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Abstract. Recently, it has been claimed that a linear relationship between a measure
of information content and word length is expected from word length optimization
and it has been shown that this linearity is supported by a strong correlation between
information content and word length in many languages (Piantadosi et al. 2011, PNAS
108, 3825-3826). Here, we study in detail some connections between this measure and
standard information theory. The relationship between the measure and word length is
studied for the popular random typing process where a text is constructed by pressing
keys at random from a keyboard containing letters and a space behaving as a word
delimiter. Although this random process does not optimize word lengths according to
information content, it exhibits a linear relationship between information content and
word length. The exact slope and intercept are presented for three major variants of
the random typing process. A strong correlation between information content and word
length can simply arise from the units making a word (e.g., letters) and not necessarily
from the interplay between a word and its context as proposed by Piantadosi et al. In
itself, the linear relation does not entail the results of any optimization process.
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1. Introduction

In his pioneering research, G. K. Zipf showed that more frequent words tend to be
shorter [I], and parallels of this brevity law have been reported for the behavior of
other species [2, [3]. Recently, it has been argued that ”average information content
is a much better predictor of word length than frequency” and that this ”indicates
that human lexicons are efficiently structured for communication by taking into account
interword statistical dependencies.” [4, p. 1]. According to the uniform information
density hypothesis (e.g., [3]), "language users make choices that keep the number of bits
of information communicated per unit of time approximately constant” and thus ”the
amount of information conveyed by a word should be linearly related to the amount
of time it takes to produce —approximately, its length— to convey the same amount of
information in each unit of time” [4, p. 1]. Here it will be shown that hitting keys from a
keyboard at random (e.g., [0l [7]) generates words that reproduce this linear relationship.
Therefore, the observation of such a linear relationship does not constitute unequivocal
evidence for any kind of optimal choices made by speakers.

Throughout this paper, C' denotes contexts and W denotes words. As in Ref. [4],
the context of a word consists of a fixed number of preceding words, and the information
content of a word w is given by

I(w) ==> p(C =W =w)Inp(W =w|C = c).

The expected information content of words of length ¢ is defined as [4]

1(€) = ”%: p(W = wljw|| = O)I(w), (1)

wl|=¢

where ||w|| is the length (in letters) of a word w and ¢ is a fixed parameter value. In
this study, we detail some connections between I(w) and standard information theory
measures. The definition of /(w) that we borrow from Ref. [4] is somewhat idiosyncratic
in relation to standard information-theory. We found that, Ref. [§], the reference
supplied in Ref. [4] as a justification for Eq. [0 does not in fact justify the equation
in any evident way. In this study we demonstrate that 7(¢) is a linear function of ¢ for
a general class of random typing processes. The only requirement is that the context
is defined by means of neighbouring words (as in [4]) or that empty words (words of
length zero) are allowed as in many variants of the random typing process [6] 9, [10].

2. Connections with standard information theory

We now introduce our basic notation and conventions. The self-information of an
event that has probability p is —Inp. We consider C' and W independent if and
only if p(C = ¢,W = w) = p(C = c)p(W = w). As usual, by the definition of
conditional probability, independence implies both p(C' = ¢|[W = w) = p(C = ¢)
and p(W = w|C = ¢) = p(W = w), for any individual ¢ and w. Therefore, under
independence between C' and W, it holds that I(w) = Io(w) = —Ilnp(W = w), that is
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to say, I(w) is just the self-information of w. The expected self-information content of
a word of length ¢ is

L()= = > p(W =wl|lw]| =) lnp(W = w)
Juwll =
= —”%:_ p(W =wlllwl| = ) Inp(W = w, lw]| = ). (2)

In sum, under independence between C' and W, I(¢) and Iy(¢) coincide.
The conditional entropy is defined as,

H(W|C) = Zp H(W|C = ¢)
:—Zp =¢)Y p(W =w|C=c)lnp(W =w|C =c). (3)

Given only the joint probability, i.e. p(W = w,C = ¢), one can use Bayes’” Theorem
for calculating the conditional and marginal probabilities, as it was done in previous
work [4] and is assumed by various information theoretic models of Zipf’s law for word
frequencies 11, [12]. Simple application of Bayes’ Theorem to the definition of H(W|C')
in (@) shows that the conditional entropy is the expectation of I(w):

HWIC)= => Y p(W =w,C =c)Inp(W = w|C = ¢)
p(W =w,C =c)

— _ZpW w)z oV = ) Inp(W = w|C = ¢)
— _Zp Zp =c|W =w)lnp(W =w|C = ¢)
= 3" p(W = w)I(w) = E[I(w)). (4)

It is not difficult to see that [y(w) is the upper bound of I(w) and H(Clw) is its
lower bound; formally,
H(Clw) < I(w) < Io(w). (5)
As for a lower bound of I(w), the relative entropy (or Kullback-Leibler divergence)
between the context conditional probability and the word conditional probability is [13]
L plC = W = w)
p(W =w|C = ¢)
= p(C=c|W =w)lnp(C = c|W = w)

=Y p(C=c|W =w)np(W =w|C =¢)

= I(w; — H(C|w).

Therefore I(w) > H(C|w) by the non-negativity of the relative entropy [13]. As for
the upper bound of I(w), the non-negativity of mutual information, i.e. I(W;C) =
H(W)—HWI|C) >0 [13] and (), yields

H(WI|C) < H(W)

D(p(C = c|W = w)|lp(W = w|C =c)) = 3 p(C = c|[W = w)



Information content versus word length in random typing 4
SV = w)i(w) £ = X p = w)lup(¥ =)
= Zw:p(W = w)lo(w)
if and only if I(w) < Iy(w), as we wanted to prove. Combining (Il) and (Bl results in
Io(l) < I(€) < Io(0), (6)
where () is defined as

Io(t) = > p(W =wl|w|]| = OH(Clw).
Juli=¢

3. Information content versus length in random typing

Random typing [6, [10] is a process in which a sequence of characters is produced by
sampling randomly from a set of possible characters. Here we consider a generalized
random typing model based upon variants allowing for unequal letter probabilities as in
[7, 10] and allowing one to specify a minimum word length [14].

Assume that characters are produced from an alphabet ¥ = {0y, ..., 04, ...,07_1},
where A is the alphabet size, o represents the word delimiter (i.e., the space character)
and the remaining characters of ¥ are letters. We assume that all the characters in X
are produced at random and independently, with the only exception that two instances
of the space character must be separated by at least {; intervening characters other
than the space. In such model, the production of a word is separated into two phases:
generation of the space-free prefix of length ¢y, and generation of the remainder. S is
a random variable taking values from > as generated by the random typing process.
ps(S = s) is defined as the probability of producing character s as the k-th character
after the last space produced (or after the beginning of the sequence if no space has been
produced yet), for any value k > fy. ps (o0} (S = ) is the same probability as ps(S = s)
for values of k < {y. The abbreviation py = px(S = 0¢) will be used hereafter. We
assume that ps(S = s) > 0 for all characters in ¥ with the additional constraint that
Po < 1. Px\(00} (S = s) is defined in terms of ps(S = s),

p=(5=s) if s+ 0,
oot (S=35) = 1=po 0
Po\(on ) { 0 if s = 0.

The generalized random typing process with unequal letter probabilities is defined by A
parameters: ¢y and the A — 1 probabilities ps(S = o;) for 0 < i < A — 2 with
A—2

pe(S=o0r1)=1-> ps(S =0).

i=0
Notice the additional parameter ¢y that is not considered in other versions of the random
typing model and allows for unequal character probabilities [7], [10].

In the remainder of this section we start by proving that [y(¢) is a linear function
of ¢, providing exact analytical expressions for its slope and intercept. We continue by
showing that I(¢) can be inferred from Iy(¢). If the context is defined by words, as in
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Ref. [], then I(¢) = I,(¢) because our generalized random typing process produces words
independently from the previous ones. If the context are characters, then I(¢) = Io(¢)
is also warranted when £y = 0 because this is the case where self-repulsion of the space
is suppressed. When ¢, > 0, (@) indicates that I(¢) cannot exceed Iy(¢).

In order to calculate the probability of producing a concrete word w =
S1y .00y Siy ..., Sg, Where s; is the i-th character from Y of w, we use the shorthand

sz —Sh

By the independence between characters (except for space self-repulsion at distances
smaller than ¢y), the probability that a random word W that has length ¢ coincides
with w = s1,..., 84, ..., 8¢ 1S

p(W =w, [lw]| =) = (Hpm@@ )(IIZE )m

i=1 i=lo+1
¢
Po
= e (Tt =)
_ Po

the probability that a word has length ¢ is

p(|lwll =€) = po(1 = po) ="
and the probability of a word w given its length is therefore
p(W = w, |Jw|| =)

p(W = wljw| = £) =

pllwl = £)
1
RO )
Applying (@), the self-information of a word w of length ¢ is
‘
—Inp(W =w, |w|| =€) =b-> Inps(S = s;), 9)
i=1

where b is defined as

— Lo
p—in LZP)” (10)
Do
Combining (8) and (@) with the definition of I(¢) in (), gives
1 l
Io(f) = 1= o)t 51;&3 Pie <b - ;111}92(5 = Sz)) -

Y Pu= Y LY LY Py

S15-+y5¢ s1€X\{o0} sieX\{oo} seeX\{o0}

- ) RN ﬁpz(szsh)

s1€X\{o0} sieX\{oo} seeX\{oo} h=1
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= Yoo Y P Y, pe(S=s0)

s1€8\{o0}  si€3\{o0} s\ {00}

= (1 —po) Z Z Z 7)175_1

8162\{0'0} SiEE\{O'o} 557162\{00}

= (1-po)* Y. o D> > P

s1€X\{o0} si€X\{oo} s¢e—2€X\{oo}

= (1—p),

one can write

WO =bt ¥ P, (—ilnpzw: >) ()

Notice that

Pij-1Pitie >, —ps(S=s;)Inps(S= Sj)] =
sj€X\{00}

(Hx(S) + polnpo) > Pij-1Pjt1 =

81000385 —19Sj415040y Sy
(Hx(S) + polnpo)(1 — po) ", (12)

where

= — Z ps(S =s)Inps(S =35)— polnpg (13)
ses\{o0}

is the character entropy after the space-free prefix of length ¢y. Therefore, applying (12)
to (1) one finally obtains Iy(¢) = al + b, where

1
~1—po
and b is defined as in ([I0). Notice that the slope a is always positive because Hx(S) > 0
as any entropy and, according to (I3]), Hx(S) > polnpy provided that A > 1 (recall

a (Hs(S) + polnpo)

that no character from ¥ has probability zero of occurring after the free-space prefix).
Therefore, Iy(¢) grows linearly with ¢ for A > 1.

Table [l summarizes the parameters of the linear relationship between [y(¢) for our
generalized random typing process and two particular cases: (a) equal letter probabilities
(all characters except the space must be equally likely) [I4] and (b) equal character
probabilities (all characters including the space are equally likely) and empty words are
allowed, i.e. ¢, = 0 [9]. Notice that (b) is a particular case of (a). Variant (a) [I4] means
that

1=po ifS#O'(]

p(S=13s)= { Al

Do lfS = 0o,
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Table 1. Summary of the linear dependency between the self-information content as
a function of word length, Iy(¢) = a+b, and related quantities for three major variants
of the random typing process. Hx(S) is the entropy of characters after the free-space
prefix of length £y, pg is the probability of space and A is the cardinality of X. pg is
used as a shorthand for ps (S = s).

Random typing

Generalized Equal letter  Equal character
probabilities [14] probabilities
(With by =0 M)
a =50 (Hx(S) + po Inpo) In p=L In A
In 4=p0)® n A=po)® In A
w =
Hy(S) =D ses\{oor PsInps (L —po)In 7= In A
—po Inpo —po Inpo
bo Po . )po %
— 0
p(W =w, Hw” = é) (1_;;[:))130 P1.e a IZ[;\)—I)E Lo %
P(W:wmw” :f) mplf ) ll)z ) ll)z

and is defined only by three parameters: ¢y, A and py. The random typing process
defined in [6] is a particular case with ¢, = 0. In a random typing process with equal
letter probabilities, the character entropy after the space-free prefix is

_ L—po, 1—po
Hy(S) = (A 1)< A—lln)\—l) polnpo
A—1
= (1—po) ln1 — po In py.
— Po

Variant (b), the simplest random typing that has ever been presented to our knowledge,
is defined with only one parameter, i.e. A\ (o = 0 and py = 1/X in that case). (b)
is known as the fair die rolling experiment [9] (see [7] for a version with ¢, = 1 and

po = 1/A).

4. Conclusion

We have shown that I(¢) = af + b does not imply that speakers have made optimal
choices as argued in [4]. Uniform information density or related hypotheses (e.g., [3])
are not at all necesary to account for the linear correlation between I(¢) and ¢: typing
at random yields the same dependency independently from context. Our main point
is that a linear correlation between information content and word length may simply
arise internally, from the units making a word (e.g., letters) and not necessarily from
the interplay between words and their context as suggested in [4]. However, future
research should investigate if the parameters of the linear relationship predicted by
random typing coincide with those of real texts or if a linear relationship is sufficient to
account for the actual dependency between I(¢) and ¢ in real languages as it is suggested
by the long-range correlations in texts at the level of words [15] or letters [16, [I7] and



Information content versus word length in random typing 8

the differences between random typing and real language at the level of the distribution
of word frequencies [14] [I8] or word lengths [19].
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