
Classification of Changes in API Evolution
Rediana Koçi, Xavier Franch, Petar Jovanovic, Alberto Abelló

Universitat Politècnica de Catalunya, BarcelonaTech
{koci, franch, petar, aabello}@essi.upc.edu

Abstract—Applications typically communicate with each other,
accessing and exposing data and features by using Application
Programming Interfaces (APIs). Even though API consumers
expect APIs to be steady and well established, APIs are prone
to continuous changes, experiencing different evolutive phases
through their lifecycle. These changes are of different types,
caused by different needs and are affecting consumers in different
ways. In this paper, we identify and classify the changes that
often happen to APIs, and investigate how all these changes are
reflected in the documentation, release notes, issue tracker and
API usage logs. The analysis of each step of a change, from
its implementation to the impact that it has on API consumers,
will help us to have a bigger picture of API evolution. Thus, we
review the current state of the art in API evolution and, as a
result, we define a classification framework considering both the
changes that may occur to APIs and the reasons behind them. In
addition, we exemplify the framework using a software platform
offering a Web API, called District Health Information System
(DHIS2), used collaboratively by several departments of World
Health Organization (WHO).

Index Terms—API evolution, API changes classification, log
mining, issue tracker.

I. INTRODUCTION

Nowadays, Application Programming Interfaces (APIs) are
being broadly used [16]. The main reason for this success
is that APIs provide advantages to their consumers (software
developers) and their producers (companies and institutions
that expose their organizational data). Software developers that
use APIs do not have to start from scratch when coding their
applications. By outsourcing some functionality to the API,
they can speed up their work focusing on other requirements.
On the other hand, by making available their API, organiza-
tions can increase the customer reach of their brand or can
create a new revenue stream by monetizing the API.

In an ideal world, the cooperation between API produc-
ers and API consumers could be described as follows: API
producers develop a stable API, providing very detailed and
helpful documentation, so API consumers use it without dif-
ficulties, while further improvements of the API do not affect
them. In practice, the opposite usually happens: APIs are prone
to continuous changes, often backwards incompatible and
supported by poor documentation. All of this has a negative
impact on API consumers [1], [3], [7].

Our main objective is to give an overall view of how an
API change is reflected not only in its implementation but
in four artifacts, namely release notes, API documentation,
issue tracker, and versioning system. We firstly identify and
classify the changes that often happen to APIs, by analyzing
the API controller. The syntax of API, that consumers use in

the calls, is implemented in the controller code. It handles the
request/response to and from API, so every change made on it
will impact the consumers. Then, we analyze the artifacts, to
see where and how API producers explicitly introduce them.
We refer to API documentation and release notes as two main
sources of information for API consumers when they integrate
with an API or upgrade to a new version of it [6], [8]. On
the other hand, we take in study issue tracker and versioning
system as two important tools used by API producers while
developing and evolving APIs [11], [18]. We evaluate the
impact these changes have on consumers by analyzing the
API log files, as they contain the calls that API consumers
make to the API. This way we avoid analyzing the code of
API consumers’ applications, which often is not available.

We review the current state of the art in API evolution and,
as a result, we define a classification framework considering
changes that may occur to APIs, the causes behind them,
and the impact they have on API consumers. In addition,
we apply our framework on a real world use case. Analyzing
the complete API evolution lifecycle, from raising the issue,
through its implementation, documentation, publishing it in the
release notes, and finally analyzing its usage though API calls,
helped us to better understand the impact that this process has
on the API consumers. Throughout this paper we focus on
the Web APIs (APIs over the Internet), and for the sake of
simplicity we refer to them as API. We introduce and further
use the following concepts:

• API producers - those who develop and expose the API.
• API consumers - those who develop applications that rely

on and consume the API.
• API change - a change in API declaration level.
• API controller - handlers of incoming/outgoing HTTP

request/response.
• API artifacts - sources where API producers explicitly

introduce information about evolution, like release notes,
documentation, issue tracker and versioning systems.

Our study is driven by the following research questions:
• RQ1: Which are the changes that happen to APIs when

they evolve?
• RQ2: How are the changes that happen to APIs reflected

in different API artifacts?
• RQ3: Which are the causes of the API changes?
• RQ4: To what extent are the API changes reflected in the

usage logs?
In summary, this paper makes the following contributions:
• Identifies changes that can happen to APIs.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/EDOC.2019.00037



• Classifies the API changes depending on their causes.
• Analyzes how these changes are reflected in documenta-

tion, release notes, issue tracker and log files.
Outline. In section II we give an overview of the state of

the art of the API evolution. In section III, we present the
classifications derived from a literature review. In section IV,
we describe our methodology and apply it on a real world
use case. Section V discusses our findings, while section VI
concludes the paper and discusses future work.

II. RELATED WORK

We analyze the related work mainly focusing on two re-
search lines, API evolution and API usage.

A. API evolution

Evolution of APIs has gained considerable attention from
researchers recently covering different aspects of this cumber-
some process [3], [7], [10], [14], [17]. Studies have been con-
ducted to identify the changes that occur to APIs from older to
newer versions [3], [10]. Wang et al. [10] gave a catalogue of
changes that happen to APIs and consumers reactions but did
not provide any suggestions on why they happen or how to
deal with them. Dig and Johnson [3] manually identified the
changes of five Java APIs. Based on the impact these changes
have on API consumers, they classified them as Non-Breaking
API Changes and Breaking API Changes. More than 80% of
the breaking changes were refactorings, thus they suggested
refactoring-based migration tools for applications update. Li
et al. [7] made similar recommendations. After analyzing the
changes in five web APIs, they gave suggestions for designing
migration tools to better help the migration of clients.

A lot of effort is put in analyzing the impact that API
changes have on consumers applications. Robbes et al. [20]
assessed the impact of API deprecation on a Smalltalk ecosys-
tems in terms of frequency, magnitude, duration, adaptation,
and consistency of the ripple effect (adaption to API dep-
recation). Espinha et al. [1], [2] in their exploratory studies
interviewed API consumers to share their struggles and ex-
periences during API evolution. They measured the impact
of evolution on the client side by analyzing how much code
had been changed. The study showed that the lack of an
industry standard and high frequency of changes has led to
the decrease of satisfaction of Web APIs consumers. Thus,
they recommended not to change the APIs too often and to
perform blackout tests (shutdown of older version of API in
a short time frame).

Most of the above works pay attention to the API consumer’
side, leaving aside API producer’ side. However, the latter
also face challenges and difficulties in managing and evolving
API. Xavier et al. [5] made a survey to reveal the reasons
why producers break APIs. Brito et al. [4] did a reason-
based classification of changes in APIs of 400 libraries. In
both of above-mentioned studies, they asked directly the API
developers, about their motivation to change the API. The
reasons given were the need to: implement new features, fix
bugs, simplify the API, improve maintainability and to refactor

(to improve the internal code). For each motivation, they gave
the changes that API producers performed in order to achieve
the desired results, but only Java libraries were analyzed in
both of these two surveys. Web APIs compared to library APIs,
present different challenges, not only for consumers but also
for their producers (e.g., API traffic).

Contrary to our work, that gives an overall view of all
aspects of API when changes are performed, the mentioned
research works are focused on a specific aspect of API. They
do manual monitoring of the changes or interviews with API
producers and consumers, to give a summary of changes
that happen to APIs, and sets of good practices to make
migration less painful. However, most of these approaches
do not consider the way APIs are consumed. Indeed, the
information revealed from the usage of APIs will help us to
understand the impact that changes have on their consumers.

B. API usage

Different studies exist in analyzing API usage, i.e. the ways
consumers use the API. Ed-douibi et al. [12] analyzed the
API calls to present an example-driven discovery process that
generates model-based OpenAPI specifications for REST Web
APIs. With their findings, they aimed to help developers in
speeding up the process of interacting with the API. Zhong et
al. [13] developed an API usage mining framework and a tool
called MAPO for mining API usage patterns automatically
from code snippets. Their goal was to help programmers
understand API usages and write API client code more effec-
tively. Wu et al. [14] analyzed and classified API changes and
usages together, but they did not focus on the API call, but on
the client programs. They provided suggestions for developers
and researchers to reduce the impact of API evolution through
language mechanisms and design strategies.

From our point of view, analyzing consumers’ applications
code can be an unrealistic approach. Considering that the code
is not always available, using it as input is not always possible.
Moreover, the detected patterns cannot be generalized for all
the consumers applications of the APIs in study. Each of
them might have their own way to use the API, in the form
of different sequences of calls. Thus, we aim to investigate
the impact of the evolutive actions by analyzing consumers
behaviour from the API usage logs files. These files contain
the calls of API consumers to the API. Combining knowledge
on API evolution and its impact in the API usage will be
beneficial in understanding the overall API evolution process.

III. CLASSIFICATION OF CHANGES

During their lifecycle, APIs experience several evolutive
iterations. Throughout these phases, API producers perform
different changes, which sometimes make the release of
new versions of the API necessary. According to Semantic
Version1 scheme, which uses a sequence of three digits
(Major.Minor.Patch) to control the versions, when produc-
ers perform backward compatible bug fixes, they launch a

1https://semver.org



new Patch version, when they perform backward compatible
changes they launch a new Minor version, and when they
perform non backward compatible changes, they launch a
new Major version. The two first kind of changes, for Patch
and Minor versions, are non-breaking changes. They will not
prevent existing API consumers’ applications from functioning
after the upgrade, while API consumers can optionally learn
and modify their code to benefit from new features and
improvements. Conversely, the last type of changes, introduced
in Major versions, are breaking changes. After upgrading to
Major versions, API consumers are required to modify their
code to comply with the new API version. It is important and
effective to look and analyze the history of these changes in
order to assist and anticipate further evolution of APIs.

A. Which are the changes that happen to APIs?

By observing the evolution process from points of view
of both API producers or consumers, we can apply different
classifications to these changes.

From the consumer’s point of view, referring to the com-
patibility of the new version with the previous ones, API
changes can be divided in two types: breaking changes and not
breaking changes [3]. Next, breaking changes can be classified
in changes that affect the behaviour of the API (pre and post
conditions, changes in API response) or the syntax of API.

From the producer point of view, changes can be classified
based on the causes of these changes (e.g., to add new features,
to simplify the API), the changed API elements (e.g., changes
on attributes, on methods or on classes) or the actions per-
formed on them (e.g., moving elements, adding new ones, or
refactoring). These classifications point out which part of APIs
are more stable and which ones are more change prone during
their lifecycle. Brito et al. [4] used two first classifications in
their work. They referred to changes of different API elements
(types, methods and fields) and causes of the changes. So-
han et al. [17] classified the change patterns based on the
action performed on the API element (Add[APIElements],
Remove[APIElements], Change[APIElements] etc.).

In this paper, we focus on the changes that affect the syntax
of the API (i.e., declaration level). Consumers interact with a
system components using their API, i.e., the interface of the
component. Thus, they are directly impacted by changes that
affect their syntax. To detect these kind of changes, we suggest
the comparison of API controller of two consecutive versions.
The only drawback of this option is that the API controller is
available only for open source projects. We look for changes
that can be performed on API elements as follows:

• API endpoints are URLs to access API resources (data,
functionality). API producers expose resources by pro-
viding endpoints to access them. They can disconnect
endpoints (remove), add new ones, rename, or even
replace an existing endpoint with a new one.

• Parameters are used to refine resources. They can be
path parameters (part of the request body separated by
”/”) or query parameters (part of request body after ’?’
in a key=value form). Parameters can be optional or

mandatory. New parameters can be added to resources,
existing ones can be removed, renamed, change type or
even change from optional to required, and vice versa.

• Parameters value. We can pass value from a predefined
set of values to some parameters (e.g., parameter timePe-
riod can have value from {week, month, year}). If not
defined in the call, then the default value is passed to
them. Both the set of possible values and the default one
can change.

• Request methods represent the action we make to the re-
source, like GET, POST, DELETE, UPDATE, etc. While
evolving their APIs, producers can support or unsupport
methods for a specific resource.

• Changes in authority levels. To interact with specific
resources, users should have the required authority level.
The set of authority levels for a resource can change by
adding new ones, removing or just change the needed
authority.

This classification guides us in tracking the changes, helping
in channelling our investigations for each API element.

B. How are the changes that happen to APIs reflected in
different API artifacts?

While performing changes on the API, API producers make
use of different tools and have different practices in publishing,
tracking, storing and communicating these changes to con-
sumers. We refer in overall to four different API artifacts,
namely release notes, API documentation, issue tracker, and
versioning systems, to see how evolution is reflected on them
and to what extent they document the changes.

• Release notes are documents that accompany the re-
lease of new software versions to communicate to their
consumers the new changes. Abebe et al. [8] made an
empirical study to analyze the content and structure
of different release notes and noted that most of them
contained only a limited number of changes (from 6% to
26% of all the new issues). They listed different factors
on which release notes’ writers base their decision to
select the issues, like: issue type, issue priority, number
of modified files, number of comments in issue tracker,
size of issue description, number of days to address the
issue, experience of issue reporter, etc [8].

• API Documentation has a technical nature. They pro-
vide detailed information about API elements, such as
endpoints, resources, fields, types, and parameters, often
showing examples [6]. API documentation is usually
manually written, and sometimes this process is not
synchronized with new version release. All these result
in outdated documentation [15]. Actually, obsolescence in
documentation is one of the most important concerns of
API consumers when they upgrade to new API versions
[1], [2], [19]. Uddin and Robillard [19] suggest not to
expect all the changes to be present in the documentation.
They pointed out the importance of changes that break
the backward compatibility to be especially documented.



• Issue tracker systems are tools that help teams and
organizations record, keep track and manage issues like
bugs, features and requests. Bertram et al. [18] in their
study conducted interviews with developers who used an
issue tracker. They considered the comments section as
one of the most valuable parts of issue trackers. These
comments, made in form of discussions between devel-
opers and everyone interested in that issue, are plenty
of valuable information. When the reason of the issue
opened is not specified in the description, referring to
comments can give a better understanding of it. However,
issue tracker systems are not always accessible. They are
open only in case of open source APIs.

• Versioning systems’ history logs contain information for
every change in the repository. Developers can associate
comments to their commits to explain their actions. These
comments, depending on developers style of coding and
project regulation, can vary from simple and short de-
scriptions, to more detailed ones.

C. Which are the causes of the API changes?

When performing evolutive actions, API producers are
driven by different reasons, e.g., to add new features, to fix
bugs, to simplify the API, to improve maintainability, or to
improve the security of the API [3]–[5]. Their identification
completes the big picture of the evolution of API.

Changes and causes have a many-to-many relationship.
When API producers apply changes in their APIs, even though
driven by different reasons, the set of changes can be the
same. This is even more true in bug fixing, because bugs
can have different nature (e.g., logical errors, compilation
errors, functional errors, or calculation problems). Changes
done in order to fix a compilation error can be different
from those done in errors caused by faulty calculations.
Moreover, classifying all the changes in new features, bug
fixes, simplifications and maintainability improvements can
result in a too coarse grained classification. Additionally, every
new feature is related with a specific component of API, so
this classification can go finer. In our work, we classify the
changes based on API’s aspects they affect. This will permit us
to observe also trends in API changes: which aspects of APIs
are more prone to change during API lifecycle. We adopted
the usability taxonomy developed by Mosqueira-Rey et al. [9]
to classify changes based on the target usability aspect of API
they aim to change, as follows:

• Know-ability - changes that aim to improve the ability of
API to be easily understood and learned by consumers.

• Operability - changes that aim to enrich the API with
new features and functionalities, fulfilling the needs of
different users.

• Efficiency - changes that aim to improve the performance
of the API and its consumers in terms of effort and time
spent in interacting with the API resources.

• Robustness - changes that aim to increase the capacity
of the API to prevent errors from its consumers or third
parties.

• Safety - changes that aim to increase the safety, security,
privacy and confidentiality of API resources and API
consumers.

• Subjective satisfaction - changes that aim to improve the
aesthetic of system and increase the interest of consumers
in using it.

D. How are the API changes reflected in the usage logs?

API consumers access APIs via HTTP requests, in the form
of a URL. These access logs can be obtained by monitoring the
API traffic in either the server side (provider) or the consumers
side. A log file contains log entries, each of which represents
a call to an API endpoint, Fig. 1.

https://play.dhis2.org/api/dataElements?query=Anorexia

Protocol Host Base path Relative path Query

Fig. 1. An URL to call an API.

We can refer to the access logs as traces that consumers
leave after using the API. If the information in these traces is
analyzed in the proper way, it can reveal useful knowledge.
They show which API endpoints the consumer has accessed, in
which order, and with which parameters to filter the response.

Almost every part of the API call can be prone to change
when the API evolves. Some API providers choose to specify
the version of the API in the URL, as part of the base path.
Thus, when consumers have to upgrade to a new release, they
should change the URL of every call they have made to the
API in their applications. The relative paths are also prone to
change. In the API call, the relative path is the API resource
the consumers want to access. The query part of the call, in
the form of key-value, contains parameters of the resource.
These parameters can be optional or mandatory.

IV. USE CASE: DHIS2 API

A. Methodology - Exploring evolved APIs

In our work, we study APIs evolution and aim to build our
concepts on changes that happen to them by exploring different
aspects in existing literature and the data from our use case.

First of all we identify the changes by comparing two
consecutive versions of API code. Then we analyze different
API artifacts, to see in what extent are the changes documented
in them. We do this step manually, and for the sake of
completeness we refer to different sources. We classify the
changes based on their causes and, at the same time, we
analyze the API usage logs to see the impact that these API
changes have on consumers. At the end, to better conceptualize
the cause-effect relationship of the changes in the evolution
process, we combine the two classifications, the type of
changes and their causes to find correlations between them and
the effect they have on API consumers (detected in the logs).
This conjunction emphasize the impact each class of changes
has on the consumers side, providing us clues on changes that
can be identified from the logs.



B. DHIS2 use case.
We applied our approach on the API of DHIS22, which is

an open source, web-based health management information
system, used by more than 60 native applications. It has a
strong and open API, built under REST architectural style. We
took on study version 2.27 of the API, released on 01.06.2017
and analyzed the usage logs from 11.06.2016 to 29.11.2018
in WHO installation.

1) Which are the changes that happen to APIs?: In order
to get the whole set of changes we compared API controller of
version 2.26 and 2.27. It handles the incoming HTTP requests
and sends responses back to the caller. As we were interested
in changes that affect the API syntax, this level of comparison
provided the desired set of changes.

TABLE I
DHIS2 2.27 CHANGES FROM CONTROLLER COMPARISON.

Type of change Occurrence
New parameter 19
New endpoint 10

Remove Endpoint 5
New authority 2

Change authority 1
Support Request Method 1

Total 38

In overall, we found 38 changes introduced in the new API
release, belonging to six different types of changes (Table I).

• There were 19 new parameters that were added to the
existing endpoints. These parameters provided pagina-
tion, ordering and filtering of the information returned
by endpoints.

• We found 10 new endpoints in the new version. They
provided new features to the API, like the possibility to
send notifications (sendNotifications), to validate
the new password (validatePassword) etc.

• 5 endpoints were deleted from 2.27 version. API pro-
ducers claimed to have removed not used endpoints or
endpoints whose functionality were already replaced in
the previous versions.

• 2 new authority were added in order to access two
existing endpoints.

• The authority needed to POST to predictor/run
endpoint changed from ’F PREDICTOR ADD’ to
’F PREDICTOR RUN’.

• For systemID endpoint, POST method was supported
in the new version.

2) How are the changes that happen to APIs reflected in
different API artifacts?:

• Release notes: We analyzed the release notes for the
version 2.27 of DHIS2 system. They were organized in
different sections, each of which covered changes and
updates for different aspects of the systems, e.g., Ana-
lytic Features, Tracker Features, General Features, Server
Admin Features and Web API Features. Under each item,
they provided additional information in the form of demo
examples, screenshots, or links to documentation.

2https://www.dhis2.org/about

We analyzed the Web API Features section of the release
notes3. Every item was presented in the form of a title
and a short description, for example:
“Min-max data element values: A new endpoint for
setting and retrieving min-max data element values is
introduced at /api/minMaxDataElements.”
The description lacks in explanation on how to use the
new endpoint, its attributes, etc. Beside this, only six
changes were introduced in the release notes.

• API Documentation: We compared the documentation
of version 2.26 and 2.27 and noted that sometimes they
were not updated. We found features of older versions
to appear for the first time in the latest documentation.
For example, verifyPassword is an endpoint that is
used to verify the old password when the user wants to
renew it. Even though this was live in version 2.254, it
was documented for the first time in 2.27 documentation.
There were also changes not yet documented like the
removal of ProgramStageDataElements endpoint.
It has completely disappeared in version 2.27, and this
was documented nowhere5. From the other hand, we
saw that changes that appeared in documentation were
explained in details. For example, for the new endpoint
deletedObjects, a whole paragraph were added in
the documentation, describing how it works, and giving
example of calls to the new endpoint.

• Issue tracker: DHIS2 uses JIRA as issue tracker system.
We extracted the issues of 2.27 release and filtered them
based on issue type (Bug, Feature, Design, Epic, Test,
User Story), fixVersion (all releases), and Component
(Application components, API components, Test, Doc-
umentation, Frontend, Backend). We queried the issues
with the following constraints: Issue type = Bugs or
Feature, fixVersion = 2.27, Component like API* (issues
related with changes in API component level).
Even though the extracted information was more detailed,
it was not too accurate since issues are manually opened
by developers. Sometimes, they were not linked to the
right version (fixVersion may be null) or even though
the issue was related to API, the Component field was not
filled properly, thus resulting in an incomplete list.

• Versioning systems. We referred to Github commits’
history, to find information about causes of changes in
the API. Commits at versioning systems often did not
have comments or they were too short. For some of the
commits related to bugs fixes, in the comments we could
find the issue ID of the issue opened at JIRA.

3) Which are the causes of the API changes?: From the
four API artifacts in study we referred to issue tracker to
find the causes of the changes. Since only a small number
of changes appeared in release notes and API documentation,
and commits at versioning systems lacked in comments, the

3https://www.dhis2.org/downloads
4https://github.com/dhis2
5https://jira.dhis2.org/browse/DHIS2-1939



only possibility left was issue tracker.
The reasons were explained in issues description or in the

comments discussion. We checked every issue manually. As all
project’s contributors (with or without technical background)
can open issues at JIRA, the language used by them was not
standard, thus making difficult to create a unified set of causes.
If we would rely on JIRA issue types, we would have a very
coarse grained classification: bug fixes and features. We used
the usability taxonomy of Mosqueira-Rey et al. [9], and were
able to fit every change in these classification, as in Table II.

TABLE II
DHIS2 2.27 JIRA FEATURE CLASSIFICATION.

API improved aspect 2.27 Release
Operability 26
Robustness 11
Efficiency 9

Knowability 6
Safety 8

Subjective Satisfaction 3
Total 63

The changes extracted from JIRA are more than those
identified from controller comparison because in JIRA issues
are related to changes not only in the syntax of API.

4) How are the API changes reflected in the usage logs?:
We analyzed the Apache server logs of the DHIS2 system.
The log entries contained information about client IP address,
request time, the request, the status code that the server sends
back to the client, and the size of the object returned.

Here is an example of how an API call looks:

http://.../api/dataElements.json?query=Anorexia

Its corresponding entry in the log files:

147.83.72.200 [19/Mar/2019:10:21:22 +0100]
"GET /api/dataElements.json?query=Anorexia
HTTP/1.1" 200 175

We checked how the already done changes gathered from
the first two steps, were reflected in the API calls. From 38
changes extracted from the API controller, only 10 of them
where adapted from the API consumers, so we found traces of
only 10 changes in the logs. Actually all these changes should
appear in the logs, but as DHIS2 support four last versions
of the API, its costumers delay the upgrade process. From
these 10 changes (3 new endpoints and 7 new parameters),
six of them were documented in at least one of the artifacts.
Nevertheless we cannot extrapolate, from these few data about
the type of change or being it documented or not, the fact that
consumers use it or not.

In 2.27 release notes6 a new feature was introduced:
“Min-max data element values: A new endpoint for setting

and retrieving min-max data element values is introduced at
/api/minMaxDataElements.”

It appeared in the release notes and also in the documen-
tation of version 2.27. For our surprise, all the calls made to
the new endpoint minMaxDataElements got a 404 status
code: client side error. This can be an indicator that consumers

6https://www.dhis2.org/downloads

do not refer to documentation or that the documentation
is not enough clear and lacks in examples. We saw that
this was common with the new endpoints (e.g., also with
ProgramIndicatorGroup, a new endpoint introduced in
2.27 version): it took time for consumers to properly use them.

In 2.27 version, a new query parameter was added to
analytics endpoint, hideEmptyColumns. This parameter,
when true, excludes from the response the columns with only
null values. If we look at the calls to the analytics endpoint,
without and with this parameter specified, we can see that the
object size returned in the second case is significantly reduced.
The same effect had the use of new parameters that provided
pagination (paging), optimizing the API response.

V. DISCUSSION

Within this work we presented an overview of API evolu-
tion. We performed manual analysis of API controller and four
API artifacts, to identify and classify changes that happen to
APIs and to investigate their impact on API consumers.

RQ1. We considered as ground truth the changes extracted
from API controller comparison. Accessing it is only possible
for open source APIs, but considering the incompleteness
of the other artifacts, it is the only one that can provide
the whole set of changes. Half of the changes introduced
in the new release were new parameters. Parameters are
usually used to filter the information of API resources. Thus,
these additions can be explained as a way to provide new
functionalities without splitting and rearranging the existing
endpoints, avoiding this way breaking changes. The second
most present change was the addition of new endpoints. In
overall, more than 75% of changes were non breaking ones.
This can explain somehow the fact that most API consumers
had not been upgraded with the latest version of the API.
API consumers delay the upgrade process until they need the
new features, the fixed bugs, or until the API producers stop
supporting the old versions of API.

RQ2. After analyzing different artifacts of API, we saw
that less than 50% of the changes were documented in them.
From 38 changes extracted from the controller, only 17 were
documented in at least one of the artifacts (release notes, doc-
umentation, issue tracker). Approximately 5% of the changes
(2 out of 38) were reflected on all the artifacts. Both of them
were new endpoints. Even thought it is highly recommended
for breaking changes to be documented [1], [2], [17], the
addition of new elements is also seen from API producers
as important to be documented. This way, API consumers
can learn about these new elements and how to use them.
We choose to take in study release notes, API documentation,
issue tracker, and versioning system, as a representative set
of sources from which we would be able to observe the API
evolution. Nevertheless, we do not exclude the existence of
other artifacts, like changelogs, migration guides, mailing lists
of consumers of API, API official web-page, etc. As mentioned
before, how these artifacts are maintained or used depends on
the project conventions. For DHIS2 project, these four selected
were the most complete and used ones.



RQ3. In previous studies [4], [5], interviews were conducted
to API producers, in order to get their intention for every
change. Even though this is the most straightforward way,
this information can be found also in API artifacts, where
API providers provide hints about the causes of the changes
they perform. They tend to give such information in the
issue tracker system (i.e., issue description, comments section).
Their interactive and collaborative nature, mostly on comments
section, makes these tools useful not only for API producers
while evolving the API, but also for API consumers, giving
them the possibility to get more clues about the changes.

RQ4. We analyzed the impact of the changes on consumers
side, by looking at the API usage logs. We extracted the API
log files from the server and examined them based on the
changes extracted previously from the controller. Even though
we had the set of changes, we were not able to see how all
of them were reflected in the API calls. DHIS2 supports four
last versions of the API, and few consumers did the upgrade
to the new releases, thus benefiting from the new introduced
features. Until API providers support the previous versions,
consumers will not feel urge to upgrade, unless they really
need the new features or the critical bugs fixed.

Threats to validity. In terms of validity, the main threat to
external validity is that we take in study one API. Moreover,
we focus only on syntactical changes of API. Future work
need to be carried out to increase the data set in order to obtain
more generalizable results. The main threat to internal validity
is relate to the amount of manual work done. To alleviate this
threat, we analyzed each change in different API artifacts.

VI. CONCLUSION AND FUTURE WORK

After reviewing the state of the art, we applied a use
case on API evolution. We investigated how this process
is documented and reflected in different API artifacts, and
highlighted some problematic aspects in them. We identified
the changes that are usually performed on API, and classified
them based on their types and causes. We investigated how
these changes are reflected in the API calls, and how the type
of change and its cause can affect the consumers.

In our future work, we will expand the analysis, by adding
other use cases, to obtain more generalizable results. We will
focus not only on changes on API syntax, but also changes
on API behaviour. By getting the insights about how the
changes are reflected in API usage logs, our next goal is to
further scrutinize the logs in order to find the patterns and
anticipate evolutive changes. Our work in analyzing the API
evolution and how it is handled from both sides, producers and
consumers, is a necessary step in understanding and further
automating the API evolution process, which is essential for
efficient and consistent API provisioning.

ACKNOWLEDGMENT

We thank the Neglected Tropical Diseases (NTD) depart-
ment at WHO, for providing the use case. This work is sup-
ported by GENESIS project, funded by the Spanish Ministerio
de Ciencia e Innovación under project TIN2016-79269-R.

REFERENCES

[1] Espinha, T., Zaidman, A., Gross, H.G. “Web API growing pains: Stories
from client developers and their code.” In Proceedings of IEEE Confer-
ence on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), pp. 84-93, 2014.

[2] Espinha, T., Zaidman, A., Gross, H.G. “Web API growing pains: Loosely
coupled yet strongly tied.” In Journal of Systems and Software, vol. 100,
pp. 27-43, 2015.

[3] Dig, D., Johnson, R. E. “How do APIs evolve? A story of refactoring.”
In Journal of Software Maintenance, vol. 18, pp. 83-107, 2006.

[4] Brito, A., Xavier, L., Hora, A.C., Valente, M.T. “Why and how Java
developers break APIs.” In Proceedings of IEEE International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER), pp.
255-265, 2018.

[5] Xavier, L., Hora, A., Valente, M. T. “Why do we break APIs? First
answers from developers.” In Proceedings of IEEE International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
pp. 392-396, 2017.

[6] Vasudesan, K. “What is API Documentation, and Why It
Matters?” Swager, 06-06-2017. Available: https://swagger.io/blog/api-
documentation/what-is-api-documentation-and-why-it-matters.
[Accessed: 23-05-2019]

[7] Li, J., Xiong, Y., Liu, X., Zhang, L. “How does web service API
evolution affect clients?” In Proceedings of International Conference
on Web Services (ICWS), pp. 300-307, 2013.

[8] Abebe, S.L., Ali, N., Hassan, A.E. “An empirical study of software
release notes.” In Journal of Empirical Software Engineering, vol. 21,
pp. 1107-1142, 2015.

[9] Mosqueira-Rey, E., Alonso-Rı́os, D., Moret-Bonillo, V., Fernández-
Varela, V., Álvarez-Estévez, D. “A systematic approach to API usability:
Taxonomy-derived criteria and a case study.” In Journal of Information
and Software Technology, vol. 97, pp. 46 - 63, 2018.

[10] Wang S., Keivanloo I., Zou Y. “How Do Developers React to RESTful
API Evolution?” In Proceedings of International Conference on Service-
Oriented Computing (ICSOC), pp. 245-259, 2014.

[11] Hattori, L. P., Lanza, M. “On the nature of commits.” In Proceedings
of IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pp. 63-71, 2008.

[12] Ed-douibi H., Cnovas Izquierdo J.L., Cabot J. “Example-Driven Web
API Specification Discovery.” In Proceedings of European Conference
on Modelling Foundations and Applications (ECMFA), pp. 267-284,
2017.

[13] Zhong H., Xie T., Zhang L., Pei J., Mei H. “MAPO: Mining and Recom-
mending API Usage Patterns.” In Proceedings of European Conference
on Object-Oriented Programming (ECOOP), pp. 318-343, 2009.

[14] Wu, W., Khomh, F., Adams, B., Guhneuc, Y.G., Antoniol, G. “An
exploratory study of api changes and usages based on apache and eclipse
ecosystems.” In Journal of Empirical Software Engineering, vol. 21, pp.
23662412, 2015.

[15] Zhou, Y., Gu, R., Chen, T., Huang, Z., Panichella, S., Gall, H. “Analyzing
APIs Documentation and Code to Detect Directive Defects.” In Proceed-
ings of International Conference on Software Engineering (ICSE), pp.
27-37, 2017.

[16] Carter, E. “New Research Predicts Continued Growth in API
Testing Market.” ProgrammableWeb (16-01-2018) Available:
https://www.programmableweb.com/news/new-research-predicts-
continued-growth-api-testing-market/brief/2018/01/16 Accessed [20-02-
2019].

[17] Sohan, S. M., Anslow, C., Maurer, F. “A Case Study of Web API Evo-
lution.” In Proceedings of IEEE World Congress on Services (ICWS),
pp. 245-252, 2015.

[18] Bertram, D., Voida, A., Greenberg, S., Walker, R. “Communication,
collaboration, and bugs: the social nature of issue tracking in small,
collocated teams.” In Proceedings of ACM Conference on Computer
Supported Cooperative Work (CSCW), pp. 291-300, 2010.

[19] Uddin, G., Robillard, M. P. “How API Documentation Fails.” In Journal
IEEE Software, vol. 32, pp. 68-75, 2015.

[20] Robbes, R., Lungu, M., Rthlisberger, D. “How Do Developers React to
API Deprecation?: The Case of a Smalltalk Ecosystem.” In Proceedings
of the ACM SIGSOFT International Symposium on the Foundations of
Software Engineering (SIGSOFT/FSE), pp. 56, 2012.


