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CNRS & Université de Lyon II, Lyon, France
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Abstract. Recently, it has been claimed that a linear relationship between a measure

of information content and word length is expected from word length optimization

and it has been shown that this linearity is supported by a strong correlation between

information content and word length in many languages (Piantadosi et al. 2011, PNAS

108, 3825-3826). Here, we study in detail some connections between this measure and

standard information theory. The relationship between the measure and word length is

studied for the popular random typing process where a text is constructed by pressing

keys at random from a keyboard containing letters and a space behaving as a word

delimiter. Although this random process does not optimize word lengths according to

information content, it exhibits a linear relationship between information content and

word length. The exact slope and intercept are presented for three major variants of

the random typing process. A strong correlation between information content and word

length can simply arise from the units making a word (e.g., letters) and not necessarily

from the interplay between a word and its context as proposed by Piantadosi et al. In

itself, the linear relation does not entail the results of any optimization process.
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1. Introduction

In his pioneering research, G. K. Zipf showed that more frequent words tend to be

shorter [1], and parallels of this brevity law have been reported for the behavior of

other species [2, 3]. Recently, it has been argued that ”average information content

is a much better predictor of word length than frequency” and that this ”indicates

that human lexicons are efficiently structured for communication by taking into account

interword statistical dependencies.” [4, p. 1]. According to the uniform information

density hypothesis (e.g., [5]), ”language users make choices that keep the number of bits

of information communicated per unit of time approximately constant” and thus ”the

amount of information conveyed by a word should be linearly related to the amount

of time it takes to produce –approximately, its length– to convey the same amount of

information in each unit of time” [4, p. 1]. Here it will be shown that hitting keys from a

keyboard at random (e.g., [6, 7]) generates words that reproduce this linear relationship.

Therefore, the observation of such a linear relationship does not constitute unequivocal

evidence for any kind of optimal choices made by speakers.

Throughout this paper, C denotes contexts and W denotes words. As in Ref. [4],

the context of a word consists of a fixed number of preceding words, and the information

content of a word w is given by

I(w) = −
∑

c

p(C = c|W = w) ln p(W = w|C = c).

The expected information content of words of length ℓ is defined as [4]

I(ℓ) =
∑

‖w‖=ℓ

p(W = w|‖w‖ = ℓ)I(w), (1)

where ‖w‖ is the length (in letters) of a word w and ℓ is a fixed parameter value. In

this study, we detail some connections between I(w) and standard information theory

measures. The definition of I(w) that we borrow from Ref. [4] is somewhat idiosyncratic

in relation to standard information-theory. We found that, Ref. [8], the reference

supplied in Ref. [4] as a justification for Eq. 1, does not in fact justify the equation

in any evident way. In this study we demonstrate that I(ℓ) is a linear function of ℓ for

a general class of random typing processes. The only requirement is that the context

is defined by means of neighbouring words (as in [4]) or that empty words (words of

length zero) are allowed as in many variants of the random typing process [6, 9, 10].

2. Connections with standard information theory

We now introduce our basic notation and conventions. The self-information of an

event that has probability p is − ln p. We consider C and W independent if and

only if p(C = c,W = w) = p(C = c)p(W = w). As usual, by the definition of

conditional probability, independence implies both p(C = c|W = w) = p(C = c)

and p(W = w|C = c) = p(W = w), for any individual c and w. Therefore, under

independence between C and W , it holds that I(w) = I0(w) = − ln p(W = w), that is
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to say, I(w) is just the self-information of w. The expected self-information content of

a word of length ℓ is

I0(ℓ) = −
∑

‖w‖=ℓ

p(W = w|‖w‖ = ℓ) ln p(W = w)

= −
∑

‖w‖=ℓ

p(W = w|‖w‖ = ℓ) ln p(W = w, ‖w‖ = ℓ). (2)

In sum, under independence between C and W , I(ℓ) and I0(ℓ) coincide.

The conditional entropy is defined as,

H(W |C) =
∑

c

p(C = c)H(W |C = c)

= −
∑

c

p(C = c)
∑

w

p(W = w|C = c) ln p(W = w|C = c). (3)

Given only the joint probability, i.e. p(W = w,C = c), one can use Bayes’ Theorem

for calculating the conditional and marginal probabilities, as it was done in previous

work [4] and is assumed by various information theoretic models of Zipf’s law for word

frequencies [11, 12]. Simple application of Bayes’ Theorem to the definition of H(W |C)

in (3) shows that the conditional entropy is the expectation of I(w):

H(W |C) = −
∑

c

∑

w

p(W = w,C = c) ln p(W = w|C = c)

= −
∑

w

p(W = w)
∑

c

p(W = w,C = c)

p(W = w)
ln p(W = w|C = c)

= −
∑

w

p(W = w)
∑

c

p(C = c|W = w) ln p(W = w|C = c)

=
∑

w

p(W = w)I(w) = E[I(w)]. (4)

It is not difficult to see that I0(w) is the upper bound of I(w) and H(C|w) is its

lower bound; formally,

H(C|w) ≤ I(w) ≤ I0(w). (5)

As for a lower bound of I(w), the relative entropy (or Kullback-Leibler divergence)

between the context conditional probability and the word conditional probability is [13]

D(p(C = c|W = w)‖p(W = w|C = c)) =
∑

c

p(C = c|W = w) ln
p(C = c|W = w)

p(W = w|C = c)

=
∑

c

p(C = c|W = w) ln p(C = c|W = w)

−
∑

c

p(C = c|W = w) ln p(W = w|C = c)

= I(w)−H(C|w).

Therefore I(w) ≥ H(C|w) by the non-negativity of the relative entropy [13]. As for

the upper bound of I(w), the non-negativity of mutual information, i.e. I(W ;C) =

H(W )−H(W |C) ≥ 0 [13] and (4), yields

H(W |C) ≤ H(W )
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∑

w

p(W = w)I(w) ≤ −
∑

w

p(W = w) ln p(W = w)

=
∑

w

p(W = w)I0(w)

if and only if I(w) ≤ I0(w), as we wanted to prove. Combining (1) and (5) results in

IC(ℓ) ≤ I(ℓ) ≤ I0(ℓ), (6)

where IC(ℓ) is defined as

IC(ℓ) =
∑

‖w‖=ℓ

p(W = w|‖w‖ = ℓ)H(C|w).

3. Information content versus length in random typing

Random typing [6, 10] is a process in which a sequence of characters is produced by

sampling randomly from a set of possible characters. Here we consider a generalized

random typing model based upon variants allowing for unequal letter probabilities as in

[7, 10] and allowing one to specify a minimum word length [14].

Assume that characters are produced from an alphabet Σ = {σ0, ..., σi, ..., σλ−1},

where λ is the alphabet size, σ0 represents the word delimiter (i.e., the space character)

and the remaining characters of Σ are letters. We assume that all the characters in Σ

are produced at random and independently, with the only exception that two instances

of the space character must be separated by at least ℓ0 intervening characters other

than the space. In such model, the production of a word is separated into two phases:

generation of the space-free prefix of length ℓ0, and generation of the remainder. S is

a random variable taking values from Σ as generated by the random typing process.

pΣ(S = s) is defined as the probability of producing character s as the k-th character

after the last space produced (or after the beginning of the sequence if no space has been

produced yet), for any value k ≥ ℓ0. pΣ\{σ0}(S = s) is the same probability as pΣ(S = s)

for values of k < ℓ0. The abbreviation p0 = pΣ(S = σ0) will be used hereafter. We

assume that pΣ(S = s) > 0 for all characters in Σ with the additional constraint that

p0 < 1. pΣ\{σ0}(S = s) is defined in terms of pΣ(S = s),

pΣ\{σ0}(S = s) =

{

pΣ(S=s)
1−p0

if s 6= σ0

0 if s = σ0.

The generalized random typing process with unequal letter probabilities is defined by λ

parameters: ℓ0 and the λ− 1 probabilities pΣ(S = σi) for 0 ≤ i ≤ λ− 2 with

pΣ(S = σλ−1) = 1−
λ−2
∑

i=0

pΣ(S = σi).

Notice the additional parameter ℓ0 that is not considered in other versions of the random

typing model and allows for unequal character probabilities [7, 10].

In the remainder of this section we start by proving that I0(ℓ) is a linear function

of ℓ, providing exact analytical expressions for its slope and intercept. We continue by

showing that I(ℓ) can be inferred from I0(ℓ). If the context is defined by words, as in
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Ref. [4], then I(ℓ) = I0(ℓ) because our generalized random typing process produces words

independently from the previous ones. If the context are characters, then I(ℓ) = I0(ℓ)

is also warranted when ℓ0 = 0 because this is the case where self-repulsion of the space

is suppressed. When ℓ0 > 0, (6) indicates that I(ℓ) cannot exceed I0(ℓ).

In order to calculate the probability of producing a concrete word w =

s1, ..., si, ..., sℓ, where si is the i-th character from Σ of w, we use the shorthand

Pi,j =
j
∏

h=i

pΣ(S = sh).

By the independence between characters (except for space self-repulsion at distances

smaller than ℓ0), the probability that a random word W that has length ℓ coincides

with w = s1, ..., si, ..., sℓ is

p(W = w, ‖w‖ = ℓ) =





ℓ0
∏

i=1

pΣ\{σ0}(S = si)









ℓ
∏

i=ℓ0+1

pΣ(S = si)



 p0

=
p0

(1− p0)ℓ0

(

ℓ
∏

i=1

pΣ(S = si)

)

=
p0

(1− p0)ℓ0
P1,ℓ, (7)

the probability that a word has length ℓ is

p(‖w‖ = ℓ) = p0(1− p0)
ℓ−ℓ0

and the probability of a word w given its length is therefore

p(W = w|‖w‖ = ℓ) =
p(W = w, ‖w‖ = ℓ)

p(‖w‖ = ℓ)

=
1

(1− p0)ℓ
P1,ℓ. (8)

Applying (7), the self-information of a word w of length ℓ is

− ln p(W = w, ‖w‖ = ℓ) = b−
ℓ
∑

i=1

ln pΣ(S = si), (9)

where b is defined as

b = ln
(1− p0)

ℓ0

p0
. (10)

Combining (8) and (9) with the definition of I0(ℓ) in (2), gives

I0(ℓ) =
1

(1− p0)ℓ
∑

s1,...,sℓ

P1,ℓ

(

b−
ℓ
∑

i=1

ln pΣ(S = si)

)

.

Bearing in mind that
∑

s1,...,sℓ

P1,ℓ =
∑

s1∈Σ\{σ0}

...
∑

si∈Σ\{σ0}

...
∑

sℓ∈Σ\{σ0}

P1,ℓ

=
∑

s1∈Σ\{σ0}

...
∑

si∈Σ\{σ0}

...
∑

sℓ∈Σ\{σ0}

ℓ
∏

h=1

pΣ(S = sh)
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=
∑

s1∈Σ\{σ0}

...
∑

si∈Σ\{σ0}

...P1,ℓ−1

∑

sℓ∈Σ\{σ0}

pΣ(S = sℓ)

= (1− p0)
∑

s1∈Σ\{σ0}

...
∑

si∈Σ\{σ0}

...
∑

sℓ−1∈Σ\{σ0}

P1,ℓ−1

= (1− p0)
2

∑

s1∈Σ\{σ0}

...
∑

si∈Σ\{σ0}

...
∑

sℓ−2∈Σ\{σ0}

P1,ℓ−2

= ...

= (1− p0)
ℓ,

one can write

I0(ℓ) = b+
1

(1− p0)ℓ
∑

s1,...,sℓ

P1,ℓ

(

−
ℓ
∑

i=1

ln pΣ(S = si)

)

. (11)

Notice that
∑

s1,...,sℓ

P1,ℓ(− ln pΣ(S = si) =

∑

s1,...,sj−1,sj+1,...,sℓ



P1,j−1Pj+1,ℓ

∑

sj∈Σ\{σ0}

−pΣ(S = sj) ln pΣ(S = sj)



 =

(HΣ(S) + p0 ln p0)
∑

s1,...,sj−1,sj+1,...,sℓ

P1,j−1Pj+1,ℓ =

(HΣ(S) + p0 ln p0)(1− p0)
ℓ−1, (12)

where

HΣ(S) = −
∑

s∈Σ

pΣ(S = s) ln pΣ(S = s)

= −
∑

s∈Σ\{σ0}

pΣ(S = s) ln pΣ(S = s)− p0 ln p0 (13)

is the character entropy after the space-free prefix of length ℓ0. Therefore, applying (12)

to (11) one finally obtains I0(ℓ) = aℓ+ b, where

a =
1

1− p0
(HΣ(S) + p0 ln p0)

and b is defined as in (10). Notice that the slope a is always positive because HΣ(S) ≥ 0

as any entropy and, according to (13), HΣ(S) > p0 ln p0 provided that λ > 1 (recall

that no character from Σ has probability zero of occurring after the free-space prefix).

Therefore, I0(ℓ) grows linearly with ℓ for λ > 1.

Table 1 summarizes the parameters of the linear relationship between I0(ℓ) for our

generalized random typing process and two particular cases: (a) equal letter probabilities

(all characters except the space must be equally likely) [14] and (b) equal character

probabilities (all characters including the space are equally likely) and empty words are

allowed, i.e. ℓ0 = 0 [9]. Notice that (b) is a particular case of (a). Variant (a) [14] means

that

pΣ(S = s) =

{

1−p0
λ−1

if s 6= σ0

p0 if s = σ0,
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Table 1. Summary of the linear dependency between the self-information content as

a function of word length, I0(ℓ) = a+b, and related quantities for three major variants

of the random typing process. HΣ(S) is the entropy of characters after the free-space

prefix of length ℓ0, p0 is the probability of space and λ is the cardinality of Σ. ps is

used as a shorthand for pΣ(S = s).

Random typing

Generalized Equal letter Equal character

probabilities [14] probabilities

(with ℓ0 = 0 [9])

a 1
1−p0

(HΣ(S) + p0 ln p0) ln λ−1
1−p0

lnλ

b ln (1−p0)
ℓ0

p0
ln (1−p0)

ℓ0

p0
lnλ

HΣ(S) −
∑

s∈Σ\{σ0}
ps ln ps (1− p0) ln

λ−1
1−p0

lnλ

−p0 ln p0 −p0 ln p0
p0 p0 p0

1
λ

p(W = w, ‖w‖ = ℓ) p0

(1−p0)ℓ0
P1,ℓ

(1−p0)
(ℓ−ℓ0)p0

(λ−1)ℓ
1
λ

p(W = w|‖w‖ = ℓ) 1
(1−p0)ℓ

P1,ℓ
1

(λ−1)ℓ
1

(λ−1)ℓ

and is defined only by three parameters: ℓ0, λ and p0. The random typing process

defined in [6] is a particular case with ℓ0 = 0. In a random typing process with equal

letter probabilities, the character entropy after the space-free prefix is

HΣ(S) = (λ− 1)
(

−
1− p0
λ− 1

ln
1− p0
λ− 1

)

− p0 ln p0

= (1− p0) ln
λ− 1

1− p0
− p0 ln p0.

Variant (b), the simplest random typing that has ever been presented to our knowledge,

is defined with only one parameter, i.e. λ (ℓ0 = 0 and p0 = 1/λ in that case). (b)

is known as the fair die rolling experiment [9] (see [7] for a version with ℓ0 = 1 and

p0 = 1/λ).

4. Conclusion

We have shown that I(ℓ) = aℓ + b does not imply that speakers have made optimal

choices as argued in [4]. Uniform information density or related hypotheses (e.g., [5])

are not at all necesary to account for the linear correlation between I(ℓ) and ℓ: typing

at random yields the same dependency independently from context. Our main point

is that a linear correlation between information content and word length may simply

arise internally, from the units making a word (e.g., letters) and not necessarily from

the interplay between words and their context as suggested in [4]. However, future

research should investigate if the parameters of the linear relationship predicted by

random typing coincide with those of real texts or if a linear relationship is sufficient to

account for the actual dependency between I(ℓ) and ℓ in real languages as it is suggested

by the long-range correlations in texts at the level of words [15] or letters [16, 17] and
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the differences between random typing and real language at the level of the distribution

of word frequencies [14, 18] or word lengths [19].
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