (2)307

Note that308

sin(β + α) sin(β − 2α) cosβ309

= (sinβ cosα+ cosβ sinα)(sinβ cos 2α− cosβ sin 2α) cosβ310

= (sinβ cosα+ cosβ sinα)(sinβ cos2 α− sinβ sin2 α− 2 cosβ sinα cosα) cosβ311

= sin2 β cosβ cos3 α− sin2 β cosβ sin2 α cosα− 2 sinβ cos2 β sinα cos2 α312

+ sinβ cos2 β sinα cos2 α− sinβ cos2 β sin3 α− 2 cos3 β sin2 α cosα,313

and314

sin2(β − α) cos(β + α)315

= (sinβ cosα− cosβ sinα)2(cosβ cosα− sinβ sinα)316

= (sin2 β cos2 α+ cos2 β sin2 α− 2 sinβ cosβ sinα cosα)(cosβ cosα− sinβ sinα)317

= sin2 β cosβ cos3 α+ cos3 β sin2 α cosα− 2 sinβ cos2 β sinα cos2 α318

− sin3 β sinα cos2 α− sinβ cos2 β sin3 α+ 2 sin2 β cosβ sin2 α cosα.319

Then, subtracting the above equations, we have320

sin(β + α) sin(β − 2α) cosβ − sin2(β − α) cos(β + α)321
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= −3 cos3 β sin2 α cosα− 3 sin2 β cosβ sin2 α cosα+ sin3 β sinα cos2 α322

+ sinβ cos2 β sinα cos2 α323

= sinα cosα
(
−3 cosβ sinα(cos2 β + sin2 β) + sinβ cosα(cos2 β + sin2 β)

)
324

= sinα cosα (−3 cosβ sinα+ sinβ cosα) .325

To prove inequation (2), it suffices to show that326

−3 cosβ sinα+ sinβ cosα > 0,327

that is, tanβ > 3 · tanα. Given that π + 2α = 2β + 2γ > 8α, we have α < π/6. Furthermore,328

π + 2α = 2β + 2γ ≤ 4β implies β ≥ π/4 + α/2. Then, note that329

tanβ ≥ tan (π/4 + α/2) =
sin(π/4 + α/2)

cos(π/4 + α/2)
=

cos(α/2) + sin(α/2)

cos(α/2)− sin(α/2)
330

=
(cos(α/2) + sin(α/2))2

cos2(α/2)− sin2(α/2)
=

1 + sinα

cosα
> 3 · sinα

cosα
= 3 · tanα,331

because sinα < sin(π/6) = 1/2 given that 0 < α < π/6.332

Lemma 15. Let P , Q, R, A, B, C, D, E, and F be points defining the triangle ∆PQR, and the333

convex hexagon ABCDEF inscribed in PQR in the following manner: the points B and C are334

in PQ, the points D and E are in QR, the points F and A are in RP , and ABCDEF contains335

the disk C incribed to PQR in its interior. Furthermore, C is tangent to BC, DE, and FA (see336

Figure 12). Then, at least one of the following statements is satisfied:337

(a) DAB and DDE are disjoint.338

(b) DCD and DFA are disjoint.339

(c) DEF and DBC are disjoint.340
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Figure 13: (a) Proof of Lemma 15. (b) Since E is the excircle of the triangle with sides a, b, and c, tangent
to c, and to the lines `(a) and `(b), then |PT1| = |PT2| = (1/2)(|a|+ |b|+ |c|).

Proof. For t ≥ 0, let B(t), C(t) ∈ BC, D(t), E(t) ∈ DE, and F (t), A(t) ∈ FA be the six points341

such that |AA(t)| = |BB(t)| = |CC(t)| = |DD(t)| = |EE(t)| = |FF (t)| = t, and the hexagon342

A(t)B(t)C(t)D(t)E(t)F (t) is convex and satisfies the same conditions as ABCDEF . Let t∗ denote343

the maximum possible value of t. Let EP (t) be the disk whose boundary is the excircle of the344

triangle ∆PB(t)A(t) that is contained in ∆PQR. Let CP (t) denote the disk with center P and345

radius |PT (t)|, where T (t) denotes the point of tangency between EP (t) and PQ (see Figure 13a for346

the case t = 0). Analogously, we define the disk CQ(t) centered at Q, and the disk CR(t) centered347

at R. Since DAB = DA(0)B(0) is contained in CP = CP (0) (Lemma 7), to prove statement (a) it348

suffices to prove that CP and DDE = DD(0)E(0) are disjoint, which is equivalent to proving that349

|PMDE | > |PT |+
|DE|

2
, (3)350

where T = T (0), MD(t)E(t) is the midpoint of D(t)E(t), and MDE = MD(0)E(0). For every t ∈351

[0, t∗], observe that |PMD(t)E(t)| = |PMD(0)E(0)| = |PMDE | since MD(t)E(t) = MD(0)E(0) = MDE .352

Furthermore, |D(t)E(t)| = |D(0)E(0)| − 2t = |DE| − 2t.353

We use now the following known claim regarding a triangle and an excircle: Given a triangle354

with sides a, b, and c, let E be the excircle of the triangle tangent to c, then also tangent to the lines355

`(a) and `(b), respectively. Then, the segment with endpoints the common vertex of a and b and356

the tangency point between E and `(a) (resp. `(b)) has length (1/2)(|a|+ |b|+ |c|) (see Figure 13b).357

By the above claim, since EP (t) is an excircle of ∆PA(t)B(t), we also have358

|PT (t)| =
1

2
(|PB(t)|+ |B(t)A(t)|+ |A(t)P |)359

=
1

2
(|PB(0)|+ t+ |B(t)A(t)|+ |A(0)P |+ t)360
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=
1

2
(|PB|+ |B(t)A(t)|+ |AP |) + t.361

Consider the function G : [0, t∗]→ R defined as follows:362

G(t) = |PMD(t)E(t)| − |PT (t)| − |D(t)E(t)|
2

,363

which satisfies364

G(t) = |PMD(t)E(t)| − |PT (t)| − |D(t)E(t)|
2

365

= |PMDE | −
1

2
(|PB|+ |B(t)A(t)|+ |AP |)− t− |DE|

2
+ t366

= |PMDE | −
1

2
(|PB|+ |B(t)A(t)|+ |AP |)− |DE|

2
.367

Since the function |B(t)A(t)| is increasing in the range t ∈ [0, t∗], we have that368

|PMDE | − |PT | −
|DE|

2
= G(0) ≥ G(t∗) = |PMD(t∗)E(t∗)| − |PT (t∗)| − |D(t∗)E(t∗)|

2
.369

Then, to prove inequation (3) and then statement (a), it suffices to show that G(t∗) > 0, which is370

equivalent to showing that CP (t∗) and DD(t∗)E(t∗) are disjoint. Analogously, to prove statement (b)371

it suffices to show that CQ(t∗) and DF (t∗)A(t∗) are disjoint, and to prove statement (c) it suffices to372

show that CR(t∗) and DB(t∗)C(t∗) are disjoint.373

Observe from the defintion of t∗ that C is tangent to at least one of the segments A(t∗)B(t∗),374

C(t∗)D(t∗), and E(t∗)F (t∗). Assume w.l.o.g. that C is tangent to A(t∗)B(t∗). Let X, Y , and Z be375

the points of tangency between C and the segments A(t∗)B(t∗), D(t∗)E(t∗), and F (t∗)A(t∗), respec-376

tively. Further assume w.l.o.g. that the line `(Q,R) is horizontal, and either the lines `(A(t∗), B(t∗))377

and `(Q,R) are parallel or the point `(A(t∗), B(t∗)) ∩ `(Q,R) is to the left of Q (see Figure 14 in378
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Figure 15: Proof of Lemma 3.

which the latter case occurs). In the former case, let CXY denote the halfplane with the points in379

or to the left of the vertical line `(X,Y ). In the latter case, let CXY denote the disk centered at380

`(A(t∗), B(t∗)) ∩ `(Q,R) whose boundary contains X and Y . Let CY Z denote the disk with center381

R and radius |RY | = |RZ|. By Lemma 7 and construction, we have both382

DB(t∗)C(t∗) ⊂ DB(t∗)Q ⊂ CXY and DE(t∗)F (t∗) ⊂ CR(t∗) ⊆ CY Z ,383

which implies that DB(t∗)C(t∗) and DE(t∗)F (t∗) are disjoint. Hence, statement (c) is satisfied and384

the lemma follows.385

Proof of No-3-Cycles lemma (Lemma 3). By extending a, b, c, d, e, f, we can consider that a, b,386

c, d, e, f are the sides of an (unbounded) convex 6-gon P6. The proof is split into several cases.387

Suppose that there exists a disk contained in P6 and tangent to two opposed sides, say w.l.o.g. that388

the disk is tangent to a and d. Further assume w.l.o.g. that d is horizontal, the bisector of a and d389

intersects the side e, and either the lines `(a) and `(d) are parallel or the point `(a)∩ `(d) is to the390

left of d (see Figure 15a). Using Lemma 13 with a disk tangent to extensions a′, c′, and d′ of a, c,391

and d, respectively, it follows that Dc ∩Df = ∅ (see Figure 15b).392

The next cases use similar arguments (i.e. applying Lemma 13). If there does not exist any disk393

contained in P6 and tangent to two opposed sides, then there must exist a disk contained in P6 and394

tangent to three pairwise non-consecutive sides. Assume w.l.o.g. that such a disk is tangent to a,395

c, and e. If the lines `(a), `(c), and `(e) do not bound a triangle that contains P6 (see Figure 15c),396

then we proceed as follows. Assume w.l.o.g. that either `(c) and `(e) are parallel or the point397

`(c)∩ `(e) is separated from P6 by `(a), as in Figure 15c. If the bisector of a and c intersects d (see398

Figure 15c), then Db ∩De = ∅ by Lemma 13. Analogously, if the bisector of a and e intersects d,399

then Dc∩Df = ∅. Suppose now that neither the bisector of a and c intersects d, nor the bisector of400
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Figure 16: Proof of Lemma 16.

a and e intersects d (see Figure 15d). Then, we have that Da ∩Dd = ∅, by Lemma 14. Otherwise,401

if the lines `(a), `(c), and `(e) do bound a triangle that contains P6 (see Figure 15e), then we402

proceed as follows. If the bisector of a and e does not intersect c (see Figure 15e), say w.l.o.g. that403

it intersects d, then we have Dc ∩Df = ∅. Symmetric arguments can be given if the bisector of a404

and c does not intersect e, or the bisector of c and e does not intersect a. Otherwise, if the bisector405

of each two sides among a, c, and e intersects the third one (see Figure 15f), then Da ∩Dd = ∅, or406

Db ∩De = ∅, or Dc ∩Df = ∅, by Lemma 15. All the cases are covered, and the lemma follows.407

5 Part III: Proof of Main theorem (Theorem 4)408

Given an (unbounded) convex polygon and two sides a and b of it, we define the segment (or409

halfline) a|b in the case where a and b are consecutive sides, or both are the two halfline sides of410

the polygon when it is unbounded, as follows: If a and b are consecutive segments, then a|b is the411

diagonal of the polygon connecting an endpoint of a with an endpoint of b. If a is a halfline and412

b is a segment, then a|b is the halfline contained in the polygon, parallel to a, and with apex the413

vertex of b not in common with a. If both a and b are halflines because the polygon is unbounded,414

then a|b is the segment (i.e. diagonal) that connects the two endpoints of a and b.415

Lemma 16. Let Pn be an (unbounded) convex n-gon, n ≥ 4, and a and b two sides of Pn such416

that the segment (or halfline) a|b is defined. Let c be another side of Pn such that Dc intersects417

both Da and Db. Then, Dc also intersects Da|b.418

Proof. Let Ra|b be the convex region bounded by a, b, and a|b, and Pn−1 = Pn \Ra|b the (possibly419

unbounded) convex (n − 1)-gon resulting from removing Ra|b from Pn. To prove the lemma, it420

suffices to show the following statement: every point Q in Da ∩Pn−1, or Db ∩Pn−1, is also in Da|b.421
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Figure 17: Proof of Theorem 4.

Assume that a and b are segments, so that a has endpoints A and B, b has endpoints B and C,422

and a|b = AC. Let Q be a point in Da ∩ Pn−1 (see Figure 16a). Then, ∠AQB ≥ π/2 by Thales’423

theorem. Then, we have ∠AQC > ∠AQB ≥ π/2, which implies that Q is also in Da|b by Thales’424

theorem. Analogulsy, if Q is in Db ∩ Pn−1, then it is also in Da|b. Assume now that a is a halfline425

and b is a segment, where A is the apex of a, and b has endpoints A and B (see Figure 16b and426

Figure 16c). In this case, Da|b is the halfplane containing a and bounded by the line through B427

perpendicular to a|b. If Da|b ⊆ Da (see Figure 16b), then Pn−1 ⊂ Da|b and the statement trivially428

follows. Otherwise, if Da ⊂ Da|b (see Figure 16c), then Db ∩ Pn−1 ⊂ Da|b, and the statement429

follows. Finally, assume that both a and b are halflines, with A the apex of a, and B the apex of b430

(see Figure 16d and Figure 16e). If neither Da contains b nor Db contains a (see Figure 16d), then431

the statement trivially follows. Otherwise, assume w.l.o.g. that Da contains b (see Figure 16e). Let432

Q be a point in (Da ∪ Db) ∩ Pn−1, and note that ∠AQB ≥ π/2 because the boundary of Da is433

perpendicular to a, and a and b are the halflines among the sides of the unbounded Pn. Then, Q434

belongs to Da|b by Thales’ theorem, showing that the statement is true.435

Proof of Main theorem (Theorem 4). Let Pn be a convex n-gon with n ≥ 3. Let G = (V,E) be the436

intersection graph of the side disks of Pn, and Gc = (Vc, Ec) the intersection graph of the chords in437

the circular embedding of G. If n = 3, 4, then G is trivially planar. Thus, assume n ≥ 5. Suppose438

that Gc has a 3-length cycle, made of three pairwise intersecting chords, induced by six sides a0, b0,439

c0, d0, e0, f0 of Pn. Assume w.l.o.g. that these sides appear in this order counter-clockwise along440

the boundary of Pn (see Figure 17a). Some (or all) of a0, b0, c0, d0, e0, f0 can be extended to obtain441

the sides a ⊇ a0, b ⊇ b0, c ⊇ c0, d ⊇ d0, e ⊇ e0, f ⊇ f0 of a possibly unbounded convex 6-gon. By442

Lemma 3, we have that Da∩Dd = ∅, Db∩De = ∅, or Dc∩Df = ∅. This implies that Da0 ∩Dd0 = ∅,443

Db0 ∩De0 = ∅, or Dc0 ∩Df0 = ∅. Hence, 3-length cycles do not exist in Gc by contradiction. Let444

k ≥ 5 and c = (c0, c1, . . . , ck−1, c0) a minimal cycle of length k in Gc, where minimal means that445
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no proper subset of {c0, c1, . . . , ck−1} form a cycle. Assume that c0, c1, . . . , ck−1 are sorted counter-446

clockwise (as in Figure 17d for k = 5), and that they define a set of t endpoints, k ≤ t ≤ 2k. These447

endpoints correspond to side disks, and then sides, of Pn. Extending some, or all, of such sides we448

obtain a possibly unbounded convex t-gon Pt. We have two cases: t > k and t = k. Suppose that449

t > k. In this case, we can select a chord ci such that the chords ci−1 and ci+1 that intersect ci450

do not share any endpoint, where subindices are taken modulo k (see Figure 17b). Let a and a′ be451

the sides of Pt that correspond to the endpoints of ci, let b and b′ be the sides that correspond to452

the endpoints of ci−1, and let c and c′ be the sides that correspond to the endpoints of ci+1; so453

that a, b, c, a′ are in this order counter-clockwise along the boundary of Pt. Observe that b|c is454

defined, and let Rb|c be the convex region bounded by b, c, and b|c, and let Pt−1 = Pt \ Rb|c. For455

every chord different from ci−1 and ci+1 in the cycle c, and sides z and z′ of Pt−1 corresponding to456

its endpoints, we still have in Pt−1 that Dz ∩ Dz′ 6= ∅. Furthermore, for the sides b′ and c′, also457

of Pt−1,we have both Db|c ∩ Db′ 6= ∅ and Db|c ∩ Dc′ 6= ∅, by Lemma 16. This means that in the458

intersection graph of the chords in the circular embedding of the side disks of Pt−1 there exists a459

cycle of length k, but the chords of the cycle define a set of endpoints of precisely one less element,460

that is, t − 1 endpoints (see the transition from Figure 17d to Figure 17e). Using this transition461

from Pt to Pt−1, we can assume t = k from the beggining and then for every i ∈ {0, 1, . . . , k − 1}462

we have that ci−1 and ci+1 share an endpoint. This condition implies that in Pt every side disk463

defines at least two chords, which contradicts Lemma 2. Hence, the graph Gc is bipartite since it464

cannot contain cycles of odd length, which implies that G is planar by Theorem 1.465

6 Conclusions466

We have proved that given any convex n-gon, when drawing for each side a disk having the midpoint467

of the side as center and the length of the side as diameter, the resulting intersection graph of the468

n disks is planar. According to the number of edges, the least number of edges is n and it appears,469

for example, when the n-gon is regular. On the other hand, the number of edges is at most 3n− 6470

and an n-gon, similar to the 6-gon of Figure 2b with 2 big sides and n− 2 small ones, has precisely471

such a number of edges. Finally, we would like to mention that the chromatic number is at most 4472

since the graph is planar, and in some cases it equals 4 (e.g., in Figure 2b the disks Ds0 , Ds2 , Ds3 ,473

and Ds5 induce the complete graph K4).474

We leave open to study other combinatorial questions under this class of intersection graphs,475

as done recently by Herrera and Pérez-Lantero [6]. They proved that the treewidth is at most 3,476

by showing an O(n)-time algorithm that builds a tree decomposition of width at most 3, given477

the polygon as input. This implies that one can construct the intersection graph of the side disks478

in O(n) time. They further studied the independence number, which is the maximum number of479

pairwise disjoint disks. The planarity condition implies that for every convex n-gon one can select480

at least dn/4e pairwise disjoint disks, and they proved that for every n ≥ 3 there exist convex481

n-gons in which one cannot select more than this number. Finally, they showed that this class482

of intersection graphs includes all outerplanar Hamiltonian graphs except the cycle of length four,483

and that it is a proper subclass of the planar Hamiltonian graphs.484
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