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Abstract

In the study of the dynamics of neuronal networks, it is interesting to see how the interac-
tion between neurons can elicit different behaviours in each individual one. Moreover, this
can lead to the population exhibiting collective phenomena that is not intrinsic to a single
cell, such as synchronization. In dynamical systems theory, this problem has been tackled
through both high-dimensional systems of coupled single-cell models and mean-field models
that describe the macroscopic state of the network in terms of the firing rate or the mean
membrane potential.

In this project, we work with a large-scale network and a firing-rate model of quadratic
integrate-and-fire (QIF) neurons. We study the dynamics of the QIF model and compute its
phase response curve (PRC), which is a well-known tool for the analysis of the perturbations
of the cell’s membrane potential caused by the different stimuli received from the network.
Then, we propose an algorithm to describe the population through the PRCs. Our method
is able to replicate the same dynamics we observe with the aforementioned models and it also
serves us to gain more insight into the transmission of pulses and to explain how a network
can maintain a state of synchronized firing. Our results are a positive test that a mean-field
model with PRCs could be obtained.

Keywords: mathematical neuroscience, quadratic integrate-and-fire, neuronal network,
phase response curve, synchronization.





Resum

En l’estudi de la dinàmica de xarxes neuronals, és interessant veure com la interacció entre
neurones pot provocar diferents comportaments en cada una. Això pot portar inclús a que
la població mostri una fenomenologia col·lectiva no inherent a cap neurona, com és el cas de
la sincronització. En la teoria de sistemes dinàmics, aquest problema s’ha atacat a partir de
sistemes d’alta dimensió on s’acoblen models neuronals i també a partir de models de camp
mitjà, que descriuen l’estat macroscòpic de la xarxa a partir de la freqüència de descàrrega
(firing-rate) o del potencial de membrana mitjà.

En aquest projecte, treballem amb una xarxa de gran escala i amb un model de firing-rate
de neurones de tipus quadratic integrate-and-fire (QIF). Estudiarem la dinàmica del model
QIF i calcularem la seva corba de resposta de fase (PRC), que és una eina ben coneguda
utilitzada per l’anàlisi de les pertorbacions del potencial de membrana de la cèl·lula, que
són causades pels diferents est́ımuls provinents de la xarxa. Seguidament, proposem un
algorisme que descriu la població a partir de les PRCs. El nostre mètode és capaç de replicar
la mateixa dinàmica que observem amb els models anteriors i ens serveix per entendre millor
la transmissió d’impulsos i per explicar com una xarxa pot mantenir un estat de sincronia.
Els resultats obtinguts són un test positiu de què es podria obtenir un model de camp mitjà
amb PRCs.
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1 Introduction

A neuron is an excitable cell such that, depending on the stimuli received, can remain qui-
escent or it can experience spiking activity. From the perspective of dynamical systems,
several mathematical neuronal models have been suggested to study the bifurcations that
govern this transition from resting to firing, and the equilibrium points, whether these are
stable (resting or excitable state, see fig.1.1a and fig.1.1b) or unstable (sustained spiking, see
fig.1.1c), as well as other aspects about its dynamics. One of the earliest proposals was made
in 1907 by Louis Lapicque, with what is known as the leaky integrate-and-fire. Nowadays it
is still used, mainly because of its simplicity, but there are other more biophysically accurate
approaches such as the Hodgkin-Huxley model of the giant squid axon. Proposed in 1952
by Alan Hodgkin and Andrew Huxley, this model was pivotal in the understanding of the
generation of action potentials in neurons, and became the reference for many models, which
were built around it. For their work, they were awarded the 1963 Nobel Prize in Physiology
or Medicine.

Having an understanding of single-cell dynamics, one can proceed to couple neurons to study
their interaction in a network. A population of neurons can display interesting phenomena
that is not inherent to an individual cell, like synchrony. For instance, some species of fire-
flies in a swarm are able to flash in a coordinated manner after some time[3], and increased
synchrony has a role in some neurological disorders, such as epilepsy[13].

Other types of models called firing-rate models have been introduced to study the behaviour
of a network. They describe properties of the population as a whole (the mean membrane
potential, mean firing rate, etc.) rather than the particular state of each neuron, and they
are widely used due to their simplicity, which allows for more theoretical results.

In the remainder of this chapter, we will give a brief overview of why neurons emit electric
signals and present some of the ways one can model a single neuron.Then, we will review
in more detail the model of choice for our work: the quadratic integrate-and-fire (QIF).
Finally, we will see how we can model a network, with a high-dimensional system of coupled
heterogeneous QIF neurons, and with a novel firing-rate model, both presented in [16].
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2 1. Introduction

1.1 What makes a neuron fire?

A neuron receives thousands of signals through the synapses. These inputs generate a cur-
rent across the membrane which alters the membrane potential of this cell, generating what
is called a postsynaptic potential (PSP). If the current is weak, we obtain small PSPs, and if
it is strong, we have high PSPs. Furthermore, there are channels embedded in the membrane
which, depending on the voltage, can amplify the PSPs.

The basic idea is that a neuron sums the PSPs from all the inputs and, with the additional
amplification from the voltage-sensitive channels, it can surpass the firing threshold, and
consequently generate an action potential (or spike), see fig.1.1b-c. These spikes are the
main events that trigger the communication among neurons, and it is interesting to see how
two identical neurons can have different responses to the same transmission and, conversely,
how two different neurons can have the same response to an input.

Figure 1.1: (a) Resting, (b) excitable and (c) sustained spiking states.

1.2 Modeling a single neuron

We have very precise neuronal models from the biological standpoint, such as the classic
by Hodgkin and Huxley[9], for the particular case of a giant squid axon. However, as it
takes into account the biophysical phenomena related to the generation of spikes, we have
an intricate model, given by

Cm
dVm
dt

= gKn
4(EK − Vm) + gNam

3h(ENa − Vm) + gl(El − Vm) + I,

dn

dt
= αn(Vm)(1− n)− βn(Vm)n,

dm

dt
= αm(Vm)(1−m)− βm(Vm)m,

dh

dt
= αh(Vm)(1− h)− βh(Vm)h,
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where the α’s and β’s are functions obtained by interpolating points found experimentally,
and are defined by

αn(Vm) =
0.01(10− Vm)

exp
(

10−Vm
10

)
− 1

, βn(Vm) = 0.125 exp

(
−Vm
80

)
;

αm(Vm) =
0.1(25− Vm)

exp
(

25−Vm
10

)
− 1

, βm(Vm) = 4 exp

(
−Vm
18

)
;

αh(Vm) = 0.07 exp

(
−Vm
20

)
, βh(Vm) =

1

exp
(

30−Vm
10

)
+ 1

.

It is a system of nonlinear diferential equations in R4, which complicates the study of the
phase space. Without getting much into it, functions n, m and h are involved in the reg-
ulation of the opening and closing of channel gates of the neuron, which let in and out of
the cell the different types of ions that create a difference in electric potential across the
membrane, measured by Vm.

We have other mathematical representations of a neuron, like the FitzHugh-Nagumo model[8][18]

which is not as faithful to the biological interpretation, but preserves the qualitative features
of the neurons’ dynamics described in the H-H model, while at the same time reducing its
dimensions to two. This means that we can study the dynamics in R2 and so, it helps inter-
preting and explaining some of the phenomena surmised from the Hodgkin-Huxley model.
The system is

ε
dv

dt
= f(v)− w + I,

dw

dt
= v − γw,

where

f(v) = v(1− v)(v − α) for 0 < α < 1, ε� 1.

A fundamental property of neurons is excitability. As defined in [13], the textbook description
of neuronal excitability is that a small stimulus will not generate a spike, whereas a large
enough pulse will. This means we have a threshold. From the dynamical systems viewpoint,
the subthreshold response translates into: all the trajectories that start close enough to
the equilibrium will converge to it (this is the so-called resting state, see fig.1.1a). The
supratheshold response translates into leaving a certain neighborhood of the equilibrium,
resulting in a large-amplitude piece of trajectory, which then returns, and it either converges
to the equilibrium (fig.1.1b) or continues with sustained oscillations (fig.1.1c). Therefore,
what gives us information is not so much the shape of the spikes but their absence or
presence. In fact, in 1948, Hodgkin identified the different types of responses, and suggested
a classification of neurons according to their excitability[13]:
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· Class I : The neuron can spike at arbitrarily low frequencies, depending on the strength
of the current. The neurons that undergo a saddle-node bifurcation on invariant circle
(SNIC) are the ones associated with this class, as the oscillations are born with infinite
period and it gradually decreases as the intensity grows.

· Class II : The spiking frequency is bounded from below, and changing the strength
of the intensity barely alters it. In general, the neurons in this class undergo a Hopf
bifurcation, as the oscillations emerge with non-zero frequency.

· Class III : The neuron can exhibit a single spike in response to a pulse of current,
and only with really strong injected currents, one can observe more than one spike in
succession or none at all. Hodgkin referred to these as “sick neurons”; some books do
not even consider this class, and focus on the first two.

A drawback of the aforementioned models is that, even though their parameters can be
measured experimentally, these are usually an average from different cells[13], which can lead
to the model exhibiting a different behaviour from the experiments. This is why we will
consider integrate-and-fire (IF) models. The basic idea behind IF models is that when the
membrane potential V reaches a certain peak value, the neuron is said to fire a spike, and
the voltage is reset. Integrate-and-fire models provide a faithful reproduction of basic neu-
rocomputational features related to excitability, such as the timing of the action potentials
and how it is affected depending on different stimuli, which is the basic element in the com-
munication between neurons in a network.

Furthermore, even though the previous models allow for a very detailed analysis of the be-
haviour of a single neuron, if we want to adapt them for the study of a neural network, it
may lead to efficiency problems due to the complexity of the systems (not to mention that,
depending on the parameters used, both H-H and F-N are stiff differential equations). This
makes the computational treatment of networks more difficult, so that considering integrate-
and-fire models can be helpful, as they are governed by only one first-order ODE (note that,
in some cases, we can even obtain an exact solution, so they are easier to study analytically).
Moreover, when working with networks, the intrinsic properties of each neuron are not as
relevant, so working with these types of models makes more manageable the study of their
properties as a collective.

An example of an IF model is the leaky integrate-and-fire (LIF, attributed to Louis Lapicque[14])
which, after rescaling, can be written as

dV

dt
= b− V, if V = 1 then V ← 0.

The idea is what we described earlier: when the membrane potential V reaches a threshold
(in this case Vthresh = 1), then the neuron is said to fire a spike, and the voltage is reset (here
Vreset = 0).
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1.2.1 Quadratic integrate-and-fire

For our work, we will use one of the simplest models of a spiking neuron, the quadratic
integrate-and-fire (QIF, suggested by Izhikevich[11][12][13]). It can be obtained from a more
general model called the theta model (introduced by Ermentrout and Kopell[6]), via a change
of variables. The quadratic integrate-and-fire model is a class I neuron, and it is described
by the following first order differential equation1

dV

dt
= I + V 2, if V = +∞ then V ← Vreset, (1.1)

where V is the membrane voltage variable, and I is the input current, which will usually be
taken as a constant. Here, the voltage is reset when it reaches +∞ (we will see that this
happens in finite time). However, when doing simulations, we will fix a finite value Vpeak (or
Vthresh as in the LIF model) instead of +∞ which will have the same role.

It is a Riccati’s equation and it can also be solved by separation of variables. Either way, its
analytical solution for I > 0 is

V (t) =
√
I · tan

(
(t+ C)

√
I
)
,

for some constant C, which depends on the initial condition V (t0) = V0. Solving the initial
value problem yields

V (t) =
√
I tan

(
arctan

(
V0√
I

)
+
√
I(t− t0)

)
. (1.2)

Notice that the voltage goes to infinity in a finite time; this is why we have the resetting
mechanism described earlier. After rescaling, one can take Vpeak = 1 (as seen in [13]) but
in some instances it is useful to take Vpeak = +∞ for analytical results (see, for example, [7]).

For I < 0, we consider J = −I and proceed with separation of variables, obtaining

V (t) =
2
√
−I

1− e2
√
−I(t−t0)

(
1− 2

√
−I

V0+
√
−I

) −√−I. (1.3)

Finally, for I = 0, the solution is

V (t) =
V0

1− V0(t− t0)
. (1.4)

As a final note, we have the analytic solution, but if we wanted to solve it numerically,
Matlab’s ode45 (or another ODE solver) can be used, together with an events function to
check if Vpeak has been reached. Also, all the step-by-step calculations can be found at the
end of appendix A.

1 This is the nondimensionalized version, which is its simplest form as well. For more details, see appendix A.
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1.2.1.1 Dynamics of a QIF neuron

The next step is to run simulations to confirm and better understand some of the phenomena
governed by (1.1).

Since the right-hand side of (1.1) is a quadratic function, we may have two, one or no
roots, depending on the value of I, as it moves the parabola up and down. These roots de-
termine the equilibria and, depending on V0 and Vreset, different phenomena can be observed:

With negative input current I, f(V ) = I + V 2 has two real roots, namely V± = ±
√
|I|. In

the one-dimensional case, the stability is given by the slope of f , therefore, the negative root
V− is a stable point (the resting point) and the positive one is unstable (the threshold point
V+). As long as the initial value V0 is below the threshold, the voltage will always converge
to the resting point (see fig.1.2).

Figure 1.2: QIF resting state (I < 0, V0 < V+)2

Otherwise, if the initial value is above the threshold, the neuron will fire a spike, and the
following response will depend on whether the reset value Vreset is sub or suprathreshold. If
Vreset < V+, a spike is fired, the voltage resets and then converges to the resting state, as
seen in fig.1.3. But if Vreset > V+, there is a first action potential, and then it starts the
periodic spiking (see fig.1.4).

Figure 1.3: QIF excitable state (I < 0, V0 > V+, Vreset < V+)

2 From now on, in the figures, filled and empty circles represent stable and unstable equilibria respectively.
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Figure 1.4: QIF bursting (I < 0, V0 > V+, Vreset > V+)

This last scenario does not correspond to regular spiking since, after firing a spike, the neuron
would need to recover, that is, the membrane potential should return to the resting voltage,
which is smaller than V+. However, it might make sense in the context of bursting [13], but
this is another type of phenomena that we will no explore here.

Figure 1.5: Equilibria of (1.1) as a function of I

When I reaches 0, the equilibrium
points merge into one (f(V ) = V 2

has double root 0) and originates a
saddle-node (fold) bifurcation (see
fig.1.5). The initial values to its left
will make the membrane potential
converge to equilibrium, and the
ones to its right will be repelled.
After the bifurcation, the equilib-
ria have annihilated each other and
no resting points exist. This means
that whatever the initial and reset
values are, the model will exhibit
sustained spiking (fig.1.6).

Figure 1.6: QIF periodic spiking (I > 0)
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As we mentioned earlier, the quadratic integrate-and-fire models a class I neuron. However,
this category of neurons are characterized by undergoing a saddle-node on invariant circle
bifurcation, where the center manifold makes a homoclinic loop, and, as we have seen,
V̇ = I + V 2 has a fold bifurcation when I = 0. But, if we add the resetting mechanism, it
actually becomes a SNIC bifurcation. This might be easier to see if we change to the theta
model: Taking V = tan(θ/2), one obtains θ̇ = 1 − cos θ + (1 + cos θ)I, with θ lying on the
unit circle (when θ = π, the neuron spikes). Now, looking at fig.1.7, we see that for negative
currents we have a heteroclinic orbit connecting both fixed points. As I increases, they get
closer, until they collide, forming a homoclinic orbit at I = 0. Actually, if we take solution
(1.4) for I = 0 , we see that it takes infinite time to close the orbit. Finally, for I > 0, we
are left with a periodic orbit. This is the description of a SNIC bifurcation.

Figure 1.7: Saddle-node bifurcation on invariant circle in the theta model.

1.3 Modeling a network of neurons

When studying the behaviour of several neurons connected in a network, one might be in-
terested in the dynamics of each individual cell. However, sometimes it is preferable to deal
with models that capture the nature of the network as a whole, describing it in terms of
macroscopic measures, such as the mean membrane potential or the firing rate (the mean
rate at which neurons emit spikes). These macroscopic descriptions are usually called firing-
rate models or firing-rate equations (FREs). The main advantage of FREs compared to
the microscopic approach with large networks is their simplicity, which allows for mathe-
matical analysis, and also, they are computationally efficient. Still, traditional firing-rate
models such as the Wilson-Cowan equations[7] do not give a precise relationship between
the microscopic dynamics of individual neurons and the macroscopic state of the network,
and furthermore, do not describe settings where a fraction of the neurons are in synchrony[16].

In this project, we will work with the two network models presented in [16], where the
authors derive a system of FREs given by

ṙ =
∆

π
+ 2rv, (1.5a)

v̇ = v2 + η + Jr + I(t)− π2r2, (1.5b)

with parameters ∆, η, J and a function I(t). The overdot denotes the derivative with respect
to time. This system is for an all-to-all network of N heterogeneous QIF neurons, and its
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microscopic model is given by the membrane potentials {Vj}j=1,...,N , which are governed by

V̇j = Ij + V 2
j , if Vj = Vpeak then Vj ← Vreset, (1.6)

where the input current Ij has the form

Ij = ηj + Js(t) + I(t), (1.7)

with the mean synaptic activation s(t) (which is what links the neurons) written as

s(t) =
1

N

N∑
j=1

∑
k|tkj

∫ t

−∞
aτ (t− t′)δ(t′ − tkj ) dt′. (1.8)

Here, tkj is the time of the kth spike of the jth neuron, δ(t) is the Dirac delta function, and
aτ (t) is the normalized synaptic activation caused by a single presynaptic spike with time
scale τ . The parameters and functions will be described with more detail in the following
sections, but for further explanations, we refer to [16].

Their results show the correlation between the spike generation mechanism of individual
neurons (1.6), and the firing-rate (r) and mean membrane potential (v) coupling given by
(1.5). In fact, this correspondence is exact in the thermodynamic limit (i.e. N → +∞).

Figure 1.8: Simulations of both models (FREs in red and large-scale network in blue).
Equations (1.5a)−(1.5b) describe exactly the model given by (1.6). Here N = 104, J = 15,
η = −5, ∆ = 1. I(t) = I0 sin(ωt) for t ≥ 0 and I(t) = 0 otherwise (I0 = 3, ω = π/20) is
shown in the last plot. Also drawn is a raster plot of 300 randomly selected neurons, which
marks with a dot if the neuron j at time t fires a spike. To compute the firing rate, we count
the number of spikes within [t− δt, t] and divide it by N and δt (δt = 2 · 10−2). The mean
membrane potential is computed considering only the population that is not in refractory
state.
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1.4 Outline of the project

In this project, our goal is to understand how the interaction between neurons can affect
each individual one to the point where it may elicit a type of behaviour that it would not
exhibit on its own. In this introductory chapter, we have provided the background necessary
for the following sections.

In chapter 2, we will define the phase response curve (PRC), which is what will give us
information about how a neuron responds to a perturbation. We will see that the quadratic
integrate-and-fire actually has a closed form for the expression of its PRC, so we will derive
it and study its properties.

In chapter 3, we will consider a population of coupled heterogeneous QIF neurons. We will
explain with more detail equations (1.6)−(1.7)−(1.8) and we will run simulations of the
network they describe. Then, we propose an algorithm to couple PRCs. We will discuss its
implementation and compare the results that our method yields with both the QIF network
and the mean-field model, to see if we are describing qualitatively the same activity of the
population of neurons. This algorithm will help us understand how the different stimuli re-
ceived from the network can push a neuron to spike earlier and, in particular, how knowing
the shape of the PRC can help us achieve a synchronous state in the network.

In chapter 4, we give a summary of the conclusions we have reached and discuss future work.



2 Neuron’s response to perturbations.
The phase response curve

Given a neuron exhibiting periodic spiking, if it receives a brief stimulus that causes a
change of its membrane potential, it can advance or postpone the next spike. Interestingly,
this response may vary depending on when this stimulus takes place. In order to study these
variations, we will consider the associated phase response curves (PRC), a well-known tool
for the analysis of the interaction between neurons in a network.

2.1 Phase response curve

Let us consider a system with a limit cycle which, in our context, is a neuron displaying
sustained spiking. We define phase, which will be denoted by θ, as the time elapsed since
the last spike. Therefore, θ ∈ [0, T ), where T is the period of oscillation.

Now, suppose, as in fig.2.1, that we inject a stimulus at phase θ (i.e., we increase by A units
the variable that describes the membrane potential) and this pulse causes the neuron to fire
earlier, and so, the phase is reset to a greater one θnew (in short: V (θ) +A = V (θnew)). The
map from θ to θnew is called the phase transition curve (PTC) and the PRC for each phase
is defined as

PRC(θ) = PTC(θ)− θ = θnew − θ.

Figure 2.1: QIF unperturbed (blue) and after stimulation (red). In this case, the pulse at θ
advances the action potentials. The PRC is the time shift between the old and new spikes.

11
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Now, still in the same setting as in fig.2.1, we have the period T , which is the time between
spikes for the unperturbed neuron. If there is a pulse at θ, we define τ as the time until the
new spike. This is equivalent to writing τ = T − θnew. Therefore, the time of the new spike
is Tθ = θ + τ = θ − θnew + T , from which we deduce

PRC(θ) = T − Tθ.

This expression will be useful in the following computations. We note that even though we
call it “curve”, the PRC is, of course, a map. However, what is usually presented is its graph.

2.1.1 PRC of the QIF model

The phase response curve (also called phase-resetting curve) is usually computed numeri-
cally, using the so-called adjoint method [7] (derived from Malkin’s theorem [13]), but one of
the advantages of having the analytical solution of the QIF (1.1), is that we can easily obtain
the exact expression of its PRC:

For I > 0, which is when we have periodic spiking, we will consider V0 = Vreset, so we can
work in the interval [t0, tf ], where tf is the time when the first spike is fired (this way, we
have slightly nicer expressions). By definition, V (tf ) = Vpeak, therefore, using solution (1.2)
we have

V (tf ) = Vpeak ⇐⇒
√
I tan

(
arctan

(
Vreset√
I

)
+
√
I(tf − t0)

)
= Vpeak

=⇒ tf =
1√
I

(
arctan

(
Vpeak√
I

)
− arctan

(
Vreset√
I

))
+ t0, (2.1)

and if we now take t0 = 0, then tf is the period T .

To compute Tθ for some θ ∈ [0, T ], we suppose there is a brief pulse at t = θ that raises
the membrane potential by A units, and then we resume the integration from (t, V ) =
(θ, V (θ) + A). Then, similar to what we have just seen for T , we obtain

Tθ =
1√
I

(
arctan

(
Vpeak√
I

)
− arctan

(
V (θ) + A√

I

))
+ θ, (2.2)

and using (1.2) to evaluate V (θ), we end up with

Tθ =
1√
I

(
arctan

(
Vpeak√
I

)
− arctan

(
A√
I

+ tan

(
arctan

(
Vreset√
I

)
+
√
Iθ

)))
+ θ (2.3)

and so

PRC(θ,A) = min

{
1√
I

(
arctan

(
A√
I

+ tan

(
arctan

(
Vreset√

I

)
+
√
Iθ

))
− arctan

(
Vreset√

I

))
, T

}
−θ (2.4)

The reason we write the minimum is because for every A, there is a point θ∗ where this
perturbation is just enough to reach Vpeak so, for any θ ∈ [θ∗, T ], it turns out that Tθ = θ;
as a consequence, PRC(θ, A) = T − θ and, on that interval, the curve is a straight line with
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slope −1. In fact, in eq.(2.2), if V (θ) + A > Vpeak, because arctan(x) is a strictly increasing
function, we would have Tθ < θ, and this is not coherent if Tθ is the time of the new spike
after the perturbation at phase θ.

Figure 2.2: PRC of (1.1) with I = 0.01, A = 0.01 and Vpeak = −Vreset = 1. PRC(θ) has
been rescaled, so it is easier to compare it against the unperturbed V (t) (dotted line). Bear
in mind that the PRC has units of time and V is a voltage, so it is not rigorous to compare
them in quantitative terms, but it is interesting to explain the shape of the PRC using V (t).

An important observation to make regarding fig.2.2, is that the PRC is always positive,
which means that the spikes are always advanced in time whenever there is a positive volt-
age increase A after a stimulus (if A > 0 we say that the stimulus is excitatory). If A < 0 (i.e.
the stimulus is inhibitory), we would have a negative PRC and the spikes would be delayed.
Other models might exhibit delay or advancement depending on the phase of stimulation
(for example, both Hodgkin-Huxley and FitzHugh-Nagumo models have a sinusoidal form[2]).

Notice as well that the PRC displayed in fig.2.2 looks (somewhat) symmetrical. This is in
part due to the symmetrical shape of the solution, but this only happens for small stimuli.
If we compute the PRC for increasing strengths of the perturbation, we will see a gradual
tilt of the curve to the left (see fig.2.3).

Figure 2.3: Comparison of PRCs for the QIF model (1.1) with I = 0.01 for increasing values
of the perturbation parameter A > 0 (without scaling).
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To explain this shift, if we go back to fig.2.2, we see that there is an interval in the middle,
where the membrane potential increases very slowly . If, before we reach that interval, there
is a large enough stimulus that skips it, then the phase advances significantly. The pertur-
bation will be most effective at the point where the PRC reaches its maximum, therefore,
the greater the impulse, the earlier we can jump over this region, and this is why the peak
of the curve shifts to the left.

In fact, this can also be deduced from the ODE itself, because the interval where the dy-
namics are slower is around V = 0, as it is the point where the slope of the solution is the
smallest (see fig.1.6).

Finally, if we consider the PRC as a function of the two variables θ and A, we obtain the plot
in fig.2.4. We see what we have just discussed, which is that the higher the impulse, the more
prominent will be the tilt to the left (and, of course, the greater will be the advance of the
phase). We can do the same for the PTC. If there is no perturbation (A = 0), the phase will
stay the same, so the PTC is the identity function. And since PTC(θ, A) = PRC(θ, A) + θ,
what we have just observed, applies here as well: the greater the impulse, the greater the
slope and also, the region where this slope is greater, will be closer to the left (closer to θ = 0).
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Figure 2.4: PRC and PTC plots considered as functions of the two variables θ and A.



3 All-to-all coupling of PRCs

In this chapter we will describe the microscopic model for a network of N heterogeneous
quadratic integrate-and-fire neurons connected all-to-all. Then, we will proceed to study the
coupling of PRCs. To do that, we propose an algorithm that reflects the dynamics of the
network, similarly to what we see in the microscopic network, and will help us understand
how the transmission of electric impulses affects each neuron (in terms of its phase) and the
network as a whole.

3.1 Network of heterogeneous QIF neurons

In section 1.3, we have already presented an overview of how we can model a network of QIF
neurons connected all-to-all. In this section we explain with more detail the role of some of
the parameters and functions, as it will help us later in the construction of the algorithm to
couple PRCs, and it may give us hints about what to expect when we change the parameters
in the simulations.

3.1.1 Model description

As we anticipated in section 1.3, the membrane potential of each neuron j follows the ODE

V̇j = Ij + V 2
j , if Vj = Vpeak then Vj ← Vreset, (3.1)

where the input current Ij is the sum of three distinct components:

Ij = ηj + Js(t) + I(t). (3.2)

The term ηj represents a constant input current different for each neuron, and it is used
to introduce heterogeneity. In [16], the ηj’s are chosen so that they follow a Lorentzian (or
Cauchy) distribution, but in the same paper there is a comparison using different distribu-
tions, and the results are shown to be qualitatively similar. The function s(t) is the mean
synaptic activation, and it describes the synaptic activity according to the number of spikes
in the network at times t′ such that t′ ≤ t (it can be expressed as (1.8)). The parameter
J is the synaptic (or coupling) strength. Since s ≥ 0, having J > 0 means the coupling is
excitatory (i.e. the inputs from other neurons increase the membrane potential), whereas
J < 0 translates to having inhibitory coupling (the inputs from other neurons decrease the
membrane potential). For J = 0, the network is uncoupled (the neurons are disconnected).

15
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The greater |J | is, the stronger will be the effect of the pulses from the other neurons. There-
fore, J together with s(t) model the current that each neuron is receiving as a function of the
aggregate of spikes from all the neurons at that instant. Finally, I(t) represents a common
time-dependent external current.

3.1.2 Numerical simulations

To run simulations of a network of N neurons, we will use Euler’s method to integrate each
equation, with time step dt = 10−4. It is the method of choice in [16], probably because the
step size can be controlled, which determines the number of iterations and facilitates the
implementation of the resetting mechanism and the refractory state of each neuron. Also,
the precision obtained by using a small time step with Euler’s method is enough for their
simulations, but in some instances, it is necessary to improve the accuracy with higher-order
methods. In fact, rather than improving the method of integration, it might be more im-
portant for the precision of the network to refine the spike time, as seen in [19], where the
authors discuss a scheme that uses a second-order Runge-Kutta together with an interpolant
to find more accurately the time an integrate-and-fire neuron reaches the threshold value.

We will take Vpeak = −Vreset = 100, and the initial values for each Vj can be randomly chosen
following a uniform distribution on the interval [−100, 100].

As previously said, ηj follows a Lorentzian distribution. If ∆ and η are its half-width and
center, respectively, then one way to prescribe a probability distribution to a set of points
is by using its quantile function, which is the inverse of its cumulative distribution function.
In this case, the quantile function for a Lorentzian distribution is

Q(p; η,∆) = η + ∆ tan

(
π

(
p− 1

2

))
, (3.3)

and so, taking p =
j

N + 1
, ηj can be computed deterministically using the following expres-

sion (a plot of the distribution can be seen in fig.3.6):

ηj = η + ∆ tan

(
π

2
· 2j −N − 1

N + 1

)
j = 1, . . . , N. (3.4)

According to [16], the time it takes to reach +∞ from Vpeak is approximately 1/Vpeak = 10−2,
and similarly, it takes roughly −1/Vreset = 10−2 to go from −∞ to Vreset. So, following equa-
tion (3.1), once the membrane potential verifies Vj ≥ Vpeak (we cannot check the equality, as
we have discrete steps), we reset the voltage and the neuron enters what is called refractory
state, which is the interval of time where the neuron produces the spike and recovers. During
this time, the cell cannot generate more spikes, regardless of the external inputs, as it is still
generating the initial one. After 10−2 units of time (100 time steps in our case) have passed,
we say that neuron j has fired a spike, and after 10−2 more, the refractory time finishes and
the integration for Vj is resumed.
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As we have seen previously, the mean synaptic activation function can be expressed as

s(t) =
1

N

N∑
j=1

∑
k|tkj

∫ t

−∞
aτ (t− t′)δ(t′ − tkj ) dt′. (3.5)

In the numerical simulations conducted in [16], aτ is chosen to be

aτ (t) =
Θ(τ − t)

τ
,

where Θ is the Heaviside step function (zero for negative values and one for positive values)
and τ = 10−3. So, expression (3.5) becomes

s(t) =
1

τN

N∑
j=1

∑
k|tkj

∫ t

t−τ
δ(t′ − tkj ) dt′. (3.6)

We recall that tkj is the time of the kth spike of the jth neuron and δ(t) is the Dirac delta
function. Then, equation (3.6) simply counts the number of spikes in the network within the
time interval [t− τ, t] and divides it by N and τ to have the average in that period.

As a final note, for the following simulations, unless otherwise stated, we will use the QIF
equation

τmV̇ = I + V 2,

with τm = 10 ms (taken from [15]). We are just rescaling the time, so the dynamics of the
neurons are slowed down but they are qualitatively the same; this way, the following raster
plots are much clearer. For more details, see appendix A (eq.(A.2)).

Figure 3.1: Raster plot corresponding to a network of N = 1000 neurons, with parameters:
η = −5, ∆ = 1, J = 7. At t = 20 a constant current I = 3 is applied to all the network, which
pushes some of the neurons that were not in the oscillatory regime to now fire periodically.
At t = 50 the external current is removed, and the neurons that had previously changed
their dynamics, gradually stop spiking, and the network returns to its initial state. Neurons
from 1 to around 750 are not shown, as they do not have high enough current to fire a spike.
All the voltages are initialized to Vreset.



18 3. All-to-all coupling of PRCs

3.2 Coupling PRCs

After the description of the previous model for a QIF network and its numerical implementa-
tion, we propose an algorithm to study the interaction between neurons through their PRCs.

Following the idea of the theta model, instead of describing the evolution of an oscillating
QIF in terms of its membrane potential, we can do it through its phase. For an uncoupled
neuron, we have computed its period T , and so, we know that it will spike every time its
phase reaches this value (θ ∈ [0, T ]). Then, when the neuron is connected to a network,
we know how a perturbation provoked by another neuron’s spike can advance or delay the
phase, since we have the PRC. This is the main idea behind the algorithm.

Now we will proceed with the description of the method and its implementation. Then we
will see how well it describes the population of neurons, by comparing it with the QIF net-
work and the FREs and, finally, we will see what results we can obtain with it.

3.2.1 Algorithm

The scheme has three main steps, which are summarized as follows:

1. At time t, find the neuron k closest to firing, and register (k, tk) (where tk is the time
it takes to fire). For every spike, add the pair (k, tk) to the set (or list) S, and also,
create a list Lt to mark the neurons that have spiked in the current iteration.

2. Advance all the phases tk units, reset θk (as it has just spiked) and apply at each neuron
the perturbation generated by this last spike (We will shortly see what we consider as
the pulse A): ∀j 6= k : θj ← θj + tk + PRC(θj, A); θk ← 0.

3. Check if this perturbation has caused any neurons to spike and, if so, register it (add
it to S and Lt) and reset them. Add these new neurons that have spiked to a new list
L. Apply the perturbations resulting from these new spikes to the neurons that do not
belong to Lt. Empty the list L and add the new neurons that have spiked (if any).
Repeat until L is empty, and then go to step 1 with t← t+ tk.

The full algorithm is described in alg.1. Also, a Matlab implementation can be found in
appendix C.
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Algorithm 1 All-to-all coupling of PRCs

∀j : initialize θj (normalized to lie within [0, 2π])

∀j : Tj ← period of neuron j

S ← ∅
t← t0

while t ≤ tend do
∀j : tj ← time until the next spike

k ← argmin
j

tj

S ← S ∪ {(k, tk)}
θk ← 0 (reset)

A ← Js(t) = J
1

N

∀j 6= k : θj ← θj +
tk
Tj

2π + PRC(θj, A)

L ← k

Lt ← k
while L 6= ∅ do

L← ∅
∀j : if θj ≥ 2π then

θj ← 0 (reset)

L ← L ∪ {j}
S ← S ∪ {(j, tk)}

end if

Lt ← Lt ∪ L
A ← Js(t) = J

|L|
N

∀j 6∈ Lt : θj ← θj + PRC(θj, A)
end while
t← t+ tk

end while

Now, some remarks are in order:

· The phase of each neuron is normalized to lie between 0 and 2π. This rescaling makes
things easier when comparing PRCs of neurons with different oscillation frequencies,
since they now have the same domain and range. This means that if we use (2.4) to
compute PRC(θ, A), we first have to ”denormalize” θ and then normalize the result if
we want to update the phase.

· Of course, when we talk about the phase ∀j, we are referring to the neurons that are
in the oscillatory regime, as it would not make sense to talk about the period of a
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neuron that is at rest. Nevertheless, as we have previously seen in section 1.2.1.1, a
high enough perturbation (or several small ones in a short amount of time) can evoke
a spike from a neuron with Ij ≤ 0. We are interested in registering these spikes, as
they affect the whole network, so in parallel to alg.1, we will integrate the neurons
with Ij ≤ 0. We have the analytical solution, so we can easily control the evolution
of these neurons at each time step tk. However, equation (3.1) might not be the same
as equation (1.1), because I(t) can be a time-dependent function, as we saw in fig.1.8.
This brings us to the next point:

· The introduction of an intensity that varies over time means that the ODE in (1.1)
can change drastically, and the solutions and expressions we have found for the PRC
and the period, may become invalid. For example, if we inject a sinusoidal current
as in fig.1.8, some neurons would be constantly transitioning from resting to firing
spikes periodically, and the PRC would change every instant. In the implementation
for the QIF network described in section 3.1.2, at each integration step, each equation
is integrated regardless of the expression of Ij, but our algorithm cannot keep track of
these changes. However, if we consider a step function such as the one in fig.3.1 (also
seen in [5][16]), we have a constant stimulus at a certain interval, so we only have to
be careful at the points where this external input activates and deactivates. Namely,
the period of each neuron will need to be recomputed, and so, each phase needs to
be renormalized. With the increase of the current, some neurons will start spiking
periodically, which means that their phase needs to be computed (we know how to
compute the period, and similarly, we can compute the time to reach Vpeak starting at
a certain V0, so the phase is the difference between both values). When it deactivates,
we need to keep track, once again, of the voltage for the neurons that have just left the
oscillatory regime (we can compute V (θj) with initial condition Vreset right before it
deactivates). We also note that at the time step where the external current is turned
on or off, we will first need to advance the phases up until the point of activation or
deactivation, and then recompute tk considering the new Ij. Other than at those two
points, the algorithm proceeds as usual.

· As a final remark, we know exactly when each neuron spikes, so s(t) does not need to
compute the average in a certain time window, and we can consider the effect of the
spikes at each time. This means that s(t) = number of spikes at time t

N
. However, at every

iteration in the inner loop, s(t) only considers the new spikes, as the effect of previous
ones has already been registered.

Also, an important observation about the previous point and the algorithm, is that we
are not considering Js(t) as another term in the input current Ij, but as the pertur-
bation A. This raises the question of whether we can use as a voltage pulse something
that was considered as a current. The answer is yes, and we can prove it:

For simplicity, we suppose that there is only one spike at t = ts. Therefore, we can
write s as s(t) = 1

N
δ(t− ts) (δ is the Dirac delta function), and so, each neuron follows

the equation

V̇ = V 2 + I +
J

N
δ(t− ts). (3.7)
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Now, we can follow the proof found in [4]: We can write the difference of the membrane
potential right before and after the perturbation as V (ts)− lim

h→0+
V (ts−h). Then, writing

V (t) in its integral form to recover (3.7), we have

V (ts)− lim
h→0+

V (ts − h) =

∫ ts

0

V̇ (t) dt+ V (0)−
(

lim
h→0+

∫ ts−h

0

V̇ (t) dt+ V (0)

)
= lim

h→0+

∫ ts

ts−h
V̇ (t) dt = lim

h→0+

∫ ts

ts−h

(
V 2(t) + I +

J

N
δ(t− ts)

)
dt

=
J

N
+ lim

h→0+

∫ ts

ts−h

(
V 2(t) + I

)
dt =

J

N

and this ends the proof. We note that this argument is also valid if we replace V 2 + I
with a general function f(V ), as seen in the original proof.

3.2.2 Results and discussion

3.2.2.1 Comparison with the QIF network and the FREs

Now we will compare the previous scheme with the QIF network and the FREs. We are
particularly interested in the differences we may have by not considering the refractory pe-
riod for the neurons that have just fired, and how not having a fixed time step can affect the
overall performance of the algorithm.

As the set S saves the time when each neuron fires, it is easy to generate a raster plot like
the one in fig.3.1 for the network of QIFs. This way, we can (to a certain extent) validate
our algorithm. Using the same parameters: N = 1000, η = −5, ∆ = 1, J = 7, and the
intensity I(t) defined as

I(t) =

{
3 if t ∈ [20, 60]

0 otherwise

we obtain, qualitatively, the same dynamics, as seen in fig.3.2.

Figure 3.2: Raster plot obtained using alg.1, with the same parameters as in fig.3.1.

With a small modification to the code, we can also compute the mean firing rate and the
mean membrane potential, and compare our results with the FREs, just like we did in section
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1.3. For the mean firing rate, the set S already registers the spikes, so we count the number
of spikes within [t − δt, t] and divide it by N and δt = 2 · 10−2. For the mean membrane
potential, we are already controlling the voltage for the neurons that are not periodically
spiking. For the rest, we know their phase θ at each time step, therefore, using solution (1.2),
we obtain their membrane potential by computing V (θ) with initial condition V0 = Vreset.
With that, we can compute the average for the entire population (we are not considering
the refractory period).

Figure 3.3: Comparison between the FREs (red) and our “network of PRCs” (blue). Here
we have used the original QIF equation (1.1).

In fig.3.3, we notice that the PRC network has both r and v slightly shifted to the left, and
the mean firing rate is higher in general, compared to the FREs. This is because we do not
put the neurons in refractory state. This means that once they reach Vpeak, they immediately
fire a spike instead of waiting 10−2 ms, and they can keep firing without waiting 10−2 ms
more, thus the increase of the firing rate. In this case, the simulation is done with N = 10000
neurons, as the FREs are exact in the thermodynamic limit, so 1000 neurons are not enough
to do the comparison. This leads to a very slow execution of the algorithm compared to the
QIF network. This is not so much because of efficiency issues with the tenfold increase of the
dimension of the system, but because of how the algorithm is designed: for the QIF network,
we have a fixed time step of 10−4 ms, while in our case every time step is the time it takes
for the next neuron to spike, so it is not fixed. On the other hand, the shape of the quantile
function (3.3) is given by a tangent function so, in our case, the greater the j, the greater ηj
is, and therefore, the smaller is its period. So neuron j = N has the shortest period, and for
N = 104 it is approximately TN = 0.0375 (for comparison, with N = 103 it is 0.1576). So,
at most, the time step is TN but in a network, all the phases keep advancing, and if there is
high activity (and on top of that, I(t) increases the overall intensity), the time step at some
instances is reduced drastically. For reference, in fig.3.3, the mean time step is around 10−5,
but it goes as low as 10−11. On the other hand, if the activity of the population is low, the
time steps increase, and the runtime can be much lower.
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3.2.2.2 When is a perturbation enough to elicit an immediate spike?

The advantage of our algorithm is that we can study the effect of an action potential on the
rest of the neurons in the network. In particular, we may be interested in knowing if a neuron
firing a spike can push another neuron to spike. Of course, if we fix the synaptic strength J to
a really high value, we can force immediate spikes after a perturbation. However, we want to
study scenarios that are as close as possible to the real dynamics of a biological network, so
we need to choose reasonable parameters that help us obtain the response that we want from
the system. We have to choose J , η and ∆ so that the population manifests high activity. In
this state, numerous perturbations will push the neurons much closer to firing, and this may
lead to higher perturbations due to some neurons occasionally synchronizing. To find these
parameters, we can use the firing-rate system of equations (1.5). As we mentioned in section
1.3, the simplicity of the FREs allows for an easier theoretical analysis of the network. With
them, we obtain the stability diagram in fig.3.4. The region where there is a single stable node
determines the parameters for which the population is in a state of low activity, because the
center of the Lorentzian distribution is very low and the synaptic strength is upper bounded,
so most neurons will generally be at rest, and the strength of the perturbations might not
be high enough to push a neuron past the threshold, so the mean membrane potential and
firing rate will converge directly to the stable node. We are interested in the region where
the fixed point is a stable focus. This is where the network exhibits high activity, as for most
of the values of η, the majority of neurons are in the oscillatory regime, and for the ones
that are not, J is usually high enough to force the neurons to spike. So, we will chose the
parameters so that they fall on this region.

Figure 3.4: Stability diagram for the fixed points of system (1.5). The solid lines
mark the points where a saddle-node bifurcation takes place. An exact parametric form

can be obtained:
(
η
∆
, J√

∆

)
=
(
−(πr̃)2 − 3

(2πr̃)2
, 2π2r̃ + 1

2π2r̃3

)
. The dotted line delimits

the transition from stable node to stable focus, and its parametrization is:
(
η
∆
, J√

∆

)
=(

−(πr̃)2 − 1
(2πr̃)2

, 2π2r̃
)

. For the derivation of these expressions, see appendix B and for

more details on the stability of the equilibria, see [16].
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Now, as we have said, we want to check if a neuron (or several) firing, can immediately force
another neuron to spike. The inner loop in alg.1 registers exactly that.

Figure 3.5: Raster plot using parameters: η = −0.5, J = 20, ∆ = 0.7. From t = 20 to
t = 50, I(t) = 9, and is it zero otherwise. We mark with a black dot the neurons that spike
due to an impulse received at the same time. All the neurons are initialized at the reset
value.

In fig.3.5, we notice that right after the external input I(t) is added (t = 20), most of the
neurons almost synchronize. This can be explained looking at the shape of the quantile
function (3.3) in fig.3.6.

Figure 3.6: Intrinsic current for each neuron j when I(t) = 0, using the same parameters as
in fig.3.5. For 0 < j < 699, we have ηj < 0, so all these neurons are in resting state.

With I(t) = 0, most of the neurons are at rest. When I(t) increases to 9, we can interpret
it as if ηj increases by 9 units, so all of those neurons that were near the bifurcation point,
start oscillating (672 out of 698 neurons in this example). The neurons in that region have
very similar properties, as the heterogeneity is most noticeable at the tails of the quantile.
This means that their initial values (their resting points, unless they have been perturbed)
when t0 = 20 ms, are quite close, and will reach Vpeak at similar times, as their periods will
be close as well. However, this sudden increase of activity and high amount of perturbations
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in a short period does not seem to elicit many immediate spikes (black dots in fig.3.5). For
reference, let us focus on one of these neurons that do spike due to an impulse: neuron
j = 660, which is marked with a black dot before t = 40 ms. Its period is T660 ' 10.341
ms, and almost 1 ms before it spikes (0.997 ms), its phase is θ660 ' 9.1407, so it is already
close to spike. During this millisecond, there is an almost vertical line in the raster plot right
before the spike, which translates to a chain of many small perturbations, but we see that
they have little effect on the advance of the phase (they advance it approximately 0.203 ms).
So this neuron finally fires not because the pulse it receives increases considerably its phase,
but because it was already very close, and any small perturbation would have been enough.
We will expand on this in the following section, where we may be able to better understand
what happens right before and after a spike.

3.2.2.3 Study of synchronization through the PRCs

We have just seen that after adding a high enough external step current, there is some partial
synchronization, but it cannot be maintained, as some neurons have faster dynamics than
others. However, as we have advanced before, knowing the shape of the phase response
curve can help us achieve synchronous firing from the population of neurons. Up until now,
we have considered instantaneous synapses, as seen in [16], which means that when there
is a spike, the signal is transmitted at the same moment instead of taking some time to
reach the other neurons. According to [5], synaptic time delays can favor the emergence of
synchronized states in the network, hence, we will adapt alg.1 to consider synaptic delays. It
can be modeled by adding an extra equation that governs s(t) (see [5]), but simply imposing
a fixed time delay Dsyn (i.e. we take s(t − Dsyn)) works as well in this case, and it can be
implemented in the algorithm. To do so, once a neuron spikes, instead of perturbing the
rest of the neurons, we will register it and assign it a timer starting at Dsyn. Then, at the
start of each iteration, we will check whether a neuron fires or the timer reaches zero faster.
In the latter case, we perturb the neurons and, if as a result of that, a neuron spikes, we
register it and start its corresponding timer, just as before. This way, we do not need the
inner while loop we previously had, as we do not have infinitely fast synapses. Of course,
we still need to be careful with the advances of time around the points where the external
current is introduced or removed. Implementing that, we obtain the raster plot in fig.3.7.

Figure 3.7: Raster plot of the same network as the one used in fig.3.5 but adding a synaptic
delay (Dsyn = 3 ms).
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We note that the last neurons fire slightly faster that the synchronized group. Looking at
fig.3.6, we can clearly see that their intrinsic current is considerably higher than that of the
rest of the cells, so their period is shorter than the one for the synchronized line, and we have
already seen that the perturbations cannot decrease the phase. A similar argument can be
made for the first neurons, as they are too slow and not even the perturbations can advance
enough their phase.

An interesting thing we have observed during the simulations is that, depending on the
parameters used (particularly for for negative η and high synaptic strength J), the population
of neurons is bistable. Initially, when I(t) = 0, the network exhibits low activity, as most of
the neurons are at rest. With the addition of a strong external current, the vast majority
of them end up synchronizing, and even when we remove this input, the strong synaptic
coupling maintains the synchrony. So, depending on the initial conditions, we have the low
activity state or the oscillatory state, as seen, for example, in fig.3.8. The network in fig.3.7
actually has only one steady state, as it does not really need an external input to force the
resting neurons to spike. In this case, most of the them being already close to the bifurcation
point, together with a strong synaptic strength, suffices.

Figure 3.8: (Top) Network exhibiting low activity when all the neurons are initialized at
Vreset and (bottom) the same network showing sustained oscillations when the neurons are
initialized already synchronized. Parameters: η = −3, J = 13, ∆ = 0.3, Dsyn = 3.

With this bistability, one might think that we are in the bistable region in the bifurcation
diagram presented in fig.3.4. However, by adding the delay, that diagram is not valid any-
more, and furthermore, in that context, the bistability consisted in the coexistence of two
stable fixed points[16] and not a stable limit cycle and a stable fixed point. For more details
on the stability of the FREs with synaptic delays, we refer to [5].

Now, going back to the network simulated in fig.3.7, with alg.1 we can select a few neurons
distant enough in terms of ηj, and see how their phase advances if we focus on the interval
delimited by two of the vertical lines in fig.3.7, corresponding to the synchronized spikes.
Storing the phase of the neuron every time it receives an impulse, we obtain fig.3.9. As
we noted before, both the phase and the PRC have been normalized to lie between 0 and
2π, which is useful to compare between the different neurons, since they now have the same
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domain and range. The vertical lines mark the phase at which the neuron receives a stimulus.
These perturbations happen at the same time for each neuron, but not at the same phase.

Figure 3.9: Normalized PRC (in yellow) of some selected neurons. The vertical lines mark
the phase at which the neuron receives a stimulus. The inputs received before the denser
part of perturbations correspond to spikes of the last neurons (the ones with higher index), as
they spike several times before the synchronized neurons fire again. In particular, in the first
plot, as the neuron spikes slightly earlier, we can even register the spikes made by the first
neurons (the ones with lower index), which fire a bit later than the synchronized collective.

We observe that the chain of perturbations start at a later (normalized) phase for the neu-
rons with faster dynamics, i.e. the ones with larger intrinsic current (see top panels in
fig.3.9). Therefore, the neurons with higher frequency will be perturbed right at the end of
their phase, where its impact will be minimal and, with lower frequencies, the pulses will
land closer to the peak of the PRC, where they will be more effective. This way, the faster
neurons will not deviate as much from their free-running trajectory, and the slower will be
advanced to catch up with them. Nonetheless, we notice that for the cells around j = 900,
which also have a high firing rate, the perturbations fall mostly in the interval where they
are most effective, so their phase should advance even faster. However, the phase increase
due to a single pulse in that region is insignificant anyway, since these neurons have a short
slow region due to their fast dynamics which, in turn, means that their PRC will not reach
large values. This is translated in fig.3.9 as the vertical lines being really close and, as we
move to the less active neurons, the distance between them is more perceptible. This brings
us to the next observation, which is that similarly to what happens for the fast neurons,
where the stimuli is received near the end of the phase (θ = 2π), for the slower neurons
the stimuli starts near θ = 0, where is not as effective either. However, for these neurons
with lower intrinsic current, a single pulse can be very striking, even at lower phases and,
if these initial pulses can push the phase close to where the PRC has its maximum, every
perturbation will advance it drastically, as we can see in the last plot, where this can be
interpreted as the vertical lines having a quite noticeable separation between them. For the
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first neurons (j < 27) we cannot strictly talk about their PRCs, as they are not oscillating,
but their dynamics are so slow, that the perturbations arrive too early to effectively advance
their trajectory.

All of this explains the behaviour of the network in the previous section, when the synaptic
delay was infinitely fast. When we had the almost vertical line around t = 20 ms, those
neurons received the stimuli instantaneously, therefore, the perturbation was right at the
beginning or the end of their phase, as they had just spiked or were about to do so. As
we have seen, at those points the effect is almost non-existent, thus the neurons cannot
synchronize. This also explains the black dots we discussed earlier, as the perturbations
will make the neuron spike because it was already close to doing so, not because the phase
was greatly advance, just as we observed. The same argument can be done for really small
delays, which will not synchronize the neurons either. Moreover, if we increase the delay,
the frequency may change, until the delay is so large that the synchrony disappears. This is
known as frequency suppression [5].



4 Conclusions

In this project, we have studied how neurons interact with each other in a network. To do so,
we have worked with the quadratic integrate-and-fire model for a single neuron, to which we
have analyzed its dynamics and computed its analytical solution depending on the applied
current. We have seen that, when the neuron exhibits periodic spiking, we can compute its
phase response curve. In our case, as we had the exact solution of the QIF ODE, we were
able to obtain the exact expression for its PRC which, for most models, is usually not possible.

Then, after reviewing a model for a network of neurons and a recently derived set of firing-rate
equations (both for QIF neurons), we have designed an algorithm to describe a population of
QIF neurons through their PRCs. Comparing with the aforementioned models, we have seen
that our method accurately describes the dynamics of the network. With it, we were able to
study how all the stimuli received from the network affects each neuron. In particular, we
wanted to see whether a spike (or a quick succession of them) could advance the phase of a
neuron enough to force it to spike. We reached the conclusion that, in those instances, the
neuron did not spike due to a large advance of its phase, but because it was already really
close to do so, and any small perturbation would have sufficed. Moreover, any pulse received
near the end of the phase, will not have any significant effect, as the PRC is almost zero.
This further explained our observations.

After that, we were interested in the acquisition of a population exhibiting synchronized
firing. In chapter 2, when we studied the PRC of a QIF neuron, we observed that this
model has an always positive PRC for perturbations greater than zero, which means that
the phase will always be advanced for these kind of pulses. Furthermore, we noticed that
the quadratic integrate-and-fire, when oscillating, has a slow region around half its period,
where its membrane potential increases at a much lower pace. Here is where the PRC is
greater, and so, it is where the phase makes longer jumps for any perturbation. Then, with
our algorithm, we have seen how, if we delay the perturbations instead of having instant
synapses, they have a more pronounced effect on the neurons with slower frequency, as they
fall around the peak of the PRC. In addition to that, the PRC for the slower neurons has
much higher values, so their phases advance much faster to catch up with the rest. All these
factors combined, explain how the population can maintain the synchronized firing. So, with
the tools we have studied and developed throughout the project, we managed to gain more
insight into the generation of these coordinated states in a collective of neurons.
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4.1 Future work

While we were able to use the exact solution of the QIF equation, this does not restrict the
use of the tools developed in this project. The results obtained here validate the use of the
PRCs and create a solid base to study the same problem with networks of neurons with
expressions that we cannot explicitly integrate, which is usually the case. In this regard, we
provide a proof of concept for the systematic use of PRCs in networks to tackle synchroniza-
tion problems.

Due to the time constraints of a bachelor’s degree thesis, it was not possible, but it would
have been interesting to work in the more analytical part of the problem: finding a mean-
field expression for the PRCs, following the same methodology as the authors in [16] used to
derive the FREs for a network of QIFs (the Ott-Antonsen theory). The numerical simulations
carried out in this project are a positive test that this might be feasible. Alongside, we could
compute the PRC for the FREs of the QIF population, which, for the case of a limit cycle,
can be done numerically with the adjoint method that we mentioned in section 2.1.1. For
the case of the stable focus, we could use the theory developed in [17]. The final objective
would be to compare the PRC of the FREs with the “mean-field PRC”.

4.2 Acquired knowledge

Prior to this work, I had already studied single-neuron models, namely the Hodgkin-Huxley
and FitzHugh-Nagumo equations and, more recently, I have also worked with the Morris-
Lecar model. I have found these models very interesting and useful when studying the
behaviour of excitable cells, but they have also doubled as great examples to introduce, or
work more in-depth, important concepts in dynamical systems theory, such as bifurcations,
stability and phase space analysis. In this project, working with the quadratic integrate-and-
fire model has helped me further understand these concepts, and also see the importance
of having simple models and why they are sometimes preferred over the more biophysically
accurate ones. Here, I have also been introduced to the modeling of neuronal networks, with
both the microscopic and the mean-field approaches. Apart from the theoretical results,
seeing through the phase and the PRCs how the neurons communicate with each other and
everything else that is written in this document, working with very high dimensional systems
of thousands of neurons, has taught me to be more careful when writing code, particularly
when creating arrays, since the memory quickly running out and the simulations taking too
long to finish, were common issues I had to deal with. In summary, with this project, I have
learned about many aspects related to mathematical modeling, and it has led me to discover
many more interesting topics related to the vast field of mathematical neuroscience.
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A Nondimensionalization of the quadratic

integrate-and-fire model

In 2000, Latham et al.[15], proposed a more general form of the quadratic integrate-and-fire,
which can be written as

CmV̇ = I + gl
(V − Vr)(V − Vth)

Vth − Vr
, (A.1)

where Cm and gl are the membrane capacitance and the leak conductance respectively (same
as with the Hodgkin-Huxley model), and Vr, Vth are the rest and threshold potentials.

Using the change of variables V = Ṽ (Vth − Vr) + Vth+Vr
2

, (A.1) transforms into

τm
˙̃V =

I

gl(Vth − Vr)
− 1

4
+ Ṽ 2,

where τm = Cm/gl is the membrane time constant ([Cm] = M−1L−2T 4I2, [gl] = M−1L−2T 3I2

=⇒ [τm] = T ). So, taking Ĩ = I
gl(Vth−Vr)

− 1
4
, we end up with

τm
˙̃V = Ĩ + Ṽ 2. (A.2)

We note that Ṽ has no dimensions. Conductance can be interpreted as the inverse of the
resistance, so Ĩ has no dimensions either. At the same time, we could have applied the
change t = t̃/τm, but we wanted to show equation (A.2), because considering the membrane
time constant can sometimes be useful, as we will see throughout the document. Using this
last change, we finally get

Ṽ = Ĩ + Ṽ 2, (A.3)

which is the nondimensionalized form of the QIF (in the main body of the document, we
drop the tildes for notation’s sake). This expression is actually the normal form of a saddle-
node bifurcation (considering that the constant multiplying the term Ṽ 2 is 1). In fact,
Hoppensteadt and Izhikevich showed in [10] that any neuronal model close to a saddle-node
bifurcation can be transformed into (A.3) by a piecewise continuous change of variables.

Finally, if the reader is interested, we use the rest of this section to show the full derivation
of the solutions for (A.3), presented in section 1.2.1. It is a Riccati’s equation (in reduced
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form), so it can be solved using the change z = 1
V−
√
−I , but it is straightforward solving by

separation of variables: For I > 0

dV

dt
= I + V 2 ⇐⇒

∫
dV

I + V 2
=

∫
dt.

The integral on the left-hand side can be expressed as

1√
I

∫
1/
√
I

1 + (V/
√
I)2

dV

thus
1√
I

arctan

(
V√
I

)
= t+ C

and solving for V , we get

V (t) =
√
I tan

(√
I(t+ C)

)
.

If we impose the initial condition V (0) = V0, we get

V0 =
√
I tan

(
C
√
I
)
⇐⇒ C =

1√
I

arctan

(
V0√
I

)
and the solution of the IVP is

V (t) =
√
I tan

(
arctan

(
V0√
I

)
+ t
√
I

)
.

Now, for I < 0, we first perform the change of variables I = −Ĩ2 (I = −Ĩ also works, but
this way we do not have to carry the square root throughout the calculations). Then

dV

dt
= −Ĩ2 + V 2 ⇐⇒

∫
dV

V 2 − Ĩ2
=

∫
dt.

The left-hand side can be written as∫
dV

(V + Ĩ)(V − Ĩ)
=

1

2Ĩ

∫
dV

V − Ĩ
− 1

2Ĩ

∫
dV

V + Ĩ
.

Therefore

t+ C =
1

2Ĩ
log
(
V − Ĩ

)
− 1

2Ĩ
log
(
V + Ĩ

)
=

1

2Ĩ
log

(
1− 2Ĩ

V + Ĩ

)
and undoing the change and solving for V , we get

V (t) =
2
√
−I

1− e2
√
−I(t+C)

−
√
−I.

Once again, if we impose the initial condition V (0) = V0, we have

V0 =
2
√
−I

1− e2C
√
−I
−
√
−I ⇐⇒ C =

1

2
√
−I

log

(
1− 2

√
−I

V0 +
√
−I

)
.
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So the solution for the IVP with I < 0 is

V (t) =
2
√
−I

1− e2t
√
−I
(

1− 2
√
−I

V0+
√
−I

) −√−I.
Finally, for I = 0

dv

dt
= V 2 ⇐⇒

∫
dV

V 2
=

∫
dt ⇐⇒ 1

V
= C − t ⇐⇒ V (t) =

1

C − t

and similarly to the previous cases, the solution of the initial value problem is

V (t) =
V0

1− V0t
.

And if we undo the initial changes of variables, we obtain the solutions for (A.1) depending
on the sign of I.



B Deduction of the parametric curves in fig.3.4

Consider the system of firing-rate equations with the addition of the membrane time constant
τm

[5]

τmṙ =
∆

πτm
+ 2rv, (B.1a)

τmv̇ = v2 + η − (πτmr)
2 + Jτmr. (B.1b)

Notice that we consider I(t) = 0 (we can interpret I(t) as an increase or decrease of η).
Furthermore, if τm = 1, we recover the system (1.5), but we will see that this parameter
does not affect the final result.

The system has 4 parameters, so we propose a change of variables to reduce this number:

v =
√

∆ṽ, r =

√
∆

τm
r̃, t =

τm√
∆
t̃.

With this, (B.1) is transformed into

˙̃r =
1

π
+ 2r̃ṽ, (B.2a)

˙̃v = ṽ2 +
η

∆
− (πr̃)2 +

J√
∆
r̃. (B.2b)

So now we can study the stability considering the two parameters η
∆

and J√
∆

. The fixed points

satisfy equations (B.2a)−(B.2b) when they are equated to 0 (i.e. they are the intersecting
point of the nullclines), therefore, they verify

1

π
+ 2r̃ṽ = 0, (B.3)

ṽ2 +
η

∆
− (πr̃)2 +

J√
∆
r̃ = 0. (B.4)

To study the linear stability of the fixed points, we need to compute the eigenvalues of the
Jacobian matrix of the system evaluated at them. The matrix is given by

J =

(
2ṽ 2r̃

−2π2r̃ + J√
∆

2ṽ

)
36
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and it has eigenvalues

λ± = 2ṽ +±

√
−4π2r̃2 + 2

J√
∆
r̃.

From [16], we know that the system undergoes a saddle-node bifurcation (see fig.B.1). There-
fore, we need to check when one of the eigenvalues is 0. We note that the (rescaled) firing-rate
variable r̃ has to be nonnegative for it to have physical meaning. As a consequence, from
eq.(B.3) we deduce that ṽ < 0. This implies that only eigenvalue λ+ can be zero, so we get
the equation1

2ṽ +

√
−4π2r̃2 + 2

J√
∆
r̃ = 0. (B.5)

So (B.3)−(B.4) together with (B.5) determine the points where the system undergoes a

saddle-node bifurcation, and solving for
(
η
∆
, J√

∆

)
, we obtain the parametric curve(

η

∆
,
J√
∆

)
=

(
−(πr̃)2 − 3

(2πr̃)2
, 2π2r̃ +

1

2π2r̃3

)
.

For the curve that serves as a delimiter for the regions of stable nodes and stable foci, we
need to check when the imaginary part of the eigenvalues disappears (for a 2D system, a
focus has two complex conjugate values, while a node has two real eigenvalues with the same
sign). Therefore, the fixed point has to verify

−4π2r̃2 + 2
J√
∆
r̃ = 0

and together with (B.3) and (B.4), we obtain the curve(
η

∆
,
J√
∆

)
=

(
−(πr̃)2 − 1

(2πr̃)2
, 2π2r̃

)
.

Figure B.1: Bifurcation diagram for J = 20 and ∆ = 0.7. The black asterisks mark the
bifurcation points, and the dashed line corresponds to the unstable (saddle) fixed point.

1 If we had not made this observation, to find if a fixed point is the locus of a saddle-node bifurcation, we
can check when the determinant of the Jacobian evaluated at that point is zero. The determinant of a
matrix is the product of its eigenvalues, so if it is 0, then one of them has to be 0.



C Matlab scripts

C.1 Network of QIF neurons

1 c l e a r a l l ; c l o s e a l l ; c l c ;
2 t i c ;
3
4 %%% Parameters %%%
5
6 t0 = 0 ; tn = 80 ;
7
8 N = 1000; %Number o f neurons in the network
9 j = 1 :N; %Neuron index

10
11 etaB = −5; %Bar eta
12 J = 15 ;
13 d = 0 . 8 ; %Delta
14 eta = etaB + d∗ tan ( ( p i /2) ∗((2∗ j − N − 1) /(N + 1) ) ) ;
15 Vpeak = 100 ; Vreset = −100;
16 V = Vreset + (Vpeak−Vreset )∗ rand (1 ,N) ; %The i n i t i a l vo l tage f o r each neuron
17
18 %%% Int eg r a t i on %%%
19
20 dt = 1e−4;
21 n = ( tn−t0 ) /dt ;
22 t1 = l i n spa c e ( t0 , tn , n) ;
23 I = I1 ( t1 ) ;
24 s = ze ro s (1 , n) ;
25 r e f r a c t o r y t ime = [ ] ; %Time s t ep s l e f t f o r neurons in r e f time
26 r e f r a c t o r y i nd e x e s = [ ] ; %Indexes from V of neurons in r e f time ;
27 nSpikes = [ 0 ] ;
28 r a s t e r i n d e x e s = 1 : 1000 ;
29 r a s t e r s p i k e s = ze ro s (n ,1000) ;
30
31 f o r i = 0 : n−1
32 i f i > 0
33 V = V + dt ∗ ( (V. ˆ2 ) + eta + J∗ s ( i ) + I ( i ) ) ; %Euler s tep
34 end
35 r e f r a c t o r y t ime = r e f r a c t o r y t ime − 1 ; %Ref neurons are one step c l o s e r to freedom
36 V( r e f r a c t o r y i nd e x e s ) = Vreset ; %The neurons in r e f s t a t e cannot be updated
37 Vpeak indexes = f ind (V >= Vpeak ) ; %Find indexes o f the neurons that reached Vp
38 r a s t e r s p i k e i n d e x e s = f i nd (V( r a s t e r i n d e x e s ) >= Vpeak ) ; %The same again f o r the ones in the r a s t e r
39 V( Vpeak indexes ) = Vreset ; %Reset t h e i r vo l tage
40 r e f r a c t o r y i nd e x e s = [ r e f r a c t o r y i nd e x e s Vpeak indexes ] ; %Add them into r e f s t a t e
41 r e f r a c t o r y t ime ( end+1:end+s i z e ( Vpeak indexes , 2 ) ) = 200 ; %I n i t i a l i z e t h e i r counter to 200 s t ep s
42 f i n i s h r e f t i m e = f ind ( r e f r a c t o r y t ime == 0) ; %Find the ones that j u s t f i n i s h e d r e f time
43 r e f r a c t o r y i nd e x e s ( f i n i s h r e f t i m e ) = [ ] ; %Remove them from the l i s t
44 r e f r a c t o r y t ime ( f i n i s h r e f t i m e ) = [ ] ; %Remove them from the counter l i s t as we l l
45 sp i k e i nd ex e s = f ind ( r e f r a c t o r y t ime == 100) ; %Find the neurons that have reached +i n f
46 nSpikes ( i +1) = s i z e ( sp ike indexe s , 2 ) ; %At +in f , we say that they have sp iked
47 r a s t e r s p i k e s ( i +1, r a s t e r s p i k e i n d e x e s ) = 1 ;
48
49 i f i < 10
50 s ( i +1) = sum( nSpikes ) /(N∗1e−3) ;
51 e l s e
52 s ( i +1) = sum( nSpikes ( end−9:end ) ) /(N∗1e−3) ;
53 end
54 end
55 toc ;
56
57 %%% Plots %%%
58
59 f i g u r e ;
60 f o r i = 1:1000
61 p = f ind ( r a s t e r s p i k e s ( : , i ) == 1) ;
62 i f s i z e (p , 1 ) > 0
63 %For the r a s t e r plot , the sp i k e s are counted once Vpeak i s reached , but the sp ike i s a c tua l l y
64 %f i r e d 10ˆ−2 time un i t s a f t e r that
65 p lo t ( t1 (p)+1e−2, i , ’ . b ’ , ’ MarkerSize ’ , 1) ; hold on ;
66 end
67 end

38
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68
69 y l ab e l ( ’ Neuron index ’ ) ; x l ab e l ( ’Time ’ ) ;
70 xlim ( [ t0 , tn ] ) ;
71
72
73
74 %%% Functions %%%
75
76 func t i on r e s = I1 ( t )
77 s = max( s i z e ( t ) ) ;
78 r e s = ze ro s (1 , s ) ;
79 aux = f ind ( t >= 20 & t <= 50) ;
80 r e s ( aux ) = 3 ;
81 end

C.2 Algorithm for coupling PRCs

1 c l e a r a l l ; c l o s e a l l ; c l c ;
2 t i c ;
3
4 %%% Parameters %%%
5
6 t0 = 0 ; tn = 80 ; %I n i t i a l and f i n a l time
7
8 N = 1000; %Number o f neurons in the network
9 j = ( 1 :N) ’ ; %Neuron index

10
11 etaB = −5; %Bar eta
12 J = 15 ;
13 d = 0 . 8 ; %Delta
14 eta = etaB + d∗ tan ( ( p i /2) ∗((2∗ j − N − 1) /(N + 1) ) ) ;
15 Vp = 100 ; Vr = −100; %Vpeak and Vreset
16
17 t e 0 = 20 ; t e n = 50 ; %Star t and end time f o r the ex t e rna l input I ( t )
18
19 %%% Algorithm %%%
20
21 spNeurons1 = f ind ( eta + 0 > 0) ; %Indexes o f the neurons that exh i b i t p e r i o d i c sp i k ing when I ( t ) =

0 , i . e . the neurons with I j = eta + 0 > 0 .
22 spNeurons2 = f ind ( eta + I ( t e 0 ) > 0) ; %The same but when I ( t ) = c > 0
23 spNeurons = spNeurons1 ; %This vec tor w i l l change to spNeurons2 when I ( t ) i s act ivated , and

w i l l r e turn to spNeurons1 when dea c t i v a t e s
24
25 chNeurons = f ind ( ( eta + 0 < 0) & ( eta + I ( t e 0 ) > 0) ) ; %These are the indexes o f the neurons that at f i r s t

would be r e s t i ng , but the i n c r e a s e o f I ( t ) makes them produce p e r i o d i c sp i k e s
26
27 restNeurons1 = f ind ( eta + 0 < 0) ; %The same but with the neurons that are at r e s t
28 restNeurons2 = f ind ( eta + I ( t e 0 ) < 0) ;
29 restNeurons = restNeurons1 ;
30
31 Vrest1 = −sq r t (−eta ( restNeurons ) ) ; %The s t ab l e f i x ed point f o r the restNeurons .
32 Vrest2 = −sq r t (−eta ( restNeurons2 )−I ( t e 0 ) ) ;
33 Vrest = Vrest1 ;
34
35 %For the s imu la t i on s c a r r i e d on t h i s pro j ec t , the re were no neurons with e t a j = 0 . Otherwise , v e c to r s

s im i l a r to spNeurons and restNeurons should be inc luded
36
37 theta = 0∗(2∗ pi )∗ rand ( s i z e ( spNeurons , 1 ) ,1 ) ; %Random i n i t i a l va lues f o r the phase o f the sp ik ing neurons .

theta \ in [ 0 , 2 p i )
38
39 Tj = T( eta ( spNeurons ) + I ( t0 ) ,Vr ,Vp) ; %Period f o r each neuron
40
41 V0 = −100 + 0∗200∗ rand ( s i z e ( restNeurons , 1 ) ,1 ) ; %Random i n i t i a l va lues f o r the vo l tage o f restNeurons . We

need to keep track o f t h e i r vo l tage in case some per turbat ion f o r c e s them to produce a sp ike .
42
43 S = ze ro s (N, 1 ) ;
44
45 i = 1 ; %i t e r a t i o n counter
46 t = t0 ; %Time
47
48 whi le t < tn
49 tk = min(Tj − ( theta /(2∗ pi ) ) .∗Tj ) ;
50 tk2 = min(T( eta ( restNeurons ) + I ( t ) , V0 , Vp) ) ;
51 aux = 0 ;
52
53 i f ( t < t e 0 ) && ( t + min ( tk , tk2 ) >= te 0 ) %The ex t e rna l input I ( t ) ” turns on”
54 theta = ( theta /(2∗ pi ) ) .∗Tj ; %We ”denormal ize ” theta us ing the old per iod Tj
55 theta = theta + ( t e 0 − t ) ; %Al l the phases i n c r e a s e un t i l t e 0 i s reached , and from there , we

w i l l compute the time un t i l the next spike , c on s i d e r i ng the new per iod .
56 V0 = V( t e 0 − t , 0 ,V0 , eta ( restNeurons ) + I ( t ) ,Vp, Vr , Vrest ) ; %The same f o r the membrane po t en t i a l o f

the other neurons .
57 V0sp = sqr t ( eta ( spNeurons ) + I ( t ) ) .∗ tan ( atan (Vr . / sq r t ( eta ( spNeurons ) + I ( t ) ) ) + sq r t ( eta ( spNeurons

) + I ( t ) ) .∗ theta ) ; %We compute the membrane po t en t i a l o f the sp ik ing neurons to recompute
t h e i r phase in the next l i n e .
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58 theta = [T( eta ( chNeurons ) + I ( t + tk ) ,Vr ,Vp) − T( eta ( chNeurons ) + I ( t + tk ) ,V0( end−s i z e ( chNeurons
, 1 ) +1:end ) ,Vp) ; T( eta ( spNeurons ) + I ( t + tk ) ,Vr ,Vp) − T( eta ( spNeurons ) + I ( t + tk ) ,V0sp ,Vp) ] ;
%With the i n c r e a s e o f i n t en s i t y , chNeurons now exh ib i t p e r i o d i c sp ik ing , so we need to compute

t h e i r phase . We a l s o recompute the phase o f the sp ik ing neurons .
59
60 spNeurons = spNeurons2 ;
61 restNeurons = restNeurons2 ;
62 Vrest = Vrest2 ;
63
64 Tj = T( eta ( spNeurons ) + I ( t + tk ) ,Vr ,Vp) ; %The per iod i s recomputed
65 V0( end−s i z e ( chNeurons , 1 ) +1:end ) = [ ] ; %At [ te 0 , t e n ] we do not keep track o f the membrane

po t en t i a l o f chNeurons
66 tk = min(Tj − theta ) + ( t e 0 − t ) ;
67 tk2 = min(T( eta ( restNeurons ) + I ( t + tk ) , V0 , Vp) ) + ( t e 0 − t ) ;
68 aux = te 0 − t ;
69
70 theta = ( theta . / Tj ) ∗2∗ pi ; %We normal ize theta with the new per iod Tj
71
72 e l s e i f ( t <= te n ) && ( t + min ( tk , tk2 ) > t e n ) %The ex t e rna l input I ( t ) ” turns o f f ”
73 theta = ( theta /(2∗ pi ) ) .∗Tj ;
74 theta = theta + ( te n − t ) ;
75 V0 = V( te n − t , 0 ,V0 , eta ( restNeurons ) + I ( t ) ,Vp, Vr , Vrest ) ;
76
77 spNeurons = spNeurons1 ;
78 restNeurons = restNeurons1 ;
79 Vrest = Vrest1 ;
80
81 Tj = T( eta ( spNeurons ) + I ( t + tk ) ,Vr ,Vp) ;
82 V0 = [V0 ; sq r t ( eta ( chNeurons ) + I ( t ) ) .∗ tan ( atan (Vr . / sq r t ( eta ( chNeurons ) + I ( t ) ) ) + sq r t ( eta (

chNeurons ) + I ( t ) ) .∗ theta ( 1 : s i z e ( chNeurons , 1 ) ) ) ] ;
83 theta ( 1 : s i z e ( chNeurons , 1 ) ) = [ ] ;
84 V0sp = sqr t ( eta ( spNeurons ) + I ( t ) ) .∗ tan ( atan (Vr . / sq r t ( eta ( spNeurons ) + I ( t ) ) ) + sq r t ( eta ( spNeurons

) + I ( t ) ) .∗ theta ) ;
85 theta = T( eta ( spNeurons ) + I ( t + tk ) ,Vr ,Vp) − T( eta ( spNeurons ) + I ( t + tk ) ,V0sp ,Vp) ;
86 tk = min(Tj − theta ) + ( te n − t ) ;
87 tk2 = min(T( eta ( restNeurons ) + I ( t+tk ) , V0 , Vp) ) + ( te n − t ) ;
88 aux = te n − t ;
89
90 theta = ( theta . / Tj ) ∗2∗ pi ;
91 end
92
93 i f tk < tk2
94 k = f ind (Tj − ( theta /(2∗ pi ) ) .∗Tj + aux == tk ) ;
95 Lt sp = k ; L t r e s t = [ ] ;
96 k = spNeurons (k ) ;
97 e l s e i f tk > tk2
98 tk = tk2 ;
99 k = f ind (T( eta ( restNeurons ) + I ( t+tk ) , V0 , Vp) + aux == tk ) ;

100 Lt sp = [ ] ; L t r e s t = k ;
101 k = restNeurons (k ) ;
102 e l s e
103 k2 = f ind (T( eta ( restNeurons ) + I ( t+tk ) , V0 , Vp) + aux == tk ) ;
104 k = f ind (Tj − ( theta /(2∗ pi ) ) .∗Tj + aux == tk ) ;
105 Lt sp = k ; L t r e s t = k2 ;
106 k = spNeurons (k ) ;
107 k2 = restNeurons ( k2 ) ;
108 k = [ k2 ; k ] ;
109 end
110
111 S(k , i ) = tk ;
112
113 theta = theta + ( tk . / Tj ) ∗2∗ pi + ( (PRC(( theta /(2∗ pi ) ) .∗Tj , ( s i z e (k , 1 ) ∗J ) /N, eta ( spNeurons ) + I ( t + tk ) ,

Vr , Tj ) ) . / Tj ) ∗2∗ pi ;
114 theta ( Lt sp ) = 0 ;
115 V0 = V( tk , 0 , V0 , eta ( restNeurons ) + I ( t + tk ) , Vp, Vr , Vrest ) ; V0 = V0 + ( s i z e (k , 1 ) ∗J ) /N;
116 V0( L t r e s t ) = Vr ;
117
118 L sp = f ind ( theta >= 2∗ pi ) ; Lt sp = [ Lt sp ; L sp ] ; theta ( L sp ) = 0 ;
119 nSpikes = s i z e ( L sp , 1 ) ;
120 L r e s t = f ind (V0 >= Vp) ; L t r e s t = [ L t r e s t ; L r e s t ] ; V0( L r e s t ) = Vr ;
121 nSpikes = nSpikes + s i z e ( L res t , 1 ) ;
122
123 whi le nSpikes ˜= 0
124 S ( [ restNeurons ( L r e s t ) ; spNeurons ( L sp ) ] , i ) = tk + 1 ; %The +1 i s to d i s t i n gu i s h these neurons

from the ones in k
125
126 theta = theta + ( (PRC(( theta /(2∗ pi ) ) .∗Tj , ( nSpikes∗J ) /N, eta ( spNeurons ) + I ( t + tk ) , Vr , Tj ) ) . / Tj )

∗2∗ pi ;
127 theta ( Lt sp ) = 0 ;
128 V0 = V0 + ( nSpikes∗J ) /N;
129 V0( L t r e s t ) = Vr ;
130
131 L sp = f ind ( theta >= 2∗ pi ) ; Lt sp = [ Lt sp ; L sp ] ; theta ( L sp ) = 0 ;
132 nSpikes = s i z e ( L sp , 1 ) ;
133 L r e s t = f ind (V0 >= Vp) ; L t r e s t = [ L t r e s t ; L r e s t ] ; V0( L r e s t ) = Vr ;
134 nSpikes = nSpikes + s i z e ( L res t , 1 ) ;
135 end
136
137 i = i + 1 ;
138 t = t + tk ;
139 end
140
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141 toc ;
142
143 %%% Plots %%%
144
145 f i g u r e ;
146 t = t0 ;
147 f o r k = 1 : i−1
148 v = f ind (S ( : , k ) ˜= 0) ; %I ’m assuming that no neuron w i l l f i r e exac t l y at t = 0 . . .
149 tk = min(S(v , k ) ) ;
150 f i r s t = f i nd (S ( : , k ) == tk ) ;
151 i f tk == −1
152 tk = 0 ;
153 end
154 p lo t ( t+tk , f i r s t , ’ . r ’ , ’ MarkerSize ’ , 6) ; hold on ;
155 t = t + tk ;
156 end
157
158 %We separate the p l o t s so that the ones that are marked in black f a l l on top o f the othe r s . This way they

are more v i s i b l e .
159
160 t = t0 ;
161 f o r k = 1 : i−1
162 v = f ind (S ( : , k ) ˜= 0) ;
163 tk = min(S(v , k ) ) ;
164 i f tk == −1
165 tk = 0 ;
166 end
167 v = f ind (S ( : , k ) == tk+1) ;
168 p lo t ( ( t+tk ) ∗(v . / v ) , v , ’ . k ’ , ’ MarkerSize ’ , 7) ;
169 t = t + tk ;
170 end
171 xlim ( [ t0 tn ] ) ;
172
173
174
175 %%% Functions %%%
176
177 func t i on r e s = I ( t )
178 r e s = 0 ;
179 i f t >= 20 && t <= 50
180 r e s = 3 ;
181 end
182 end
183
184
185 func t i on r e s = PRC( theta , A, I , Vr , T)
186 J = 1./ sq r t ( I ) ;
187 r e s = min ( J .∗ ( atan (A∗J + tan ( atan ( J∗Vr) + theta .∗ sq r t ( I ) ) ) − atan ( J∗Vr) ) , T) − theta ;
188 end
189
190
191 func t i on r e s = T( I ,V0 ,Vp)
192 i f I (1 ) > 0 %We suppose that a l l the neurons have I j with the same s ign
193 J = 1 ./ sq r t ( I ) ;
194 r e s = J .∗ ( atan ( J∗Vp) − atan ( J .∗V0) ) ;
195 e l s e i f I (1 ) < 0
196 a = Vp∗V0 ; b = Vp∗ sq r t (− I ) ; c = V0.∗ sq r t (− I ) ;
197
198 r e s = (1 . / (2∗ sq r t (− I ) ) ) .∗ l og ( ( a + b − c + I ) . / ( a − b + c + I ) ) ; %Time un t i l next sp ike f o r the

neurons with I < 0
199
200 aux = f ind (V0 <= sqr t (− I ) ) ;
201 r e s ( aux ) = +i n f ;
202 e l s e
203 r e s = (1 . /V0) − 1/Vp;
204 aux = f ind (V0 <= 0) ;
205 r e s ( aux ) = +i n f ;
206 end
207 end
208
209
210 func t i on r e s = V( t , t0 ,V0 , I ,Vp, Vr , Vrest )
211 i f I (1 ) < 0 %We suppose a l l the neurons have the same s i gn o f the i n t en s i t y , so we check only the

f i r s t
212 r e s = (2∗ sq r t (− I ) ) ./(1− exp (2∗ sq r t (− I ) ∗( t−t0 ) ) .∗(1−((2∗ sq r t (− I ) ) . / (V0 + sqr t (− I ) ) ) ) ) − sq r t (− I ) ;
213 e l s e i f I (1 ) == 0
214 r e s = V0./(1−V0∗( t−t0 ) ) ;
215 e l s e
216 r e s = sq r t ( I ) .∗ tan ( atan (V0 ./ sq r t ( I ) ) + sq r t ( I ) ∗( t−t0 ) ) ;
217 end
218
219 spIndex = f ind ( (V0 > −Vrest & re s < Vrest ) | ( r e s >= Vp) ) ;
220 r e s ( spIndex ) = Vr ;
221 end
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