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Abstract

Policy-making for sustainable development becomes more efficient when it is reliably

backed by evidence-based decision analysis. Concretely, this is crucial in the planning

of public services delivery. By translating raw data into information, decision analysis

illuminates our judgment, and ultimately the policies we adopt. In the context of

public services provision, decision analysis can support the prioritization of policy

options and the monitoring of progress. However, most models are deterministic –

that is, they do not consider the uncertainty in their evidence. These incomplete

models, through their impact in policy decisions, can ultimately lead to an inefficient

use of resources. The main barriers to a wider incorporation of uncertainty are: (i)

the complexity of the approaches currently available, and (ii) the need to develop

methods tailored to the specific decision problems faced in public services delivery.

To overcome these limitations, this thesis intends to facilitate the incorporation

of uncertainty in the evidence into decision analysis for sustainable development.

We propose two methods. First, a non-compensatory multi-criteria prioritization

under uncertainty model. Given multiple criteria and uncertain evidence, the

model identifies the best policy option to improve service provision for sustainable

development. The non-compensatory nature of our model makes it an attractive

alternative to the widely used composite index approach. Second, a compositional

trend analysis under uncertainty model to monitor service coverage. By considering

the non-negativity and constant-sum constraints of the data, our model provides

better estimates for measuring progress than standard statistical approaches.

These two methods are validated in real case studies in the energy, water and health

sectors. We apply our prioritization model to the context of strategic renewable

energy planning (Chapter 1) and the targeting of water, sanitation and hygiene

services (Chapter 2). Furthermore, we use our trend analysis model to the global

monitoring of water and sanitation (Chapter 3) and child mortality (Chapter 4).

Our results emphasize the importance of considering and incorporating uncertainty

in the evidence into decision analysis, particularly into prioritization and monitoring

processes, both central to sustainable development practice.
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Introduction

“We know that we do not know, but that is almost all that we know”

– Michel Callon, Acting in an uncertain world.

This thesis explores uncertainty in decision analysis for sustainable development, in

particular for public services delivery. We ask two questions. First: is it possible to

include the uncertainty in the evidence base1 when prioritizing public policy options?

Second: is it possible to incorporate this uncertainty when monitoring and analyzing

trends in service coverage? To that end, we propose two methods: one based on

non-compensatory multi-criteria analysis, and a second one on compositional trend

analysis. Both methods intend to characterize and incorporate uncertainty in the

sources of evidence policy-makers use to inform their decisions. We show that

uncertainty must be acknowledged and accounted for properly in decision analysis in

order to achieve true evidence-based public policy and planning processes.

This introductory chapter is divided into four sections. First, to understand the

theoretical framework of our research, we begin explaining the context of the 2030

Agenda for Sustainable Development Goals (SDGs) in which the thesis is embedded.

We then shed light on the demand for data to support evidence-based decision-making.

Next, we present decision analysis as an approach to help decision-makers translate

evidence into recommendations for practice and policy, especially for public services.

Finally, we highlight the challenge of dealing with imperfect or incomplete evidence.

1We define evidence base as the information and data used to support decision- and policy-making,
and ultimately justify the soundness of the decisions.

1
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Setting the scene: the Sustainable Development

Goals

“Senseless, dreamy, garbled”, that is what Easerly (2015) claimed the UN’s Sus-

tainable Development Goals stood for. The Economist (2015) baptized them as

the “Stupid Development Goals”, facetiously labelling the proposed targets as the

“169 Commandments”. The article also argued that goals were so “sprawling and

misconceived” and “unfeasibly expensive” that they would be “worse than useless”.

Others echoed this sentiment by pithily stating SDGs were “too vague” and looked

more “like an encyclopedia of development than a useful tool for action” and “no

targets left behind” (Humanosphere 2015). Hickel (2015) also slated the “profoundly

contradictory, to the point of being self-defeating nature of SDGs”, highlighting

the conflicting relationship between concerns on environmental protection and the

emphasis on economic development based on the “old model of industrial growth”,

and concluded that the SDGs “aim to save the world without transforming it”.

Furthermore, several human rights experts lamented the SDGs’ “missed opportunity”

to unequivocally put human rights principles at the heart of the UN development

agenda (Ramcharan 2015; Feiring and Hassler 2016; Winkler and Williams 2017;

Weber 2017; McInerney-Lankford 2017; Yap and Watene 2019).

Certainly from an implementation perspective, the criticism that SDGs are difficult

and expensive to realize is not far off the mark. With an estimated USD 5-7 trillion

annual price tag (UNCTAD 2014), there are reasonable grounds to doubt whether

sufficient funding can be mobilized to achieve the SDGs. The financing gap is

particularly acute in developing countries, where current annual investment levels lag

behind at USD 1.4 trillion (UNCTAD 2014). Added to this is the difficulty to measure

and monitor the 232 indicators proposed by the Inter-Agency and Expert Group on

SDG indicators (UNGA 2017). Indeed, monitoring progress is a costly proposition.

Major investments – valued at USD 1 billion per annum – are required to develop the

statistical capacity of countries and facilitate their compilation of statistics needed

for SDG monitoring (SDSN 2015). Therefore, the existing concern that such complex

and expensive indicator framework will potentially divert already-scarce resources

from SDG implementation (Hering 2017; Guppy et al. 2019) is surely justified.
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Even though criticism of the SDGs has been notoriously outspoken and unyielding, it

is also important to point out that they have emerged from an inclusive process where

countries, including developing ones, have reached an agreement on a comprehensive

vision for the development agenda up to 2030. As Bhattacharya and Kharas (2015)

remark, although some SDG targets are “clearly not achievable”, which in turn might

“undercut the overall credibility of the package”, this is the price of democracy. In

their words, “like all democratic processes, the result may be messy and leave many

dissatisfied, but it reflects compromise and a desire for consensus”. Furthermore,

amongst the several reasons identified by Kumar et al. (2016) as why the SDGs are

better than the previous Millennium Development Goals, is the fact that “SDGs

have evolved after a long and extensive consultative process”, meaning that they are

globally cooperative and applicable to all countries and actors.

Data for SDGs

Public pundits’ opinions aside, the SDGs have been agreed upon by all 193 Member

States of the United Nations, and now is the time to implement strategies, allocate

resources, and continuously evaluate progress towards achieving the 2030 targets. It

is thus indispensable to have adequate data to understand how efforts towards the

SDGs are translating into better economic, environmental and social outcomes. As

the UN Secretary-General’s Independent Expert Advisory Group recognized in 2015,

“data are the lifeblood of decision-making and the raw material for accountability;

without high quality data providing the right information on the right things at the

right time, designing, monitoring and evaluating effective policies becomes almost

impossible” (IEAG 2015).

Development data are derived from various sources, such as censuses, household

surveys, administrative records, civil registration and vital statistics systems, and

geospatial technologies (SDSN 2015). Amid all these data, household survey data

represent a cornerstone in addressing the data requirements for SDGs. Indeed,

a preliminary analysis by the UN Intersecretariat Working Group on Household

Surveys identified that 80 out of the 232 SDG indicators were sourced from household
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surveys, especially in goals related to public services delivery (e.g., health, education,

hunger, poverty, inequality, cities and communities, water and sanitation, and energy)

(IWGHS 2019).

In addition to available data, evidence can also be sourced from expert knowledge

(Gold et al. 1990; Radaelli 1995; Renooij 2001; Fenton and Neil 2012; Head 2016;

Constantinou et al. 2016). As Head (2016) put it: “within public policy discussions,

it is axiomatic that [both] reliable information and expert knowledge are integral to

sound processes for formulating and implementing policy”. As a matter of fact, expert

knowledge gains significance in data-scarce contexts such as developing countries,

where it can help fill the gaps (Gibson and Le 2019).

Decision analysis for SDGs

Whilst it is true that data – and expert knowledge – are needed to measure progress

towards delivering the 2030 Agenda for Sustainable Development, this does not imply

gathering data just for the sake of it. Simply collecting more data is not enough:

data must be analyzed and used to be valuable for monitoring and policy-making

(Jütting and McDonnell 2017). Otherwise “data graveyards” are generated, and the

cost, time and effort to collect them are wasted (Custer and Sethi 2017). It is hence

crucial to transition from a data collection focus to one that promotes the use of

those data to make evidence-based decisions for improved SDG implementation.

In an attempt to avoid spending meager resources on collecting data that will not be

utilized, Shepherd et al. (2015) suggested to integrate decision analysis approaches

with SDG monitoring. According to Shepherd and colleagues, the application

of decision analysis concepts and tools is the most effective way to harness data

for development decision- and policy-making. Along similar lines, Whitney et al.

(2018) emphasized that decision analysis approaches could help decision-makers

allocate resources more efficiently and consequently enhance the effectiveness of

policy decisions. Rosenstock et al. (2017) also underlined the need to shift from a

“more is better” monitoring framework to a “less is more” philosophy in which data

are analyzed and interpreted for a cost-efficient decision-making.
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It becomes evident that the markup from using decision analysis techniques in

sustainable development is that it actually generates information that improves

the way people make decisions, and ultimately the policies that are adopted. So

the question that remains is: why is decision analysis not used more extensively

in the context of international development? For instance, a survey conducted by

Clapp et al. (2013) on the use of data analysis techniques by stakeholders in African

agriculture revealed that more than half of respondents (54%) could not identify

a policy decision that would be reinforced by data. If we know that policies for

sustainable development affect millions of people and require vast amounts of money,

then why are decisions not well supported by evidence?

A prime reason for why decision analysis is not embedded in policy development

– both at the international level and down to sub-national levels – lies in that

decision analysts are often missing from the decision-making process. As Kahneman

explained, “decision analysts are not going to control the world, because the decision-

makers, the people who are in charge, do not want to relinquish the intelligence

function to somebody else” (Schrage 2003). Additionally, most decision analysts work

for academic institutions that are seldom involved in real-world decision processes

(Ferrier et al. 2016) and that decision and data analyses are viewed as “overtime

activities” only “a few intrinsically motivated officials” use to base their policy

decisions on (Development Gateway 2016). Consequently, for decision analysts to

influence decision-making processes in a tangible, positive manner, it is crucial that

they engage with decision- and policy-makers, and vice versa.

Certainly, as illustrated in Figure 1, decision analysis can aid decision-making

for sustainable development by bridging science and policy. A decision analysis

process can bring together the several actors playing a role: decision-makers (or

policy-makers), stakeholders, potentially subject experts, and decision analysts.

Decision-makers own the problem: they are responsible for making the decisions on

which policies to implement. Decision-makers, and their decisions, are partially –

and not necessarily fully – accountable to the stakeholders involved in the problem

(e.g., the public, industry, interest groups, etc.), who share the impacts arising from

a decision. Experts provide their professional advice and expertise on the content of

the decision, whereas analysts provide their process skills to structure and conduct
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the analysis. Besides improving the decision analysis model, the participation of

these different actors allows for the consideration of manifold perspectives on the

decision and, more importantly, increases the chance that the model outputs are

actually used in practice.

DECISION 
ANALYSIS

Decision-
makers

Experts

Stakeholders

Analyst

Evidence

Better development 
outcomes through 

better decisions

Identification of 
evidence gaps

Reduction of 
uncertainties in the 

evidence

UNCERTAINTY

Figure 1: Decision analysis process for sustainable development (adopted from Luedeling
and Shepherd (2016)). Black arrows connect the actors that deliver inputs to a certain
decision analysis process, and the red arrows connect the output ports of such decision
decision analysis process with key decision-making levers. These, in turn, may provide
feedback into the decision analysis process through “uncertainty” and “evidence”, i.e.,
by incorporating new or modified knowledge into it.
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Therefore, decision analysis processes can become particularly relevant in decision-

making for public services delivery, which is key to the 2030 Agenda. Indeed, all

17 SDGs and their 169 targets depend, directly or indirectly, on the provision of

public goods or the implementation of public policies for their successful achievement

(GCPSE 2016). By blending together different types of evidence from multiple sources

and diverse perspectives from key actors, decision analysis can capture and simplify

substantially the technical complexity of public services planning. Furthermore,

decision analysis can tackle the increasing need to assess services delivery issues in

a holistic manner, especially for the prioritization of public policy options and the

monitoring of service coverage.

Multi-criteria prioritization approaches help tackle the siloed and often conflicted

nature of public services planning. For instance, multi-criteria composite indexes are

widely used for policy evaluation in health (Antony and Rao 2007; Peppard et al.

2008; Sartorius and Sartorius 2014; Lagravinese et al. 2019), water and sanitation

(Cohen and Sullivan 2010; Giné Garriga and Pérez Foguet 2010; Jeyakumar and

Ghugre 2017; Chaudhuri1 et al. 2018), and energy (Nussbaumer et al. 2012; Kılkış

2015; Iddrisu and Bhattacharyya 2015; Gouveia et al. 2019). However, improvements

in the way these indexes are constructed remains a critical research issue at both

theoretical and practical levels (Munda and Nardo 2009; Mazziotta and Pareto 2016).

Additionally, public services monitoring can be strengthened by retrospective and

prospective analyses of service coverage over time. Analysis of patterns and trajec-

tories is particularly important to gauge whether inequalities in access and service

levels are being progressively reduced (McArthur and Rasmussen 2019). This means

it helps identifying issues and collectives of people that are being left behind. For

this, complete and consistent time-series data are needed, which are not always

available. The challenges associated with data availability are further amplified by

the unsound use of standard statistical approaches for the analysis of compositional

data subject to non-negativity and constant-sum constraints (Lloyd et al. 2012).

Given the importance of both multi-criteria prioritization and trend analysis in

public services provision, more efforts should be made to develop improved methods

addressing the limitations of composite indexes and standard statistical analysis.
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Coping with the uncertainty in the evidence

Apart from improving the decision analysis techniques for a better interpretability of

the evidence base, it is paramount to remember that all evidence involves a degree of

uncertainty. Acknowledging uncertainty in evidence might sound like an oxymoron,

but uncertainty is inherent to evidence and its evaluation, and an important fraction

of the literature fails to take it into account. Nonetheless, uncertainty should not be

misinterpreted as a synonym for absence of evidence. Walker et al. (2003) described

uncertainty as “any deviation from the unachievable ideal of complete deterministic

knowledge of the relevant system” and classify it along three dimensions: location,

level and nature. Location refers to where uncertainty manifests itself within the

decision model, and can be specialized into: input data, model parameters, model

structure and context. The level dimension focuses on the degree of uncertainty, which

ranges from determinism (i.e., the absence of uncertainty) to statistical uncertainty,

scenario uncertainty, recognized ignorance, and total ignorance. While determinism is

the ideal situation where evidence is complete, exact and precise, it is rarely achieved

in policy-making. Lastly, the nature dimension identifies its origin: is the uncertainty

due to the lack of, or imperfection, of knowledge (i.e., epistemic uncertainty) or to

the inherent variability of the system being modelled (i.e., ontological uncertainty)?

Understanding all expressions of uncertainty helps identifying those that are critical

in the decision. This, in turn, is a key step for a better acknowledgement and

management of uncertainty in decision analysis and support endeavors. However, ac-

cepting that uncertainty is ubiquitous to decision- and policy-making has substantial

implications. First and foremost, it entails that ignoring uncertainties can undermine

the policy decisions adopted and ultimately lead to an inefficient use of resources.

Second, it requires characterizing and quantifying uncertainty, especially the one

arising from the evidence base. For instance, data derived from household surveys –

one of the main sources of information for policy-making – are intrinsically subject

to a certain degree of statistical uncertainty. Knowledge is also prone to uncertainty,

as it is often incomplete, imprecise, vague, not fully reliable or even contradictory

(Janssen et al. 2010). Last but not least, it means that practical tools are needed to

address and incorporate uncertainty into decision analysis processes.



Aims and methods

After explaining the theoretical underpinnings of our work in the Introduction, we

now define the research problem we tackle, and present the objectives and research

questions we focus on. We also provide a brief overview of the topics addressed in

the thesis and the research method used.

The research problem

Despite the need to characterize and incorporate uncertainty of the evidence base

when planning for sustainable development, uncertainty is seldom integrated in

decision analysis models. The reason behind this is not the lack of conceptual ap-

proaches; quite the contrary, there is a multitude of mathematical methods for coping

with uncertainty in decision problems that can be useful in policy-implementation

decisions, in particular for public services provision. These include probability-based

approaches, fuzzy numbers, Bayesian models, scenario analyses, or risk-based ap-

proaches (Broekhuizen et al. 2015). The main obstacle to using these approaches is

their complexity and the high level of technical expertise required to apply them.

Matching the complexity of uncertainty approaches to the decision-making needs while

keeping them as simple as possible is essential for widening the use of decision analysis

under uncertainty. To date, however, only a few attempts have been made to facilitate

the integration of uncertainty in sustainable development practice. Furthermore,

only a handful of research studies have specifically focused on developing simple

uncertainty approaches that could be applied to plan for public services provision.

9
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Having identified such shortcoming in the literature, this thesis aims at enabling

a systematic consideration of uncertainty in planning for the 2030 Development

Agenda, in particular for the prioritization and monitoring of public services in

health (SDG 3), water and sanitation (SDG 6), and energy (SDG 7).

The rationale underlying this work is that the incorporation of uncertainty into

decision analysis methods is a necessary condition for better policy-making for services

delivery and ultimately sustainable development. We argue that accounting for this

uncertainty in the evidence has a twofold motivation. On one hand, policy and

planning are more effective if uncertainty is characterized and addressed in decision

analysis processes. On the other hand, highlighting the magnitude of uncertainty in

critical evidence can trigger efforts towards improving it by reducing uncertainties.

This would lead to evidence with well-bounded uncertainty, and thus better informed

decision-making for sustainable development.

Objective and research questions

The overall objective of the research presented in this thesis is as follows:

To facilitate the incorporation of uncertainty in the evidence into

decision analysis for sustainable development.

To address this objective, we develop and present simple methodological tools that

shall improve the planning, monitoring, and evaluation of SDGs, especially in the

frame of public services provision, by dealing with the inherent uncertainty of the

evidence on which decisions are based.

In particular, this thesis examines two research questions:

- How can we include the uncertainty of the evidence in the prioritization of

policy options for service provision?

- How can we incorporate this uncertainty in the trend analysis of service coverage

for progress monitoring?
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The first research question tackles the prioritization of policy options based on

multiple – possibly conflicting – criteria or goals. It consists in the evaluation and

ranking of different policy alternatives, and the selection of the best alternative

with respect to the preferences of the actors involved in the decision. Alternatives

can be policy measures, strategies, scenarios, or other actions that could solve the

problem at hand, or the geographical areas (communities, regions, countries, etc.)

that must be ranked from neediest to least needy for further services improvements.

Our solution to this question is based on the ELimination and Choice Translating

REality (ELECTRE) III model, a non-compensatory multi-criteria analysis tool that

overcomes the limitation of composite indexes (i.e., their compensatory aggregation).

The second question focuses on the statistical analysis of temporal trends in service

coverage for key development metrics (e.g., health-care and water and sanitation

services) to evaluate performance and guide the design or targeting of policy in-

terventions that could accelerate the attainment of SDGs. Trend analysis can be

done at different levels (including sub-national, national, regional and global) to

provide a comprehensive picture of SDG implementation. Our solution is based on

compositional data analysis, a branch of statistics that deals specifically with relative

data such as population and service coverage data.

Overview of the topics addressed

This work revolves around three axes, as illustrated in Figure 2. The first part

focuses on multi-criteria decision analysis under uncertainty, where we deal with the

prioritization of policy alternatives for energy (Chapter 1) and water and sanitation

(Chapter 2) planning. The outcome is an improved prioritization model based on

ELECTRE III. The second part targets trend analysis of service coverage, considering

its underlying uncertainty, for water and sanitation (Chapter 3) and child mortality

(Chapter 4). In this case, the outcome is an improved regression model based on

compositional data theory. The third and final part lays out some guidance – and

future perspectives – on the incorporation of uncertainty in decision analysis for

sustainable development.
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Figure 2: Overview of the topics addressed in this thesis. Our goal is to provide
improved methods for the incorporation of uncertainty in the evidence into two decision
problems: (i) multi-criteria analysis for the prioritization of public policy options, and (ii)
trend analysis for the monitoring of service coverage. The two decision problems are
tackled with ELECTRE III and compositional data theory, respectively. We focus on
service provision for SDG 3 on “good health and well-being”, SDG 6 on “clean water
and sanitation” and SDG 7 on “affordable and clean energy”. Finally, based on the
application of these two methods, we provide some recommendations and guidance on
the integration of uncertainty in decision analysis for sustainable development.
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In more detail:

Chapter 1. Strategic renewable energy planning

We present Multi-Criteria Decision Analysis under uncertainty for the prioritization

of policy options. The approach, based on ELECTRE III, incorporates uncertainty

in the evidence base directly into the decision analysis, without the need of complex

uncertainty approaches, such as fuzzy sets theory. It is tested in the case of renewable

energy planning in Turkey, and compared with other uncertainty approaches from

the literature.

Chapter 2. Targeting and prioritization in the WASH sector

We compare two data-driven Multi-Criteria Decision Analysis under uncertainty

approaches for the prioritization of communities. The comparison looks at how

these two approaches – based on compensatory and non-compensatory aggregation

procedures – integrate data uncertainty into the decision analysis. It is applied to

the case of targeting of rural communities for water, sanitation and hygiene (WASH)

services in Kenya.

Chapter 3. Global monitoring of access to WASH

We introduce an approach for characterizing the uncertainty around temporal esti-

mates of WASH. The approach provides a response to the issue of non-reporting of

standard errors in household surveys, as well of producing “better” estimates that ac-

count for the compositional and non-linear nature of the data. It is illustrated in four

countries (Bolivia, Gambia, Morocco and India) with data from WHO/UNICEF’s

Joint Monitoring Programme.

Chapter 4. Level and trends in child mortality

We improve the monitoring of child mortality by developing a trend analysis approach

based on compositional analysis. The approach is applied to countries of sub-Saharan

Africa, and compared with official estimates provided by the UN’s Inter-agency

Group for Child Mortality.
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Research method

To tackle the formulated questions, we integrate three general research steps, which

are briefly outlined below.

The first step consists in a literature review to identify the relevant theoretical and

methodological debates in decision analysis. We consult a wide and diverse array

of information sources, covering scientific papers, handbooks, published reports by

UN agencies and other organizations, and grey literature such as working papers,

conference proceedings and project reports. The broad themes addressed include,

but are not limited to, decision analysis theory, monitoring strategies of SDG targets,

uncertainty approaches and compositional data analysis. The insights from the

literature review have informed the theoretical framework of this thesis.

The second step entails the development of improved methodological approaches,

based on ELECTRE III and compositional data theory, for the integration of

uncertainty in the decision analysis process. The underlying philosophy of these

techniques is keeping it simple. Our main objective is to offer a set of uncertainty

approaches with a reasonable balance between simplicity, robustness, and accuracy.

We specifically target methods that could be applied to a wide range of decision

problems in public services provision for SDG implementation. These methods are

developed such that they could be replicated by other researchers, and decision

analysis, in reasonable timescales. To this end, all technical details of the methods

that this work puts forward are publicly available1.

The third and last step is the implementation of the proposed approaches in real-life

decision problems in order to examine their validity and usefulness. Four case studies

are selected to test our methods and validate our research:

- Strategic planning for renewable energy development in Turkey.

- Geographical targeting of water and sanitation interventions in Kenya.

- Monitoring of water and sanitation in Bolivia, Gambia, Morocco and India.

- Monitoring of child mortality in countries of sub-Saharan Africa.

1All R scripts and datasets used to develop these methods are available in the Zenodo repository:
https://zenodo.org/communities/escgd

https://zenodo.org/communities/escgd
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We use two types of evidences in these case studies. To inform decision-making in

the case of energy (Chapter 1) we refer to expert knowledge; in the cases of water

and sanitation (Chapters 2 and 3) and child mortality (Chapter 4) we use available

data obtained mainly from household surveys.

As seen, three different SDGs are addressed by this thesis, which play a central role

in public services delivery for SDGs (Le Blanc 2015; Zhou and Mounuddin 2017):

- SDG 3 on “ensuring healthy lives and promoting well-being for all at all ages”

(in Chapter 4).

- SDG 6 on “ensuring available and sustainable management of water and

sanitation for all” (in Chapters 2 and 3).

- SDG 7 on “ensuring access to affordable, reliable, sustainable and modern

energy for all” (in Chapter 1).

It is important to emphasize that our technical contribution goes beyond our applica-

tion to these three SDGs. Indeed, our improved prioritization of public policies can

be applied in other fields: from food (SDG 2) and education (SDG 4) to housing and

transport (SDG 11). Furthermore, our improved monitoring of population groups –

and their service levels – is particularly relevant to reducing inequalities (SDG 10) in

service coverage.
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Strategic renewable energy

planning

Abstract:

Multi-Criteria Decision Analysis (MCDA) methods are increasingly used to aid

decision making for renewable energy planning. However, although uncertainty is

present in all decision environments and can be accounted for in MCDA in various

ways, dealing with incomplete and vague information in decision analysis remains a

challenge. The objective of this Chapter is to simplify the incorporation of uncer-

tainty in the scoring of alternatives in MCDA processes. A modified ELimination

and Choice Translating REality (ELECTRE) III model is presented, in which the

uncertainty in the performance scores is expressed as lower/upper bounds and then

it is added to the model’s discrimination thresholds. Unlike other uncertainty ap-

proaches developed in the literature (such as those based on fuzzy set theory), our

approach does not require additional knowledge apart from understanding the ELEC-

TRE III model. The proposed approach is applied for the evaluation of renewable

energy resources for Turkey – hydro, wind, geothermal, solar and biomass – under

five main criteria: technological, technical, economic, environmental and socio-politic.

Keywords: Multi-Criteria Decision Analysis; Energy; SDG 7; Expert knowledge
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This chapter is based on:

- Ezbakhe, F. and Pérez-Foguet, A., 2019. Decision analysis for sustainable de-

velopment: the case of renewable energy planning under uncertainty. European

Journal of Operational Research (Under Review)



19

1.1 Introduction

Sustainable energy development, and the transformation towards renewable energy

sources, is a top priority on the international agenda. Evidence of this is that

Sustainable Development Goal 7 (SDG 7) of the 2030 Agenda champions renewable

energy adoption, and calls for governments to“ensure access to affordable, reliable,

sustainable and modern energy for all”. Although not explicitly stated, achieving

this goal requires the integration and balance of all three dimensions of sustainable

development: economic, social and environmental. As the former UN Secretary

General Ki-Moon (2012) once declared, “energy is the golden thread that connects

economic growth, social equity, and environmental sustainability”. However, inte-

grating multi-dimensional issues into decision-making and planning is far from an

easy endeavor, as it requires achieving true policy coherence and linkages across

sectors and actors (Stafford-Smith et al. 2017). If decision-making is to have a

multi-dimensional perspective, then policy-makers require more mathematical tools

to tackle these type of decision problems.

Multi-Criteria Decision Analysis (MCDA) methodologies have been increasingly

recognized as a practical for decision problems in energy planning (Diakoulaki

et al. 2005; Løken 2007; Kurka and Blackwood 2013; Wu et al. 2018; Marttunen

et al. 2018; Bhardwaj et al. 2019). MCDA can help establish a coherent picture

about complex decision problems by dividing them into three elements (Belton and

Stewart 2002). First, the alternatives to be appraised, which can be policy options,

strategies or action plans for the energy sector. Second, the objectives and criteria

for assessing the consequences of each option (e.g., technical, economic, social or

environmental characteristics). Third, the weights for each criterion to reflect their

relative importance in the decision. These three elements are then combined to derive

the rankings and inform decision-makers on the most suitable option. From this

point of view, MCDA models can aid decision analysis by capturing the multi-faceted

implications of energy choices across a wide range of evaluation criteria.

Adding to the inherent complexity of decision-making is the fact that available

information is often incomplete and vague (Hokkanen et al. 2000). The uncertainties

faced by decision-makers can arise in each and every step of the MCDA process, for
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instance, when identifying the alternatives and criteria, scoring the alternatives or

weighting the criteria. To account for the associated uncertainties in decision analysis,

different hybrid MCDA methodologies have been proposed, in which MCDA models

are supplemented with uncertainty approaches such as deterministic sensitivity

analysis, probability models, fuzzy set theory and grey systems theory (Broekhuizen

et al. 2015). Albeit several options exist to address uncertainty, some require a

relatively high technical expertise. More simple and easy-to-implement approaches

for MCDA under uncertainty are hence needed for decision-makers – and the other

actors involved– not familiarized with uncertainty analysis. By keeping the appraisal

of uncertainty straightforward, the whole decision analysis process actually becomes

more transparent and credible. This is particularly important in developing countries,

where the applicability of some uncertainty approaches is oftentimes limited by the

knowledge required to implement them. Indeed, as Inotai et al. (2018) underline

in their guidance towards the implementation of MCDA frameworks in developing

countries, “although good practices of MCDA development are widely published,

approaches which were proven to be applicable in developed countries may not be

feasible in developing countries with limited capacities for decision making”.

In light of the need to achieve a balance between capturing the uncertainties in

decision analysis and keeping the MCDA process comprehensible for decision-makers,

we develop a simple MCDA approach for dealing with the uncertainty arising from

the scoring of alternatives. The key features of our work are:

- We present modified version of ELECTRE III, where the uncertainty in perfor-

mance scores is directly taken into account at the phase of determining the

model’s discrimination thresholds. Specifically, we express the discrimination

thresholds of ELECTRE III as a function of the lower and upper score bounds

elicited by decision-makers.

- We apply the proposed model to the case of sustainable energy planning in

Turkey, in which we use evidence from expert knowledge to assess the suitability

of 5 renewable energy technologies (hydro, wind, solar, geothermal and biomass)

based on 31 different technological, technical, economic, environmental and

socio-politic criteria.
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- To demonstrate the effectiveness of the proposed approach, we compare the

ranking of energy alternatives through our modified ELECTRE III model with

those of three other hybrid MCDA methods proposed by Mousavi et al. (2017),

Erdogan and Kaya (2015) and Kahraman and Kaya (2010). When comparing

the methods we consider both the convergence of rankings and the ease of

implementation of the uncertainty approaches used.

- Finally, we analyze the policy implications of the resulting rank orders on

Turkey’s energy sector.

We structure this Chapter as follows. In Section 1.2, we briefly explain the uncer-

tainty approaches used in MCDA, particularly for renewable energy planning. Next,

in Section 1.3 we introduce the case of energy planning in Turkey and describe the

particular decision problem we analyze. In Section 1.4, we provide an overview

of ELECTRE III methodology, together with an explanation of our approach for

accounting for uncertainty in alternatives’ scores. In Section 1.5, we present and

discuss the results of applying our modified ELECTRE III model to the evaluation

of renewable energy alternatives in Turkey, comparing it to other uncertainty ap-

proaches, and analyzing the policy implications for Turkey’s energy sector. Finally,

we summarize the main conclusions of our work in Section 1.6.

1.2 A background on MCDA under uncertainty

In this section we present a background on the approaches used to handle uncertainty

in MCDA (1.2.1) as well as an overview of the application of MCDA under uncertainty

for renewable energy planning (1.2.2).

1.2.1 Handling uncertainty in MCDA

Any MCDA involves eight main stages, which include: (i) establishing the decision

context, (ii) identifying the options (i.e., the alternatives) to be appraised, (iii)

identifying the objectives and criteria for assessing the consequences of each option,

(iv) “scoring” the alternatives (i.e., assessing the expected performance of each option
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against the criteria), (v) “weighting” the criteria (i.e., assigning weights for each

criterion to reflect their relative importance in the decision), (vi) applying the selected

MCDA model to combine the weights and scores for each option and derive the

ranking, (vii) examining the results, and (viii) conducting a sensitivity analysis to

determine whether other preferences affect the ordering (Dodgson et al. 2009).

As seen, the outcome of any MCDA model depends on the assumptions that are

made when building and populating it with criteria weights and performance scores

(Goetghebeur and Wagner 2017; Groothuis-Oudshoorn et al. 2017). The incomplete

knowledge about the structure of the decision problem and its input information

is known as “uncertainty”. There are many types of uncertainties, and they play

different roles in the various stages of a MCDA. For instance, during the scoring

stage, in which available data or expert judgment are used to evaluate the perfor-

mance of the alternatives on the different criteria, four types of uncertainty can

be distinguished: stochastic uncertainty, parameter uncertainty, heterogeneity, and

structural uncertainty (Briggs et al. 2012). In the case of performance scores elicited

from experts, stochastic uncertainty refers to the random variability performance

values as assigned by the same person. Parameter uncertainty reflects the variability

in the estimation of the performance values, for instance, the error in estimating

the mean value given by a group of experts to an alternative. Heterogeneity is the

between-person variability that can be explained by the person’s characteristics, and

structural uncertainty relates to the assumptions inherent to the decision model,

such as those underlying the choice of the expert elicitation technique.

Different approaches have been proposed to handle uncertainty in MCDA (Durbach

and Stewart 2011, 2012; Broekhuizen et al. 2015), namely deterministic sensitivity

analysis, probabilistic models, fuzzy set theory and grey systems theory:

- Deterministic sensitivity analysis: uncertainty in performance scores is

examined by varying one score at a time and studying the impact of this

variation on the rank order of alternatives. If the ranking does not change

with the induced variation, the decision is considered robust. Otherwise, one

can assess the extent to which a performance score can be changed before

a different rank order of alternatives is obtained. The range in which the
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particular performance score is likely to vary can be based on available data or

experts’ judgment. Deterministic sensitivity analysis is the most straightforward

method for taking into account uncertainty in performance scores. Its drawback

is the assumption of uni-variate uncertainty, which prevents the evaluation of

the cumulative impact of uncertainty in multiple performance scores.

- Probabilistic models: uncertainty in performance scores is represented with

probability distributions that can be either assigned from available data or

elicited from the decision-makers (O’Hagan et al. 2006). After selecting the

probability distribution, the uncertainty can be propagated through the MCDA

model through simulation approaches (e.g., Monte Carlo simulations). This

allows to assess the probability distribution of the alternatives’ overall score,

and make probabilistic statements to describe the chance of occurrence for a

particular rank order of alternatives. Yet, the process of assigning probability

distributions for each alternative on each criterion can be time consuming.

- Fuzzy set theory: this approach was first introduced by Zadeh (1965) to

handle the vagueness and imprecision in human judgments. Elements have

a degree of membership to a set, which is expressed as a value between zero

(no membership) and one (full membership). Within the context of MCDA,

decision-makers must define fuzzy sets and the membership functions to capture

the uncertainty in performance scores. Similarly to the probabilistic models,

fuzzy set theory can be time consuming, as it requires defining and agreeing

on the fuzzy set membership functions.

- Grey systems theory: the approach, first developed by Deng et al. (1982),

can also handle associate vagueness in human judgments. In this case, uncer-

tainty in performance scores can be represented with three value ranges: black,

white and grey. Black numbers indicate a complete lack of knowledge (i.e., the

value can go from minus infinity to plus infinity), while white numbers denote

complete knowledge (i.e., the performance score has a single value). Grey

numbers are between these two extremes, and the performance score can be

defined between a lower and upper bound. Contrary to fuzzy set theory, grey

systems theory is more straightforward to use, since in case of disagreement on
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the performance scores, the lowest and highest values can be used as the lower

and upper bounds for the grey numbers.

A review completed by Broekhuizen et al. (2015) revealed that fuzzy set theory

has become the most common uncertainty approach in MCDA (306 of the 632

applications identified; i.e., 48%), followed by deterministic sensitivity analysis (32%),

probabilistic models (16%) and grey systems theory (4%). A recent comprehensive

literature analysis by Kaya et al. (2019) also demonstrates this approach’s extensive

application in the energy field. All three models (Kahraman and Kaya 2010; Erdogan

and Kaya 2015; Mousavi et al. 2017) with which our model is compared are based

on fuzzy set theory.

1.2.2 MCDA for renewable energy planning and policy

Adopting and selecting alternative energy sources is inherently a multidimensional

decision making process: it involves looking at a broad spectrum of renewable energy

resources or conversion technologies and analyzing their multiple characteristics at

different levels (e.g., technical, economic, social and environmental). From this point

of view, MCDA can provide an evidence-based decision-making support tool that

allows to justify choices in the renewable energy sector. In this sense, four categories

of MCDA application in renewable energy can be distinguished: renewable energy

planning and policy, renewable energy evaluation and assessment, renewable energy

technology and project selection, and environmental impact assessment (Abu Taha

and Daim 2013). We focus on the first area, which refers to the assessment of a

feasible energy plan and/or the diffusion of alternative renewable energy options in

order to reach a certain national target.

There is a myriad of MCDA applications in renewable energy planning and policy

making, as revealed by the reviews of Wu et al. (2018) and Marttunen et al. (2018).

Some recent examples include the following. Seddiki and Bennadji (2019) applied

a fuzzy Preference Ranking Organization METHod for Enrichment of Evaluations

(PROMETHEE) model to assess renewable energy alternatives for electricity genera-

tion in residential buildings in Algeria. They concluded that photo-voltaic panels

were the best alternative due to their good characteristics in the payback period and
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the energy production. Ighravwe and Babatunde (2018) used a fuzzy Technique for

Order of Preference by Similarity to Ideal Solution (TOPSIS) to address the problem

of renewable energy planning for mini-grid energy distribution systems in Nigeria,

and identified biomass as the best-ranked renewable energy. McKenna et al. (2018)

combined Multi-Attribute Value Theory (MAVT) with multi-dimensional sensitivity

analysis to evaluate alternative energy systems for 2030 in a small community of

Germany. They determined that the best alternatives consisted in those maximizing

both environmental sustainability and local energy autonomy. Lee and Chang (2018),

on the other hand, presented a comparative analysis of ranking renewable energy

sources for electricity generation in Taiwan using four MCDA methods (amongst

them TOPSIS and ELECTRE), and determined that hydro power was the optimal

alternative in all methods. Abdullah and Najib (2016) proposed a fuzzy Analytic

Hierarchy Process (AHP) for sustainable energy planning in Malaysia, and after

evaluating seven energy alternatives, they selected nuclear energy as the most suitable

option.

In Turkey particularly, MCDA has been widely used for renewable energy planning.

Erdin and Ozkaya (2019) have recently applied ELECTRE to decide on the most

appropriate renewable energy alternative for different geographic regions in Turkey.

Solar and biomass energy were found to be the most suitable for Central Anatolia

region, while in the Aegean these were wind and geothermal, and hydropower for

the Black Sea. Ervural et al. (2018) used fuzzy TOPSIS to prioritize between nine

alternative energy strategies for Turkey’s energy planning, revealing that an increase

in the share of renewable energy resources within the energy supply was the third

best policy (the first and second were turning the country into an energy hub and

improving energy efficiency, respectively). Atilgan and Azapagic (2017) assessed

future electricity scenarios for Turkey up to 2050 and suggested that renewable

scenarios – particularly based on hydropower– outperformed those dominated by

fossil fuels in environmental and social aspects. Other applications evaluating

renewable energy alternatives in Turkey are shown in Table 1.1.
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1.3 The case of energy planning in Turkey

In this section, we first present a general overview of Turkey’s energy planning (1.3.1),

highlighting its national renewable energy action plan for 2023. We then describe in

detail the decision problem we analyze (1.3.2), which consists in selecting the most

appropriate renewable energy option in Turkey according to the preferences of three

energy experts involved with energy policy and planning.

1.3.1 An overview of Turkey’s energy planning

With a rapid population increase, economic development and urbanization, Turkey

has one of the fastest growing energy markets in the world. According to the

International Energy Agency (2019b), energy consumption in Turkey has risen from

40,000 ktoe in 1990 to 97,850 ktoe in 2016. However, whereas demand for energy has

grown, production has remained low (Bulut and Muratoglu 2018). As a result, Turkey

imports a substantial amount of the energy it consumes in the form of oil, coal and

natural gas from neighbouring countries, mainly Russia, Iran and Azerbaijan (Berk

and Ediger 2018). Recent statistics by the International Energy Agency (2019a) show

that net energy imports rose from 51% in 1990 to 75% in 2015. This strong foreign

dependency on energy, together with the substantial price fluctuations, make energy

security one of Turkey’s top liabilities (Fackrell 2013). In order to avoid the risks

deriving from energy import dependence, Turkey has made significant reforms in its

energy sector. The most prominent one if the adoption of the “National renewable

energy action plan for Turkey” (EBRD 2014), which puts a special emphasis on the

key role of renewable energies in meeting the increasing demand, as well as reducing

greenhouse gas emissions.

Indeed, due to its geographic position and climatic conditions, Turkey has a great

renewable energy potential that can assist in guiding its energy policy. It is estimated

that the total electricity generation potential from renewable energy sources is

240,165 GW/year for an economic potential of 138,000 MW, which equals to 13% of

EU-27’s total potential (Ozcan 2018). Specifically, the potential is (in MW) 36,000

hydro, 48,000 wind, 50,000 solar, 2,000 geothermal and 2,000 biomass. However,
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this potential is far from being fully exploited. The utilization rates of renewable

energy sources are: 71.2% for hydropower, 8.9% for wind, 0.45% for solar, 30.7% for

geothermal and 17.3% for biomass (Ozcan 2018). Now the goal for 2023 is to develop

30% of Turkey’s total electricity generation mix from renewable sources: 34,000 MW

of hydro, 20,000 MW of wind, 5,000 MW of solar, 1,000 MW of geothermal and

1,000 MW of biomass (Table 1.2, source: MENR (2018)).

Table 1.2: Renewable energy targets for electricity generation in Turkey, in MW.

2017 2019 2023

Hydro 27,700 32,000 34,000
Wind 9,500 10,000 20,000
Geothermal 420 700 1,000
Solar 1,800 3,000 5,000
Biomass 540 700 1,000

Nearly 68.5% of the new renewable capacity to be added in the next four years is

planned to come from wind energy. Furthermore, the 2023 target implies a 200%

increase in wind generation capacity between now and 2023. Notwithstanding this

strong commitment towards wind power, it remains important to evaluate available

renewable energy options to help decision- and policy-makers reaffirm the legislation

and targets put in place, as well as guide them in the development of future strategies

or initiatives for strengthening the energy sector.

1.3.2 The decision problem

The decision problem, adopted from the literature (Kahraman and Kaya 2010;

Erdogan and Kaya 2015; Mousavi et al. 2017), consists in evaluating and selecting the

most appropriate renewable energy alternative. The energy alternatives considered

are those included in Turkey’s national renewable energy action plan: Hydro, Wind,

Solar, Biomass and Geothermal. These five energy alternatives are assessed based on

five dimensions: technological, technical, economical, environmental and socio-politic.

The full 31 sub-criteria are represented in Figure 1.1 and defined in Table 1.3.
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Aim: Determining 
the best renewable 

energy alternative for 
Turkey

c1.1
c1.2
c1.3
c1.4
c1.5
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c1.7

c3.8
c3.9

c2.1
c2.2
c2.3
c2.4
c2.5
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c3.2
c3.3
c3.4
c3.5
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c4.3
c4.4
c4.5
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c5.4
c5.5

Technological 
criteria

Technical 
criteria

Economical 
criteria

Environmental 
criteria

Socio-politic 
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Hydro

Wind

Solar
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Figure 1.1: Structure of the energy decision problem analyzed. There are five criteria
(technological, technical, economical, environmental and socio-politic). Each of these is
split in several sub-criteria that we detail in Table 1.3. These sub-criteria are used to
evaluate the performance of the five energy alternatives considered in Turkey’s national
renewable energy action plan: hydro, wind, solar, geothermal and biomass.
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Table 1.3: Description of the criteria and sub-criteria of the energy decision problem.
The corresponding direction of the sub-criteria means whether they need to be maximized
(“bigger is better”) or minimized (“smaller is better”).

Criteria Sub-criteria Description Direction

Technological

c1.1. Feasibility Ability of the technology to be successfully implemented Maximize
c1.2. Risk Extent to which the technology can fail Minimize
c1.3. Reliability Ability of the technology to perform and operate without

failure
Maximize

c1.4. Duration of the prepa-
ration phase

Idle time between the technology decision and the kick-off
of the implementation

Minimize

c1.5. Duration of the imple-
mentation phase

Time until the technology is fully functioning Minimize

c1.6. Continuity and pre-
dictability of performance

Extent to which the technology can operate and perform
continuously and confidently

Maximize

c1.7. Local technical know-
how

Assessment of the complexity of the considered tech-
nology and the capacity of local actors to ensure its
operation and maintenance

Minimize

Technical

c2.1. Energy intensity Quantity of energy produced by the technology Maximize
c2.2. Energy efficiency Ratio between the output energy content and the total

energy used
Maximize

c2.3. Technical reliability Ability of the whole system to perform and operate Maximize
c2.4. Technology readiness
level

Maturity of the technology and its components Maximize

c2.5. Ease of access to the
source

Accessibility to the energy source Maximize

Economic

c3.1. Operation and mainte-
nance costs

Costs for operating and maintaining the technology Minimize

c3.2. Investment costs Total costs for the energy investment in order to be fully
operational

Minimize

c3.3. Economic value Worth of the energy in economic terms (e.g., payback
period, internal rate of return)

Maximize

c3.4. Service life Time period of intended use Maximize
c3.5. Local and regional eco-
nomic development

Contribution to the local and regional economic growth Maximize

c3.6. Economic risks Extent to which macroeconomic conditions (e.g., Gov-
ernment regulation or political stability) can affect the
energy investment

Minimize

c3.7. Security of energy sup-
ply

Energy supply at a price level that does not disrupt the
operation

Maximize

c3.8. Sustainability of en-
ergy resources

Degree of sustainability of the energy resources used Maximize

c3.9. Source durability Extent to which the energy source remains serviceable Maximize

Environmental

c4.1. Pollutant emission Type and quantity of pollutant emissions (e.g., CO2)
and their associated costs

Minimize

c4.2. Land requirement Total area of land used for implementing the technology Minimize
c4.3. Need of waste disposal Extent of the damage on the quality of the environment Minimize
c4.4. Water pollution Extent of the contamination of water resources Minimize
c4.5. Land disruption Extent of the loss of environmental value due to the

implementation of the technology
Minimize

Socio-politic

c5.1. Compatibility with the
national energy policy objec-
tives

Degree of convergence with the national energy policy Maximize

c5.2. Political acceptance Degree of consensus among policy-makers on the energy
candidate

Maximize

c5.3. Social acceptance Degree of consensus among civil society Maximize
c5.4. Labour impact Direct and indirect positive repercussions on the local

labour force
Maximize

c5.5. Job creation potential Direct and indirect employment generated from imple-
menting the technology

Maximize
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The decision process involved a group of three professional energy experts from the

Ministry of Energy and Natural Resources (for more details refer to Kahraman and

Kaya (2010)). These experts evaluated the energy alternatives under the selected

criteria, and determined the criteria’s weights. The performance values given by

these experts were expressed in ranges between 0 and 1, with lower and upper bounds,

as shown in Table 1.4.

Table 1.4: Decision matrix elicited from the group of energy experts.

Alternatives

Criteria Sub-criteria Weights Hydro Wind Solar Biomass Geothermal

Technological

c1.1 3.728 [0.25 - 0.4] [0.6 - 0.7] [0.6 - 0.7] [1.0 - 1.0] [0.25 - 0.4]

c1.2 4.307 [0.25 - 0.4] [0.25 - 0.4] [1.0 - 1.0] [0.25 - 0.4] [1.0 - 1.0]

c1.3 3.734 [0.25 - 0.4] [0.25 - 0.4] [1.0 - 1.0] [0.25 - 0.4] [0.6 - 0.7]

c1.4 4.505 [1.0 - 1.0] [1.0 - 1.0] [0.6 - 0.7] [0.6 - 0.7] [0.25 - 0.4]

c1.5 2.201 [0.25 - 0.4] [1.0 - 1.0] [0.25 - 0.4] [0.25 - 0.4] [1.0 - 1.0]

c1.6 2.844 [1.0 - 1.0] [1.0 - 1.0] [0.25 - 0.4] [0.6 - 0.7] [1.0 - 1.0]

c1.7 0.811 [1.0 - 1.0] [1.0 - 1.0] [0.25 - 0.4] [0.25 - 0.4] [0.6 - 0.7]

Technical

c2.1 2.069 [0.25 - 0.4] [0.25 - 0.4] [1.0 - 1.0] [1.0 - 1.0] [1.0 - 1.0]

c2.2 3.856 [0.25 - 0.4] [0.25 - 0.4] [0.25 - 0.4] [0.25 - 0.4] [1.0 - 1.0]

c2.3 5.097 [1.0 - 1.0] [1.0 - 1.0] [1.0 - 1.0] [1.0 - 1.0] [0.25 - 0.4]

c2.4 2.237 [0.25 - 0.4] [1.0 - 1.0] [0.6 - 0.7] [1.0 - 1.0] [0.25 - 0.4]

c2.5 3.248 [1.0 - 1.0] [0.25 - 0.4] [0.25 - 0.4] [1.0 - 1.0] [0.25 - 0.4]

Economic

c3.1 3.313 [0.25 - 0.4] [0.25 - 0.4] [0.25 - 0.4] [1.0 - 1.0] [1.0 - 1.0]

c3.2 4.779 [1.0 - 1.0] [0.25 - 0.4] [1.0 - 1.0] [0.25 - 0.4] [1.0 - 1.0]

c3.3 1.406 [0.25 - 0.4] [0.6 - 0.7] [1.0 - 1.0] [1.0 - 1.0] [1.0 - 1.0]

c3.4 1.215 [0.25 - 0.4] [1.0 - 1.0] [0.25 - 0.4] [1.0 - 1.0] [1.0 - 1.0]

c3.5 2.529 [1.0 - 1.0] [0.25 - 0.4] [1.0 - 1.0] [0.6 - 0.7] [0.25 - 0.4]

c3.6 0.625 [0.25 - 0.4] [0.25 - 0.4] [1.0 - 1.0] [1.0 - 1.0] [0.25 - 0.4]

c3.7 1.239 [0.25 - 0.4] [1.0 - 1.0] [0.6 - 0.7] [1.0 - 1.0] [1.0 - 1.0]

c3.8 2.841 [1.0 - 1.0] [1.0 - 1.0] [0.25 - 0.4] [0.25 - 0.4] [0.25 - 0.4]

c3.9 5.824 [1.0 - 1.0] [0.25 - 0.4] [0.25 - 0.4] [0.6 - 0.7] [1.0 - 1.0]

Environmental

c4.1 3.854 [1.0 - 1.0] [1.0 - 1.0] [0.6 - 0.7] [0.25 - 0.4] [1.0 - 1.0]

c4.2 3.879 [1.0 - 1.0] [0.25 - 0.4] [0.25 - 0.4] [1.0 - 1.0] [0.25 - 0.4]

c4.3 5.096 [0.25 - 0.4] [0.25 - 0.4] [0.25 - 0.4] [0.25 - 0.4] [0.25 - 0.4]

c4.4 3.794 [1.0 - 1.0] [0.25 - 0.4] [0.25 - 0.4] [1.0 - 1.0] [1.0 - 1.0]

c4.5 3.970 [0.25 - 0.4] [0.25 - 0.4] [0.25 - 0.4] [1.0 - 1.0] [0.25 - 0.4]

Socio-politic

c5.1 4.459 [0.25 - 0.4] [0.25 - 0.4] [1.0 - 1.0] [0.25 - 0.4] [1.0 - 1.0]

c5.2 2.609 [1.0 - 1.0] [0.25 - 0.4] [0.6 - 0.7] [1.0 - 1.0] [0.25 - 0.4]

c5.3 2.904 [1.0 - 1.0] [1.0 - 1.0] [0.25 - 0.4] [1.0 - 1.0] [0.6 - 0.7]

c5.4 4.594 [0.25 - 0.4] [1.0 - 1.0] [0.25 - 0.4] [0.25 - 0.4] [1.0 - 1.0]

c5.5 2.433 [1.0 - 1.0] [0.25 - 0.4] [0.25 - 0.4] [1.0 - 1.0] [0.25 - 0.4]



32 Chapter 1. Strategic renewable energy planning

1.4 Methodology

We first provide an overview of ELECTRE III method, in particular the concept of

discrimination thresholds and the evaluation procedure (1.4.1). We then explain our

modified version of the ELECTRE III model for incorporating uncertainty (1.4.2).

1.4.1 ELECTRE III

The problem of a multi-criteria decision analysis is usually composed by a set of m

alternatives, A = {a1, a2, ..., ai, ..., am}, and n criteria, C = {c1, c2, ..., cj, ..., cn}, with

their relative importance coefficients (or criteria weights), W = {w1, w2, ..., wj, ..., wn}.
This way, a m · n decision matrix can be constructed, M , where mij represents the

performance value or score of the alternative ai on criterion cj, gj(ai), for all ai ∈ A
and cj ∈ C. This decision matrix is Table 1.4 in our case study.

When using ELECTRE III, each alternative a ∈ A is compared with every other

alternative b ∈ A− {a}, with the aim of assessing the credibility of the assertion

“alternative a is at least as good as alternative b” or, in other words, “alternative

a outranks alternative b”. The outranking relation between alternatives a and b is

denoted as aSb (Roy 1991). Four situations may occur when comparing each pair

of alternatives a and b: (i) aPb, a is strongly preferred to b; (ii) aQb, a is weakly

preferred to b; (iii) aIb, a is indifferent to b; and (iv) aRb, a and b are incomparable.

To determine which of these four preference situations occurs and build the outranking

relation, aSb, the method makes use of the concept of the pseudo-criterion and

its three discrimination thresholds (Roy 1991). These thresholds account for the

imperfect nature of the evaluations, and are as follows:

- Indifference threshold, qj: difference between the alternatives’ performances

below which we are indifferent to the two alternatives for criterion cj.

- Preference threshold, pj : difference above which we show a clear strict preference

of one alternative over the other for criterion cj.

- Veto threshold, vj: difference above which we negate any possible outranking

relationship indicated by the other criteria.
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These thresholds are not experimental values to be approximated to, but rather values

defined by the decision-makers for assessing the appropriateness of the alternatives

(Roy et al. 1986). Once chosen, these thresholds are used to test the outranking

relation aSb based on the concordance/discordance principles (Figueira et al. 2010):

- Concordance: to validate an outranking relation aSb, a sufficient majority of

criteria in favor of this assertion must occur.

- Discordance: the assertion aSb cannot be validated if a minority of criteria is

strongly against this assertion.

The concordance concept represents the degree to which an alternative a outranks

another alternative b, and is measured in two steps. First, a partial concordance is

defined for each criterion: concordance is 1 when the jth criterion fully supports the

assertion aSb, and 0 when the criterion does not support aSb at all (Equation 1.1). A

global concordance is then obtained by summing the weighted partial concordances

for all criteria (Equation 1.2). On the other hand, discordance indicates the degree

to which an alternative a cannot outrank alternative b: a value of 0 indicates that

the jth criterion does not oppose to the assertion aSb, while a value of 1 expresses a

veto to aSb (Equation 1.3).

The evaluation procedure of the ELECTRE III method is illustrated in Figure 1.2,

and follows the next steps (Roy 1991):

Step 1. Calculate the partial concordance index, cj(a, b), for each pair of alternatives

and criterion.

cj(a, b) =


1, if gj(a) + qj ≥ gj(b)

0, if gj(a) + pj ≤ gj(b)

gj(a)− gj(b) + pj
pj − qj , otherwise

(1.1)

Step 2. Compute the global concordance index, C(a, b), for each pair of alternatives

by summing the partial concordance indexes for all criteria according to their weights.

C(a, b) =
1∑n

j=1wj

n∑
j=1

wj · cj(a, b) (1.2)
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Step 3. Calculate the discordance index, dj(a, b), for each pair of alternatives and

criterion.

dj(a, b) =


1, if gj(a) + vj ≤ gj(b)

0, if gj(a) + pj ≥ gj(b)

gj(b)− gj(a)− pj
vj − pj otherwise

(1.3)

Step 4. Calculate the outranking credibility index, S(a, b), for each pair of alternatives.

S(a, b) =


C(a, b), if dj(a, b) ≤ C(a, b) ∀j

C(a, b) ·
∏

j∈J
1− dj(a, b)
1− C(a, b)

where J is the set of criteria

such as dj(a, b) > C(a, b)

(1.4)

It is important to pinpoint that, for a single criterion analysis, the credibility

degree is always equal to the concordance value, because cj(a, b) and dj(a, b) are

complementary. For a multi-criteria analysis, the maximum value of the credibility

degree, i.e., S(a, b) = C(a, b), is reached when all criteria are in concordance with

the assertion aSb. Otherwise, if one criterion is strongly against the assertion aSb,

dj(a, b) > C(a, b), the credibility of the assertion is questioned and the concordance

value is modified according to Equation 1.4. Furthermore, should the veto be imposed

for one criterion, dj(a, b) = 1, the credibility is zero whatever the concordance value.

Step 5. Exploit the outranking relations to obtain two partial pre-orders: Z1, which

sorts and selects the alternatives from best to worst (i.e., descending distillation),

and Z2, which does it from worst to best (i.e., ascending distillation). The steps to

order the alternatives in the descending pre-order of Z1 are:

Step 5.0. Identify the set of alternatives included in the iteration step. For the first

iteration, all alternatives are included (i.e. D = A)

Step 5.1. Determine the maximum value of the credibility index.

λmax = max
a,b∈D,a6=b

S(a, b) (1.5)



35

Step 5.2. Calculate the cutoff level, λ, which represents the lower bound of the range

of credibility indexes that will be taken into account in this iteration. It is based

on the distillation coefficients α and β (α > β). These coefficients are technical

parameters usually assumed to be equal to 0.3 and 0.15, respectively.

λ = λmax − (α− β · λmax) (1.6)

Step 5.3. At this cutoff level, define the relation T (a, b) between each pair of

alternatives ∀a, b ∈ D.

T (a, b) =

1, if S(a, b) > λ and S(a, b)− S(b, a) > α− β · S(a, b)

0, otherwise
(1.7)

Step 5.4. For each alternative a, determine its λ-strength and λ-weakness (i.e., the

number of times alternative a is preferred over others and the number of times other

alternatives are preferred over a, respectively).

λ-strength(a) =| {b ∈ D / T (a, b) = 1} | (1.8)

λ-weakness(a) =| {b ∈ D / T (b, a) = 1} | (1.9)

Step 5.5. Determine the qualification of each alternative, λ-qualification.

λ-qualification(a) = λ-strength(a)− λ-weakness(a) (1.10)

Step 5.6. Select the subset of alternatives with the largest qualification, Dmax.

Dmax : {a ∈ D / λ-qualification(a) ≥ λ-qualification(b) ∀b ∈ D} (1.11)

Step 5.7. Remove the subset Dmax from the process (i.e., D = D −Dmax).

Step 5.8. If | D − Dmax |6= 0 go to Step 5.1. Otherwise, the distillation is stopped.

The ascending distillation follows the same steps, but at Step 5.6, the subset of

alternatives with the lowest qualification are selected instead (Dmin).

Step 6. The two pre-orders are combined to form the final pre-order (Z = Z1 ∩ Z2).
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Figure 1.2: Overview of ELECTRE III method. The alternatives ai, criteria cj , weights
wj , and performance values gj(ai) constitute the decision problem. The discrimination
thresholds qj , pj , vj are used to calculate credibility index for each pair of alternatives
a, b. These credibility indexes are then exploited to obtain the final pre-order Z.
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1.4.2 Our modified ELECTRE III

Some assumptions of our proposed approach are defined as follows:

- Performance scores of alternatives on the different criteria, gj(ai), are not

unique values, but a range of values defined by lower and upper bounds, gj(ai)L

and gj(ai)U , that represent the set of possible values for that alternative. These

bounds can be either obtained from decision-makers or available data.

- The definition of the indifference and preference thresholds, qj and pj, can

be linked to the uncertainty associated with the criterion in question. In

this case, the indifference threshold is interpreted as the minimum margin of

uncertainty in the performance values, while the preference threshold is taken

as the maximum margin of uncertainty.

- The definition of the veto threshold, vj , cannot be associated to the uncertainty,

but to the conditions under which a discordant criterion can exert a veto on an

outranking relationship. Nonetheless, the size of the veto threshold is generally

fixed based on the preference threshold (Roy et al. 1986). The further vj is from

pj (i.e., the bigger k is), the less the veto threshold will affect the outranking of

one alternative over another. Therefore, this veto to preference ratio, k = vj/pj ,

needs to be specified. In our case, since we do not have access to the experts

involved in the decision, we test different values of k to evaluate the impact of

the ratio of veto and preference thresholds on the final rank orders.

Therefore, a set of discrimination thresholds q-p-v can be defined for each pair of

alternatives a and b, and criterion j, as follows:

qj(a, b) = max (|gj(a)− gj(a)U |, |gj(b)− gj(b)L|) (1.12)

pj(a, b) = |gj(a)− gj(a)U |+ |gj(b)− gj(b)L| (1.13)

vj(a, b) = k · pj(a, b) (1.14)

Note that, if gj(a) is greater than gj(b), then the bounds considered when calculating

the discrimination thresholds are switched.
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The proposed approach is illustrated in Figure 1.3. As seen, we consider two

alternatives a and b to be indifferent for the jth criterion when their performance

scores are included in each others’ intervals. If the two performance intervals overlap,

but this intersection does not span the average performance score of the other

alternative, we weakly prefer b over a. If, on the other hand, the two performance

intervals do not overlap, we strictly prefer b. When the difference of the evaluation

between the two alternatives is greater than our veto threshold, we also reject that

alternative a could outrank b for the rest of criteria.

Alternative a

gj(a)Ugj(a)L gj(a)

Alternative b

gj(b)Ugj(b)L gj(b)

Indifference Weak preference Strict preference Veto

gj(b)-gj(a)0 qj(a, b)

|gj(a)-gj(a)U|+ 
|gj(b)-gj(b)L|

k·(|gj(a)-gj(a)U|+|gj(b)-gj(b)L|)max( |gj (a) - gj(a)U|, 
           |gj(b)-gj(b)L|)

pj(a, b) vj(a, b)

Figure 1.3: Proposed approach for incorporating uncertainty of performance scores.
a and b are the pair of alternatives being compared for the jth criterion, gj(∗) is the
performance score of the alternative, gj(∗)L and gj(∗)U are its lower and upper bounds,
respectively, and k is the veto to preference ratio selected.



39

1.5 Results and Discussion

In this section, we first present and discuss the results of applying ELECTRE III

with our proposed approach, highlighting the impact of the veto to preference ratio

(k) on the rank order of renewable energies (1.5.1). Then we compare the results to

those obtained by Mousavi et al. (2017), Erdogan and Kaya (2015) and Kahraman

and Kaya (2010) (1.5.2). Finally, we analyze and discuss the implications of these

rankings for energy planning and policy in Turkey (1.5.3).

1.5.1 Ranking of renewable energy alternatives

As explained in Section 1.4.2, in our proposed approach indifference and preference

thresholds are directly linked to the uncertainty in the performance scores of the

different alternatives. However, the veto threshold cannot be associated to the

uncertainty but rather to the limit of tolerance that the actors involved in the

decision are willing to accept for any compensation between criteria (i.e., a decrease

of one criterion can be compensated by an equivalent gain on any other criterion).

Therefore, veto thresholds must be elicited from them (in this case the three energy

experts involved in the decision analysis process). Without access to the energy

experts, we had to test different veto to preference ratios to study how the evaluation

of renewable energy alternatives changed.

As we can see in Figure 1.4, for veto to preference ratios bellow 5, all renewable

energy alternatives occupy the same rank order. This is because low veto thresholds,

in conjunction with the overlapping scores of energy alternatives, lead to more

possibility of incomparability between pairs of energy alternatives. For bigger k,

hydropower is always considered the least appropriate option, preceded by biomass.

The case of geothermal power is noteworthy: with a k of 6, it is the best energy

alternative, but takes the second and third place for higher k. On the other hand,

both wind and solar energies rank the best: for k between 7 and 10, wind is preferred

over solar power, while for k values higher than 10, both options occupy the first rank.

Interestingly, in the case of k ≥ 10, the ranking of renewable energy alternatives

stabilizes. These results highlight the impact of the veto concept: increasing the
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veto thresholds leads to a reduction in the concordance part as a veto effect becomes

more difficult to observe.

However, it is important to point out that this does not imply a low robustness of

our approach. Indeed, Roy et al. (1986) emphasized that veto thresholds are merely

numbers that represent the decision-makers’ deliberate policy decisions. There is

hence no “correct” value for the veto threshold (nor the veto to preference ratio,

k), and all rankings are equally valid depending on the decision-makers’ preferences

and judgments. Therefore, for our approach to be accurately reflect decision-makers’

actual values and opinions, the veto to preference ratio should also be elicited from

them, by means of trade-off questions for example.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Hydro Wind Solar Geothermal Biomass

1st

2nd

3rd

4th

5th

k

R
an
ki
ng

Figure 1.4: Influence of the veto to preference ratio, k, on the rankings of the five
renewable energy alternatives evaluated (hydro, wind, solar, geothermal and biomass).
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1.5.2 Comparison with other uncertainty approaches

The ranking of energy alternatives obtained by Mousavi et al. (2017), Erdogan and

Kaya (2015) and Kahraman and Kaya (2010) is: Wind > Solar > Geothermal >

Biomass > Hydro; which is the same result that we obtain with a veto to preference

ratio of 8 (k = 8).

However, although the comparative analysis show that the ranking results obtained

from our proposed methods and those by Mousavi et al. (2017), Erdogan and Kaya

(2015) and Kahraman and Kaya (2010) are the same, the methods differ significantly

in the way in which uncertainty is considered. As mentioned previously in Section

1.2.1, Mousavi et al. (2017), Erdogan and Kaya (2015) and Kahraman and Kaya

(2010) use fuzzy set theory to cope with uncertainty in performance scores. Kahraman

and Kaya (2010) apply an AHP model with ordinary fuzzy set theory. They use

a trapezoidal membership function for each criterion to convert the experts’ crisp

judgments into a fuzzy value between 0 and 1. Mousavi et al. (2017) employed

ELECTRE under a hesitant fuzzy set approach, in which the performance values of

the decision matrix are represented as hesitant fuzzy elements. They use hesitant

fuzzy sets, which are an extension of ordinary fuzzy sets, to allow for the selection of

multiple membership functions under each criterion. Erdogan and Kaya (2015) also

propose a similar approach, now based on interval type-2 fuzzy set, for the TOPSIS

model. In this case, the membership functions also have an uncertainty associated

with it, described by its two bounding functions (i.e., lower and upper membership

functions).

The addition of fuzzy logic in decision analysis can significantly increase the difficulty

of implementation and the complexity of the MCDA model (Hanratty and Joseph

1992). First and foremost because the actors involved in the decision – particu-

larly decision analysts – must invest time learning about fuzzy set theory and the

mathematical definitions behind it in order to apply it in MCDA under uncertainty.

Second, because the arithmetic of fuzzy sets require much more time – especially

during the definition of the membership functions – and calculation steps, which

consequently limits their application. Our approach, on the other hand, does not

require additional knowledge apart from understanding the ELECTRE III model.



42 Chapter 1. Strategic renewable energy planning

By considering performance scores as a range of values defined by lower and upper

bounds, and using these bounds to determine the model’s discrimination thresholds,

the process of incorporating uncertainty to the MCDA problem becomes less complex.

Nonetheless, three key limitations must be acknowledged:

- It can only incorporate the uncertainty in scoring the alternatives in MCDA.

For other uncertainties (e.g., in weighting) other approaches must be used.

- It is only suitable for decision problems where the performance scores can be

expressed as a range of values (with lower and upper bounds).

- It requires decision-makers (and other actors involved in the decision) to define

the veto to preference ratio (i.e., parameter k). If it cannot be defined, it is

necessary to assess the extent of the influence of parameter k (i.e. the ratio

between the veto and the preference thresholds) on the final rankings.

1.5.3 Policy implications for the Turkish energy sector

According to the results of our analysis, wind energy is found out to be the best

energy alternative for Turkey, followed by solar, geothermal, biomass and hydro.

This is largely in line with the national renewable energy action plan: most of the

new renewable capacity to be added in the next four years is planned to come from

wind energy (68.5%), followed by solar and hydro (13.7% each) and geothermal and

biomass (2.05% each). Given the primary role of wind energy in Turkey’s 2023 energy

strategy, it is important that Turkish policy-makers provide measures to promote

wind energy development.

The Turkish government has already put various renewable support schemes to

increase the attractiveness of investments in renewable energy projects, notably

in wind power. Among these is the creation of the Renewable Energy Resources

Support Mechanisms (YEKDEM in Turkish) in 2011 (Kaplan 2015). Under the

YEKDEM scheme, wind power producers can apply for favourable feed-in-tariffs

which guarantees a sale price of 7.3 US dollar cents per kWh for the first 10 years of

operation (plus a local-content bonus ranging from 0.6 and 1.3 US dollar cents per

kWh if the plant components are produced in Turkey) (International Energy Agency
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2011). In addition, the new Electricity Market Law also introduces an exemption from

licensing for wind generation facilities with a capacity below 1 MW (or up to 5 MW

if authorized by the Council of Ministers) (Kaydul et al. 2017). Another important

means of support is the Renewable Energy Resources Area (YEKA) program, under

which the government offers an advantageous auction policy model for investors

committed to develop local manufacturing and research capacity, and employ a large

share of domestic workers (Tagliapietra et al. 2019).

Notwithstanding these wind power support mechanisms, which have indeed boosted

investment in wind energy, there remains a number of bottlenecks that must be

addressed in order to achieve the 2023 target (International Energy Agency 2016;

Ozcan 2014, 2018), including:

- Constraints in the transmission and distribution networks that hinder the

connection of wind power capacity. It is important that policy-makers start

devising grid integration strategies to ensure the interconnection and reliable

operation of wind power.

- Administrative hurdles that lead to lengthy permitting and spatial planning

processes. More efforts are thus needed to improve bureaucratic efficiency in

licensing and granting permits.

- Lack of knowledge and training on wind power, in particular on strategic

planning of the whole wind energy system. Training and capacity-building

programs are necessary to keep energy stakeholders updated with the respect

to the legal, commercial and legal changes in the road map of wind energy.

1.6 Key messages

Prioritizing and assessing policy alternatives under uncertainty is regarded as a

complex decision making process, in particular when decision- and policy-makers

are not familiarized with sophisticated uncertainty approaches such as fuzzy set

theory. To cope with this issue, we have presented a modified ELECTRE III model

for dealing with the uncertainty arising from the scoring of alternatives.
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In our proposed approach, the uncertainty in performance scores is directly incorpo-

rated when the model’s discrimination thresholds are established, by expressing them

as a function of scores bounds. We have illustrated the validity and suitability of our

approach by applying it to a real case study on renewable energy policy selection in

Turkey, and by comparing it with other approaches developed in the literature.

Some key messages can be highlighted from this Chapter:

- The approach requires that actors involved in the decision elicit their preferences

by specifying a range of performance values for each alternative (i.e., lower and

upper bounds of performance scores). It also requires them to specify the veto

to preference ratio (parameter k in our model).

- Unlike fuzzy set-based approaches, where actors need to be familiar with fuzzy

set theory, the proposed approach does not require any additional knowledge

apart from ELECTRE III. This makes it easier to understand and be applied

in decision analysis.

- In the specific case study of Turkey, the ranking of energy alternatives are

determined as: Wind, Solar, Geothermal, Biomass and Hydro. These results

agree with the rankings obtained with other methods available in the literature.

In addition, the ranking that our method produces is aligned with Turkey’s

national renewable energy action plan.

- Given the primary role of wind energy in Turkey’s 2023 energy strategy, it

is crucial that decision-makers address some current constraints for wind

development, mainly ensuring grid integration, bureaucratic efficiency and

capacity-building of energy stakeholders.
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Targeting and prioritization in the
WASH sector

Abstract:

In the era of leaving no one behind, where one of the most pressing issues is to

provide universal access to safe Water, Sanitation and Hygiene (WASH) services, it is

imperative to target and prioritize the most disadvantaged. Multi-Criteria Decision

Analysis (MCDA) models can play a key role in informing resource allocation for

effective WASH planning. However, data uncertainty – intrinsic to the available data

collection tools used in the sector – must be accounted for in the decision analysis

process in order to avoid misleading conclusions. This Chapter presents two data-

driven MCDA models, based on compensatory and non-compensatory aggregation

techniques, to incorporate data uncertainty. We use WASH planning in rural Kenya

as a case study to illustrate and compare the two models. The comparison shows

that, while both approaches integrate data uncertainty in a considerably different

manner, they lead to similar prioritization of districts in Kenya.

Keywords:

Multi-Criteria Decision Analysis; Water, Sanitation and Hygiene; SDG 6; Household

Surveys
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2.1 Introduction

Achieving universal access to safe water, sanitation and hygiene (WASH) services

by 2030 is a vast endeavour for the global community (UN-Water 2018). Targets

6.1 and 6.2 of the Sustainable Development Goals challenge governments to tackle

the unfinished business of extending WASH services to those who remain unserved,

as well as to progressively improve the level of services provided. The progressive

realization of universal access to WASH and the reduction of inequalities in service

levels is also consistent with the UN’s resolution on the human rights to water

and sanitation (UNGA 2010). However, the commitment to leave no one behind

will demand increased attention on those most in need of better WASH services,

and deliberate efforts to reduce and eliminate inequalities. As the former Special

Rapporteur on the human rights to safe drinking water and sanitation declared,

governments must give “priority to realizing a basic level of service for everyone

before improving service levels for those already served” (OHCHR 2011).

Targeting and prioritization are thus central to WASH planning. By identifying

under-served and disadvantages geographical areas and social groups, governments

can allocate resources more equitably, and altogether implement more effective

policies for poverty alleviation (Giné-Garriga et al. 2015). However, improved

priority-setting and targeting remains a difficult task for WASH policy-makers.

Indeed, inadequate targeting of resources towards those without access to WASH

services is one of the three main challenges in the WASH sector, next to the lack

of finance for strengthening service delivery and the enabling environment, and the

slow implementation of integrated water resources management (UN-Water 2018).

Other studies reported inefficient resource allocation as one of the major weaknesses

constraining the overall performance of the sector (Gutierrez 2007; Jiménez and

Pérez-Foguet 2010; Cairncross et al. 2010; De Palencia and Pérez-Foguet 2011;

Wayland 2019; Giné-Garriga and Pérez-Foguet 2019). For this reason, a step forward

in the WASH sector would be to establish appropriate decision analysis tools that

assist policy-makers in targeting and prioritizing the most vulnerable communities.

Multi-Criteria Decision Analysis (MCDA) models can play an important role in

informing WASH planning. By evaluating and ranking population groups against
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multiple criteria – be it service coverage, quality, availability or capacity –, MCDA

models can provide insight on priority-setting of WASH interventions for various

reasons. First, they steer interventions that tackle multiple dimensions affecting

access to WASH services. Second, contrary to ad-hoc priority-setting, in which

policy-makers tend to use rather intuitive processing of complex data, MCDA enables

a more transparent and systematic assessment of evidence. Furthermore, MCDA can

enhance stakeholder participation, which contributes not only to a better framing of

policy issues but also to a higher chance to adopt the solutions.

A wide variety of MCDA models exist today, and can be grouped in two main

approaches (Ishizaka and Nemery 2013): (i) value measurement models (American

school), based on the construction of a numerical score for each alternative, and (ii)

outranking models (European school), built on the pairwise comparison between

alternatives. The differences between these two MCDA families are substantial. For

instance, there is no underlying utility function in outranking models: the output

is a ranking of alternatives without any scores to indicate the extent to which one

alternative is preferred to another. In addition, the set of decision rules describing

the aggregation procedure in outranking models are only partially compensatory,

which limits the trade-offs between the different criteria (Stewart and Losa 2003).

Despite these considerable disparities, only few studies have discussed the relative

merits on similar decision problems between these two main MCDA models. As

several authors dealing with this issue have emphasized (Ozernoy 1992; Olson et al.

1995; Zanakis et al. 1998; Gavurova et al. 2017; Motahari Farimani 2018), it is

intricate to compare MCDA models when it is not even possible to define a clear,

objectively “best” decision in a multiple attribute environment. It is indeed not

straightforward to answer questions such as: which model is more appropriate for the

type of decision problem in hand? Does the decision change when using a different

model? And, most importantly, how differently can they incorporate uncertainty?

Against this background, we present and compare two MCDA models, based on

Multi-Attribute Utility Theory (MAUT, compensatory) and ELimination and Choice

Translating REality (ELECTRE III, non-compensatory), to examine how they would

integrate data uncertainty into the decision analysis process.
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In particular:

- We extend the MAUT and ELECTRE III models to tackle the uncertainty in

the input data. Specifically, we deal with the statistical uncertainty present in

the data used in the decision analysis process.

- We apply both extended models to the case of WASH planning in Kenya.

We use data from household surveys to assess the WASH status of rural

communities in 21 counties and prioritize them based on 9 different criteria,

which are related to the availability, quality and accessibility of services.

- We assess the convergence between the counties rankings from each model.

- Finally, we analyze the implications of the rankings for Kenya’s WASH sector.

We structure the remainder of the Chapter as follows. In Section 2.2, we provide

an overview of compensatory and non-compensatory MCDA models. Then, we

present the case of WASH planning in rural Kenya and describe our decision problem

in Section 2.3. In Section 2.4, we briefly introduce our extensions of MAUT and

ELECTRE III models, drawing special attention to the way each incorporates data

uncertainty into the analysis process. Our results are presented and discussed in

Section 2.4, in particular the comparison between the two models and the policy

implications. Finally, in Section 2.5 we highlight the key messages of our work.

2.2 A background on compensation in MCDA

In MCDA, weights are assigned to the decision criteria to represent their relative

importance. This recognizes that not all criteria have the same importance to the

actors involved in the decision. Weights are also used to combine the alternatives’

performances for each individual criterion and obtain their overall performance. A

wide variety of techniques are available to undertake this aggregration, and can be

split into two categories: compensatory and non-compensatory (Jeffreys 2004).

The distinction between compensatory and non-compensatory techniques is based

on the trade-offs between evaluation criteria. In compensatory approaches, poor
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performance of an alternative in some criteria can be “compensated” for by high

performance in other criteria. In other words, a good aggregated performance may

be the result of a very good value in some criteria which masks potentially critical

values for other criteria. Some examples of compensatory techniques include: simple

additive weighting (SAW), technique for order of preference by similarity to ideal

solution (TOPSIS), analytic hierarchical processes (AHP), and multi-attribute utility

or value functions (MAUT or MAVT). In contrast, in non-compensatory approaches,

poor performances of an alternative in some criteria cannot be compensated for even

with high performances in other criteria, and thus it will be reflected its aggregated

performance. ELimination and Choice Translating REality (ELECTRE) is perhaps

the best example of this approach.

Choosing which aggregation mechanism is a non-trivial decision, as each makes

a number of assumptions regarding the decision-makers’ preferences that are not

always easily identifiable (Ouerdane 2011). One way to select a particular aggregation

procedures is the Conjoint Measurement Theory, which “examines the conditions

under which a relation on a set of alternatives – described by a vector of evaluations

– is determined by a sort of synthetic measurement that takes relevant attributes

of the objects into account in an appropriate manner” (Krantz et al. 1971). In

other words, this theory seeks to identify a system of axioms to represent the

conditions (or preferences) under which a procedure can be used. During the decision

analysis process, these axioms can help the analyst and decision-makers’ to choose

an aggregation mechanism that fits the preferences of the latter. In practice, it is

not straightforward to rely on such axioms to make the choice. As Ouerdane (2011)

explains, axioms can be overly abstract, hard to test and, very often, sufficient but

not necessary.

That is why the strategy generally followed to select between compensatory and

non-compensatory models consists in applying both and compare the rankings. Table

2.1 shows an example of studies from the water sector following such strategy. In

general, compensatory approaches are considered easier to understand and implement,

but their outcomes depend highly on the weights of dominant criteria; a fact that

becomes their main drawback.
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2.3 The case of WASH planning in Kenya

In this section, we first present a general overview of Kenya’s WASH sector (2.3.1).

We then describe in detail the decision problem we analyze (2.3.2), which consists in

selecting the rural counties most in need for better WASH services.

2.3.1 An overview of Kenya’s WASH sector

The architecture of the Kenya’s WASH sector has undergone significant changes

in the previous decades. Since the introduction of the new Water Act in 2002,

significant policy revision and restructuring has been undertaken to enhance access

to safe and improved WASH services12. One of the major outcomes of this process

culminated in the constitutional recognition of access to WASH as a basic human

right. According to Article 31 of the Constitution, every Kenyan is entitled to “clean

and safe water in adequate quantities” as well as “reasonable standard of sanitation”

(Republic of Kenya 2010). This legal commitment has been further affirmed in recent

policies such as the Kenya Vision 2030, the National Environmental Sanitation and

Hygiene Policy (2015-2030), the National Open Defecation Free Kenya (2030) and

the National Water Master Plan (2030) (Mansour et al. 2017).

However, in spite of the constitutional right to WASH and the political push, access

to WASH services remains a challenge. With a population of almost 50 million, nearly

42% of Kenyans still rely on unimproved water sources and 70% use unimproved

sanitation facilities (JMP 2017a). These figures are even more alarming for rural

areas, where improved coverage lags behind the national average (i.e., only 37% and

36% of the population has access to improved water and sanitation, respectively).

The inadequate WASH has been linked to negative health outcomes, especially

amongst children (Garrett et al. 2008; du Preez et al. 2011; Darvesh et al. 2017).

1Improved drinking water sources are those that have the potential to deliver safe water by
nature of their design and construction, and include: piped water, boreholes, protected dug wells,
protected springs, rainwater, and bottled water.

2Improved sanitation facilities are those designed to hygienically separate excreta from human
contact, and include: flush/pour flush to piped sewer system, septic tanks or pit latrines, ventilated
improved pit latrines, composting toilets, and pit latrines with slabs.
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Amid the many causes of this low coverage, ineffective resource allocation has been

identified as a priority concern in Kenya (Kenya National Commission on Human

Rights 2014; Mansour et al. 2017; Development Indicatives 2018). This ineffectiveness

stems from two main issues. First, financing of the WASH sector is insufficient.

For instance, 15% of the 2019-2020 budget (i.e., 3,650 out of total 23,645 million

Kenyan shillings) will be allocated to the water and sanitation sector, of which no

more than 27% will be dedicated to water and sewerage infrastructure development

(Republic of Kenya 2019). A closer look at the budget allocations at the local level

reveals that most 13 out of the 47 counties do not have any budget for water or

sanitation (Kenya National Commission on Human Rights 2014). Added to this

insufficient financing is the significant institutional fragmentation and overlap of

competences. For instance, at the national level, policy development for the sector is

shared between three ministries (the Ministry of Water and Irrigation, the Ministry

of Environment and Natural Resources, and the Ministry of Health); at the local

level, responsibility for water and sanitation service provision is in the hand of each of

the 47 counties, and their sub-counties are responsible for managing implementation.

The lack of coordination between the different institutions leads to duplication of

roles and inefficiencies that undermine efforts for better WASH services.

Furthermore, the institutional capacity of the sector falls short of its requirements.

The capacity of county governments, for example, is insufficient for an effective

planning and allocation of resources, both in terms of quantity and skillfulness of

public employees, and there is no explicit initiative from the national government to

fill this gap (Mansour et al. 2017). Another important problem lies in the poor data

collection and analysis at both national and county levels (Development Indicatives

2018), which hampers the understanding of the coverage levels and the cost of

prioritizing services in under-served areas. Consequently, establishing appropriate

data-driven planning tools will surely result in a positive impact on the WASH sector.

2.3.2 The decision problem

The decision problem, inspired by Giné Garriga and Pérez Foguet (2013b), consists

in the evaluation and prioritization of areas most in need for better WASH services.
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The 21 counties considered in this analysis (Figure 2.1) have been previously identified

by the Kenyan government as those with the most vulnerable rural populations.

A1 A7

A4

A5

A8

A20

A6

A18

A15

A2

A3

A10
A21

A19

A17

A11

A16

A12

A14

A13

A9

A1     Kitiu 
A2     Kieni 
A3     Molo 
A4     Kwale 
A5     Garissa 
A6     Isiolo 
A7     Tana River 
A8     Wajir 
A9     West Pokot 
A10   Turkana 
A11   Busia 
A12   Kisumu 
A13   Bondo 
A14   Siaya 
A15   Kajiado 
A16   Nyando 
A17   Rachuonyo 
A18   Mwingi 
A19   Uasin Gishu 
A20   Mandera 
A21   Marsabit

Figure 2.1: Map of Kenya with the 21 counties considered in the decision problem.

Data on the WASH coverage levels in these 21 counties was collected through

household surveys. A total of 4,925 households were selected, and multiple WASH-

related issues were covered in each one of them, including: (i) quality of the water

source, (ii) type of main drinking water source, (iii) distance from dwelling to the water

source, (iv) functionality of water supply in the household, (v) person responsible for

dwelling water, (vi) domestic water consumption, (vii) type of sanitation facilities,

(viii) sanitary inspection of water supplies, and (iv) point-of-use water treatment.

The standards (or minimum levels) for these issues are shown in Table 2.2.
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Table 2.2: WASH criteria considered in the decision problem, with the standard required.

cj Criteria Standard (or minimum level)

c1 Quality of the water Water with good analysis results
c2 Type of main drinking water source Access to improved water sources

c3
Distance from dwellings to water
source

Less than 30 minutes spent in water
fetching

c4 Functioning water supply Source is in an operational condition
c5 Person responsible for dwelling water Person responsible is not a child

c6 Domestic water consumption
More than 20 liters of per capita per
day

c7 Type of sanitation facilities
Access to improved sanitation facili-
ties

c8 Sanitary inspection of water supplies No identified risk of contamination
c9 Household water treatment Adequate treatment technology used

Each household was given a value of 0 or 1 depending on whether it met the standard

(1) or not (0). This provided the proportion of households that met the standards.

The survey data is shown in Table 2.4. These data constituted the performance

scores in our MCDA models.

A data-driven approach, based on Principal Component Analysis (PCA)1 (Nardo

et al. 2005), was used to derive the weights of criteria (shown in Table 2.3), as

done in other WASH-related studies (Giné Garriga and Pérez Foguet 2010, 2013a;

Pérez-Foguet and Giné-Garriga 2011). The idea behind it is to account for the highest

possible variation in the data set using the smallest possible number of criteria. As a

result, weights are no longer a measure of importance of the associated criterion but

a way to correct for the overlapping information of two or more criteria.

Table 2.3: Criteria weights used in both MCDA models (obtained from a Principal
Component Analysis).

c1 c2 c3 c4 c5 c6 c7 c8 c9

Weights 0.152 0.160 0.101 0.054 0.148 0.052 0.073 0.112 0.147

1Principal Components Analysis groups together individual variables which are collinear to
form linearly uncorrelated variables – the principal components – that account for as much of the
variability in the data as possible.
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2.4 Methodology

We first explain how we characterize the uncertainty in the input data (2.4.1). Then,

we provide an overview of MAUT and ELECTRE III models, and describe the

extensions we have developed to incorporate the uncertainty of the data (2.4.2).

2.4.1 Characterization of data uncertainty

We use confidence intervals to characterize uncertainty associated with the input

data. Since these data are proportions of populations estimated from the household

surveys, we consider that they follow a binomial probability distribution1, B(n, p).

We parametrize the the number of households surveyed in each county (n) and the

proportion of households verifying the minimum levels required for each criterion (p).

The lower and upper limits of the confidence interval are calculated according to

Clopper and Pearson (1934) exact method:

piL =

[
1 +

n− xi + 1

xi · F1−α/2, 2xi, 2(n−xi+1)

]−1
(2.1)

piU =

[
1 +

n− xi
(xi + 1) · Fα/2, 2(xi+1), 2(n−xi)

]−1
(2.2)

where piL and piU are the lower and upper bounds of the 100(1 − α)% confidence

interval for the ith criterion, n is the number of households surveyed, xi is the number

of households that meet the required standard, and F (c, df1, df2) is the 1− c quantile

from the F distribution with degrees of freedom df1 and df2.

While there are other formulas to calculate the confidence intervals of binomial

proportions, we choose the Clopper-Pearson interval because it is based on the

cumulative probabilities of the binomial distribution rather than an approximation

to the normal distribution2. The confidence intervals are shown in Figure 2.2.

1We assume that sample sizes are much smaller than the population size.
2Clopper-Pearson intervals are more exact than those obtained with any approximation to the

binomial distribution (Agresti and Coull 1998).
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Figure 2.2: Confidence intervals of population estimates. Ai are the 21 counties
(detailed in Figure 2.1) and cj are the 9 criteria (described in 2.2) considered. Counties
are ordered in descending order for each criterion.
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2.4.2 MCDA models

The Multi-Attribute Utility Theory (MAUT) methodological framework can be

divided into two steps. First, a utility function is defined to construct the global

value of each county. Among the several functions that can be used (e.g., additive,

multiplicative and multi-linear) we use the additive form for simplicity reasons1. Thus,

the utility value for each county is calculated as the weighted sum of performance

scores. Then, these utility values are ordered to obtain the county ranking.

In our extended version of MAUT, denoted as Model U , the statistical uncertainty

in the input data is incorporated as follows:

- Uncertainty propagation. This lets us calculate the effect of the individual

uncertainties of the data on the global uncertainty of the utility values. To

do so, we use Monte Carlo simulations, in which 10,000 performance scores

are randomly generated for each county and the probability distribution of the

county’s utility value is derived.

- Hypothesis testing. This lets us determine the statistical significance between

the utility distribution of a pair of counties. We use the Welch’s t-test (Welch

1947). If the null hypothesis of no differences in the utility value means is

accepted, the counties are considered to occupy the same ranking position;

otherwise, one county ranks higher than the other.

The ELECTRE III model also involves two steps (explained in detail in Chapter 1).

First, an outranking relation is constructed for each pair of counties so as to assess

the preference relation between the two. Then, the outranking relations between all

pairs are used to build two pre-orders through descending and ascending distillations,

and a final pre-order is obtained from their intersection.

Our extended version of ELECTRE III, denoted as Model S, incorporates data

uncertainty directly into the discrimination thresholds, as explained in Chapter 1.

Figure 2.3 illustrates the different ways models U and S integrate data uncertainty.

Model S is more straightforward, as data uncertainty is directly included through

1The final results will depend on the particular utility function selected.
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the discrimination thresholds. In contrast, model U requires more steps to propagate

uncertainty and conduct hypothesis testing before obtaining the final ranking.

Input Data Utility 
Value

Utility 
Value with 
associated 
uncertainty

Uncertainty 
propagation

Hypothesis 
testing

Order of 
alternatives

Data uncertainty

Input Data

Discrimination 
thresholds Data uncertainty

Pre-order 
of 

alternatives

Model U:

Outranking 
RelationsModel S:

Figure 2.3: Incorporation of data uncertainty in the extended MCDA models. Model
U , based on compensatory MAUT, requires propagating uncertainty of the utility values,
and hypothesis testing. Model S, based on non-compensatory ELECTRE, incorporates
uncertainty directly into the discrimination thresholds.

2.5 Results and Discussion

We first compare the rankings of models U and S (2.5.1). We then discuss the

implications of this county prioritization for WASH planning in Kenya (2.5.2).

2.5.1 Comparison of rankings

The two MCDA models result in similar county orders (Figure 2.4). In both cases,

counties of Molo (A3), Kisumu (A12), Nyando (A16) and Uasin Gishu (A19) occupy

the leading positions. A closer look at the survey data (Table 2.4) reveals why these

four counties have better WASH services than the rest. For instance, in terms of

water supply (c4), more than 95% of their populations have access to functioning

water points, 8% above the national average. The same happens in respect to the

distance from dwelling to water (c3): while on average only 40% of the population
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has access to a water source in less than 30 minutes, in these four counties the

proportion is more than 12% higher. In addition, more than 71% of households own

latrines in good hygienic conditions (c8), far from the average of 53%.

On the other hand, both models place counties of Garissa (A5), Isiolo (A6), Mwingi

(A18) and Mandera (A20) in the lowest ranks. These four counties severely lack

adequate quantities of water for domestic purposes (c6): only 21-39% of their

populations have access to more than 20 liters of water per capita per day, 30%

below the national estimate. Furthermore, whereas the access to improved sanitation

services is 46% on average (c7), it does not reach 29% in these counties.

A16

A12

A2 A3 A19

A14

A1 A10 A17 A21

A13

A4 A15

A8 A9

A5 A6 A7 A11

A20

A18

A16

A12 A19

A3

A1 A2 A14 A17 A21

A10

A4 A13

A7 A8 A9

A11

A5 A6 A15 A20

A18

Model U Model S

Figure 2.4: Rankings of the 21 counties obtained with models U (compensatory) and
S (non-compensatory). Ai are the 21 counties (detailed in Figure 2.1).
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The only major divergence between the two models is the position of counties Tana

River (A7) and Kajiado (A15). Model U ranks Kajiado higher than Tana River,

while model S results in the opposite. This reflects the different principles underlying

the two models, especially concerning the compensatory nature of their aggregation

procedures. The Kajiado county has better services in terms of distance to the

source, functionality of water supplies, domestic water consumption, household water

quality and water treatment (i.e., c3, c4, c6, c8 and c9), but performs poorly in criteria

related to improved water sources and person responsible for collecting water (c2

and c5). Model U , being fully compensatory, places Kajiado in a higher position

because the bad performances on these two criteria are compensated by the rest.

On the contrary, model S, which is only partially compensatory, results in a lower

position for Kajiado county.

The overall convergence between the rankings coincides with results of other studies

(Duckstein et al. 1982; Roy et al. 1986; Goicoechea et al. 1992; Mahmoud and Garcia

2000), where rankings obtained by MAUT and ELECTRE III were largely the same.

2.5.2 Policy implications for WASH planning in Kenya

Prioritization maps are powerful instruments for displaying information and easily

identifying where to target future WASH investments. They are widely used in the

sector to identify geographical inequalities and areas for improvement (Pullan et al.

2014; Yu et al. 2014; Giné-Garriga et al. 2013; Giné-Garriga et al. 2015; Patunru

2015; Jia et al. 2016; Chaudhuri and Roy 2017; Cole et al. 2018; He et al. 2018).

In our case, both models lead to similar targeting and prioritization maps (Figure

2.5). An important gap in WASH services can be identified in the North and North-

Eastern regions of the country, which have been historically under-served (The World

Bank 2018). Such regions are mainly arid and semi-arid, with water scarcity leaving

a majority of the inhabitants dependent on unimproved water sources (Kurui et al.

2019). Furthermore, counties in these areas have the lowest population densities

(less than 10 people per squared kilometer, compared to the average 250 people per

square kilometer in Western counties) (Jayne and Muyanga 2012).
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This has an immediate policy implication: although these regions are more difficult

to target because of their dispersed population, more efforts – and allocated budgets

– must be made to improve WASH service provision.

Model U Model S

Figure 2.5: Prioritization of counties based on their ranking, from the most (red) to
the least (green) disadvantaged.

2.6 Key messages

Multi-Criteria Decision Analysis (MCDA) models can help decision- and policy-

makers target and prioritize those populations (and regions) most in need for better

WASH services. However, selecting the most appropriate MCDA model can be

challenging, even more when dealing with data with a certain degree of uncertainty,

as there is a lack of MCDA models integrating this uncertainty. We have presented

and compared two extended, data-driven MCDA models, using different criteria

aggregation and uncertainty incorporation techniques.
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The key messages to highlight from this Chapter are:

- Data used in the WASH sector are collected from household surveys, and are

thus subject to statistical uncertainty that needs to be characterized. A simple

way to define the uncertainty in household estimates, and measure its effect on

the MCDA output, is through confidence intervals.

- The two models incorporate data uncertainty in a considerably different manner.

Model U , based on MAUT, requires a step of “uncertainty propagation” in order

to calculate the uncertainty in global utility values, and another of “hypothesis

testing” to determine the final ranking. Model S, based on ELECTRE III,

presents a more straight-forward ranking procedure, as data uncertainty is

incorporated when defining the discrimination thresholds.

- Both models can be useful decision-aid instruments for targeting and prioriti-

zation in the WASH sector. In our case study, the two models yield similar

rankings of counties. However, we must remember that MCDA models should

not be used to reveal a right prioritization, but rather to guide the decision

analysis process.
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Global monitoring of access to

WASH

Abstract:

Nationally representative household surveys are the main source of data for tracking

drinking water, sanitation and hygiene (WASH) coverage. However, all survey point

estimates have a certain degree of error that must be considered when interpreting sur-

vey results for decision- and policy-making. In this Chapter, we develop an approach

to characterize and quantify uncertainty around WASH estimates. We apply it to

four countries – Bolivia, Gambia, Morocco and India – representing different regions,

number of data points available and types of trajectories, in order to illustrate the im-

portance of communicating uncertainty for temporal estimates, as well as taking into

account both the compositional nature and non-linearity of the data. While it only

considers the uncertainty arising from sampling, our approach is particularly useful

in the WASH sector, where the dissemination and analysis of uncertainty lags behind.

Keywords: Trend analysis; Water, Sanitation and Hygiene (WASH); SDG 6; House-

hold Surveys
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This chapter is based on:

- Ezbakhe, F. and Pérez-Foguet, A., 2019. Estimating access to drinking water

and sanitation: the need to account for uncertainty in trend analyses. Science

of the Total Environment, 696. doi: 10.1016/j.scitotenv.2019.133830
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3.1 Introduction

Substantial progress has been made worldwide in increasing people’s access to water,

sanitation and hygiene (WASH) services. Between 1990 and 2015, almost 2.6 billion

people gained access to improved drinking water sources, and 2.1 billion gained

access to improved sanitation facilities (JMP 2015). Notwithstanding this laudable

achievement, there remains a tremendous effort to reach the millions of unserved

people: nearly 845 million people still lack access to basic drinking water, and 2,300

million to adequate sanitation (JMP 2017b). This has severe health implications:

in 2016 alone, inadequate WASH was estimated to cause 829,000 diarrhoeal deaths,

constituting 60% of the total diarrhoeal deaths, that would have been preventable

through access to improved WASH services (Prüss-Ustün et al. 2019). The economic

burden of poor WASH services is also considerable. For instance, in 2015, the lack

of access to sanitation was estimated to cost the global economy 223 billion USD,

corresponding to 0.9% of the global GDP (LIXIL 2016). To address this, the sixth

Sustainable Development Goal (SDG 6) of the 2030 Agenda specifically calls for

countries to “achieve universal and equitable access to safe and affordable drinking

water for all” (target 6.1) as well as to “achieve access to adequate and equitable

sanitation and hygiene for all and end open defecation” (target 6.2) (UNGA 2015).

Realizing these bold targets will require both greater investments in WASH, and

understanding the levels and trends in service coverage in order to evaluate progress,

and identify and prioritize successful policies (Cronk et al. 2015). The responsibility

of monitoring progress of the SDG 6 targets related to WASH lies within the

WHO/UNICEF’s Joint Monitoring Programme (JMP). Since 1990, the JMP has

been producing estimates of national, regional and global progress on WASH access.

The JMP currently produces estimates for a total of 26 indicators related to WASH,

all of which refer to the proportion of the population using a specific level of WASH

services (JMP 2018). The JMP estimation method begins with the identification

and compilation of all nationally-representative data relevant to the use of WASH

services. A linear least-squares regression is then used to model the proportions of

the population over time.
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However, the JMP estimation method presents some limitations. First, the use of

linear regression introduces substantial bias in estimates, particularly when coverage

rates show non-linear patterns (Bartram et al. 2014; Fuller et al. 2016). Furthermore,

as Luh et al. (2013) highlight, simple linear regressions fail to capture progressive

realization of the human rights to water and sanitation. Several alternative regression

approaches have been proposed to address this shortcoming, including quadratic,

logit, piecewise linear and generalized additive models (Wolf et al. 2013; JMP 2014).

Second, the JMP estimation method fails to account for the compositional nature of

the data. Proportions of the population are subject to a unit-sum constraint and thus

cannot vary independently, which invalidates most standard statistical approaches.

Pérez-Foguet et al. (2017) have recently addressed this issue by modelling JMP data

with compositional data analysis. They concluded that the log-ratio transformation1

of data did not only avoid misleading results from when proportions were analyzed

separately, but also helped improve the performance of regression models, especially

when coverage rates are near 0% or 100%.

Third, the characterization and representation of uncertainty around estimates

remains an untackled issue by the JMP (JMP 2014). This is crucial, as estimates are

largely based on data from nationally representative household surveys, subject to

both sampling and non-sampling errors. Thus, in addition to further minimize these

errors, uncertainty assessment of the estimates – in the form of confidence intervals,

for example – is indispensable for an evidence-based analysis of levels and trends in

WASH coverage. Failure to conduct and report such confidence intervals may lead to

misinterpretation of coverage rates and trends, and ultimately undermine effective

policy-making for WASH.

But reporting confidence intervals in WASH estimates is far from an easy endeavour.

On one hand, information on sampling errors is seldom included in household

survey reports and, even when published, it is often unclear whether they have been

computed accurately (Betti et al. 2018). On the other hand, the general assumption

that estimates from household surveys are approximately normally distributed can

be problematic when coverage rates are near 0% or 100% (Janicki 2019).

1Log-ratio analysis uses log-ratio transformations of the data to take them from the “simplex”
to real space, hence avoiding many of the problems associated with constrained data.
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As the interest in estimates of WASH coverage will continue to grow in the SDG era,

we can learn much more by showing the uncertainty around WASH estimates. In

this Chapter, we present an approach to characterize and communicate uncertainty

around water and sanitation estimates, and, at the same time, take into account

both the compositional and non-linear nature of the data. In particular:

- We develop an approach to characterize uncertainty around water and sanitation

estimates, based on compositional data analyses, non-linear regressions and

Monte Carlo simulations.

- We apply it to four countries (Bolivia, Gambia, Morocco and India), represent-

ing different SDG regions, number of data points available and trajectory.

- We assess the magnitude of confidence intervals for WASH estimates, together

with the effect of compositional and non-linear patterns in the available data.

We organize the rest of the Chapter as follows. We first provide a background on

compositional data analysis in Section 3.2. In Section 3.3, we present the case of

global monitoring of WASH access. We then present our method for characterizing

uncertainty in WASH estimates, and the four countries selected in Section 3.4. We

present and discuss the results of applying our approach in Section 3.5. Finally, in

Section 3.6 we highlight the main conclusions of the Chapter.

3.2 A background on compositional data analysis

Compositional data are arrays of non-negative multivariate components that are

some part of a whole. They are usually recorded in closed form, summing to a

constant (e.g., proportions summing to 1 or percentages summing to 100%). Such

data are widespread in many disciplines, such as geosciences, biology, economics, and

population studies (Lloyd et al. 2012; Ferrer-Rosell et al. 2016; Bergeron-Boucher et al.

2017; Wei et al. 2018; Linares-Mustaros et al. 2018; Marcillo-Delgado et al. 2019).

By definition, data on WASH access are compositional: the individual proportions

of the population using each WASH service level are not independent of each other,

but related by being expressed as percentages of the total population.
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Compositional data have particular and essential properties that arise from the fact

that they represent parts of some whole (Pawlowsky-Glahn and Egozcue 2006). They

are a vector of strictly positive real numbers with a constant sum constraint:

x = (x1, x2, . . . , xD); xi > 0 i = 1, 2, . . . , D;
D∑
i=1

xi = κ (3.1)

The elements of a composition, xi, are called components or parts, and the only

relevant information is contained in the ratios between them (Pawlowsky-Glahn

et al. 2015). This conditions the relationships that variables have to one another.

For instance, if the values of one component are decreasing over time, values of at

least one other component will have to increase to preserve the constant sum. As

a result, compositional data are enclosed in a subspace where they can only vary

between 0 and the radix value (κ). Such subspace, known as the simplex, does not

follow the rules of Euclidean geometry, which makes standard statistical techniques

inappropriate for the analysis of compositional data (Aitchison 1999).

Because of this particular geometry, working in the simplex can be counterintuitive.

As an alternative, compositional data may be transformed to the real scale where clas-

sic statistics can be applied (Pawlowsky-Glahn et al. 2015). These transformations

are based on log-ratios between components, and lead to “open” data, called coordi-

nates, that can take any real value between −∞ and ∞. Several log-transformations

have been proposed, including the additive log-ratio (ALR), the centred log-ratio

(CLR) and the isometric log-ratio (ILR) (Aitchison 1982; Egozcue et al. 2003).

In the following, the ILR transformation is applied to perform the statistical analysis

of WASH data. It represents the composition given a particular orthonormal basis

in the simplex (Egozcue et al. 2003), given by:

y = ilr(x) = log(x) · V (3.2)

where x is the vector with the D parts of the composition, V a D · (D − 1) matrix

representing the orthonormal basis in the simplex, and y the resulting vector with

the D − 1 coordinates of the composition in that basis V .
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There are several ways to define orthonormal bases in the simplex, one of which

consists in a sequential binary partition (SBP) of the composition (Pawlowsky-Glahn

et al. 2015). A SBP represents a hierarchy of the parts of a composition, and contains

successive splits of the parts into two groups, coded by the signs + and –, respectively

(Pawlowsky-Glahn and Egozcue 2011). The orthonormal basis V can be obtained

from the SBP as:

yi =

√
risi
ri + si

log
( (
∏

+ xij)
1/ri

(
∏

+ xik)
1/si

)
i = 1, 2, . . . , D − 1 (3.3)

where yi is the ith coordinate (or balance) of the composition, xij and xik are the

components coded as + and – in the ith partition, and ri and si are the number of

parts with positive and negative signs in that partition, respectively.

Once the data are transformed into ILR balances, standard statistical approaches

can be applied. Finally, regression points can be back-transformed to the original

space using the inverse ILR:

x = ilr−1(y) = C [exp(V · y)] (3.4)

where y contains the ILR coordinates of x with respect to the basis V , and C is the

closure operator:

C[x] =
( x1∑D

i=1 xi
,

x2∑D
i=1 xi

, ...,
xD∑D
i=1 xi

)
(3.5)

For a 4-part composition, x = (x1, x2, x3, x4), an example SBP can be:

Order x1 x2 x3 x4 r s

1 +1 +1 -1 -1 2 2

2 +1 -1 0 0 1 1

3 0 0 +1 -1 1 1

and therefore, the orthonormal basis is:
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V =


1/2 1/

√
2 0

1/2 −1/
√

2 0

−1/2 0 1/
√

2

−1/2 0 −1/
√

2


The ILR coordinates can be computed, following Equation 3.3, as:

y1 =
1

2
log

x1x2
x3x4

; y2 =
1√
2

log
x1
x2

; y3 =
1√
2

log
x3
x4

(3.6)

3.3 The case of global WASH monitoring

The JMP currently monitors coverage of WASH services in 230 countries and

territories. Six primary indicators are used to monitor water and sanitation access,

each reported separately for urban and rural populations (Table 3.1).

Table 3.1: Primary water and sanitation indicators used by the JMP.

Water The proportion of the population that uses...

W1 All improved drinking water sources
W2 Piped drinking water sources
W3 No drinking water sources (i.e., surface water)

Sanitation The proportion of the population that uses...

S1 All improved sanitation facilities
S2 Improved sanitation facilities connected to sewers
S3 No sanitation facilities (i.e., open defecation)

For a given indicator, the data points available vary depending on the country (Table

3.2). More than one third of all countries lack any data on surface water and open

defecation (34.9% and 40.6%, respectively), and nearly four fifths have less than 10

data points for these two indicators (77.3% and 77.7%). Furthermore, most countries

do not provide complete data for all three indicators: only 21.4% and 17.5% of

all countries present more than 10 complete data points for water and sanitation,

respectively.
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Table 3.2: Data availability for indicators in the JMP database (1990-2015) (JMP
database was extracted on May 28th, 2019).

Service Setting Indicator
Number of countries with the following data points

0 1 2 3-5 6-10 11-15 >16

Water Urban

W1. Improved 29 13 17 46 48 28 48

W2. Piped 31 15 18 43 47 28 47

W3. Surface 93 16 10 25 34 19 32

W123. All indicators 93 16 10 25 36 18 31

Water Rural

W1. Improved 34 16 15 42 46 32 44

W2. Piped 36 19 14 40 46 31 43

W3. Surface 93 16 10 25 33 19 33

W123. All indicators 93 16 10 25 36 17 32

Sanitation Urban

S1. Improved 23 23 10 35 57 26 55

S2. Sewer 32 25 19 49 48 20 36

S3. Open defecation 80 17 12 34 35 20 31

S123. All indicators 87 20 17 36 29 19 21

Sanitation Rural

S1. Improved 27 23 9 33 56 27 54

S2. Sewer 42 24 14 46 47 23 33

S3. Open defecation 82 17 12 32 34 21 31

S123. All indicators 88 21 16 35 29 18 22

Data are obtained from nationally representative household surveys – including

Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS),

World Health Surveys (WHS), and Living Standards Measurement Studies (LSMS)

– and national censuses conducted by governments. Household survey data are

subject to both sampling and non-sampling errors. Measuring the WASH services

of one or another sample of households taken from the same population would give

different estimates; this is the origin of sampling errors. Non-sampling errors, on

the other hand, arise from biases in data collection, such as omission of households,

inappropriate interview methods, and errors in data processing (Banda 2003).

Sampling errors are generally measured with the standard error statistic, which

reflects the variability between estimates we would obtain from different samples

of the population. However, the JMP does not report the standard errors in its
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household database. This is partly due to “concerns that non-sampling errors are

likely to dominate sampling errors, especially since the underlying household survey

data used to assess basic services often have large sample sizes” (Bain et al. 2018).

While it is true that sampling errors represent only one component of the total survey

error and may underestimate non-sampling errors, they still need to be accounted for.

For instance, in Burkina Faso, the relative standard errors of water and sanitation

estimates range between 0.7% and 19.2%, with an average of 7.1% (WHS 2003; MICS

2006). The challenge, however, lies in obtaining all standard errors of water and

sanitation data, as they are not available in the majority of survey reports. For

instance, in DHS reports, errors are only provided for a small selection of variables

that does not include those related to water and sanitation (Verma and Lê 1996;

Vaessen et al. 2005).

3.4 Methodology

In this section, we first describe our method for the characterization of uncertainty

around water and sanitation estimates (3.4.1). We then present the four case studies

– urban water in Bolivia and Gambia, and rural sanitation in Morocco and India –

we selected for the analysis (3.4.2).

3.4.1 Proposed approach

To characterize uncertainty around WASH estimates and, simultaneously, consider

the compositional and non-linear nature of data, our method encompasses the

following steps: (i) pre-process the JMP data to express them as 4-part compositions,

(ii) treat the zero values in the compositional data by imputation techniques, (iii)

estimate the standard errors of the proportions with a generalized relative standard

error function, (iv) generate simulations of the compositions for each year following

an extended Beta distribution, (v) fit the non-linear regression model to the data,

and (vi) calculate the 95% confidence intervals from the 2.5th and 97.5th regression

percentiles. The proposed approach is illustrated in Figure 3.1.
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Figure 3.1: Proposed approach for characterizing uncertainty in WASH estimates.
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Step 1. Pre-processing of data

The 3 primary indicators for water and sanitation used by the JMP (from Table 3.1)

are expressed as 4-part compositions, x = (x1, x2, x3, x4), as shown in Table 3.3.

Table 3.3: Pre-processing of JMP indicators for water and sanitation.

Water Means of estimation The proportion of the population that uses...

x1 W2 Piped drinking water sources
x2 W1 −W2 Other improved drinking water sources
x3 W3 No drinking water facility (i.e., surface water)
x4 1−W1 −W3 Other unimproved drinking water sources

Sanitation Means of estimation The proportion of the population that uses...

x1 S2 Improved sanitation facilities connected to sewers
x2 S1 − S2 Other improved sanitation facilities
x3 S3 No sanitation facilities (i.e., open defecation)
x4 1− S1 − S3 Other unimproved sanitation facilities

Therefore, only years with complete data for all 3 indicators (i.e., all parts of the

composition) are included in the analysis. Furthermore, years with out-of-range

data (i.e., W1 + W3 > 1 and W1 < W2 for water, and S1 + S3 > 1 and S1 < S2

for sanitation) are excluded. For instance, according to the JMP database, the

percentages of people using the different types of drinking water sources in urban

Botswana in 2007 were 98.9% (W1), 99.0% (W2) and 1.3% (W3), which is clearly

erroneous: the sum of the people using improved and unimproved drinking water

sources cannot exceed 100%, and the percentage of people using piped supplies

cannot be greater than those using all forms of improved sources.

Step 2. Treatment of zeros

The compositional analysis of JMP data is based on log-ratios of parts. For this,

zeros must be treated in the first place. In this case, since data are mainly sourced

from household surveys, we consider zero values as non-structural zeros. In other

words, since we cannot be completely sure that there is not a single household using

a particular WASH service, zeros present in the data can be seen as rounded zeros.
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As such, we replace them with the following imputation technique (Mart́ın-Fernández

et al. 2003):

rj =

δ, if xj = 0(
1−

∑
k|xj=0 δ

c

)
xj otherwise

(3.7)

where rj is the non-zero composition, δ is the imputed value on the part xj , and c is

the constant sum-constraint (in this case c = 1). As Mart́ın-Fernández et al. (2003)

explains, the imputed value δ can be associated to the rounding-off error (i.e., the

precision of the data). In this case, since data included in the JMP database are

given in percentages of the population with a precision of 1 digit after the decimal

point, δ = 0.5 · 10−3.

Step 3. Estimation of standard errors

To overcome the problem of non-reporting of standard errors of survey data, we use

a generalized relative standard error (RSE) function, which defines a relationship

between the relative standard errors (i.e., the standard errors expressed as a per-

centage of the estimated proportion) and the corresponding proportion. We use a

modified version of Gabrel (2000) formula:

RSE(p) =

√
a+ b

1− p
p

(3.8)

where p is the estimated proportion (i.e., xi from our compositional data), and a

and b are coefficients derived from the RSE curves. These RSE curves indicate the

magnitude of the relative standard error for estimated proportions of various sizes

and should be interpreted as an approximation rather than exact values for any

specific proportion. They have the following meaning: for small values of p, relative

standard errors are relatively high (when p approaches zero, the relative standard

error approaches infinite), and decrease with a square-root dependence as p increases,

reaching its minimum value for p = 1.
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Therefore, coefficients a and b can be obtained by fixing minimum and maximum

values for the relative standard errors:

a = RSEmin
2 (3.9)

b =
δ

1− δ
(RSEmax

2 −RSEmin2) (3.10)

where RSEmin and RSEmax are the selected minimum and maximum relative stan-

dard errors, and δ is the precision of the data.

To fix RSEmin and RSEmax, we differentiate between three types of sources. In

household surveys from MICS, DHS, LSMS and WHS, which are generally considered

of higher quality, they are set as 4% and 40%, respectively. In other household

surveys, 8% and 80%. In censuses, where all households are counted, they are

considered zero. The standard errors of the data are finally obtained by multiplying

the RSE by the estimated proportion.

Step 4. Simulation of data

Confidence intervals of estimates are constructed via simulation techniques. This

involves generating n simulations (n = 1, 000) of the data for each year assuming a

generalized Beta distribution, also known as Pearson Type I (Bowman and Shenton

2007). The use of a generalized Beta distribution, instead of the Normal distribution,

is motivated by its ability to model proportions near the boundaries (i.e., 0 or 1), where

the normal approximation of the sampling distribution is no longer valid (Bowman

and Shenton 2007). Essentially, Pearson Type I distributions are location-scale

transformations of Beta distributions. The probability density function, supported

in the interval (a1, a2) and shape parameters α, β > 0, is a power function of the

variable x and its complement, as follows:

B(x|a1, a2, α, β) =
Γ(α + β)

Γ(α)Γ(β)

(x− a1)α−1(a2 − x)β−1

(a2 − a1)α−β−1
(3.11)

where Γ(k) is the complete gamma function.
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We use the method of moment estimators to obtain the parameters α and β of the

generalized Beta distributions (Bain and Engelhardt 1987). This involves equating

the moments of the generalized Beta distribution with the sample proportion p and

variance σ:

p = a1 + (a2 − a1)
α

α + β
(3.12)

σ = (a2 − a1)2
αβ

(α + β)2(α + β + 1)
(3.13)

We express the limits a1 and a2 in terms of the precision of the data (i.e., a1 = 0.5·10−3

and a2 = 9.5 · 10−3). With these a1 and a2, and the resulting α and β parameters

from equations 3.12 and 3.13, we simulate 1,000 proportions using the generalized

Beta probability distribution.

Step 5. Regressions of data

For each simulation, we fit a regression model to the data following our compositional

approach: we first log-transform the 4 components into 3 coordinates, which we

model separately and then back-transform the regression results, as explained in

Section 3.2. We also follow the standard approach, where the 4 components are

modelled separately (as in the JMP estimation method) to compare it with ours.

We apply a non-linear regression based on the generalized additive model (GAM),

in which the linear form is replaced by a sum of smooth functions1. We also apply

ordinary least squares (OLS) linear regression to compare results. For this comparison,

we use the Root-Mean-Square Error (RMSE)2 and Nash-Sutcliffe Efficiency (NSE)3.

Step 6. Confidence intervals

Finally, we calculate the 95% confidence intervals from the 2.5th and 97.5th percentiles

of the regressions results.

1GAM is applied with thin-plate regression splines with four degrees of freedom (Wood 2003).
2RMSE represents the quadratic mean of the differences between the observed and the modelled

proportions. A coefficient of 0 indicates a perfect fit to the data.
3NSE computes the square differences between the observed values and their mean. The efficiency

is 1 if the model fits all data, 0 if it performs equally to the mean of the observed data, and below
0 if the observed mean is a better predictor than the model.
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3.4.2 WASH data

We illustrate the application of the proposed approach in four case studies: (i) urban

water in Bolivia, (ii) urban water in Gambia, (iii) rural sanitation in Morocco, and

(iv) rural sanitation in India. These four case studies represent different SDG regions,

number of data points and types of trajectories, as seen in Table 3.4.

Table 3.4: Case studies considered in the analysis. x1, x2, x3 and x4 refer to the
proportions of the population using piped water/sewer connections, other improved
water/sanitation, surface water/open defecation and other unimproved water/sanitation,
respectively.

Country Service Setting Region
Data Trajectories

points x1 x2 x3 x4

Bolivia Water Urban Latin America and the Caribbean 25 S A NC LD

Gambia Water Urban Sub-Saharan Africa 7 LG LD D LD

Morocco Sanitation Rural Northern Africa and Western Asia 8 LD LG LD NC

India Sanitation Rural Central and Southern Asia 12 LG LG D NC

Linear trajectories indicate that a country is making a constant change – either

growth (LG), decline (LD) or none (NC) – and are the most common. Acceleration

(A) occurs when a country starts making significant progress after a period of no

or little progress. Deceleration (D) happens when the progress abruptly stalls, or

even declines, before reaching high coverage levels. Saturation (S) takes place when

progress slows down as it approaches full coverage, at which the rate flattens out.

3.5 Results and Discussion

We present and analyze the results from applying our method to the case studies.

We first examine the importance of considering the compositional nature of data

in trend analyses by comparing the standard and compositional approaches (3.5.1).

Second, we evaluate the effect of non-linear patterns in the data by comparing OLS

and GAM regressions estimates (3.5.2). Then, we analyze the impact of the standard

errors on the confidence intervals of WASH estimates (3.5.3). Finally we discuss

some policy implications for the global monitoring of WASH (3.5.4)
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3.5.1 Compositional nature

Figure 3.2 shows the coverage estimates for the case of rural sanitation in Morocco,

obtained with the standard statistical approach (i.e., OLS regression model fitted to

each indicator separately) and our compositional approach. It also shows the official

estimates provided by the JMP.

According to our OLS estimates, the percentages of the population using each

service level in 2015 are: -0.1% for sewer connections, 77.1% for other improved

facilities, 20.2% for open defecation and 2.8% for other unimproved facilities. These

figures differ slightly from those estimated by the JMP (3%, 76.2%, 18% and 1.9%,

respectively) for two main reasons:

- Our estimates are constructed from all data points available, whereas JMP

only uses data from 2000 onwards. This has an important effect on the trend

of service coverage: for sewer connections, for example, excluding the data

points before 2000 leads to a growth trajectory instead of a decline.

- Although by definition OLS regression estimates would add up to 100%, there

is no way to ensure that all four values lie between 0 and 1. The current JMP

method avoids out-of-boundary values by adjusting the extrapolation results:

if estimates are below 0% or above 100%, they are capped at 0% and 100%,

respectively (JMP 2018).

However, this ad hoc post-process does not address the underlying problem: WASH

data are compositional, and ignoring their compositional nature would lead to

spurious results. Consequently, a compositional approach must be applied to obtain

more theoretically sound estimates of the different proportions of the population

having access to water or hygiene facilities, especially when coverage rates are near 0%

and 100%. For instance, for access to sewer connections (x1), the standard approach

provides a negative percentage (-0.1%), while in the compositional approach it is

positive (0.05%).
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Figure 3.2: Coverage estimates for rural sanitation in Morocco, with OLS regression.
In red, our estimates with the standard approach; in blue, our estimates with the
compositional approach; in green, JMP estimates; in black, the coverage data points
used. The shaded areas represent the 95% confidence intervals.
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3.5.2 Non-linear patterns

Figure 3.3 illustrates the coverage estimates for all four case studies, obtained with

linear (OLS) and non-linear (GAM) regression analyses. For countries with linear

trajectories in their water and sanitation coverage, the differences between OLS and

GAM regression models are not substantial. In India (Figure 3.d) for instance, where

most components present linear patterns, OLS and GAM estimates never differ by

more than 2 percentage points. However, when trajectories are non-linear, OLS

regression is a bad estimator for coverage levels. This is evident in the case of Bolivia

(Figure 3.a). For the first component (i.e., access to piped water sources), where

data points follow a saturation trajectory, OLS overvalues coverage in the 1990–1995

and 2011–2015 periods, but undervalues the coverage levels between 1995 and 2011.

The reverse occurs in the second component (i.e., access to other improved water

sources), in which progress shows an accelerated pattern.

In order to further compare OLS and GAM regression estimates, we use the RMSE

and NSE coefficients to quantitatively describe the accuracy of the models to the

JMP data (Table 3.5). In all case studies, GAM provides better RMSE and NSE

values, which translates in an improved accuracy of the regression models. This is

particularly noticeable in non-linear trends. In Bolivia, the access to other improved

water sources, with an acceleration pattern, presents a 0.0056 reduction in the root-

mean-square errors; compared to the 0.0009 decrease in the case of access to surface

water, where the trajectory is linear.

Despite the “superior” statistical power of non-linear regression models such as GAM,

the JMP still chooses OLS for the estimation of coverage. There are three main

reasons for this. First, the majority of countries show linear trajectories (62%-85.3%,

depending on the service and setting (Fuller et al. 2016)), which makes the use of

OLS appropriate. Second, OLS is easier to understand and implement by the JMP’s

non-technical audience, which includes WASH sector stakeholders and policy-makers.

In addition, OLS can be implemented without the need of specialized statistical

software.
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Figure 3.3: Coverage estimates for the countries, with the compositional approach.
Countries include: (a) urban water in Bolivia, (b) urban water in Gambia, (c) rural
sanitation in Morocco, and (d) rural sanitation in India. In red, estimates with OLS
regression; in blue, estimates with GAM regression; in black, the coverage data points
used. The shaded areas represent the 95% confidence intervals.
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Table 3.5: Values of the root-mean-square error (RMSE) and the Nash-Sutcliffe
Efficiency coefficient (NSE) for coverage estimates with OLS and GAM regression
models. Estimates correspond to those from the compositional approach. x1, x2, x3
and x4 refer to the proportion of the population using piped water/sewer connections,
other improved water/sanitation, surface water/open defecation and other unimproved
water/sanitation, respectively.

Case study Component
RSME NSE

OLS GAM OLS GAM

Urban water in Bolivia

x1 0.0288 0.0183 0.0930 0.6315

x2 0.0211 0.0155 0.2894 0.6154

x3 0.0040 0.0031 0.2046 0.5431

x4 0.0161 0.0102 0.4437 0.7779

Urban water in Gambia

x1 0.0584 0.0337 0.4183 0.8062

x2 0.0287 0.0147 0.4344 0.8527

x3 0.0000 0.0000 NA1 NA1

x4 0.0337 0.0228 0.3390 0.6970

Rural sanitation in Morocco

x1 0.0640 0.0437 0.0514 0.5576

x2 0.0660 0.0435 0.8967 0.9551

x3 0.0568 0.0360 0.8827 0.9528

x4 0.0242 0.0086 -0.1327 0.8568

Rural sanitation in India

x1 0.0078 0.0061 0.1483 0.4701

x2 0.0235 0.0215 0.9262 0.9378

x3 0.0150 0.0136 0.9702 0.9753

x4 0.0086 0.0068 0.0298 0.4010

1NA values are obtained because all observed data are equal.

3.5.3 Magnitude of uncertainty in estimates

In addition to generating better WASH estimates by considering both the compo-

sitional and non-linear nature of the data, one of the main contributions of our

approach is the characterization of uncertainty around estimates. This is done by

constructing the 95% confidence intervals (Table 3.6).
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Confidence intervals are generally wider for the GAM model. In India, for example,

the 2020 projection of the percentage of people practicing open defecation (i.e., x3)

is 47.2%-54.8% and 36.0%-61.0% with OLS and GAM, respectively. Furthermore,

with few data points, the GAM model results in even wider confidence bounds. For

example, in Morocco, the widths of the confidence intervals for 2020 are 3.5, 10.5,

9.6 and 2.2 percentage points (which represent 68.6%, 14.9%, 41.9% and 146.7% of

the mean estimated values, respectively).

Constructing these confidence intervals around estimates can be extremely useful for

two main purposes. First, it allows us to describe the precision of the estimate and

represent its sampling distribution. Second, it provides context for policy-making. In

the case of rural sanitation in India, 48.7% of population is expected to be practicing

open defecation in 2020, with a 95% confidence interval of 36%-61%. This means

that the true coverage of all the population is likely to be between 36% and 61%,

but it might not be: the “95%” indicates that, if we repeated the same household

survey many times, 95% of the them would include the true percentage, but 5%

would not. Therefore, if the target is to decrease the prevalence of open defecation

to below 50% in 2020, we could not be 100% certain that it is achieved, even with a

mean point estimate at 48.7%. That is why policy-makers must consider the errors

in the WASH coverage estimates when assessing progress against coverage targets.

In this sense, our approach can help improve the use of JMP data to evaluate trends

in coverage and inform decision-making.

However, it is important to recall that our approach estimates standard errors. As

explained in Section 3.3, the JMP global database does not provide information on

standard errors, because it is rarely included in household survey reports. That is

why we approximate standard errors by defining a generalized curve for the relative

standard errors, with fixed minimum and maximum RSE. These values are merely a

first approximation, since the real RSE curve must be extracted from each household

survey’s microdata.
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3.5.4 Implications for global monitoring of WASH access

The use of confidence intervals to characterize uncertainty around regression estimates

is not a novelty, and neither is the application of simulation techniques to construct

these confidence bounds. In the health sector, for instance, confidence intervals are

widely used to communicate uncertainty around child mortality indicators (Hodge

et al. 2014; Bermejo et al. 2015; Minnery et al. 2015). By contrast, in the WASH

sector, confidence bounds of estimates are rarely reported. The JMP (2014) justifies

this by asserting that “it may be more important to be transparent about the level

of uncertainty than being able to calculate a quantitative measure that could be

misleading”. However, how can we be transparent when the margins of error of survey

data are not even included in the JMP’s public database? And even if errors were

available, how can we model their distributions when the assumption of normally

distributed errors is no longer acceptable? These are precisely the two questions our

approach tackles.

On one hand, our compositional and non-linear approach generates more theoretically

sound coverage estimates, which could potentially better serve the needs not only of

global monitoring agencies such as the JMP but also of country decision-makers. On

the other hand, our uncertainty approach shows that approximating the standard

errors with generalized RSE curves solves the issue of not reporting them. Indeed,

this approach can be applied by the international community when dealing with

trend analysis of WASH access (Jeuland et al. 2013; Cumming et al. 2014; Beyene

et al. 2015; Pérez-Foguet et al. 2017; Armah et al. 2018; Chitsaz and Banihabib 2015;

Nhamo et al. 2019). However, our approach provides a mere approximation of these

errors. In order to obtain results more coherent with reality, more efforts should be

made to include standard errors of WASH variables in household survey reports (and

ultimately in the JMP database).
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3.6 Key messages

Characterizing uncertainty around WASH estimates is crucial for a correct assessment

of coverage trends over time. However, reporting confidence intervals around WASH

estimates is not an easy endeavour, as survey data compiled by the JMP does not

include publicly available margins of error. In this Chapter, we have presented a

simple approach to characterize and communicate uncertainty in WASH estimates,

and, simultaneously, produce better estimates by considering the compositional

nature and non-linearity of the data.

Three key messages can be summarized, as follows:

- WASH data are compositional, and thus they should not be modelled with stan-

dard statistical analysis. Log-ratio transformations designed for compositional

data lead to more conceptually sound estimates, especially in the occurrence

of coverage rates near 0% or 100%.

- OLS regression may underestimate or overestimate coverage of WASH services

when coverage data show non-linear patterns such as acceleration, deceleration

and saturation. Non-linear methods such as GAM are alternative to account

for the non-linear trajectories in WASH access.

- Standard errors of survey data can be approximated with our approach, but

to obtain a more accurate measure of the magnitude of uncertainty around

WASH estimates, more efforts should be made to include errors in household

survey reports and the JMP global database.
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Levels and trends in child

mortality

Abstract:

Child mortality is a matter of great concern to the global community. In the context

of decision-making, trend analysis of two child mortality indicators – neonatal (NMR)

and under-five (U5MR) mortality rates – is key to evaluate countries’ progress and

identify what works for effective public-health policy-making. The estimation of

these child mortality indicators is, however, challenging for the great majority of

developing countries, where vital registration systems are often incomplete and/or

unreliable. Therefore, models are required to construct NMR and U5MR estimates.

In this Chapter, we present and compare two approaches – based on logit and iso-

metric log-ratio transformations of the data – to monitor progress under uncertainty.

We apply them to the case of child mortality in sub-Saharan Africa. Our analysis

show that, albeit both approaches lead to similar NMR and U5MR estimates, only

the isometric log-ratio transformation designed for compositional data produces

conceptually sound results, where child mortality components fulfill the constant-sum

constraint.

Keywords: Trend analysis; Child mortality; SDG 3; Household Surveys
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This chapter is based on:

- Ezbakhe, F. and Pérez-Foguet, A., 2019. Levels and trends in child mortality:

a compositional approach. Demographic Research (Under Review)
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4.1 Introduction

The ongoing decline in child mortality is considered one of the most important

successes in public and population health in the past three decades. Death of

children under five years old has fallen from 12.6 million per year in 1990 to 5.4

million per year in 2017, even as the world’s population under age five grew by nearly

30 million (UNICEF 2018; UNESA 2017). Notwithstanding this substantial progress,

there is still a heavy burden of child deaths due to preventable or treatable causes.

This has both social and economic consequences: in the WHO African region alone,

the cost of child mortality amounted to 150.3 billion USD in 2013 (i.e., approximately

6% of the combined GDP in the region) (Kirigia et al. 2015). In recognition of the

crucial need to further combat child mortality, the third Sustainable Development

Goal (SDG 3) of the 2030 Agenda specifically calls for countries to “ensure healthy

lives and promote well-being for all at all ages” (UNGA 2015). In particular, Target

3.2 specifies the end of preventable deaths of newborns and children under five by

lowering the neonatal and under-five mortality rates to at least 12 and 25 deaths per

1,000 live births by 2030, respectively.

Achieving this ambitious child survival target goes beyond ensuring universal access

to effective, good-quality and affordable health care for women and children. It

also requires understanding the levels and trends in child mortality in order to

evaluate countries’ performances and identify effective policies (UNICEF 2018). That

is why measuring and monitoring child mortality is a global priority. However,

tracking progress towards reducing child mortality can be challenging, particularly

in developing countries with dysfunctional vital registration systems. According to

Mahapatra et al. (2007), vital statistics are unavailable or of poor quality in 111

countries, mainly in Sub-Saharan Africa, South-East Asia and Western Pacific, which

represent 72% of the world’s population. This lack of reliable data inevitably takes a

toll on the effectiveness of public-health policy-making.

To overcome the absence of reliable vital registration data in many countries, the

United Nations Inter-agency Group for Child Mortality Estimation (UN IGME)

produces and publishes estimates of child and young adolescent mortality rates every

year (IGME 2018). Child mortality indicators are provided for three different age
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intervals: neonatal mortality ratio (NMR), i.e., the number of deaths within the first

28 days of life per 1000 live births; the infant mortality ratio (IMR), i.e., the number

of deaths among children under age of 1 year per 1000 live births; and under-five

mortality ratio (U5MR), i.e., the number of deaths of children up to age of 5. With

these input data, the UN IGME generates child mortality estimates for years of

interest using a Bayesian B-splines Bias-adjusted (B3) regression model (Alkema

and New 2014; Alkema et al. 2014; Alexander and Alkema 2018). In addition, the

UN IGME’s B3 model also adjusts the errors and biases in the data.

However, besides accounting for the inherent uncertainty in child mortality data,

there is also a compositional nature that should be considered when analyzing the

data. Strictly speaking, child mortality indicators are not rates but probabilities

calculated according to the conventional life-table approach (Rutstein 1984) and are

thus naturally constrained. Indeed, the sum of probabilities of dying in the neonatal

(0–28 days), post-neonatal (29–364 days) and childhood (1–4 years) age intervals

and the probability of surviving beyond 5 years must equal 1. This constant sum

constraint makes it not possible to follow the usual Euclidean geometry, since data

belong to a subspace of the Euclidean space, as explained in Chapter 3.2. Therefore,

child mortality variables must not be analyzed separately, as this may produce

spurious correlations and misleading results. In the B3 model, the compositional

nature of data is accounted for to some extent by considering logarithms and ratios.

For instance, the U5MR is modelled in the log-scale (i.e., log(U5MR)). For the IMR,

the model is fitted to the log-odds transform of the ratio r between the IMR and

the median B3 model estimates of U5MR (i.e., log(r/(1-r))). And for the NMR, it

models the ratio between NMR to the difference between U5MR and NMR (i.e.,

NMR/(U5MR-NMR)). However, in order to be theoretically sound with respect to

the principles of compositional data analysis, log-ratio transformations between the

compositional parts are needed.

The literature on the application of compositional analysis to mortality data is

extensive. For instance, Oeppen (2008) explored the use of centered log-ratio

transformation for forecasting mortality by cause of death. Similarly, Salomon and

Murray (2001) developed a compositional model based on additive log-ratios to

predict cause-of-death patterns by age and sex; and Bergeron-Boucher et al. (2017,
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2018) also applied centered log-ratios to coherently forecast the distribution of deaths

of sub-populations. Other researchers have focused on applying isometric log-ratios

to model trends in health-related outcomes (Carson et al. 2016; Fairclough et al.

2017). However, the modelling of composition trends in child mortality have yet to

be fully explored.

In this context, our aim is to assess the application of compositional data analysis for

estimating trends in child mortality, with their associated uncertainty. Specifically:

- We estimate child mortality with two data transformations – logit and isometric

log-ratio – and compare them with the official estimates provided by the IGME.

- We use all publicly available household survey data on the two child mortality

indicators used in SDG 3 monitoring: neonatal (NMR) and under-5 (U5MR)

mortality indicators.

- We apply the trend analysis to the countries of sub-Saharan Africa. We select

this region because it accounted for nearly 54% of global under-5 deaths in

2015 (Wang et al. 2017).

The remainder of the Chapter is structured as follows. In Section 4.2 we present the

case of child mortality monitoring, in particular the use household survey data. We

then present an overview of the method and data used in our analyses in Section 4.3.

In Section 4.4, we present the results from applying the two data transformations to

child mortality, altogether highlighting the differences between our estimates and

those provided by the IGME. In Section 4.5, we conclude the Chapter summarizing

the main outcomes of our analyses.

4.2 The case of child mortality monitoring

The responsibility for monitoring and assessing child mortality at the global, regional

and country level lies within the United Nations Children’s Fund (UNICEF). Together

with other members of the UN Inter-agengy Group for Child Mortality Estimation

(IGME), UNICEF estimates child mortality every year for monitoring progress and

shares them in their public database (http://www.childmortality.org).

http://www.childmortality.org
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To do so, the UN IGME first reviews and compiles all available nationally represen-

tative data relevant to the estimation of child mortality – including data from civil

registration systems, population censuses and household surveys – and assesses their

quality to exclude those with substantial errors.

The most reliable data sources for child mortality monitoring are civil registration

and vital statistics (CRVS) systems, in which all births and deaths are routinely

registered and certified. Unfortunately, there are not comprehensive CRVS systems in

most developing countries. In the absence of continuous recording systems, measures

of child mortality are derived from alternative data sources, most notably periodic,

nationally representative household surveys (Hill et al. 2015), using both direct or

indirect methods. Direct estimation approaches collect child mortality from full

birth histories (FBHs) of women in reproductive age (i.e., 15 to 49 years old). In a

FBH, women are asked to report on the date of birth, sex, survival status, age (if

alive) and age at death (if dead), for each of their births. Probabilities of dying in

childhood are then computed based on synthetic cohort life tables (Rutstein and

Rojas 2006). However, this approach is time-consuming and expensive due to the

extensive questionnaires and training of interviewers. Indirect estimation methods,

on the other hand, use summary birth histories (SBHs), whereby women only report

the total number of children they have given birth to and the number who have died

– or equivalently the number still alive – at the time of the survey. Thus, instead

of a full distribution of births and deaths over time as in FBHs, SBHs only provide

the proportions of children dead at the time of the survey. In SBHs, probabilities of

dying in childhood are derived from modeled relationships between the proportions

of children dead and the age of the women (Brass 1975; Zlotnik and Hill 1981).

As seen in Table 4.1, most countries turn to household surveys to collect data on

child mortality. Indeed, household surveys account for 91.1% and 79.4% of the

total number of data series compiled for NMR and U5MR, respectively; which

represent 40.2% and 55.7% of all mortality observations in the database. Amongst

the most common household surveys are Demographic and Health Surveys (DHS),

providing 59.8% and 52.4% of household data in NMR and U5MR, respectively. Two

other important features can be highlighted when examining the child mortality

database. First, the UN IGME excludes a significant number of data points from



97

their estimation process (an average of 10.5% and 43.9% for NMR and U5MR,

respectively), because of their substantial degree of non-sampling errors or omissions.

Second, information on sampling errors in NMR observations is missing in more than

15% of the household surveys, and nearly 62% in U5MR observations.

Table 4.1: Data availability for neonatal (NMR) and under five (U5MR) mortality
ratios from the UN IGME public database (extracted on May 28th, 2019). Other MICS
includes National MICS; and other DHS includes Interim DHS, Special DHS, National
DHS, World Fertility Survey, Malaria Indicator Survey and AIDS Indicator Survey.

Indicator Type Source Number of

countries

Number of

series

Number

of observa-

tions

% excluded

by IGME

% with

unreported

standard

errors

NMR

Vital

Registration

VR 115 20 3320 29.2 -

SVR 4 4 91 1.1 -

Censuses CEN 0 0 0 0 -

Household

surveys

MICS 37 22 222 27.0 16.7

Other MICS 0 0 0 0.0 0.0

DHS 90 73 1372 8.1 4.6

Oher DHS 72 49 362 14.1 21.5

LSMS 0 0 0 0 0

Other surveys 59 103 337 15.4 47.2

U5MR

Vital

Registration

VR 136 78 5619 42.5 -

SVR 4 7 140 21.4 -

Censuses CEN 137 128 2332 48.1 -

Household

surveys

MICS 79 58 1008 44.5 21.4

Other MICS 4 3 24 16.7 100.0

DHS 90 176 5333 40.1 22.5

Oher DHS 96 123 1465 39.9 37.8

LSMS 1 1 1 100.0 100.0

Other surveys 130 462 2349 41.6 88.7
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Non-sampling errors may arise due to many different factors, including non-coverage,

non-response, poor quality questionnaire, or defective survey implementation and

data processing (Lesser and Kalsbeek 1999). Typical errors in data collection, such

as under-reporting of deceased children (specially of neonatal deaths) or misreporting

of ages at death (in particular age heaping around age 1) (Guillot et al. 2012).

While non-sampling errors can be minimized in many ways (e.g., proper design

of survey questionnaire and data collection), sampling errors will always exist as

the sample size is always smaller than the population size. Sampling errors for

child mortality estimates can be quite large. A review by Korenromp et al. (2004)

of sampling errors from Demographic and Health Surveys in various sub-Saharan

African countries revealed median relative errors of 5.6% and 4.4% for infant and

under-five mortality, respectively. This considerable amount of uncertainty is mainly

due to the fact that “most household surveys are not designed to produce highly

accurate estimates of child mortality, but rather aim for high accuracy of a number

of other indicators” (UNESA 2011). For instance, in Multiple Indicator Cluster

Surveys, child mortality rate is not selected as a key indicator on which to base the

calculation of the sample size. This is because the sample sizes that would be required

to measure child mortality indicators – with the same precision as recommended for

other indicators – are too large and would be impractical. Other indicators such as

immunization coverage are recommended instead (UNICEF 2006).

That is why, in addition to further minimize these errors, uncertainty assessment of

the estimates – in the form of uncertainty intervals, for example – is indispensable for

an evidence-based analysis of child mortality levels and trends. Failure to conduct and

report such uncertainty intervals may lead to misinterpretation of rates and trends,

and ultimately undermine effective policy-making for child mortality reduction.

4.3 Methodology

In this section, we first describe our method for the estimation of child mortality

and its associated uncertainty (4.4.1). We then present the data used to estimate

child mortality in sub-Saharan countries (4.4.2).
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4.3.1 Proposed approach

We estimate the NMR and U5MR for each country during 1990-2018 – or earlier

if data were available – by the use of a Generalized Additive Model (GAM) (as in

Chapter 3.2). Data are considered 3-part compositions, x = (x1, x2, x3), where:

x1 = NMR/1000; x2 = (U5MR− NMR)/1000; x3 = 1− U5MR/1000 (4.1)

We perform two data transformations: (i) logit transformation, where we fit the

model to the logarithm of the odds (as in Equation 4.2), and (ii) isometric log-ratio

(ILR) transformation, in which we fit it to the D − 1 balances (as in Chapter 3.2).

zi = log
( xi

1− xi
)

i = 1, 2, 3 (4.2)

For ILR, we create a SBP that mimics the UN IGME’s NMR/(U5MR-NMR) ratio:

Order x1 x2 x3 r s

1 +1 +1 -1 2 1

2 +1 -1 0 1 1

With this established SBP, the orthonormal basis is:

V =

 1/
√

6 1/
√

2

1/
√

6 −1/
√

2

−
√

2/3 0


The ILR coordinates can be computed, following Equation 3.3 from Chapter 3.2, as:

z1 =

√
2

3
log

(√
x1x2
x3

)
=

√
2

3
log

(√
NMR · (U5MR− NMR)

1000− U5MR

)
(4.3)

z2 =
1√
2

log

(
x1
x2

)
=

√
2

3
log

(
NMR

U5MR− NMR

)
(4.4)

The regression estimates are back-transformed to the original space using the inverse

logit function (i.e., ezi/(1 + ezi)) and the inverse ILR shown in Equation 3.4 from

Chapter 3.2. The NMR and U5MR estimates are finally derived from x1 and x2.
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Confidence intervals of the mortality rates are constructed via simulation techniques.

This involves generating 1,000 simulations of the survival probability for each age-

group – neonatal and under five – assuming a Binomial distribution, B(p, n)1. The

survival probability p is computed as 1−MR and the sample size n is derived from

the standard errors of the ratios (i.e., se =
√

MR(1−MR)/n)), where MR is the

mortality ratio (i.e., NMR/1000 and U5MR/1000, respectively). Finally, the 90%

confidence intervals are obtained from the 5th and 95th percentiles of the simulations.

4.3.2 Child mortality data

In our analysis, we only consider data from censuses and household surveys series,

and those series deemed of good quality by the IGME. In addition, for data with

unreported sampling standard errors, we impute an error of 2.5% for census observa-

tions and 10% for those from household surveys, as done by Alkema and New (2014).

On the other hand, since we consider data as 3-part compositions, only data-series

with complete information on both ratios, NMR and U5RM, are included in the

analysis. This has a major impact on the amount of data incorporated into the

modelling procedure, since there is notably less data available for NMR than U5MR

(i.e., 247 year series with 2,293 observations for U5MR versus 823 series with 10,180

observations for NMR).

The number of compositional data points considered for each of the 48 countries of

sub-Saharan Africa are shown in Table 4.2. On average, only 18% of the observations

include both NMR and U5MR. A clear example of this is Senegal: from the 44 and

73 time series for NMR and U5MR, respectively, only 34 included information for

both ratios (resulting in 41 observations instead of the 186 available for U5MR).

Furthermore, there are 9 countries with less than 4 observations for both NMR and

U5MR – Central African Republic, Comoros, Djibouti, Equatorial Guinea, Gabon,

Gambia, Seychelles, Sierra Leone and South Sudan – that are excluded from the

analysis because of their lack of sufficient data.

1We use a Binomial distribution to model child mortality because it is the preferred distribution
for dealing with counts (in this case, the number of deaths of children). In Chapter 3, we assumed
a generalized Beta distribution to model WASH coverage because the two location parameters (a1
and a2) allow us to specify the support of the distribution and consider the rounding-off error.
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Table 4.2: Data availability for neonatal (NMR) and under five (U5MR) mortality
ratios from household surveys and censuses in countries of sub-Saharan Africa. “Years”
represents the number of year series and “Points” the number of data observations.

COUNTRY
NMR U5MR BOTH
Years Points Years Points Years Points

AGO Angola 5 5 23 24 5 5
BEN Benin 15 25 65 105 14 21
BWA Botswana 9 9 28 28 4 4
BFA Burkina Faso 17 23 67 110 15 19
BDI Burundi 15 15 49 50 5 5
CPV Cabo Verde 8 8 16 16 5 5
CMR Cameroon 25 30 68 92 19 20
CAF Central African Republic 5 5 32 32 3 3
TCD Chad 12 15 49 57 8 8
COM Comoros 5 5 10 10 0 0
COG Congo 13 13 28 28 6 6
CIV Cote d’Ivoire 25 25 68 83 14 14
COD Democratic Republic of the Congo 10 10 28 28 10 10
DJI Djibouti 6 6 16 16 1 1
GNQ Equatorial Guinea 3 3 10 10 3 3
ERI Eritrea 13 13 30 34 4 4
ETH Ethiopia 12 20 47 77 6 10
GAB Gabon 6 6 8 8 2 2
GMB Gambia 0 0 27 28 0 0
GHA Ghana 26 43 88 115 11 12
GIN Guinea 21 21 58 78 10 10
GNB Guinea-Bissau 10 10 18 18 10 10
KEN Kenya 19 35 87 127 13 21
LSO Lesotho 12 20 55 58 5 5
LBR Liberia 15 20 57 63 4 4
MDG Madagascar 12 20 49 68 7 10
MWI Malawi 28 35 82 164 24 25
MLI Mali 16 20 41 94 16 20
MRT Mauritania 17 20 52 71 12 12
MOZ Mozambique 11 15 44 76 10 14
NAM Namibia 20 20 26 29 5 5
NER Niger 23 25 45 88 20 20
NGA Nigeria 16 25 45 75 7 15
RWA Rwanda 21 29 60 108 17 23
STP Sao Tome and Principe 10 10 24 24 10 10
SEN Senegal 44 60 73 186 34 41
SYC Seychelles 0 0 10 10 0 0
SLE Sierra Leone 5 5 68 69 3 3
SOM Somalia 5 5 10 10 5 5
ZAF South Africa 10 10 24 24 7 7
SSD South Sudan 1 1 13 13 1 1
SDN Sudan 17 17 88 93 6 6
SWZ Swaziland 15 15 34 36 8 8
TGO Togo 10 15 58 70 5 7
UGA Uganda 23 35 68 126 13 19
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4.4 Results and Discussion

In this section we present and analyze the child mortality obtained with the two data

transformations (4.4.1), comparing them with those provided by UN IGME (4.4.2).

We also discuss some policy implications for the global monitoring of child mortality.

4.4.1 LOGIT and ILR data transformations

Figure 4.1 shows the comparison of the child mortality estimates obtained with the

two data transformations, logit and isometric log-ratio, for Malawi.

The LOGIT data transformation provides three univariate coordinates, each rep-

resenting the log odds of the mortalities and survival probabilities. In the case of

Malawi, the log odds for mortality under 1 month of age (z1) and mortality from

ages 1 to 5 years (z2) display decreasing values (between 1970 and 2018, z1 and z2

declined by 1.3 and 1.9 points, respectively); whereas log odds for survival beyond

age 5 (z3) increase by 1.9 points. This indicates both a reduction in child mortality

and improvement of life expectancy over time.

On the other hand, the ILR data transformation results into two multivariate

coordinates: z1 captures all relative information about the survival ratio, while the

z2 captures the relationship between the mortalities under 1 month and from ages

1 month to 5 years. In Malawi, z1 declines almost constantly from -1.2 in 1970 to

-2.7 in 2018, while in z2 there is no change in the first 23 years, but starts increasing

from 1993 onwards. These values indicate not only a decline in child mortality over

the years, but specifically in the ratio of mortalities under 1 month and between 1

month and 5 years from 1993.

For both data transformations, the resulting mortality components (i.e., x1, x2 and

x3) are essentially the same. For instance, in Malawi, the estimates for neonatal

mortality (x1) obtained with the LOGIT approach are 46.5, 37.4, 28 and 23.3 per

mil for 1990, 2000, 2010 and 2018, respectively; with ILR, these estimates are 46.5,

37.5, 27.9 and 22.9.
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Figure 4.1: Mortality estimates for Malawi, with logit (a) and isometric-log ratio (b)
transformations. In black, the regression results in the coordinates: the three univariate
coordinates for logit transformation (in a2.1, a2.2 and a2.3) and the two multivariate
coordinates for the ilr transformation (in b2.1 and b2.2). In color (a1 and b1), the
regression results in the original scale: in red, mortality under 1 month (x1); in blue,
mortality between 1 month and 5 years (x2); in green x3 survival beyond 5 years.
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A closer analysis of the differences between LOGIT and ILR estimates for all countries

(Figure 4.2) reveals that the average difference is of 0.9 points per mil, which is

negligible for all practical purposes. The maximum differences are found in Liberia,

reaching 5.28 and 6.03 per mil for the NMR and U5MR, respectively. Furthermore,

although difficult to appreciate, the differences in U5MR are slightly higher than in

NMR. This is because U5MR is obtained from the sum of x1 and x2, while NMR is

directly x1. In addition, the differences between ILR and LOGIT are nearly zero for

years with data available, since estimates are close to the observed mortality ratios.
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Figure 4.2: Differences, in absolute value, between estimates obtained with logit and
isometric-log ratio transformations for (a) neonatal (NMR) and (b) under-5 (U5MR)
mortality ratios. The countries with the highest differences (i.e., more than 2 points per
mil in 2018) are Liberia (LBR), Botswana (BWA), Lesotho (LSO) and Guinea (GIN).
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However, although the resulting mortality estimates are essentially identical, only the

ILR approach strictly fulfills the unit-sum constraint (Figure 4.3). In the majority of

countries, the sum of mortality estimates with LOGIT is higher than one. In Lesotho,

Botswana, Somalia and Liberia, for instance, it reaches 1.0951, 1.0584, 1.0305 and

1.0113, respectively (i.e., 95.1, 58.4, 30.5 and 11.3 deaths per 1,000 live births).
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Figure 4.3: Sum of mortality estimates with (a) logit and (b) isometric-log ratio
transformations. Notice that only the ILR transformation fulfills the unit-sum constraint,
whereas the LOGIT transformation results in sums higher than one, especially in the
countries of Lesotho (LSO), Botswana (BWA), Somalia (SOM) and Liberia (LBR).
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This non-unit sum is even greater for the 90% confidence intervals (Figure 4.4). In

2018, for example, the 90% confidence intervals of the sum of mortality estimates in

these four countries are: (1.0015-1.3463) in Lesotho, (1.0060-1.2003) in Botswana,

(0.9745-1.5971) in Somalia and (1.0015 -1.1987) in Liberia. In contrast, the sum of

the estimates based on ILR-transformed data adds up to one in all cases.
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Figure 4.4: Sum of mortality estimates with logit and isometric-log ratio transformations
in: (a) Lesotho, (b) Botswana, (c) Somalia and (d) Liberia. In red, the LOGIT estimates;
in blue, the ILR estimates. The shaded areas represent the 90% confidence intervals.
Notice that only the ILR transformation (in blue) fulfills the unit-sum constraint for both
observed and simulated data. In years with data, the LOGIT transformation (in red)
provides estimates closer to the unit sum (thus the narrower confidence intervals).
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4.4.2 Official child mortality estimates

Figure 4.5 shows the comparison of the NMR and U5MR obtained with ILR and

those provided by UN IGME for Malawi, Mauritania, Lesotho and Liberia. As

expected, estimates differ greatly between the two approaches. This happens for two

main reasons. First, in our model, we fit a simple GAM regression model instead of

a Bayesian B-splines approach, and we do not adjust for bias due to AIDS1. Second,

since we follow a compositional approach, our regressions are only based on year

series with observation for both NMR and U5MR. In the case of Malawi, for example,

our estimates are obtained with 25 data points, whereas the IGME regression model

uses all 164 and 35 data points available for the estimation of NMR and U5MR,

respectively. This becomes more evident in countries like Lesotho and Liberia, where

the ILR estimates are based on merely 5 and 4 data points. These few observations

may lead to completely different NMR and U5MR trends. For instance, in Lesotho,

ILR estimates show a substantial increase in U5MR from 2000 onwards, mainly

because it excludes later observations where U5MR falls below 125 deaths.

This lack of data leads to wider confidence intervals. In the case of Liberia, our

estimates in 2018 are 40.4 for NMR and 84.8 for U5MR, with 90% confidence intervals

of (5.5-192.4) and (199.7-534.2). This translates into interval widths of 187.0 and

514.5 deaths per 1,000 live births for NMR and U5MR, respectively. On the contrary,

the widths of IGME’s confidence intervals are only 25.3 and 51.3 deaths per 1,000

live births for NMR and U5MR, respectively. However, as seen in Section 4.4.1, the

LOGIT transformation used in IGME’ B3 model do not guarantee that the three

child mortality probabilities will sum up to 1. As Lloyd et al. (2012) explain, “the

LOGIT transform is a valid to analyze a two-part composition [but] has serious

problems when there are more than two parts”. Only the ILR transformation leads to

estimates that are theoretically sound with respect to the most important properties

of compositional data.

1In populations severely affected by HIV/AIDS (i.e., those where the prevalence reaches 5%
of the adult population), there is a correlation between the mortality risks of mothers and their
children: HIV-positive children will be more likely to die than other children, and will be less likely
to be reported since their mothers will have been more likely to die also. Therefore, child mortality
estimates will be biased downwards. That is why the IGME adjusts for bias due to AIDS in child
mortality estimation.
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Figure 4.5: Neonatal (NMR) and under-five (U5MR) mortality estimates for: (a) Malawi,
(b) Mauritania, (c) Lesotho and (d) Liberia. In red, neonatal mortality estimates; in
blue, under-five mortality estimates; in black, the mortality data points. The shaded
areas represent the 90% confidence intervals. In Figures (x.1), estimates obtained with
the isometric-log ratio transformation, and in (x.2) those provided by UN IGME’s model.
Notice that, in ILR, only year series with observation for both NMR and U5MR are
considered, which leads to less data points for the regression analysis and consequently
wider confidence intervals.



109

But our approach has one main drawback: time series with incomplete data must be

excluded. We have seen that this a substantial impact on the number of observations

available for analysis, since merely 18% of the time series data from the UN IGME

database included observations for both NMR and U5MR in sub-Saharan Africa.

The reason why there are less data available for NMR than for U5MR lies in the

impossibility to indirectly estimate neonatal mortality from summary birth histories,

as it is done for under-five child mortality (Burstein et al. 2018). In extreme cases

such as Gambia, where there are no complete time series, the country is omitted

from the analysis. In other cases, the limited data available for NMR implies that

the regression is done with few observations and hence the resulting trends in child

mortality should be taken with caution – especially when comparing it to trends

provided by the IGME.

So the question is: should we prioritize more conceptually sound mortality estimates,

even if it entails less data points in the regression analysis and therefore wider

confidence intervals? The answer to this question is not that simple. On one hand,

poor and theoretically inconsistent estimates lead to a misleading overview of the

health situation and child mortality trends, specially when data are closer to the

limits of their range (i.e., 0 or 1,000 deaths). On the other hand, a trend analysis

based on few observations should be interpreted with care, as the risks of getting

nonsensical results are relatively high.

In this sense, more efforts should be made to improve the data availability for neonatal

mortality, as it represents the indicator with fewer observations. In particular, it

is important to develop and validate new methods for the indirect estimation of

neonatal mortality from summary birth histories, as it is currently done for under-5

mortality. As highlighted by Burstein et al. (2018), “[the] use of such methods allows

research to utilize a massive amount of SBH data for estimation of trends in neonatal

mortality” and consequently “further improve the evidence base for monitoring of

trends and inequalities”.
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4.4.3 Implications for child mortality in sub-Saharan Africa

The 1990-2018 evolution of neonatal (NMR) and under 5 (U5MR) mortality ratios of

sub-Saharan African countries are shown in Figure 4.6. Child mortality rates show

substantial decline in the last 30 years in all countries throughout sub-Saharan Africa

except for Botswana, Somalia and Sudan for the case of NMR, and Lesotho and

Togo for U5MR. However, much of this rise in child mortality is due to extrapolation

on the basis of very few data points. In Botswana, for instance, only 4 data points

are included in the regression analysis, the most recent being in 2005. Furthermore,

in nearly half of the countries the analysis is done with less than 10 observations (as

seen in Table 4.2), which hinders the reliability of mortality estimates. Consequently,

in countries with limited data, trends in child mortality should be taken with caution.

On the other hand, only three countries – Eritrea, Cabo Verde and Madagascar –

(7.9% of all countries) already meet in 2018 the SDG 3 of reducing NMR and U5MR

to 12 and 25 deaths per 1000 lives births by 2030, respectively. The distribution of

NMR for the rest of countries is as follows: 44.7% of them are between the target

value and tow-times the target value (i.e., between 12 and 24 deaths), 34.2% between

two- and three-times the target value (24 and 36 deaths), and 13.2% with rates over

triple the target. For U5MR, these figures are 23.7%, 26.3% and 42.1%, respectively,

which presents far less hopeful figures of under-five mortality in sub-Saharan Africa.

Furthermore, a geographical analysis of child mortality estimates shows great dispar-

ities amongst regions in sub-Saharan Africa. The maps of the NMR and U5MR rates

both show a concentration of high mortality regions mostly in Western and Central

Africa. For instance, in 2018, the average neonatal mortality ratio in countries of

Western and Central Africa is higher than 25 per mil, while the regional average

in Southern and Eastern Africa – excluding Botswana and Somalia – is less than

18. One immediate policy implication can be drawn from this analysis: in order to

achieve the SDG 3 targets for child mortality, policy-makers should dedicate more

means to increasing access to and use of maternal and child care services, especially in

Western and Central African countries. This requires a stronger political commitment

from the national governments along with international support.
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Figure 4.6: Evolution of mortality in sub-Saharan African for years 1990, 2000, 2010
and 2018: (a) neonatal (NMR) and (b) under-five (U5MR) mortality ratios. In green,
the counties with mortality ratios lower than the SDG 3 target values of 12 and 25
deaths per 1,000 live births for NMR and U5MR, respectively. In red, the countries with
mortality ratios greater than the target values. In grey, the countries with insufficient
data that are excluded from the analysis.
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4.5 Key messages

The estimation of child mortality is challenging for the great majority of developing

countries, where vital registration systems are often incomplete and/or unreliable,

and thus models are required to construct NMR and U5MR estimates for years of

interest. In this Chapter, we consider and compare two data transformations, logit

and isometric log-ratio, to produce these estimates during 1990-2018 – or earlier if

data were available – for sub-Saharan African countries.

Three key messages can be summarized for this Chapter, as follows:

- While logit transformations are widely used in child mortality estimation (for

instance in the UN IGME’s B3 model), isometric log-ratio transformation

designed for compositional data would lead to more conceptually sound results.

- One of the downfalls of the isometric log-ratio transformation is the need to

exclude the time series with incomplete data (because there are less data for

NMR than for U5MR), which leads to more uncertainty in the child mortality

estimates.

- More efforts should be made to utilize the vast amount of summary birth

history data available from household surveys and censuses to estimate NMR

and help improve the data availability for this indicator and, ultimately, the

compositional trend analysis of child mortality.



Conclusions

We laid out the content of this thesis along a pair of entwined dimensions, both

aimed at providing quantitative answers to the integration of uncertainty in decision

analysis for sustainable development. The first dimension – “how can we include

the uncertainty of the evidence in the prioritization of policy options for service

provision?” – deals with the development of a simplified non-compensatory multi-

criteria decision analysis under uncertainty for the prioritization of alternatives.

The second dimension – “how can we incorporate this uncertainty in the trend

analysis of service coverage for progress monitoring” – focuses on a straightforward

characterization of uncertainty in compositional data analysis to track progress.

Both uncertainty approaches are applied to real decision problems for sustainable

development, in particular child mortality reduction (SDG 3), water, sanitation and

hygiene targeting (SDG 6) and renewable energy planning (SDG 7).

Overall, this thesis offers a framework – together with a full set of methods and

case studies – that can support the incorporation of uncertainty in decision analysis

for the provision of public services for SDG implementation. We also provide some

recommendations and future perspectives for policy-makers who intend to integrate

uncertainty in their decision-making processes.
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Main conclusions

The main takeaway of this thesis is that uncertainty matters. We have confirmed

that uncertainty is inherent to the evidence used to support decision-making for the

SDGs, in particular for public services delivery. In Chapter 1, we have seen that the

performance scores of renewable energy alternatives provided by the decision-makers

where not exact values, but rather wide intervals. In Chapters 2, 3 and 4, we have

also seen that household survey data, which remain the main source of information

for the planning of services provision, has a great deal of uncertainty due to the

sampling process. However, this uncertainty is often ignored when utilizing these

data. The case of water and sanitation monitoring (Chapter 3) is a clear example

of this, as uncertainties relating to data are seldom measured nor included in the

analysis by the official monitoring program.

Besides, decisions made disregarding uncertainty are likely to be unreliable

and misleading. Indeed, our results show that prioritization and trend analysis

of SDGs and related targets are inevitably inaccurate, due to both low availability

and bad quality of data. In the case of prioritization (Chapters 1 and 2), it becomes

evident that the numerical values assigned to the alternatives are not deterministic.

Instead, they are drawn from performance intervals that influence the subsequent

rankings. In trend analysis (Chapters 3 and 4), it is also apparent that the resulting

estimates are not single points: they are a range of likely values that depend on the

level of data uncertainty. Therefore, the interpretation of prioritization rankings

and/or forecasted estimates must consider this uncertainty.

Furthermore, uncertainty characterization is not a novelty, but simple and

reliable uncertainty characterization methods are. We have seen that uncer-

tainty can be incorporated in decision analysis in a number of ways, from probabilistic

frameworks to fuzzy set theory in prioritization problems (Chapters 1 and 2), and the

construction of confidence intervals in trend analysis (Chapters 3 and 4). However,

these methods are often too complex to be understood and used by decision-makers –

and even analysts – unfamiliar with uncertainty assessment. Simplicity is especially

important to ensure that uncertainty is constructively incorporated into sustainable

development policy-making.
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At last, our approaches allow for a simple and practical integration of

uncertainty into decision analysis. In the case of prioritization (Chapters 1 and

2), our version of the ELECTRE III model incorporates uncertainty in a direct

manner, by expressing the discrimination thresholds as a function of the performance

scores bounds. At the same time, our ELECTRE III model overcomes the issue of

compensation between the criteria that composite indexes are subject to. In trend

analysis (Chapters 3 and 4), our regression model, based on compositional data

theory, provides more theoretically sound estimates – with their confidence intervals

– than standard approaches used by the official SDG monitoring mechanisms.

In practice, the simplicity of our approaches can potentially grant a twofold im-

provement. On one hand, our methods are versatile: decision-makers would be able

to use a mix of evidence to make their decision for various SDGs. For instance,

our prioritization model can be used with both expert knowledge (Chapter 1) and

household survey data (Chapter 2). On the other hand, our methods do not under-

mine the transparency of the decision analysis process, which in turn would make

decision-makers comfortable with applying them to real life problems.

However, although this thesis presents a comprehensive illustration of the incorpo-

ration of uncertainty in prioritization and trend analysis problems for sustainable

development, it falls short of showing how our methods may be integrated into

existing decision support systems for services provision. Indeed, despite the im-

plementation of various case studies dealing with different settings (i.e., energy in

Chapter 1, water and sanitation in Chapters 2 and 3, and health in Chapter 4), they

are not sufficient to give conclusive information on whether our methods are useful

to improve decision-making for sustainable development. The main reason for this

relates to our limited resources, which restricted severely our ability to engage with

the different actors involved in the decision analysis process.

Recommendations

Based on our results, we offer some recommendations and guidance for the incorpo-

ration of uncertainty in decision analysis, which we summarize as follows:
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- Put more emphasis on uncertainty. Uncertainty needs to be mainstreamed

in sustainable development in order to make it an integral part of decision

analysis. Only then can uncertainties be identified, acknowledged and ac-

counted for. Mainstreaming uncertainty not only involves reporting it, but also

reflecting on questions such as: what are the main sources of uncertainty in

sustainable development? How can these sources of uncertainty be reduced?

What implications do they have in a given policy or decision context? And

how can they be dealt with in the decision-support process?

- Some uncertainty is better than no uncertainty. Although a particular

type or level of uncertainty seldom manifests itself in isolation, it is useful to

begin by considering a single uncertainty source. This analysis will lead to

the clear understanding of why this particular source of uncertainty matters

in decision analysis and, consequently, to the identification and integration of

other sources of uncertainties. In our approaches, even a basic consideration of

uncertainty in the evidence provides insightful perspectives on the role (and

impact) of uncertainty in decision analysis.

- Fully document the methods. One main constraint to decision analysis un-

der uncertainty lies in the difficulty to apply existing approaches for uncertainty

characterization. This is due to the fact that a comprehensive documentation

of these methods is rarely reported. A meticulous documentation of methods

can facilitate their replicability by other practitioners and researchers, which

will feedback constructively into the methods themselves.

- Simplicity is not a flaw, but a prerequisite. While real world decision

problems – especially under uncertainty – are rarely straightforward, it is

important to keep the decision analysis model as simple as possible to guarantee

transparency. Otherwise, decision- and policy-makers might perceive the model

as a black-box, and consequently they may feel reluctant towards using its

outcomes. For this reason, keeping the process simple to ensure a close

interaction between decision analysts, decision-makers, and other stakeholders,

is a more productive, dynamic, and efficient alternative.



117

Way forward

This thesis deals with the development of simple tools to enable the integration of

uncertainty present in the evidence into decision analysis processes for sustainable

development. It covers two important decision problems in public services delivery

– the prioritization of alternatives and the monitoring of progress – and provides

practical approaches for incorporating uncertainty in planning for SDG implementa-

tion. However, having simple uncertainty approaches does not necessarily imply their

proper application for sound decision-making. To effectively encourage policy- and

decision-makers in considering uncertainty in their decisions, other specific challenges

need to be addressed.

First, we must continue improving the methods for a better integration

of uncertainty in decision analysis for sustainable development. On one

hand, given the importance of prioritization in policy domains, not only for services

provision but also for academic performance, quality of life assessment or industrial

competitiveness, future work will need to envision the improvement of multi-criteria

analysis tools. In particular, research needs to focus on the computational efficiency

of non-compensatory aggregation procedures, such as ELECTRE III, so they can

be applied to more complex prioritization problems (i.e., more alternatives and/or

criteria). On the other hand, future efforts should be directed towards extending

compositional data approaches beyond the monitoring of public services provision.

Indeed, compositional data analysis is necessary for accurate statistical modelling, and

should be extended to other areas of global sustainable development. Furthermore,

more research must be direct towards modelling compositional time-series with other

trend analysis approaches (e.g., autoregressive or moving average models).

Second, we must focus less on data acquisition, and instead focus more on

the decision problems that need to be solved. In a day and age when the

“data revolution” is at the heart of the international community’s approach to policy

engagement and capacity development (IEAG 2015), there has been an explosion in

the volume and the types of data available, stemming from new technologies such as

the Internet Of Things or real-time collaborative platforms. However, with enormous

amounts of data being produced constantly, it is crucial to take a step back and
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reflect on which data are required to support better decision-making. This calls

for shifting the strategic question from “How can we get more data for sustainable

development?” to “What are the data needed to make the decisions for sustainable

development?”. Decision-makers who are implementing and planning for SDGs must

thus structure their data gathering efforts around the practical decisions on the

ground. This will enable them to identify critical uncertainties and evidence gaps

and create incentives to close them.

Last but not least, decision analysis must be embedded in decision-making.

More than often, decision analysts are viewed as researchers making sophisticated

models in their academic work that are unsuitable for real-world practice. This

must change: analysts need to work together with decision-makers to structure and

evaluate the problem and use evidence to inform the policy-making. Although this

will require governments and the international community to invest in bridging the

gap between science and policy, a stronger collaboration between decision-makers and

analysts will help increase the policies effectiveness and, ultimately, the sustainable

deployment of key resources. As Shepherd et al. (2015) put it: “training a generation

of decision analysts to work with policy-makers could do more for development than

any other single intervention”.

Addressing these challenges might not be an easy job, but we believe are the way

forward for a systematic improvement in our decision-making processes that could

dramatically help make a better use of evidence for sustainable development.
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Çolak, M. and Kaya, İ. (2017). Prioritization of renewable energy alternatives by using

an integrated fuzzy MCDM model: A real case application for Turkey. Renewable

and Sustainable Energy Reviews, 80:840–853. doi: 10.1016/j.rser.2017.05.194.

Cole, M. J., Bailey, R. M., Cullis, J. D., and New, M. G. (2018). Spatial inequality

in water access and water use in South Africa. Water Policy, 20(1):37–52. doi:

10.2166/wp.2017.111.

Constantinou, A. C., Fenton, N., and Neil, M. (2016). Integrating expert knowledge

with data in Bayesian networks: Preserving data-driven expectations when the

expert variables remain unobserved. Expert Systems with Applications, 56:197–208.

doi: 10.1016/j.eswa.2016.02.050.

Cronk, R., Slaymaker, T., and Bartram, J. (2015). Monitoring drinking water,

sanitation, and hygiene in non-household settings: Priorities for policy and practice.

https://doi.org/10.3808/jei.201800398
https://doi.org/10.1007/s11269-015-0954-6
https://hdl.handle.net/10568/34532
https://hdl.handle.net/10568/34532
https://doi.org/10.2307/2331986
https://doi.org/10.1016/j.ecolecon.2010.01.004
https://doi.org/10.1016/j.rser.2017.05.194
https://doi.org/10.2166/wp.2017.111
https://doi.org/10.1016/j.eswa.2016.02.050


125

International Journal of Hygiene and Environmental Health, 218(8):694–703. doi:

10.1016/j.ijheh.2015.03.003.

Cumming, O., Elliott, M., Overbo, A., and Bartram, J. (2014). Does global progress

on sanitation really lag behind water? An analysis of global progress on community-

and household-level access to safe water and sanitation. PloS One, 9(12):e114699.

doi: 10.1371/journal.pone.0114699.

Custer, S. and Sethi, T. (2017). Avoiding Data Graveyards: Insights from Data

Producers Users in Three Countries. USAID and AidData Center for Development

Policy. Retrieved July 19, 2019, from: https://www.developmentgateway.org/sites/

default/files/2018-10/Avoiding%20Data%20Graveyards%20Final%20Report.pdf.

Darvesh, N., Das, J. K., Vaivada, T., Gaffey, M. F., Rasanathan, K., and Bhutta,

Z. A. (2017). Water, sanitation and hygiene interventions for acute childhood

diarrhea: a systematic review to provide estimates for the Lives Saved Tool. BMC

Public Health, 17(4):776. doi: 10.1186/s12889-017-4746-1.
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main features and recent developments. In Handbook of multicriteria analysis,

pages 51–89. Springer. doi: 10.1007/978-3-540-92828-7 3.

Fuller, J. A., Goldstick, J., Bartram, J., and Eisenberg, J. N. (2016). Tracking

progress towards global drinking water and sanitation targets: A within and

among country analysis. Science of the Total Environment, 541:857–864. doi:

10.1016/j.scitotenv.2015.09.130.

Gabrel, C. (2000). The National Nursing Home Survey: 1995 summary. Vital and

Health Statistics, 13(146):1–83. Retrieved July 19, 2019, from: https://www.cdc.

gov/nchs/data/series/sr 13/sr13 146.pdf.

Garrett, V., Ogutu, P., Mabonga, P., Ombeki, S., Mwaki, A., Aluoch, G., Phelan,

M., and Quick, R. (2008). Diarrhoea prevention in a high-risk rural Kenyan

https://www.humanrights.dk/sites/humanrights.dk/files/media/dokumenter/udgivelser/sdg/may_17_follow-up_and_review_sdg_docx.pdf
https://www.humanrights.dk/sites/humanrights.dk/files/media/dokumenter/udgivelser/sdg/may_17_follow-up_and_review_sdg_docx.pdf
https://doi.org/10.3727/108354216X14713487283075
https://www.ipbes.net/sites/default/files/downloads/pdf/2016.methodological_assessment_report_scenarios_models.pdf
https://www.ipbes.net/sites/default/files/downloads/pdf/2016.methodological_assessment_report_scenarios_models.pdf
https://doi.org/10.1007/978-3-540-92828-7_3
https://doi.org/10.1016/j.scitotenv.2015.09.130
https://www.cdc.gov/nchs/data/series/sr_13/sr13_146.pdf
https://www.cdc.gov/nchs/data/series/sr_13/sr13_146.pdf


129

population through point-of-use chlorination, safe water storage, sanitation,

and rainwater harvesting. Epidemiology & Infection, 136(11):1463–1471. doi:

10.1017/S095026880700026X.

Gavurova, B., Belas, J., Kocisova, K., and Kliestik, T. (2017). Comparison of

selected methods for performance evaluation of Czech and Slovak commercial

banks. Journal of Business Economics and Management, 18(5):852–876. doi:

10.3846/16111699.2017.1371637.

GCPSE (2016). SDG Implementation Framework: Effective public service for

SDG implementation. UNDP Global Centre for Public Service Excellence.

Retrieved July 19, 2019, from: https://www.localizingthesdgs.org/library/136/

Effective-public-service-for-SDG-implementation-SDG-Implementation-Framework-Note-1.

pdf.

Gibson, J. and Le, T. (2019). Using local expert knowledge to measure prices:

Evidence from a survey experiment in Vietnam. Munich Personal RePEc Archive

(MPRA) Paper No. 92533. Retrieved July 19, 2019, from: https://mpra.ub.

uni-muenchen.de/92533/1/MPRA paper 92533.pdf.
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Jiménez, A. and Pérez-Foguet, A. (2010). Challenges for water governance in rural

water supply: lessons learned from Tanzania. International Journal of Water

Resources Development, 26(2):235–248. doi: 10.1080/07900621003775763.

JMP (2014). Report of Task Force on Methods. WHO/UNICEF’s Joint Monitoring

Programme. Retrieved July 19, 2019, from: https://washdata.org/file/478.

JMP (2015). Progress on sanitation and drinking water: 2015 update and

MDG assessment. WHO/UNICEF’s Joint Monitoring Programme. Retrieved

July 19, 2019, from: https://data.unicef.org/wp-content/uploads/2015/12/

Progress-on-Sanitation-and-Drinking-Water 234.pdf.

JMP (2017a). JMP data on access to Water, Sanitation and Hygiene on Households.

Retrieved July 19, 2019, from: https://washdata.org/data/household.

JMP (2017b). Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and

SDG Baselines. WHO/UNICEF’s Joint Monitoring Programme. Retrieved July

19, 2019, from: https://www.unicef.org/publications/files/Progress on Drinking

Water Sanitation and Hygiene 2017.pdf.

JMP (2018). JMP Methodology: 2017 Update and SDG Baseline.

https://doi.org/10.1007/s11842-004-0007-0
https://doi.org/10.1371/journal.pone.0074804
https://doi.org/10.1371/journal.pone.0074804
https://doi.org/10.2166/washdev.2017.127
https://doi.org/10.1371/journal.pone.0158490
https://doi.org/10.1080/07900621003775763
https://washdata.org/file/478
https://data.unicef.org/wp-content/uploads/2015/12/Progress-on-Sanitation-and-Drinking-Water_234.pdf
https://data.unicef.org/wp-content/uploads/2015/12/Progress-on-Sanitation-and-Drinking-Water_234.pdf
https://washdata.org/data/household
https://www.unicef.org/publications/files/Progress_on_Drinking_Water_Sanitation_and_Hygiene_2017.pdf
https://www.unicef.org/publications/files/Progress_on_Drinking_Water_Sanitation_and_Hygiene_2017.pdf


135

WHO/UNICEF’s Joint Monitoring Programme. Retrieved July 19,

2019, from: https://washdata.org/sites/default/files/documents/reports/2018-04/

JMP-2017-update-methodology.pdf.

Jütting, J. and McDonnell, I. (2017). Overview: What will it take for data

to enable development? In Development Co-operation Report 2017. OECD.

Retrieved July 19, 2019, from: https://read.oecd-ilibrary.org/development/

development-co-operation-report-2017 dcr-2017-en.
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