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Hidden communication aspects 
in the exponent of Zipf’s law 

Ramon Ferrer i Cancho1 

Abstract. This article focuses on communication systems following Zipf’s law, in a study of the rel-
ationship between the properties of those communication systems and the exponent of the law. The 
properties of communication systems are described using quantitative measures of semantic vagueness 
and the cost of word use. The precision and the economy of a communication system is reduced to a 
function of the exponent of Zipf’s law and the size of the communication system. Taking the exponent 
of the frequency spectrum, it is demonstrated that semantic precision grows with the exponent, where-
as the cost of word use reaches a global minimum between 1.5 and 2, if the size of the communication 
system remains constant. The exponent of Zipf’s law is shown to be a key aspect for knowing about 
the number of stimuli handled by a communication system, and determining which of two systems is 
less vague or less expensive. The ideal exponent of Zipf’s law, it is therefore argued, should be very 
slightly above 2. 

Keywords: Zipf´s law, frequency spectrum, exponent, precision, economy 

INTRODUCTION 

Word frequencies in human language arrange themselves according to what is known as 
Zipf's law. If P(f) is the proportion of words whose frequency is f in a given sample (e.g. a 
text), we say that a sample follows Zipf's law (Zipf, 1932, 1935, 1949) if  

β−ffP ~)( , (1) 

where β is the exponent of the law. We assume that β > 1.  
The previous equation appears as a straight line when P(f) is plotted on a logarithmic 

scale. Although different functions have been proposed for modelling P(f) (Chitashvili & 
Baayen, 1993; Tuldava 1996; Naranan & Basubrahmanyan, 1998), the basic trend described 
in simplified form by Eq. 1 appears to hold without exceptions in word frequencies. This ar-
ticle uses the functional form in Eq. 1 because its simplicity is extremely helpful for the 
analytical calculations discussed here.  

Typically,  β ≈ 2 is found (Zipf, 1932, 1935, 1949) but significant deviations from that 
value have been reported in single author samples: 

• β > 2 in fragmented discourse schizophrenia. This type of speech is characterized by
multiple topics and the absence of a consistent subject. The lexicon of such a text may 
be varied and chaotic (Piotrowski et al. 1995, Piotrowska et al., to appear). 
β ∈ [2.11,2.42] is found. Schizophrenic patients of this kind tend to be in the acute 
phase of the disease. 
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• Values suspiciously above the ideal β = 2 have been found in nouns from single
author samples. More precisely, β ∈ [2.15,2,32] (Balasubrahmanyan & Naranan,
1996). 

• 1 < β < 2 in advanced forms of schizophrenia (Whitehorn & Zipf, 1943; Zipf, 1949;
Piotrowski et al., 1995; Piotrowska et al., to appear). Texts are filled mainly with
words and word combinations related to the patient’s obsessional topic. The variety of
lexical units employed here is restricted and repetitions are many. β = 1.66 is reported
in (Piotrowski et al. 1995; Piotrowska et al., to appear).

• β = 1.6 in very young children (Brillouin, 1960; Piotrowski et al., 1995). Older
children conform to the typical β ≈ 2 (Zipf, 1942).

• Exponents larger than β ≈ 2 can be obtained as a result of deficient sampling from a
text with the typical  β ≈ 2 (Piotrowski et al., 1995; Piotrowska et al., to appear).

Therefore, the exponents that are of interest here seem to be constrained to a very narrow 
domain, i.e. β ∈ [1.66,2.42] (Ferrer i Cancho, 2005b). Whether Zipf’s law can distinguish be-
tween acute and chronic schizophrenic patients is a matter of current research. The main 
message concerning schizophrenia here is that the disease shows exponents on both sides of 
the interval of variation in humans and that the value of the exponent may be related to the 
stage of the disease. Significant variations of β have also been found in multi-author samples 
(Piotrowski et al., 1994; Ferrer i Cancho, 2005d, Ferrer i Cancho & Solé, 2001; Montemurro, 
2001; Montemurro & Zanette, 2002), particular word classes (Balasubrahmanyan & Naranan, 
1996) and both  (Ferrer i Cancho, 2005a). 

The focus of the present paper is communicative aspects of single individuals. Sign-
ificant  deviations in multi-author texts will not be considered. The aim of the present paper is 
to show the connection between the exponents and various types of quantitative measures 
suggesting that the variation of the exponent may be due to tuning the vagueness and the cost 
of word use. Most of the measures of vagueness and the measure of cost of word use that are 
employed here are defined using Shannon’s information theory (Ash, 1990). Support for the 
hypothesis of the strong association between Zipf’s law and communication, comes from 
recent models where Zipf’s law and/or the value of the exponent can be explained as the 
outcome of minimizing or constraining various standard information theory measures (Ferrer 
i Cancho, 2005a, 2005d; Ferrer i Cancho & Solé, 2003). 

THE MODEL 

We assume a general communication system mapping words to stimuli. We have a set of n 
words S = {s1, ..., si, ..., sn} and a set of m stimuli R = {r1, ..., rj, ..., rm}. We assume that words 
connect to stimuli to build their meaning. Word-stimuli associations are defined by a binary 
matrix A = {aij} where aij = 1 if si and rj are linked and  aij = 0 otherwise. Let us consider in 
greater detail what is meant here by “stimuli”. Various experiments have shown that words 
are associated with the activation of different brain areas (Pulvermüller, 2003). Generally 
speaking, nouns tend to activate visual areas. Verbs tend to activate motor areas if the cor-
responding action can be performed by the individual and visual areas otherwise. The act-
ivated areas are associated to different types of stimuli experienced with the word. Let us take 
one of the definitions of the Webster's Revised Unabridged Dictionary (1913)2 for the word 
write: “to inscribe on any material by a suitable instrument”. In our view, the verb write is 
associated to the motor stimuli of the action of writing and the visual (tactile, olfactory,...) 
stimuli of the instruments used for writing. The construction of a complex meaning would 

2 www.dict.org. 
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involve a structure combining diverse stimuli. From that point of view, a word in S does not 
refer to stimuli in R, but it is merely associated to them. We do not claim that words in S refer 
to stimuli in R via A although they may. We do not use the term reference because it is 
stronger than association. In our example, write can only refer to the motor stimuli of the 
action of writing. write cannot refer to the instrument used for writing, although it is as-
sociated with it. The action and the instrument are both stimuli involved in the construction of 
the complex meaning of the verb write. Defining “word meaning” is an open problem in 
various fields ranging from cognitive science to philosophy. In our view, complex meaning 
would emerge from the interaction between different stimuli. Referential associations may be 
a subset or a higher order structure of the associations defined by A. It makes sense to assume 
that the more stimuli a word is associated with, the higher the probability of using that word. 

It is important to note that when we say that a word has no meaning we usually mean 
that it has no referential power. Nonetheless, if a word lacks referential power it does not im-
ply that it has no associations with stimuli. Our framework is not inconsistent with the exist-
ence of words with no apparent meaning, such as prepositions, conjunctions or articles. Real 
words with no apparent meaning are the words with the highest frequencies. The five most 
frequent word in the British National Corpus3, a large collection of text samples, are the, of, 
and, to and a. The framework here predicts that the most frequent words would have the 
largest number of connections with stimuli in R. Since those connections are merely associat-
ive (and not always referential) there is no inconsistency here. Furthermore, that high number 
of associations may underlie those words’ lack of referential power or “meaning”. The 
uncertainty associated with the interpretation of highly connected words is so large (Ferrer i 
Cancho, 2005c,e) that reference cannot be effectively attributed. Words with no meaning may 
have two different origins: words that have no links, and words having too many links. It 
makes sense to suppose that words with no meaning may have an excess of connections rather 
than a lack thereof, although those connections could be very weak given the high frequency 
of the words involved (Ferrer i Cancho & Reina, 2002).  

A first approach to the semantic vagueness of the set of words could be the average 
number of links per word, that is, <k>. The number of links of a vertex (e.g. a word) is called 
“degree” in standard graph theory (Bollobás, 1998), so <k> is the mean signal degree. The 
idea behind the relationship between <k> and vagueness is very simple: the more links a word 
has, the higher the number of possible interpretations in the context where it appears. The 
higher the value of <k>, the lower the precision of the communication system. Hereafter we 
assume that ‘precision’ and ‘vagueness’ have opposite meaning. H(R| S),  that is, the average 
uncertainty (or entropy) associated with the interpretation of every stimulus once the 
corresponding word is known, is a more precise measure, from the information theory point 
of view. That measure is defined as  

∑
=

=
n

i
ii sRHspSRH

1

)|()()|( ,
(2) 

where H(R|si) is the uncertainty (or entropy) associated with the interpretation of si , and p(si) 
is the probability of using si. H(R|S) is the average uncertainty associated with the inter-
pretation of the words in S. The higher the value of H(R|S), the lower the precision of the 
communication system. Since H(R|S) is mathematically a hard function to manipulate, a 
simpler version has been considered (Ferrer i Cancho, 2005a): 

3 www.natcorp.ox.ac.uk 
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G(R|S) is the amount of uncertainty per word associated with the interpretation of the words in 
S. G(R|S) and H(R|S) have similar properties. The upper and lower bounds are the same, i.e. 

.log)|(),|(0 mSRHSRG ≤≤  G(R|S) has the virtue of allowing Zipf’s law (Eq. 1) to be 
derived using the maximum entropy principle (Ferrer i Cancho, 2005a).  

A possible approach to the cost of word use is H(S), the entropy of the set of words 
(Ferrer i Cancho, 2005a,d; Ferrer i Cancho & Solé, 2003). This is defined as  

∑
=

−=
n

i
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1

)(log)()( .
(4) 

Support for H(S) as a measure of the cost of word use comes from two different sources. 
Firstly, it is known in psycholinguistics that the availability of a word in various linguistic 
tasks is correlated with the frequency of that word. The availability of a word obeys the so-
called word frequency effect, i.e. the more frequent the word, the higher its availability (Ak-
majian et al., 1995; Carroll, 1994). The best availability is achieved when a word has prob-
ability one, which means that the rest of the words have probability 0. In that case, H(S) = 0. 
The worst case is when all words are equally likely, that is when p(si) = 1/n for each word. In 
that case, H(S) = log n. That is, H(S) is a good measure of cost of word use. Second, the use of 
H(S) as a measure of cost is justified by models leading to Zipf’s law when the information 
transfer is maximized while H(S) is minimized (Ferrer i Cancho, 2005d; Ferrer i Cancho & 
Solé, 2003). Those models explain Zipf’s law as the outcome of maximizing the communi-
cative efficiency, but saving as much cost as possible. Interestingly, if those models replace 
H(S) with the effective vocabulary size (i.e. the proportion of words with at least one link) as 
a measure of cost of word use, Zipf’s law is not reproduced. Vocabulary size is an important 
ingredient for the cost of a communication system (Köhler, 1986, 1987) but it does not seem 
to be essential for Zipf’s law.  

We may assume that the p(si), the probability of occurrence of word si, is proportional to 
ki, the number of connections of si, that is 

M
ksp i

i =)( , 
(5) 

where 

∑
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and 

∑
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(7) 

(as in Ferrer i Cancho, 2005a,b,d). Eq. 5 contains the basic assumption that words are used 
according to the number of semantic associations they have. Eq. 5 states that a word is used 
with a probability proportional to the number of stimuli it is associated with. Eq. 5 is chosen 
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for simplicity and its predictive power: it can explain the interval of variation of β in human 
language (Ferrer i Cancho, 2005b). 

We may also assume that P(k), the proportion of words with k links obeys  

.~)( β−kkP  (8) 

Zipf’s law (Eq. 1) is recovered from Eqs. 5 and 8 (Ferrer i Cancho, 2005a,b). We 
assume a fixed P(k) or P(f), given the surprising tendency of human language to arrange 
according to Zipf’s law even in atypical cases. Although there is variation in β for (human) 
words, the basic trend described by Eq. 1 has essentially no exceptions, as far as we know. 
From Eq. 5 and  

∑
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=
m
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(9) 

it follows that the probability that si and rj are associated by the communication system is 

M
a

rsp ij
ji =),( .

 (10) 

We may write Eq. 5 as  

><
===

kn
k

M
kkksp ii )|( ,

 (11) 

where <...> is the expectation operator over P = {P(1),...,P(k),...P(m)} and P(k) is the 
proportion of words having k connections. 

Assuming Eq. 8, the uncertainty (or entropy) associated to the interpretation of si be-
comes H(R|si) = log k if ki = k (Ferrer i Cancho, 2005a). Thus, H(R|S) in Eq. 2 becomes (Ferrer 
i Cancho, 2005b) 

><
><

=
k

kkSRH log)|(
(12) 

and G(R|S) becomes (Ferrer i Cancho, 2005a) 

( | ) logG R S k= < > . (13) 

Figs. 1-3 show that <k>, G(R|S) and H(R|S) are decreasing functions of β for different values 
of m. The three functions grow with m for a given value of β. 
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Fig 1. <k>, the mean word degree, versus β, the exponent of the frequency spectrum of 
Zipf’s law. Series  from the bottom to the top are for m = 10, m = 102, m = 103, m = 104 and 
m = 105 (solid lines). The approximated expected curve for m → ∞ is also shown (dashed 
line).   

Fig 2. G(R|S), the uncertainty per word associated with the interpretation of every word, 
versus β, the exponent of the frequency spectrum of Zipf’s law. Series from the bottom to the 
top are for m = 10, m = 102, m = 103, m = 104 and m = 105 (solid lines). The approximated 
expected curve for m → ∞ is also shown (dashed line). Natural logarithms were used. 
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Fig 3. )|( SRH , the average uncertainty associated with the interpretation of every word, 
versus β, the exponent of the frequency spectrum of Zipf’s law. Series from the bottom to the 
top are for m = 10, m = 102, m = 103, m = 104 and m = 105 (solid lines). The approximated 
expected curve for m → ∞ is also shown (dashed line). Natural logarithms were used. 

Here we will define vagueness as the opposite of precision. <k>, G(R|S) and H(R|S) are in-
verse measures of precision and direct measures of vagueness.  

As for cost of word use, substituting Eq. 11 into Eq. 4 we get, 

><
><

−><=
k

kkknSH log)log()( ,
(14) 

where M = n<k> is the total amount of links. Knowing Eq. 12, Eq. 14 can be written as  

)|()log()( SRHknSH −><= . (15) 

Fig. 4 shows H(S) for n = 103 and different values of m. H(S) decreases as m grows for a fixed 
value of β whereas the vagueness measures behave inversely. H(S) has a minimum at β = β*, 
a critical value of β, such that 1 < β* < 2 for the values of m that we used here. Notice that 
although the exact value of H(S) depends on n, β* depends only on m (recall Eq. 15). Fig. 5 
shows β* versus m.  
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Fig. 4. H(S) versus β where H(S) is the entropy of the set of words S and β is the exponent of 
the frequency spectrum of Zipf’s law. Series from top to the bottom are for m = 10, m = 102, 
m = 103, m = 104 and m = 105 (solid lines). n = 103 is used in all cases, although the point 
where the minimum H(S) is reached is independent of n. The approximated expected curve 
for m → ∞ is also shown (dashed line). Natural logarithms were used. 

Fig. 5. β*, the value of β minimizing H(S), versus m. β is the exponent of the frequency spec-
trum representation of Zipf’s law, H(S) is the entropy of the set of words S and m is the num-
ber of stimuli. A. β* versus m calculated without integrals using Eq. 15 (solid line) and with 
integrals using Table 1 (dashed line) B. β* versus m calculated with integrals till very large 
values of m.  
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RESULTS 

We can obtain formulae for the measures of vagueness and cost using approximation with 
integrals (see Appendix A). Results are summarized in Table 1. The measures of vagueness 
are functions of β and m whereas H(S) is a function of β, m and n. When m → ∞, we can 
obtain simple mathematical expressions in particular domains of β (Table 2).  

Table 1 
Summary of the relationship between Zipf’s law and communication measures 

Function Information  
theory  

Approximation 

β ≠ 1 
and  
β ≠ 2 
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<k> is the mean word degree, G(R|S) is the uncertainty per word associated with the interpretation of 
every word and H(R|S) is the average uncertainty associated with the interpretation of every word. 
<…> is the expectation operator over k. m is the number of stimuli. β is the exponent of the power 
spectrum of Zipf’s law.  

<k> when β > 2 and m → ∞ is shown as dashed line in Fig. 1. G(R|S) when β > 1 and m → ∞ 
is shown as dashed line in Fig. 2. H(R|S) when β > 2 and m → ∞  is shown as a dashed line in 
Fig. 3. H(S) when β > 2 and m → ∞ is shown as a dashed line in Fig. 4. 

When β > 1 and m → ∞, we have G(R|S) = 1/(β - 1). Zipf’s law can be alternatively 
defined as P(i) ~ i-α, where P(i) is the frequency of the i-th most frequent word in a piece of 
text and α = 1/(β - 1) (Chitashvili & Baayen, 1993). Notice that G(R|S) = 1/(β - 1) tells us that 
α = G(R|S). The value of β where β = α (and thus β = G(R|S)) can be calculated solving β = 
1/(β - 1), which has two solutions  
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≈
+

=
2
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1β 1.61. 

(16) 
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2 −≈

−
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(17) 

The first solution (Eq. 16) is the only valid one here since β > 1 is assumed in α = 1/(β - 1) 
(see also Ferrer i Cancho & Solé, 2001). There are two points of interest with regard to 
β = α ≈ 1.61. Firstly, ≈ 1.61 is close to the exponent found in certain children and schizo-
phrenics. Only in those cases, β is also a direct measure for G(R|S). Secondly, T. Hernández 
noticed that 2/)51( + (Eq. 16) is the golden ratio, the value to which the fraction of two 
consecutive numbers of the Fibonacci series converges (Dunlap, 1997). The golden ratio has 
been the topic of many speculations about its role in nature and our sense of aesthetics 
(Ghyka, 1927). Future work should be devoted to investigating the origins of the appearance 
that striking coincidence. 

Table 2 
Summary of the relationship between the exponents of Zipf’s law and various  

communication measures when m → ∞. 

m → ∞ 
β α 

Communication  
measures 

Approximation Condition Approximation Condition 
<k> 

2
1

−
−

β
β β > 2 

α−1
1 α < 1 

G(R|S) 
1

1
−β

β > 1 α  α > 0 

H(R|S) 
2

1
−β

β > 2 
α

α
−1

α < 1 

H(S) 
2

1
2

)1(log
−

−
−
−

ββ
βn β > 2 

α
α

α −
−

− 11
log n α < 1 

<k> is the mean word degree, G(R|S) is the uncertainty per word associated with the interpretation of 
every word and H(R|S) is the average uncertainty associated with the interpretation of every word. β 
and α are, respectively, the exponents of the power spectrum and the frequency versus rank represent-
ation of Zipf’s law. Recall α = 1/(β - 1) (Chitashvili & Baayen, 1993). 

We can combine Zipf’s law (Eq. 1) and the results in Table 2 in order to emphasize the 
relationship between communication and Zipf’s law. When β > 2,  

1 2
1( ) ~

k
kP f f

− < >
−

−< >
(18) 

and  
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( | )( ) ~ H R SP f f
− − (19) 

When β > 1,  

1 1
( | )( ) ~ G R SP f f

− − (20) 

A rewritten version of Zipf’s law in terms of quantitative communication measures is sum-
marized in Table 3 for both the frequency spectrum and the frequency versus rank represent-
ation. We have seen that G(R|S) is the exponent of Zipf’s law in the frequency versus rank 
representation. β also tells us about G(R|S) but β = G(R|S) holds only when β ≈ 1.61 (recall 
Eq. 16). 

Table 3 
Explicit relationship between Zipf’s law and various communication aspects 

Variable Representation 
<k> G(R|S) H(R|S) 

P(f) 
><−
><−

−
k
k

f 1
21

~
1 1

( | )~ G R Sf
− −

1 2
( | )~ H R Sf

− −

P(i) 11
k~i

− +
< >

G(R|S)~i −  H(R|S)
1 ( | )~ H R Si

−
+

P(i) is the frequency of the i-th most frequent word in a sample (e.g. a text). P(f) is the proportion of 
words in a sample with frequency f. <k> is the mean word degree, G(R|S) is the uncertainty per word 
associated to the interpretation of every word and H(R|S) is the average uncertainty associated to the 
interpretation of every word. β and α are, respectively, the exponents of the power spectrum and the 
frequency versus rank representation of Zipf’s law. 

DISCUSSION 

We have seen that β is an indicator of the degree of semantic precision of a communication 
system. Given the same values of m, the higher the value of β, the higher the precision. <k>, 
G(R|S) and H(R|S) are decreasing functions of β  (Figs. 1-3). In contrast, H(S) has a global 
minimum between 1.5 and 2 for sufficiently large m (Fig. 4). G(R|S) is a measure of vague-
ness that does not diverge for 1<β < 2. That is not surprising since G(R|S) does not weight 
H(R|si) by the probability of si. From the information theory point of view, H(R|S) is the 
reference measure of semantic vagueness. We will leave <k> and G(R|S) as alternative sim-
pler measures which correlate with H(R|S) for certain values of β and m. For instance, notice 
that G(R|S) has no counterpart when 1 < β < 2 and m → ∞ (since <k> and H(R|S) are not 
defined in that case).  

Both G(R|S) and H(R|S) measure the semantic precision from an information theory 
approach. G(R|S) and H(R|S) can be defined as functions of a single parameter, β, for m large 
(recall Table 2). β > 2 is required for H(R|S) while only β > 1 is required for H(R|S). Thus, 
H(R|S) cannot deal with the exponent of some children and schizophrenics having β < 2 if m 
is actually large. Briefly, G(R|S) covers all the range of variations of β found in human 
language while H(R|S) does not (provided m is large, of course).  
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There are strong constraints on the communication systems following Zipf’s law (with 
our assumptions) that may exist when m → ∞. First, P(k) is a probability function only when 
β > 1, so systems with β ≤ 1 are impossible at the thermodynamic limit. Second, it is easy to 
show that H(R|S) and <k> diverge when m → ∞ and 1 < β < 2. In other words, systems with 
finite vagueness are impossible if 1 < β < 2. From the information theory point of view, if 
H(R|S) is infinite, then communication is not possible due the infinite uncertainty associated 
with decoding a single word on average. Besides, we have seen that H(R|S) takes finite 
values, regardless of how large m is, when β > 2. In a communication system with β < 2, m 
must be finite and not too large, otherwise vagueness is infinite, which contradicts the notion 
that our system is communicating. We can apply this to real problems. There are many cases 
where speakers are clearly communicating with β < 2: military combat texts with β = 1.7 and 
children with β = 1.6 (Piotrowski et al., 1995). Some caution must be taken with schizophren-
ics with β < 2, where the assumption of communication may fail. There are reasons for think-
ing that the assumption is actually satisfied. If we assume that schizophrenics with β < 2 are 
communicating, then it follows that m should be small (it should be actually the smallest, 
since those schizophrenics take the smallest β among real speakers and the vagueness meas-
ures grow fast as β decreases). A dramatically reduced set of stimuli that can be perceived and 
thus can be conveyed using words (i.e. a dramatically low value of m) might explain the 
obsessive pattern found in that kind of schizophrenics. The same could be happening to 
children, whose perception of the world is under construction. We may synthesize the essence 
of the previous argument in a rule.  

RULE 1. Suppose a communication system with exponent β < 2. Then m must be finite 
and not too large (otherwise the ambiguity would be too large). The chance of a large 
value of m decreases with β. 

The predicted decrease in m in schizophrenics with β < 2 suggest that the apparent normality 
of category content and structure (Elvevåg et al., 2005; Elvevåg et al., 2002) may need to be 
revised. 

The various results presented in this article allow us to face the following problem. 
What can be said about the communicative accuracy or the cost of a communication system 
when only the signal (e.g. word) frequency distribution is known? Candidates for this kind of 
analysis are atypical human speakers and the utterances of non-human species (McCowan et 
al., 1999; McCowan et al., 2002). If Zipf’s law is found, the slope in log-log scale of the fre-
quency spectrum is key to finding the answer. We will propose a series of lemmata that are 
helpful in determining which of two systems is more precise or economical (see Appendix B 
for outlines of proofs): 

LEMMA 1. Suppose we have two communication systems A and B, with exponents βA (or 
αA) and βB (or αB) with βA,βB > 1, and the number of stimuli is mA and mB, respectively. If 
βA < βB (or αA > αB) and mA ≥ mB then B is a strictly more precise communication system 
than A. 

LEMMA 2. If we have two communication systems A and B, with exponents βA (or αA) 
and βB (or αB) with βA,βB > 1, their number of stimuli is mA and mB, and their lexicon size 
is nA and nB, respectively. We assume mA, mB, nA and nB are finite. If β* ≤ βA <βB (or α* > 
αA > αB with α* = 1/(β*-1)) and mB ≥ mA and nA ≥ nB then it follows that A is a more 
economical communication system than B.  
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An apparently serious drawback to applying Lemma 2 is that we do not know, in general, if β*

≤ βA. Interestingly, there are reasons for thinking that communication systems with β* ≤ βA are 
unlikely. The cost of word use and the vagueness increase at the same time as β decreases 
when β < β*. It is hard to imagine how a communication system would tolerate decreasing the 
quality of communication and simultaneously expending more energy to communicate. 
Vagueness and cost of word use are in conflict for β above β* (the former decreases with β 
and the latter grows with β), so it is reasonable to suppose that particular communication 
systems choose to favour one over the other. But it seems unlikely that a communication 
system would evolve against both factors below β*. Since β* ≤ βA is apparently unlikely, we 
may propose a modified version of Lemma 2 that is likely to be true in natural communication 
systems:  

LEMMA 3. If we have two communication systems A and B, with exponents βA (or αA) 
and βB (or αB) with βA,βB > 1, their number of stimuli is mA and mB, and their lexicon size 
is nA and nB, respectively. We assume mA, mB, nA and nB are finite. If βA < βB (or αA > αB) 
and mB ≥ mA and nA ≥ nB  then it is likely that A is a more economical communication 
system than B. 

We have seen in Eq. 15 that the cost of word use is a function of vagueness when the latter is 
measured using H(R|S). When β < β*, cost (of signal use) and vagueness decrease with β. In 
contrast, cost grows with β while vagueness decreases with β when β > β*. Vagueness and 
cost are in conflict when β > β*, which, as argued above, is likely to hold in natural 
communication systems. 

Lemma 3 can be safely used if βA is sufficiently large. Fig. 5 suggests that it is rather 
unlikely that a value of β very near to 2 minimizes the cost of word use. When m is about 
1080, a rough estimate of the number of atoms in the universe (Gribbin, 1986), we obtain β* ≈ 
1.923 (recall here and later that our calculations are based on approximations using integrals). 
When m is about the number of neurons in the brain, about 1011 (Damasio, 1999),  we get β* ≈ 
1.789. If the number of neurons in the brain is taken, then β cannot minimize H(S) if β > 
1.789. In practice, if β > 1.923, that means that β > β*. In a less compelling fashion, if β > 
1.789, that means that β > β* is likely to be true. So, we do not need to worry about β* if β is 
sufficiently large. In sum, imagine a communication system with exponent β. If  β > 1.923 
then β > β* is very likely and if β > 1.789 then β > β* is likely. 

Now, let us try to apply the lemmata above to real problems. First, we may ask whether 
the correlation between β and semantic precision is consistent with the variation of β found in 
the real cases summarized in the introduction section, with regard to an ideal normal language 
with βA = 2. Maybe nouns are the only unquestionable case of communication that is a priori 
more precise than normal language. There seems to be a certain consensus in philosophy and 
linguistics about the semantic rigidity of many nouns (Kripke, 1980; Mcbeth, 1995; Devitt & 
Sterelny, 1999). Let us define A as ideal normal language, and B as nouns. We have βA = 2 
and βB ∈ [2.15,2,32] (Balasubrahmanyan & Naranan, 1996). Thus, βA < βB for the largest 
values of βB. We will focus on that case. Since nouns are associated with a (probably strict) 
subset of all possible stimuli, that is, mA ≥ mB, it follows from Lemma 1 that nouns are more 
precise that the entire set of words on average.  

With the theory presented here and the support of the previous test, we can move to 
increasingly complicated cases. Imagine we take schizophrenics with β < 2 as A and ideal 
normal language as B. Lemma 1 can not be applied because we may have mA < mB as dis-
cussed above. A similar problem is poised by children. Imagine we take ideal normal lan-
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guage as A and schizophrenics with β < 2 as B. We do not know if mA ≥ mB holds so we 
cannot safely use Lemma 1. We must be conservative because the decrease in m that is 
predicted for schizophrenics with β < 2 could also happen in schizophrenics with β > 2. 

Second, we may try to shed light on the cost of word use in real cases against ideal 
normal speakers. Let us define A as an ideal normal language and B as nouns. Since nouns are 
a strict subset of all words, we have nA > nB. We have seen above that βA < βB and mA ≥ mB. 
The latter means we cannot use Lemma 2. As for schizophrenic patients, we assume that 
lexicon size, n, is the same as in normal speakers, as it may be inferred that the lexicon is 
intact in schizophrenia (Goldberg et al., 2000; Elvevåg et al.; 2001; Allen et al. 1993). Let us 
take A as schizophrenics with β < 2 and B as ideal normal language. We have βA < βB and mB 
≥ mA , as we have deduced above. From Lemma 3, we discover that schizophrenics with β < 2 
are more economical speakers. Let us take A as ideal normal language and B as schizo-
phrenics with β > 2. We do not know if mB ≥ mA. Again, recall that schizophrenics with β > 2 
may have an anomalously low mB, as schizophrenics with β < 2. If we take A as children with 
β = 1.6 and B as ideal normal speech, Lemma 3 cannot be applied because nA ≥ nB is not 
warranted. nA, vocabulary size, could be one or more orders of magnitude smaller than that of 
normal adults (Johnson et al., 1999). Since we know that older children eventually converge 
to β = 2 (Zipf, 1942), children with β = 1.6 must be sufficiently young. Knowing that voc-
abulary grows with age (Johnson et al., 1999), children with β = 1.6 should have a sign-
ificantly smaller vocabulary than adults. Although we do not know the exact value of their set 
of stimuli, and the size of that set depends on the level of their brain development, Lemma 3 
cannot be safely used. Nonetheless, the expected significantly small vocabularies may reduce 
the value of H(S) below that of normal adults. 

Let us summarize all the inferences we have made till now: 
• Nouns are more precise than mean words in ideal normal adults.
• Schizophrenics with β < 2 are likely to have a reduced value of m and a more

economical communication system with regard to normal adult speakers.
We have assumed that β = 2 is the ideal exponent of normal adults. Are there reasons for 

thinking that ideal exponent should be very near 2? Imagine a communication system trying 
to transmit information about the largest set of stimuli possible. The latter would mean m → 
∞. In that case, what is the most economical communication system following Zipf’s law? m 
→ ∞ imposes that β > 2 so that communication has finite vagueness. Since we have seen that 
the cost of communication grows with β when β > 2, communication should not go far above 
β = 2. Therefore, the ideal communication system minimizing the cost but avoiding infinite 
vagueness should have β = 2+ε, where ε is a small positive quantity (e.g. ε = 0.01 so β = 
2.01).  The effect of minimizing β when β > 2 admits a complementary view. We have 
considered the negative dimension of H(R|S): the higher the value of H(R|S), the higher the 
vagueness of words. We could make a positive complementary argument from the point of 
view of semantic versatility: the higher the value of H(R|S), the higher the semantic versatility 
of words. It is important to avoid β ≤ 2 to elude infinite vagueness, but it is important to 
remain near β = 2, since H(R|S) decreases with β. The arguments above may shed light on the 
expected exponent of Zipf’s law in ideal conditions. 

In summary, this article has approached the relationship between the exponent of Zipf’s 
law and various properties of communication systems. Given two communication systems, it 
is possible to infer which of them is the more economical or vague. It is clear that we need 
additional information, such as m or n, as well the exponent of Zipf’s law, in order to know 
more about the features of a communication system. Interestingly, we have seen that the 
amount of extra information that is needed is reduced, and available in some cases. These 



Ramon Ferrer i Cancho 112 

findings indicates that the little information provided by real communication systems can be 
squeezed to increase our knowledge about them. 
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APPENDIX A 

Here, we shall obtain analytical approximations for <k>, G(R|S) (Eq. 13), H(R|S) (Eq. 12) and 
H(S) (Eq. 15), assuming Eq. 5. We will approximate summations using integrals (Cormen et 
al., 1990). When a summation can be expressed as 

∑
=

max

min

)(
k

kk
kf , 

(21) 

where f(k) is a monotonically increasing function, we can approximate it by integrals 
(Cormen, 1990) holding  
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When f(k) is a monotonically decreasing function, then 
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Here, we will use the approximation  
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=
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min

max

min

)()(
k

k

k

kk
dkkfkf , 
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which is used often in physics (e.g. Cohen & Havlin, 2002; Newman, 2005). 
Before providing approximations for <k>, G(R|S), H(R|S) and H(S), we need to 

introduce a function  

dkkkkkmF
m

x
m
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x
x ∫∑ −
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− ≈=
11

loglog),( γγγ , 
(25) 

which will be used recurrently later on. Interestingly, F0(γ,m) = Hm
γ, where Hm

γ is the 
harmonic number of order γ. 
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When γ ≠ 1, we have  
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When γ = 1, we have 

mmF log),(0 ≈γ (28) 

and  

2
log),(

2

1
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(29) 

Table 4 
Summary of definitions of different functions and their relationships 

Function Information theory Definition 
),( mFx γ  - 

∑
=

−
m

k

x kk
1

logγ

c - 1/F0(β,m) 
>< k  - F0(β-1,m)/F0(β,m) 

>< klog  G(R|S) F1(β,m)/F0(β,m) 

><
><

k
kk log H(R|S) F1(β-1,m)/F0(β-1,m) 

Table 4 summarizes the relationship between the auxiliary function Fx(γ,m) and the functions 
of vagueness.  

Thus, we may write,  

1
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where c is the normalization constant of Eq. 8, defined as 
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Eqs. 30 and 31 together give   
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0
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If β  ≠ 1, substituting Eq. 26 on Eq. 31 gives (Cohen & Havlin, 2002) 

1
1
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β
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If β = 1, substituting Eq. 28 on Eq. 31 gives  

m
c

log
1

≈ .
(34) 

When β ≠ 1 and β ≠ 2, substituting F0(β - 1,m) with Eq. 26 with γ = β - 1 and F0(β,m) by 
Eq. 26 with γ = β into Eq. 32 we obtain 
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When β = 1, substituting F0(β - 1,m) with Eq. 26 (with γ = β - 1 = 0) and F0(β,m) by Eq. 
28 (since γ = β = 1) into Eq. 32 we obtain 

1
log
mk

m
−

< > ≈ . 
(36) 

When β = 2, substituting F0(β - 1,m) with Eq. 28 (since γ = β - 1 = 1) and F0(β,m) by 
Eq. 26 (with γ = β = 2) into Eq. 32 we obtain 
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When β > 2 and m → ∞ , Eq. 35 becomes 

2
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The previous equation is shown as a dashed line in Fig. 1.  
G(R|S) can be written as 
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When β ≠ 1, substituting F1(β,m) by Eq. 27 and F0(β,m) by Eq. 26 (both with γ = β) into 
Eq. 39 we get  
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When β = 1, substituting F1(β,m) by Eq. 29 and F0(β,m) by Eq. 28 (since γ = β = 1 in both 
cases) into Eq. 39 we get  

2
log)|( mSRG ≈ .

(41) 

When β > 1 and m → ∞ , Eq. 40 becomes 

1
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−

≈
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(as in Ferrer i Cancho, 2005a). The previous equation is shown as a dashed line in Fig. 2.  
As for H(R|S), the numerator in Eq. 12 can be expressed as 
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Substituting Eqs. 30 and 43 into Eq. 12 we obtain 
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If β ≠ 1 and β ≠ 2, substituting F1(β - 1,m) with Eq. 27 and F0(β - 1,m) with Eq. 26 (with 
γ = β - 1 in both cases) into Eq. 44 we get 
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If β = 1, substituting F1(β-1,m) with Eq. 27 and F0(β-1,m) with Eq. 26 (both with γ = β-
1 = 0) into Eq. 44 we get 

1
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−
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m
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(46) 

If β = 2, substituting F1(β - 1,m) with Eq. 29 and F0(β - 1,m) with Eq. 28 (since γ = β - 1 
= 1 in both cases) into Eq. 44 we get 

2
log)|( mSRH ≈ .

(47) 
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Eq. 45 with β > 2 and m → ∞ becomes 

2
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The previous equation is shown as a dashed line in Fig. 3. 
When β > 2 and m → ∞, substituting Eqs. 38 and 48 into Eq. 15 we obtain 
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The previous equation is shown as a dashed line in Fig. 4. Since Eq. 49 is an approximation, 
and <k> and H(R|S) diverge for β = 2, it is convenient to keep β >> 2.  

APPENDIX B 

Here we give an outline of proof for Lemma 1 and 2.  

LEMMA 1. Suppose we have two communication systems A and B, with exponents βA (or 
αA) and βB (or αB) with βA,βB > 1, and the number of stimuli is mA and mB, respectively. If 
βA < βB (or αA > αB) and mA ≥ mB then B is a strictly more precise communication system 
than A. 

Proof: The proof is based on H(R|S), the reference measure for word vagueness. Assuming 
βA,βB > 1 we warrant that P(k) is a probability distribution even when m → ∞. In general, 
there are only four situations: 

1) mA and mB are finite. It is easy to see from the approximate equations in Table 1
Appendix A (recall also Fig. 3) that H(R|S) is a monotonically decreasing function of 
β (when β > 0) when mA and mB are finite. Given a particular β, the larger the value of 
m, the larger the value of the measure.  

2) mA is finite and mB is not. That contradicts mA ≥ mB.
3) mA is infinite and mB is not. That contradicts the notion that A is a communication

system if βA ≤ 2. βA  > 2 must be satisfied and thus we can proceed as in 1).
4) mA and mB are infinite. That contradicts the notion that A and B are communication

systems if βA ≤ 2 and/or βB ≤ 2. βA,βB > 2 must be satisfied and thus we can proceed as
in 1).

LEMMA 2. If we have two communication systems A and B, with exponents βA (or αA) 
and βB (or αB) with βA,βB > 0, their number of stimuli is mA and mB, and their lexicon size 
is nA and nB, respectively. We assume mA, mB, nA and nB are finite. If β*  ≤ βA < βB (or α* > 
αA > αB with α* = 1/(β* - 1)) and mB ≥ mA and nA ≥ nB then it follows that A is a more 
economical communication system than B.  

Proof: α* = 1/(β* - 1) comes from the equivalence between, α, the exponent of the frequency 
versus rank representation and β, the exponent of the frequency spectrum (Chitashvili & 
Baayen, 1993). It is easy to show from the approximate equations in Table 1 (recall Figs. 4-5) 
that H(S), the measure of cost, is a monotonically increasing function of β when β > β* and 
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that given a particular β, the larger the value of m, the lower the cost, and that, the larger the 
value of n, the larger the cost. 
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