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An effective medium theory is employed to derive a simple qualitative model of a pattern forming
chemical reaction in a microemulsion. This spatially heterogeneous system is composed of water
nanodroplets randomly distributed in oil. While some steps of the reaction are performed only inside
the droplets, the transport through the extended medium occurs by diffusion of intermediate chemical
reactants as well as by collisions of the droplets. We start to model the system with heterogeneous
reaction—diffusion equations and then derive an equivalent effective spatially homogeneous reaction—
diffusion model by using earlier results on homogenization in heterogeneous reaction—diffusion sys-
tems [S. Alonso, M. Bir, and R. Kapral, J. Chem. Phys. 134, 214102 (2009)]. We study the linear sta-
bility of the spatially homogeneous state in the resulting effective model and obtain a phase diagram
of pattern formation, that is qualitatively similar to earlier experimental results for the Belousov—
Zhabotinsky reaction in an aerosol OT (AOT)-water-in-oil microemulsion [V. K. Vanag and I. R.
Epstein, Phys. Rev. Lett. 87, 228301 (2001)]. Moreover, we reproduce many patterns that have been
observed in experiments with the Belousov—Zhabotinsky reaction in an AOT oil-in-water microemul-
sion by direct numerical simulations. © 2011 American Institute of Physics. [doi:10.1063/1.3559154]

. INTRODUCTION significantly increases the variety of patterns observed in ex-
periments compared to previous work with the BZ reaction
under homogeneous conditions. Upon an increase of the frac-
tion of the disperse phase (water plus surfactant), the system
displays an intriguing variety of structures: e.g., static turing
patterns, traveling waves, and accelerated waves.” The emer-
gence of turing patterns, in particular, requires largely differ-
ent diffusion constants for reacting components of the reac-
tion which is achieved by the tuning of the composition of the

idation on a catalytic surface® and the finding of chemical BZ-AOT system. If, in addition, the chemical composition is

. . ... . . also varied, a large variety of complex patterns is obtained
turing patterns in the chlorite—iodide-malonic acid (CIMA) . ge variety nplex p 3 .
reaction. experimentally (e.g., inward rotating spiral waves,® station-

. ary and oscillatory localized patterns,'? and segmented spirals
However, none of those examples has shown a variety Y Y p £ P

. and target patterns'').
of patterns as large as the one observed in the BZ system getp )

. . L. . In the BZ reaction, bromate—oxidate—malonic acid in
dispersed in a water-in-oil aerosol OT (AOT) microemul- acidic aqueous solution in the presence of a catalyst. Most
sion (BZ-AOT system).””!! This heterogeneous system is a d p st

. . .. of the reaction constituents are polar and, therefore, remain
dispersion of water-in-oil droplets covered by a surfactant.

. inside the dispersed phase when the reaction occurs in mi-
The small size of the droplets (around several nanometers) ) . . .
. . . croemulsions. Essentially, the reaction takes place inside the
ensures that inside the droplets the chemicals are quickly

. 7 . . . water droplets. There are, however, intermediate species in

mixed.” While several chemical components of the reaction . . . . .

S the reaction which are nonpolar and can diffuse into the oil
remain inside the droplets, others components can leave the

. . . . phase. The most relevant nonpolar intermediates are Br, and
droplets, diffuse freely in the oil phase, and enter into other . . o . .
droplets BrO,, which, respectively, inhibits and activates the reaction.

The most important feature of the AOT system is the S.everal models have beeng;_)lrlop osed to expl.aln the pat-
o e . . terns in the BZ-AOT systems. They are typically based
possibility to control the diffusion properties of the reacting

. . .. . . on two coupled activator—inhibitor equations, which model
species by tuning the composition (fractions of water, oil, and .. .
. . . . the BZ reaction in the dispersed phase (=water + surfactant),
surfactant) of the microemulsion. Introducing the composi-

. . . o and reaction—diffusion equations with large diffusion coeffi-
tion of the microemulsion as an additional control parameter . . . . .
cients for the nonpolar intermediates which are free to diffuse

in the whole system. Numerical simulations with different

Chemical reaction—diffusion systems are a prominent ex-
ample of pattern formation outside of equilibrium.! There
are many chemical reactions which produce complex spa-
tiotemporal structures.> The Belousov—Zhabotinsky (BZ) re-
action was the first system in which target patterns® and
rotating spiral waves* were observed. The diversity of pat-
terns observed in chemical systems was increased by the
discovery of standing waves and turbulence in the CO ox-
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sergio.alonso@ptb.de. dash waves.”" However, the models were not systematically
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derived from a given set of heterogeneous conditions and the
effect of the fraction of water was so far only phenomenolog-
ically included with a linear dependence on the fraction of the
homogenized diffusion coefficients.”

For a low fraction of the dispersed phase, there is a ran-
dom distribution of droplets. As this fraction increases, the
droplets accumulate and close to the percolation threshold
they form clusters. The size of the clusters depends on the
fraction of the dispersed phase and arrives to the size of the
system for a critical value of the fraction, i.e., the percolation
threshold. Percolation in microemulsions can be measured by
a sharp increase of the conductivity.!'

Homogenization techniques constitute a useful approach
to study the pattern formation in heterogeneous systems.'>-1>
They allow to derive effective transport coefficients (here dif-
fusion constants) as well as effective reaction rates provided
that spatial heterogeneities appear on a scale much smaller
than relevant length scales of the emerging reaction diffu-
sion patterns. Earlier work'# has shown that the width of a
reaction—diffusion front is the relevant scale that decides if ho-
mogenization can be applied. Here we apply these techniques
to a simple qualitative model inspired by the BZ-AOT system
to derive an effective model. The results obtained with this ef-
fective model are analyzed systematically and compared with
the experimental patterns observed in the BZ-AOT system.
We find a good qualitative agreement between simulation re-
sults and experimental patterns. We also reproduce the loca-
tion of the different types of patterns in the parameter space.

The manuscript is organized as follows. In Sec. II, we
introduce the model employed in the study. In Sec. III, we
calculate the steady states of the model and study its linear
stability. Section IV is devoted to show the complex patterns
resulting from the numerical simulations. The results are dis-
cussed in Sec. V, where they are compared with experimental
results existing in the literature. Finally, the main conclusions
are stated in Sec. VL.

Il. MODEL

We consider a three-variable extension of the FitzHugh—
Nagumo model for excitable and oscillatory media. A second
inhibitor species is added to the standard activator—inhibitor
description. Many properties of the homogeneous version
of this model have been extensively studied during the last
years'~!% and similar qualitative models have been already
successfully applied to reproduce some of the patterns in the
BZ-AOT system.!” The equations of the model for a hetero-

geneous medium read
o,u = R(r)(au — au’ — by — cw) + V(D(r)Vu),
v = R(r)e(u —v) + V(D()Vv);
ow = R(r)ex(u —w) + V(D,, Vw); (1)

where u and v correspond to an activator and inhibitor species
restricted to the dispersed phase and w correspond to a species
that can diffuse freely in both phases. We consider here that
the effect of w is inhibitory, however, for the choice ¢ < 0
the concentration w activates the reaction. The values of the
chemical parameters are constant and homogeneous. The in-

J. Chem. Phys. 134, 094117 (2011)

homogeneities are introduced through the spatial dependen-
cies of D(r) and R(r). This model formulation qualitatively
agrees with the assumptions used to justify the phenomeno-
logical models in earlier work.” In contrast to these ear-
lier approaches, we will derive effective equations wherein
the parameters depend explicitly on the properties of R(r)
and D(r). This will be achieved by employing recently ob-
tained results on homogenization of nonlinear heterogeneous
reaction—diffusion systems.'

The heterogeneous medium in the above equations is
composed of two phases corresponding to water and oil
phases of the microemulsion. While the variables u and v are
restricted to diffuse and react only inside the water phase, the
variable w diffuses in both phases with a homogeneous diffu-
sion coefficient.” To mimic this condition, the function R(r)
is assumed to be equal to 1 inside the droplets and O outside.

The dispersed phase is formed by water droplets and
their surrounding surfactant layers. They are large objects
which diffuse in the oil phase with a diffusion coefficient
(D,4) much smaller than the diffusion of the chemical species
(D;y ~ 107 7cm?/s and D ~ 10~>cm?/s in experiments’). In
experiments, this diffusive motion produces contacts between
droplets and the interchange of chemical species. We approx-
imate the scenario of moving droplets transporting # and v
to an equivalent one where droplets are randomly distributed
static heterogeneities. This assumption will be justified in de-
tail below. To take into account the transport by droplet dif-
fusion, we assume that the variables u and v diffuse with a
reduced coefficient D, (corresponding to the diffusion of the
water droplets) through the oil phase and with large diffusion
coefficient (D;) inside the dispersed phase essentially follow-
ing the argument given in Ref. 7.

Reactions described in Eq. (1) are assumed to occur only
inside the water droplets. To account for this effect, we intro-
duce a parameter R which is R = R; = 1 inside the droplet
and R = R,; = 0 outside, giving rise to a heterogeneous re-
action term in Eq. (1).

This framework consisting of small static heterogeneities
(representing water droplets) randomly distributed in the sys-
tem, satisfies the conditions to apply a homogenization the-
ory: the characteristic size of the heterogeneities, i.e., droplets
(tens of nanometers) is much smaller than the characteristic
length of the patterns in experiments, which was found to be
always larger than 0.1 mm.” It ensures that the diffusion time
is shorter than the reaction time and, therefore, the chemicals
we suppose are completely mixed inside the droplets.'* We
assume further that the exchange of material between both
phases is faster than the characteristic reaction time.

We apply the homogenization procedure!* !> to replace
the heterogeneous system by an effective homogeneous sys-
tem. An effective diffusion coefficient D, for the variables u
and v is then obtained from the self-consistent expression,

Dd - De Di - De
T (— )t
Ds+(d—-1)D, D;+d—-1D,

where the homogeneous parameter D, depends on the frac-
tion ¢ of the dispersed phase. Expression (2) is not restricted

to three-dimensional systems but it can be applied to any
spatial dimensionality d of the medium. In Fig. 1(a), the

¢=0 (2
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FIG. 1. (a) Dependence on the dispersed phase fraction of the effective dif-
fusion coefficient for a heterogeneous medium composed of two phases with
Dy = 0.01 and D; =2 for different spatial dimensionality: d = 1 (black),
d =2 (red), d =3 (green), and d =~ oo (blue). (b) Dependence on the
dispersed phase fraction of the effective reaction rate for a heterogeneous
medium composed of two phases with R; = 1 and Ry = 0.

dependence of D, on the water fraction is plotted for four
different values of d. For the particular case of d = 2, the ex-
plicit expression of the effective diffusion coefficient can be
given,

1
De(¢) = 5(Da — Di)(1 —2¢)

1
1 5\/(D,~ + D2 —49(1 — ¢)(Di — Dg)>. (3)

It was shown in Ref. 15 that Eq. (2) is valid for slowly
moving droplets. The dynamics of the droplets is determined
by the characteristic time of diffusion of the droplets t,
= [?/D,. If this time is larger than the characteristic time of
diffusion of the chemicals inside the droplets 7; = [>/D;, we
can apply the expression obtained in Eq. (2). The condition
D, << D; (ie., t; >> 1;) justifies the above assumption of
static heterogeneities.

The reactions corresponding to local changes of the con-
centrations u and v take place only inside the droplets. We
homogenize the reaction rates'* > to obtain an effective value
of R by the averaging of both phases,

Re = Ri¢ + Roi(1 — ¢), “

and introducing the corresponding values given above, we fi-
nally obtain homogeneous reaction rates,

R.(¢) =&, &)

which in contrast with D, is independent of the spatial dimen-
sionality (d) of the medium. The linear dependence of R, on
the fraction of dispersed phase is plotted in Fig. 1(b).

Putting together the effective parameters, the equations
for the effective model now read

J. Chem. Phys. 134, 094117 (2011)

ou = ¢plau — aud — by — cw) + V(D.(p)Vu),
0v = ¢er(u —v) + V(De(d)Vv);
ow = ¢per(u —w)+ V(D,, Vw). (6)

It corresponds to a modified FitzHugh—Nagumo model where
the dynamics of u and v are controlled by the fraction ¢. The
inhibitor w diffuses through the whole system. The effect of
increasing the fraction is an increase of the reaction rates and
diffusion coefficients of variables u and v. Thus, by a change
of the fraction we control the reaction—diffusion properties of
the system.

An important property of the effective model is that it
reproduces the percolation transition. If we set D; = 0, the
effective diffusion coefficient in Eq. (2) follows a linear func-
tion D(¢) = D;(d¢ — 1)/(d — 1) and zero below a critical
value of the fraction (¢.). For small and finite values of D,
two different regions are observed. Above ¢, the effective
diffusion coefficient increases approximately linearly with ¢,
and below ¢, the effective diffusion coefficient remains close
to the value D,.

The size of the droplets at low fraction of the dispersed
phase in the described experiments is clearly smaller than
the extension of the system orthogonal to the plane in which
patterns are monitored. Therefore, one might be inclined to
consider an effective medium theory for a three-dimensional
system, which would produce a small percolation threshold
¢. = 0.33. However, the estimated experimental percolation
threshold (¢, = 0.4 — 0.6) (Ref. 7) is larger and hence is in
better agreement with the results from the two-dimensional
(2D) approach for the effective medium theory. Following
these experimental facts, we employ d = 2, which produces
a reasonable large value of the percolation threshold of ¢,
= 0.5. On the other hand, the percolation threshold depends
on the temperature'® and close to percolation the dispersed
phase cannot be just interpreted as a random distribution of
droplets because channels and tubular structures may appear
among the droplets. These structural changes would affect
the topology of the system. Another reason to study a two-
dimensional system of model equations here is that most ob-
served patterns appear quasi-two dimensional.

lll. LINEAR STABILITY ANALYSIS

Equation (6) have three homogeneous steady states. They
are given by the solution of the following two conditions:

Ug =Vo = Wy,
0=uo(a—b—c—au§). @)

The trivial state u,; = 0 is present always, and the nontrivial
steady states, given by
a—b—c

Ugp3 = Fy) ————. ®)
o

It appears if the condition a > b + c is satisfied.

We analyze the linear stability of the solutions of the
model. We obtain Hopf, turing, and wave bifurcations, respec-
tively, depending on the parameters. The Jacobian J; of the
solution u,; is given by
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¢(a — 3au§i) — D.()k? —¢b —¢c
Pe€ —per — Do(p)k? 0 , ©)
per 0 —¢er — D, k>

where k denotes the wave number of the perturbation. Note
that D,(¢) depends on the fraction of dispersed phase.

Figure 2 shows the variation of the solution of the ho-
mogeneous equations (k = 0) with the increase of the au-
tocatalytic parameter a for a constant fraction ¢. The solu-
tion u = 0 is the steady state for low values of a. For in-
creasing values of a, the system crosses a Hopf bifurcation
at ay = 2.8 and oscillates, see Fig. 2(b). The other two so-
lutions u,, andu,; appear at a; = 6.5. Initially they are un-
stable, see Fig. 2(c), and the system follows a complex limit
cycle. These two solutions become stable at ag = 8.35. They
are symmetric and the particular choice of one of them de-
pends on the initial condition, see evolution for two different
initial conditions in Fig. 2(d).

A systematic study of the parameter space is done to
show the different types of instabilities of the model. We vary
the fraction of inhomogeneities ¢ and the autocatalytic term
a (mimicking experimental phases space’’). The rest of the
parameters are kept constant.

We calculate the dispersion relation obtained from the
linear stability analysis for each couple of values of a and
¢. Some representative examples are plotted in Fig. 3. For
a small region of parameters, a wave instability appears, see
Fig. 3(a). There is a maximum of the real eigenvalue for k > 0
with nonzero imaginary eigenvalue. It gives rise to oscilla-
tions with a finite wavelength (i.e., waves). The most common

e

u 0 ]
L mhu""“"‘--—qn...._ —
=2 [Steady state Hopf . -"mﬁ?\\.\\"
0 5 10 15
(a) a
2
1
u 0
-1
-2
L 1 L
0 50
time
(b)

FIG. 2. (a) Solution of Eq. (6) in a zero-dimensional system. Different
regimes are observed: Steady state, oscillations (maximum and minimum are
shown), and bistability. Three examples of temporal evolution are shown: (b)
Oscillations corresponding to @ = 4, (c) irregular oscillations corresponding
to a = 8.3, and (d) bistability corresponding to a = 10, two different ini-
tial conditions are shown. Values of the parameters: ¢ = 0.8,b =3, ¢ = 3.5,
er=1e=4a0a=4/3,D, =1,D; =2,and D; = 0.01.

situation, however, is that the most unstable mode appears at
k = 0, and produces a Hopf instability, see Fig. 3(b). The rest
of the panels in Fig. 3 show different examples where a tur-
ing instability appears. This instability corresponds to a max-
imum positive real eigenvalue with a zero imaginary eigen-
value. It gives rise to static spatial patterns (i.e., turing pat-
terns). Several instability can appear at the same time, for
example: Hopf/turing in Fig. 3(d), Hopf/wave/turing in Fig.
3(c), and wave/turing in Fig. 3(e).

The complete phase diagram obtained from the linear sta-
bility analysis is shown in Fig. 4. For low values of a, the sys-
tem is in the steady state and no pattern is observed. For large
values of a, the solutions u,, and u,3; become stable and the
model shows bistability. For large values of ¢ the system is
basically oscillatory and for low values of ¢ turing patterns
are observed.

The parameters of the model are tuned to obtain wave
instability at intermediate values of ¢ while at low ¢ the turing
instability dominates.

FIG. 3. Dispersion curves obtained by linear stability analysis. Solid and
dashed lines correspond to real and imaginary eigenvalues, respectively. The
parameter values employed are: @ = 2.7 and ¢ = 0.2 (a),a =4 and ¢ = 0.6
(b),a=32and¢p =0.4(c),a =4.5and ¢ =0.5(d),a =2.7and ¢ = 0.15
(e), and a =4 and ¢ = 0.2 (f). Values of the rest of parameters: b = 3,
c=35€e =1l,e=4,a=4/3,D, =1,D; =2,and Dy = 0.01.
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FIG. 4. Phase diagram obtained by linear stability analysis of the solutions
obtained in Egs. (7) and (8). Lines correspond to Hopf (solid), bistability
(solid), turing (solid), and wave (dashed) instabilities. Right of the dotted-
dashed line the two solutions u,> 3 become physically relevant. Crosses x
and + correspond, respectively, to the parameter values employed in the nu-
merical simulations shown in Figs. 5 and 7. Values of the parameters: b = 3,
c=35¢e=1e=4a=4/3,D, =1,D; =2,and Dy = 0.01.

IV. NUMERICAL SIMULATIONS

We integrate Eq. (6) with an explicit method for the
temporal integration and finite differences for the Laplacian.
The numerical integration of Eq. (6) produces typical dynam-
ics observed in active media. Examples of such patterns are
shown in Fig. 5. Front propagation, typical for bistable media,
is observed in Fig. 5(a), where one of the corners is initially
perturbed. Note, however, that in this case both solutions u,,
and u,3 are symmetric and both are equally stable, the front
dynamics is determined by curvature effects. Using the same
initial condition but with different values of the parameters
transient oscillating cluster are observed in Fig. 5(b), which
slowly evolve to global oscillations, see Fig. 5(c). Changing
again the parameter values and using a random initial condi-
tion static turing patterns in Fig. 5(d) or waves in Fig. 5(e) are
obtained.

The spatiotemporal dynamics shown in Fig. 5 is a result
from different instabilities of the uniform solution. The ho-
mogeneous solution can, however, be unstable to several in-
stabilities at the same time (see Fig. 3) giving rise to more
complex dynamics. In the following, we focus on the central
area of the phase diagram displayed in Fig. 4. In this region
typically several instabilities are present simultaneously. We
ran numerical simulations and obtained a gallery of complex
patterns, displayed in Fig. 6. We plot the respective state of the
system at the end of a numerical simulation for different val-
ues of ¢ and a. The initial conditions are random. Different re-
gions are clearly identified in Fig. 6. For low values of ¢ static
patterns are observed. For low values of the parameter a they
correspond to a conventional turing instability. We observe
labyrinthine patterns typical for bistable media®' at large val-
ues of a. Increasing the value of ¢ we successively observe a
regime of seemingly chaotic patterns stemming from the in-
teractions between unstable turing and Hopf modes. Finally
inwardly rotating spiral waves and phase waves are observed

J. Chem. Phys. 134, 094117 (2011)
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FIG. 5. Typical evolution of different patterns obtained in phase space of Fig.
4 corresponding to: a = 9 and ¢ = 0.64 (a), a = 5 and ¢ = 0.8 (b) and (c),
a =7and ¢ = 0.55 (d), and @ = 2.8 and ¢ = 0.3 (e). Bright and dark colors
in the snapshots correspond, respectively, to high and low concentrations of
the activator. Values of the parameters as in Fig. 4. Numerical parameters:
Ax = 0.3 and At = 0.01 in a grid of 200 x 200 pixels.

at values of ¢ close to 1. For large values of a the increase of
¢ produces interactions between temporal and spatial patterns
and gives rise to spiral waves, waves moving outward.

Figure 6 shows only the states of the system at the end
of the numerical simulations. There are important details dur-
ing the evolution which are not shown. Patterns appear, grow,
and interact among each other. Some examples of the evolu-
tion and interaction among patterns are shown in Fig. 7. For
example, from disorganized oscillations inward spiral waves
(i.e., antispirals) appear and become stable, see Fig. 7(a). Spi-
ral waves are obtained from random initial conditions after
a transient front dynamics, see Fig. 7(b). Under some condi-
tions both types of spirals are unstable and give rise to spi-
ral breakup, with a continuous generation and annihilation of
new spirals. An example for antispiral waves is shown in Fig.
7(c). For smaller values of ¢ localized patches of turing struc-
tures appear and travel among disorganized oscillations and
pieces of antispiral waves in a very complex way, see example
for chaotic waves in Fig. 7(d). They can be initiated directly
from the initial condition as in Fig. 7(d) or, depending on the
parameter values they can develop from a residual oscillation
appearing in a transient turing pattern as shown in Fig. 7(e),
where a wave of chaos propagates into a turing pattern.
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FIG. 6. Collection of patterns obtained at the end of the numerical simu-
lations and arranged as a numerical phase diagram. Bright and dark colors
in the snapshots correspond, respectively, to high and low concentrations of
the activator. Values of the parameters as in Fig. 4. Numerical parameters:
Ax = 0.3 and At = 0.01 in a grid of 200 x 200 pixels.

V. DISCUSSION

The reduction from an initially heterogeneous model to
an effective homogeneous model was achieved in two steps.
First, we have transformed the qualitative model of a chemical
medium (i.e., an extended three-variable FitzZHugh—Nagumo
system) with dynamic heterogeneities (diffusing droplets) to
a model with static heterogeneities. Thereby the transport of
chemicals through the medium mediated by the motion of the
individual droplets below the percolation threshold is reduced
to an effective diffusive motion of the respective chemicals.
The resulting effective medium theory also reproduces the
expected strong increase of the effective diffusion constant
above the percolation threshold for the water phase. Second,
we have employed a homogenization theory to average the
reaction properties inside and outside of the heterogeneities.
Some of the employed approximations have already been im-
plicitly assumed in previous models of microemulsions.”-*!!

The homogenization procedure resulted in the self-
consistent expressions of Egs. (2) and (4), which have
been previously verified for simple heterogeneous reaction—
diffusion systems.'*!> Similar expressions have been em-
ployed for the calculation of effective properties for the
conductivity of isotropic material mixtures®> or spherical
inclusions in conducting materials.”> They have also been
employed for inhomogeneous transport problems in resis-
tor networks?* and for randomly heterogeneous biological
materials.>2¢

The properties of the patterns formed in heterogeneous
media depend on the spatial dimension. This arises from the
fact that the effective diffusion coefficients depend on the spa-
tial dimension, whereas the effective (simple) reaction rates
do not. Therefore, a change in the spatial dimension changes
the aspect of the phase diagram shown in Fig. 4. For the an-
alytical and numerical analyses of the effective model, we

J. Chem. Phys. 134, 094117 (2011)
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FIG. 7. Evolution of different patterns obtained in phase space of Fig. 4 cor-
responding to: a = 5 and ¢ = 0.62 (a), a =9 and ¢ = 0.64 (b), a = 6 and
¢ =0.62(c),a =5and ¢ = 0.5 (d), and @ = 4.22 and ¢ = 0.48 (e). Bright
and dark colors in the snapshots correspond, respectively, to high and low
concentrations of the activator. Values of the parameters as in Fig. 4. Numer-
ical parameters: Ax = 0.3 and At = 0.01 in a grid of 200 x 200 pixels.

have focused on the 2D case with a fraction around ¢ = 0.5,
since the most interesting experiments on the BZ-AOT sys-
tem were performed in a quasi 2D geometry for similar vol-
ume fraction.”!1-20

We have studied the dynamical behavior of the effec-
tive homogenized system (6) analytically and numerically.
The obtained phase diagram spanned by the autocatalytic rate
constant and the dispersed phase fraction reproduced qual-
itatively the experimental phase diagrams of the BZ-AOT
system,”-?Y notably with the occurrence of homogeneous os-
cillations, oscillating clusters, moving fronts, waves, and tur-
ing patterns. However, there are still some discrepancies in the
properties of the observed patterns and we do not obtain accel-
erating waves,’ dash waves'!, and segmented spiral waves.®
These discrepancies are a consequence of the simplicity of the
simple FitzHugh—Nagumo model employed here. The quality
of the predictions of a homogenized model would most prob-
ably increase with the use of more detailed chemical modes,
e.g., Oregonator models’-?” or more elaborate models.?®

In the interpretation of the experimental studies on the
BZ-AQT reaction, it was proposed that the distribution of
water droplets might not be completely independent (as we
assume in the homogenization) but droplets might aggregate
or be connected by channels until percolation occurs, effec-
tively increasing the diffusion of some reactants. Since the
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homogenization process of the transport properties is sensi-
tive to a change in size and nature of the heterogeneities, this
phenomenon may change Eq. (2) and alter the phase diagram
especially for higher fractions of dispersed phase. However,
the modeling of such effects is beyond the scope of the present
work.

The theoretical homogenization formalism employed
here has been previously checked for simple bistable
and excitable reactions using heterogeneous numerical
simulations.'*2 It is conceivable to consider explicit numeri-
cal simulations using heterogeneous reaction—diffusion equa-
tions to compare with predictions of the presented effective
model. Vice versa the homogenization technique and the re-
lated arguments above could be applied to other heteroge-
neous model with more realistic chemical kinetics, e.g., the
heterogeneous BZ (Ref. 30) and CIMA reactions®! and dif-
ferent biological systems.?63233

The size of the heterogeneities is a relevant factor for
the application of the homogenization methodology. In this
sense, the nanodroplets formed in the microemulsions provide
a straight argument for the validity of a homogenized effec-
tive model. Larger sizes of the heterogeneities were achieved
in other systems using lithographic techniques,®* patterned
illumination,*3¢ reaction droplets in 0il,>’=° or catalyst-
loaded beads.>****? The characteristic pattern size in these
systems is similar to the size of the heterogeneities and the
theoretical approach presented here cannot be applied any-
more. In the latter case, however, it is possible to employ
smaller beads.*® Under such conditions, the methods used
here might be extended to the study of some of the experi-
mental results.

VL. CONCLUSIONS

The application of homogenization techniques derived in
Refs. 14 and 15 to a simple model of the BZ-AOT system,
permits the reproduction of many of the characteristic patterns
observed in the experiments. The organization of the different
experimental patterns in the parameter space determined by
the autocatalytic rate and the fraction of dispersed phase, is
qualitatively reproduced by the phase diagram of this simple
model. For a more quantitative study of the patterns, a more
complex model could be considered.

In summary, the application of the homogenization pro-
cedure to a simple BZ-AOT reaction model qualitatively ex-
plains the emergence of a variety of pattern formation in mi-
croemulsions and reproduces the experimental dependence of
the pattern type on the fraction of dispersed phase and on the
chemistry of the system.
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