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Abstract

The field of dynamical systems is very broad, and one shall find all sorts of objects and
structures contained within its secrets. This is the case of quasi-periodically forced maps, maps
in which a quasi-periodic rotation has been applied over the torus of a skew-product dynamical
system. Such systems can be studied from several points of view, such as the study of the
dynamics of its subbundles, the reducibility into simpler dynamics, or, as it is our interest,
the validation of invariant tori given approximately invariant tori. The main theoretical result
of this work is a validation theorem that ensures the existence of an invariant torus should
certain conditions be fulfilled. But given this matter has already been addressed by several
authors, we will follow the next step and validate the torus computationally using computer
assisted proofs. For that we will require the aid of validated numerics and the use of the
necessary computational tools built for said purpose, such as the MPFI package. Those tools
can be so as multi-precision numerics and intervalar arithmetics. However, the validation will
also require some theoretical tools for dealing with mathematical objects. Fourier transforms
and Fourier series will become the pillar over which the validation algorithm is sustained. For
that, a much needed chapter of Fourier analysis results will be provided to make of this project
a self-contained work.
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Introduction

The study of dynamical systems has proved to be of great use when it comes to solving a
certain kind of problems. They allow us to predict natural and artificial phenomenon, study
the most hidden properties of intricate systems or just provide helpful tools for the develop-
ment of other areas of science or engineering. The case we present in this work is no different.

In the pages ahead, we will focus our attention towards a special kind of dynamical sys-
tems, the so called skew-product dynamical systems. Skew-products are systems based on a
torus and its fiber, allowing us to define our map of interest over such structure, which we will
refer as fiber bundle. Moreover, our interest will lie on quasi-periodically forced skew-product
systems, that is, systems in which the dynamics on the torus is quasi-periodic. Amongst all
the things we could study from such systems, we will deal with the problem of the existence of
invariant torus under our map, providing a good result that ensures the existence of an invari-
ant torus under our map given an approximately invariant one that fulfills certain conditions.
This result is what we call the validation theorem, since it validates an invariant torus.
Besides proving the validation theorem, we will also implement it on a computer in the form
of a computer assisted proof.

Computer assisted proofs have been on the rise in the last years, given that they are a very
powerful tool for validating objects or simply proving theorems by computing great amounts
of information. In our case, we implement a computer assisted proof that will calculate the
error bounds and the constants that appear in our validation theorem and check the conditions
that such result requires in order to yield a satisfactory response. To do so, we will also need
other tools of a more theoretical nature, so we can quickly compute terms that could require
more resources than we would like to. Such tools are Fourier series.

Fourier analysis is a very interesting field which basically deals with periodic functions. The
famous Fourier Transform is a very powerful tool that allows the user to find the frequency
values given only amplitude values of a signal. These Fourier coefficients make up Fourier se-
ries, which are trigonometric polynomials that are capable of rebuilding almost any function.
These transforms will be of great use to us since they will allow the computer to perform
quick calculations by simply moving our grid-evaluated objects onto Fourier space, where
exponential operations can be easily done. With the necessary results to bound the error
committed when moving from one space to another, we will be able to rigorously calculate

vii



viii Introduction

the error bounds and the constants needed to apply our theorem and therefore validate a torus.

In addition to this theory and implementation, we will provide in the Appendix an out-
of-scope brief introduction to whiskers, which are invariant manifolds attached to a torus.
There we will settle the bases for a future proof of existence and an algorithm for a validation
of such manifolds using similar tools to the ones used for the validation theorem.



Chapter 1

Quasi-Periodic Skew-Product Systems

In this very first chapter, we are going to introduce the basic notions of what quasi-periodic
systems are, as well as some other useful properties and definitions that will be used further
ahead in the project. Beyond that, we will give a motivation on the expansion of the real
domain into a complex domain in order to be able to deal with real-analytic functions, such as
real-analytic torus, as the pinnacle of regularity properties. But before diving directly in, we
will need some general notions about the structures that will determine our working spaces,
such as bundles, fiber bundles and other concepts in order to fully understand the particular
case that a skew-product system is.

1.1 Introductory Definitions

1.1.1 Bundles

We present here very general definitions that can be found almost in any geometry or
topology book. In our case, we will take [6] as reference.

Definition 1.1. A bundle is a triple (E,⇡, B) where E is a set called the total space, B is a
set called the base space of the bundle and ⇡ : E ! B is the projection map. In addition, for
each b 2 B, ⇡�1(b) is the fiber of the bundle over b and a bundle (E⇤,⇡⇤, B⇤) is a subbundle
of (E,⇡, B) if B⇤ ⇢ B, E⇤ ⇢ E and ⇡⇤ = ⇡|E⇤ .

This definition of a bundle is very general but also very useful to construct the needed
definition of our future working space. Even though it is now defined for general sets, we
will take soon such sets as topological spaces. More restrictive conditions on regularity or set
structure will be further ahead given.

Definition 1.2. Let (E1,⇡1, B) and (E2,⇡2, B) be bundles and f : B1 ! B2 a map. Then a
bundle map F : E1 ! E2 covering f is a continuous map such that ⇡2 � F = f � ⇡1, that is

E1 E2

B1 B2

F

⇡1 ⇡2

f

1



2 Quasi-Periodic Skew-Product Systems

Definition 1.3. Let (E1,⇡1, B1) and (E2,⇡2, B2) be bundles and F : E1 ! E2 be a bundle
map covering f : B1 ! B2. If B1 = B2 and f = id, then F is a bundle map over B = B1 = B2

such that ⇡2 � F = ⇡1. That is, the following diagram should commute

E1 E2

B

F

⇡1
⇡2

Equivalently, for any point x 2 B, F maps the fiber E1x = ⇡�1
1 ({x}) of E1 over x to the fiber

E2x = ⇡�1
2 ({x}) of E2 over x.

Definition 1.4. Let (E,⇡, B) be a bundle, then a section of that bundle is a continuous map
� : B ! E such that ⇡(�(x)) = x for all x 2 B. That is, ⇡ � � = id which means that the
following diagram commutes

E B

B

⇡

�
id

Figure 1.1: A section � of a bundle ⇡ : E ! B. A section � allows the base space B to be identified with a subspace
�(B) of E [12].

Definition 1.5. A fiber bundle is a structure (E,⇡, B, P ), where E, B and P are topological
spaces and ⇡ : E ! B is a continuous surjection. The space B is connected and is called the
base space of the bundle, E the total space, and P the fiber. The map ⇡ is called the projection
map (or bundle projection). Such structure must satisfy the following condition.

We require that for every x 2 E, there is an open neighborhood U ⇢ B of ⇡(x) (which will be
called a trivializing neighborhood) such that there is a homeomorphism ' : ⇡�1(U) ! U ⇥ P

(where U ⇥ P is the product space) in such a way that ⇡ agrees with the projection onto the
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first factor. That is, the following diagram should commute

⇡�1(U) U ⇥ P

U

'

⇡
proj1

where proj1 : U ⇥ P ! U is the natural projection and ' : ⇡�1(U) ! U ⇥ P is a homeomor-
phism. The set of all {(Ui,'i)} is called a local trivialization of the bundle.

Thus for any y 2 B, the preimage ⇡�1({y}) is homeomorphic to P (since proj�1
1 ({y}) clearly

is) and is called the fiber over y. Every (fiber bundle) projection ⇡ : E ! B is an open map
(maps open subsets with open subsets), since projections of products are open maps. Therefore
B carries the quotient topology determined by the map ⇡.

For a better understanding of the fiber bundle concept, one shall see E locally like the
product B ⇥ P , except that the fibers ⇡(x)�1 for x 2 B may be a bit "twisted" [6].
Notice that a bundle is a generalization of a fiber bundle but with the sets lacking of a topology,
which makes the condition of a local product structure drop.

Figure 1.2: A fiber bundle [9].

Remark 1.6. Let E = B⇥P and let ⇡ : E ! B be the projection onto the first factor. Then
we will say that E is a fiber bundle (of P ) over B. Here E is not just locally a product but
globally one. Any such fiber bundle is called a trivial bundle [6].

We will see in the following section that the space with which we will work is a trivial
bundle over a torus, thus the importance of properly building up the definition of fiber bundle
and more specifically, of trivial bundle.

Definition 1.7. A real vector bundle consists of a fiber bundle (E,⇡, B, P ) with P = Rk,
where the compatibility condition is satisfied, that is, 8p 2 B, there is an open neighborhood
U ✓ B, and a homeomorphism ' : U ⇥ Rk ! ⇡�1(U), such that 8x 2 U ;

1. (⇡ � ')(x, v) = x 8v 2 Rk.

2. The map v 7! '(x, v) is a linear isomorphism between the vector spaces Rk and ⇡�1({x}).
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Remark 1.8. The open neighborhood U together with the homeomorphism ' is called a
local trivialization of the vector bundle. The local trivialization shows that, locally, the map
⇡ looks like the projection of U ⇥ Rk on U [10].

Definition 1.9. Let (E,⇡, B) be a bundle, given a bundle map F : E ! E covering f :

B ! B, an F-invariant section is a section that satisfies that F � � = � � f , which means the
following diagram commutes

E E

B B

F

f

� �

This last definition is very important since the main objects we will be working with are
invariant sections of the map F , which will be presented in the following section.

1.1.2 Skew-Product Dynamical Systems

In this work we will deal with a particular type of fiber bundles, the aforementioned
trivial bundles. Specifically, we will work with Rn ⇥ Td as a trivial bundle over Td with
⇡ : Rn ⇥ Td ! Td as the corresponding bundle projection. We consider in Rn ⇥ Td the
product topology, so that the bundle projection is continuous. With our space defined, we can
proceed to determine the norms we are going to use on them as well as the basic map over
which the whole work will revolve around.

Definition 1.10. Let Rn ⇥ Td be a trivial fiber bundle with projection ⇡ : Rn ⇥ Td ! Td. A
Finsler norm in the bundle is a continuous map

| · | : Rn ⇥ Td �! R+

(x, ✓) �! |(x, ✓)| = |x|✓

such that, for each ✓ 2 Td, | · |✓ : Rn ! R+ is a norm.

In simpler terms, a Finsler norm in Rn ⇥ Td is a norm | · |✓ on each fiber Rn ⇥ {✓} that
depends continuously on ✓. Examples of Finsler norms are the constant Finsler norm | · |,
independent of ✓, or given a norm | · | on Rn, and a continuous matrix map P : Td ! GL(Rn),
the Finsler norm |x|✓ = |P (✓)x|. We will usually omit the explicit dependence on ✓ of | · |✓
when it is clear from the context.

Once we have the space and the norm, it is time to introduce the map that will define our
dynamical system. These are called Skew-product Dynamical Systems.

Definition 1.11. (Skew-product Dynamical System) Let f : Td ! Td be a homeomor-
phism. A skew-product dynamical system in Rn over f is a bundle map

F̂ = (F, f) : Rn ⇥ Td �! Rn ⇥ Td

(x, ✓) �! (F (x, ✓), f(✓))
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where for each fixed ✓, F (·, ✓) is a diffeomorphism of Rn.

From now on, we will refer to a continuous torus as a continuous section on the bundle
Rn ⇥ Td, that is, a continuous map of the form (K, id) : Td ! Rn ⇥ Td, where K : Td ! Rn

is continuous [4]. Analogously, we will refer to an analytic torus when the map K : Td ! Rn

is real-analytic. The main goal of this work will be finding invariant tori, that is, invariant
sections � = (K, id) such that F �� = � � f , which translates to F (K(✓), ✓) = K(f(✓)). From
now on, we will omit the identity map of the section (K, id) when we refer to a torus, so we
can directly say that a torus is a map K : Td ! Rn.

Figure 1.3: A continuous torus.

Moreover, we will work with a particular case of skew-products systems, quasi-periodic
systems. Such systems are skew-product systems over rotations and will be properly defined
in the following section. For now, in our particular case, we will denote our rotation f(✓) =

R!(✓) = ✓ + !, with ! 2 Rd, turning the previous invariance equation into F (K(✓), ✓) =

K(✓ + !).

1.2 Quasi-Periodic Maps and Invariant Tori

Clearly, before going deep into the study of our system, it is necessary that we define the
proper spaces and their respective norms we will be dealing with when it comes to real-analytic
functions.

1.2.1 Spaces of Analytic Functions

As said, our goal is to easily manipulate real-analytic functions, or, in our case, tori.
For that, we will have to put in our toolbox some basic concepts on spaces of analytic func-
tions, such as their domain or a tailored norm that allows us to properly measure their images.

Let Td = (R/T)d be the real torus, and Td
C = Td + iRd be the complex torus. We denote a

complex strip (in Td
C) of width ⇢ > 0 by

Td
⇢ = {✓ 2 Td

C : Im |✓i| < ⇢ , i = 1, . . . , d}.
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Thus, we denote by C0(T̄d
⇢,Cm) the Banach space of continuous functions f : T̄d

⇢ ! Cm such
that f(Td) ⇢ Rn, endowed with the norm

kfk⇢ = sup
✓2Td

⇢

|f(✓)|,

where | · | is the supremum norm in Cm. We denote by Ca(T̄d
⇢,Cm) the Banach space of

continuous functions f : T̄d
⇢ ! Cm, holomorphic on Td

⇢ and such that f(Td) ⇢ Rn, that is, f
is real-analytic (just analytic from now on), endowed with the supremum norm.

Consider the phase space an annulus A in Rn ⇥ Td, that is, an open set A ⇢ Rn ⇥ Td =

{z = (x, ✓) : x 2 Rn, ✓ 2 Td} homotopic to V ⇥Td, where V ⇢ Rn is open. Let B ⇢ Cn ⇥Td
C

be a complex neighborhood of the annulus A.

We denote by Ca(T̄d
B,Cm) the Banach space of continuous functions f : B̄ ! Cm, holomorphic

on B and such that f(A) ⇢ Rm (so f is analytic), endowed with the norm [1]

kfkB = sup
z2B

|f(z)|.

1.2.2 Quasi-Periodic Maps

With the motivation of working with analytic functions, we can now extend the space of
our skew-product system to the complex field, at the same time that we stretch our torus into
a complex band of width ⇢. Thus, we can finally provide the space in which this work will be
focused, and that is Cn ⇥ Td

⇢.

Once we know this, we can turn our attention towards systems in which the dynamics on
the torus is quasi-periodic, defined by the aforementioned irrational rotation R!(✓) = ✓ + !,
with ! 2 Rd. This means that we will be working with quasi-periodic skew-products F̂ :

Cn ⇥ Td
⇢ ! Cn ⇥ Td

⇢ of the form:
 
x

✓

!
F̂�!
 
F (x, ✓)

✓ + !

!
. (1.1)

Also, we will study invariant tori by looking for parameterizations in which the motion is given
by the rotation stated previously. That is, we seek those maps K : Td

⇢ ! Cn in such a way
that

F (K(✓), ✓) = K(✓ + !). (1.2)

If we consider the graph of K

K = {(K(✓), ✓) | ✓ 2 Td
⇢},

we observe that (1.2) is equivalent to saying that K is invariant under the skew-product (1.1).
It will be convenient to think of (1.2) as an equation for the zeroes of the operator F defined
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by:
F [K](✓) = F (K(✓ � !), ✓ � !)�K(✓). (1.3)

We note that if F is Cr+l, then, F is an l times differentiable operator from Cr to Cr. Hence
the application of Newton method in function spaces is justified if F is differentiable enough.
We also note that it is clear (and it can be justified under regularity assumptions on F ) that
the differential of the operator F in a torus K evaluated on a section ⇠ : T̄d

⇢ ! Cn of the
bundle Cn ⇥ Td

⇢ is given by

DF [K]⇠(✓) = DxF (K(✓ � !), ✓ � !)⇠(✓ � !)� ⇠(✓). (1.4)

The first term of DF is called the transfer operator and we will denote it by M!. Recall
that given a torus by K : Td

⇢ ! Cn, the matrix M(✓) = DxF (K(✓), ✓) defines a linear skew
product (or cocycle) by

 
v

✓

!
M̂�!
 
M(✓)v

✓ + !

!
, (1.5)

where (in an abuse of notation) M(✓) : E✓ ! E✓+! takes a v in the fiber at position ✓ and
takes it to the fiber in position ✓ + !.

Now we can explicit the norm of the operator M! when acting on analytic sections

kM!k⇢ = sup
kvk⇢=1

kM!vk⇢ = sup
kvk⇢=1

sup
✓2T̄d

⇢

|M(✓)v(✓)|✓+!  sup
kvk⇢=1

sup
✓2T̄d

⇢

|M(✓)|✓ · |v(✓)|✓

 sup
✓2T̄d

⇢

|M(✓)|✓ = sup
✓2Td

⇢

sup
v2Cn, |v|✓=1

|M(✓)v|✓+! = kMk⇢,

where | · |✓ is a given Finsler norm. The operator M! is clearly related to the derivative of
the operator F since DF [K] = M! � Id. When using a Newton method to find a zero for F ,
it is quite important to know whether 0 is in the spectrum of DF or equivalently, whether 1
is in the spectrum of M! [5].

1.2.3 Reducibility and Hyperbolicity

Going back to linear dynamics, it is worth explaining the concept of reducibility, a concept
that may come handy when dealing with cocycles to manipulate them in a simpler way.

If the torus is invariant, the cocycle represents the linearization of the dynamics around the
torus. If we think of v as an infinitesimal perturbation of the initial condition, M(✓)v describes
how the disturbance propagates [5].
We will seek matrix maps P : Td ! Mn⇥n, and ⇤ : Td ! Mn⇥n such that

P (✓ + !)�1M(✓)P (✓)� ⇤(✓) = 0, (1.6)
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where P is an adapted frame for the torus and ⇤ represents the linearized dynamics. The idea
of this transformation on M is to express the linearized dynamics in a simple way, that is as a
triangular, constant or block-diagonal matrix. An important case, and the one we are treating
here, is the case where P parametrizes two complementary invariant subbundles E1, E2 with
rank n1, n2 respectively and ⇤ is a block-diagonal matrix.
In this work we will assume that our objects are fiberwise hyperbolic, this means that the
linear dynamics can be decomposed into stable and unstable subbundles. In such context we
can say that the matrix P parametrizes a stable subbundle (now Es, of rank ns) in its first ns

columns and an unstable subbundle (now Eu, of rank nu) in its last nu columns. Therefore
our matrix ⇤ will look like the following

⇤(✓) =

 
⇤s(✓) 0

0 ⇤u(✓)

!

where ⇤s(✓) 2 Mns⇥ns represents the linearized stable dynamics, which are assumed to be uni-
formly contracting, and ⇤u(✓) 2 Mnu⇥nu represents the linearized unstable dynamics, which
are assumed to be uniformly expanding. This means that |⇤s(✓)| < 1 and |(⇤u(✓))�1| < 1 for
a given Finsler norm | · |✓.

Remark 1.12. When there exists a matrix ⇤ such that equation (1.6) is satisfied, we say
that the system is hyperbolically reducible. Notice that not all bundles admit global frames,
which is why we consider here the case where our bundles are trivial or easily trivializable. In
that case it is safe to assume that there exist global frames.

Remark 1.13. If our ⇤s(✓) is constant, we say that the system is reducible. We will see an
example of this in the chapters ahead when we discuss rank-1 whiskers, where we will take
ns = 1.



Chapter 2

The Validation Theorem

In this chapter we will look at the main result of the work, and that is the validation
theorem. Such theorem ensures the existence of an analytic invariant torus under an analytic
quasi-periodic skew-product system given an approximately invariant analytic torus. More-
over, the theorem also states that such torus will be hyperbolic and gives a bound for the
distance between the approximately invariant fibers of the initial torus and the actually in-
variant fibers of the newly found invariant torus.
As usual, we will require some introductory results before proving the theorem.

2.1 Preparatory Results

As we will have to deal with operators in the space of analytic functions, it will be useful
to have some properties on the manipulation of such operators, and a very powerful tool is
Neumann series. In addition, we will also need to understand the concept of resolvent.

Definition 2.1. Let X be a Banach space and let T : X ! X be a bounded linear operator.
Let Id be the identity operator on X. In this context, the resolvent set (or just resolvent) of
the operator T over the space X is defined as

Res(T,X) = {z 2 C | T � zId is bijective } ,

moreover, the spectrum is the complement of the resolvent set:

Spec(T,X) = C\Res(T,X) .

Theorem 2.2. (Banach Open Mapping Theorem) If X and Y are Banach spaces and
T : X ! Y is a surjective continuous linear operator, then T is an open map. If moreover,
T : X ! Y is bijective, then T�1 : Y ! X.

Remark 2.3. Banach’s Open Mapping Theorem implies that the operator (T � zId)�1 is
also bounded if z 2 Res(T,X).

9



10 The Validation Theorem

With this, we can say that z 2 Res(T,X) () 8⌘ 2 X, 9! ⇠ 2 X such that T ⇠ � z⇠ = ⌘.
In this context we will say that the operator T is hyperbolic if the unit circle is in the resolvent
of T , that is Spec(T,X) \ S1 = ;, where S1 = {z 2 C | |z| = 1}.
Let’s proceed now with some Neumann series results.

Definition 2.4. A Neumann series is a series of the form

1X

k=0

T k ,

where T is an operator and T k = T k�1 � T is the k times repeated application, with T 0 = Id,
being Id the identity operator.

Proposition 2.5. Let T be a bounded linear operator over X. If the Neumann series converges
in the operator norm, then Id� T is invertible and

(Id� T )�1 =
1X

k=0

T k .

Proof. Working with partial sums we obtain

(Id� T ) lim
n!1

nX

k=0

T k = lim
n!1

(Id� T )
nX

k=0

T k = lim
n!1

 
nX

k=0

T k �
nX

k=0

T k+1

!

= lim
n!1

(Id� Tn+1) = Id.

where the result is given because of the series’ convergence [13].

Lemma 2.6. Let P, T be bounded linear operators over a space X such that Id � PT = E,
where kEk < ⌧ < 1 for a small ⌧ and any given norm k · k. Then P is invertible.

Proof. Manipulating the matrices as their associated operators we have

Id� PT = E () Id� E = PT.

Since kEk < 1, its Neumann series converges, and by Proposition 2.5 (which from now on will
be called the Neumann series argument), we have that (Id � E) is invertible, which means
that PT is also invertible, resulting in P�1 = T (Id� E)�1.



2.1 Preparatory Results 11

In addition, we can see that kP�1 � Tk  kTk ⌧
1�⌧ :

kP�1 � Tk = kT (Id� E)�1 � Tk  kTk · k(Id� E)�1 � Idk
= kTk · k(Id� E)�1[Id� (Id� E)]k  kTk · k(Id� E)�1k · kEk

 kTk ·
1X

k=0

kEkk · kEk  kTk ⌧

1� ⌧
.

It will also be useful to give a couple of fixed point theorems to properly understand the
path we will be taking in order to prove the validation theorem.

Definition 2.7. Let (X, d) be a complete metric space. Then a map T : X ! X is called
a contraction mapping (or a map that satisfies the contraction principle) on X if there exists
L 2 [0, 1) such that

d(T (x), T (y))  L d(x, y) 8x, y 2 X .

Theorem 2.8. (Banach Fixed Point Theorem) Let (X, d) be a complete metric space and
f : X ! X a contractive map with contraction factor L 2 [0, 1), then exists a unique x⇤ 2 X

such that f(x⇤) = x⇤.

Proof. Start by taking a x0 2 X, and then defining the sequence (xn)n as xn = fn(x0). Since
our metric space is complete, it suffices to prove that our sequence is a Cauchy one. 8n and
8p � 0

d(xn+p, xn)  d(xn+p, xn+p�1) + . . .+ d(xn+1, xn)

 (Ln+p�1 + Ln+p�2 + . . .+ Ln)d(x1, x0)

 Ln(1 + L+ . . .+ Lp�1)d(x1, x0) 
Ln

1� L
d(x1, x0).

Where, in the third step, we have applied that

d(xm+1, xm)  L d(xm, xm�1)  . . .  Lmd(x1, x0)

using the contractive property and a geometric sum in the last step. From the inequality we
obtain lim

n!1
sup
p�0

d(xn+p, xn) = 0, since sup
p�0

d(xn+p, xn)  Ln

1�Ld(x1, x0), hence it is a Cauchy

sequence and therefore (xn)n converges to a certain x⇤. Thus xn+1 = f(xn) ���!
n!1

x⇤ = f(x⇤)

and x⇤ is a fixed point of f .

The uniqueness is easily proved by assuming there are two different fixed points, x⇤, y⇤, and
therefore

0 < d(x⇤, y⇤) = d(f(x⇤), f(y⇤))  L d(x⇤, y⇤) ! d(x⇤, y⇤)  L d(x⇤, y⇤)
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which is a contradiction since L 2 [0, 1).

Notice that, in addition, d(x⇤, x0)  d(x1,x0)
1�L .

Theorem 2.9. (Radial Fixed Point Theorem) Let (X, d) be a complete metric space and
let x0 2 X. Let now T : BR(x0) ⇢ X ! X be a map in the open set BR(x0) such that
8 r 2 (0, R), T��B̄r(x0)

is Lipschitz, where B̄r(x0) = {x 2 X : d(x, x0)  r} and

L : (0, R) �! R+

r 7�! L(r) = sup
x1,x22B̄r(x0)

x1 6=x2

d(T (x2), T (x1))

d(x2, x1)
.

Notice that L is an increasing function.
Assume that d(T (x0), x0)  ", where " > 0 is the error bound of the fixed point condition,
and take r 2 (", R). Then if "

r + L(r) � 1  0, there exists a unique x⇤ 2 B̄r(x0) such that
T (x⇤) = x⇤.

Proof. Since X is a Banach space, and therefore a complete space, Theorem 2.8 allows us to
reduce the proof to the following two steps:

1. T (B̄r(x0)) ✓ B̄r(x0), so the image of the ball won’t escape the ball itself.

2. T��B̄r(x0)
is contractive.

For the first step we pick x 2 B̄r(x0) and we see

d(T (x), x0)  d(T (x), T (x0)) + d(T (x0), x0)  L(r)d(x, x0) + "

 L(r)r + " = r
⇣
L(r) +

"

r

⌘
 r

which means that T (x) is in B̄r(x0).

Since our function T is already Lipschitz, we only need to see if the Lipschitz constant L(r)

dwells in the (0, 1) interval. By hypothesis, "
r +L(r)� 1  0 which leads to L(r)  1� "

r < 1.

Remark 2.10. Notice that the estimation that x⇤ 2 B̄r(x0) cannot be further refined,
given that using the formula obtained before and the inequality hypothesis of the theorem,
d(x⇤, x0)  d(x1,x0)

1�L(r)  "
"
r
= r. Keep in mind that the best estimation is taken for the smallest

r that satisfies the conditions.
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2.2 The Validation Theorem

Once we have all the needed definitions and results, it is time to state and prove the most
important result of the work, the theorem that proves the existence of a hyperbolic invariant
torus given an approximately invariant torus under quasi-periodic dynamics.

Theorem 2.11. Let U ⇢ Cn ⇥ Td
C be an open set and F : U ⇢ Cn ⇥ Td

C ! Cn be an analytic
map (of class Ca) with respect to the x variables, defining a skew-product over the irrational
rotation ! 2 Rd. Assume that given a ⇢ > 0 we have an analytic torus K0 : T̄d

⇢ ! Cn (that is,
continuous in T̄d

⇢ and analytic in Td
⇢) satisfying K0 = graph(K0) = {(K0(✓), ✓) | ✓ 2 Td

⇢} ⇢ U
and also that there exist:

1) Two analytic matrix-valued maps P1, P2 : T̄d
⇢ ! Mn(C), where P1 represents a vector

bundle map (over the identity) giving the change of variables to an adapted frame, and
P2 is its approximate inverse (see condition 5.3));

2) An analytic block-diagonal matrix-valued map

⇤0(✓) =

 
⇤s
0(✓) 0

0 ⇤u
0(✓)

!

where ⇤s
0 : T̄d

⇢ ! Mns(C) and ⇤u
0 : T̄d

⇢ ! Mnu(C), with n = ns + nu;

3) An (adapted) Finsler metric |·|✓, of the form |v̂|✓ = |v̂s|✓+|v̂u|✓ for v̂ = (v̂s, 0)+(0, v̂u) 2
Cn = Cns ⇥ Cnu , and the induced norm on analytic sections and vector bundle maps is
denoted by k · k⇢;

4) Positive constants ",�, ⌧,�, R, r, b with �+ � + ⌧ < 1;

such that

5.1) E(✓) = P2(✓)(F (K0(✓ � !), ✓ � !)�K0(✓)) satisfies kEk⇢  " (as a section);

5.2) Ered(✓) = P2(✓+!)DxF (K0(✓), ✓)P1(✓)�⇤0(✓) satisfies kEredk⇢  � (as a vector bundle
map over the rotation !);

5.3) Einv(✓) = P2(✓)P1(✓) � Id satisfies kEinvk⇢  ⌧ (as a vector bundle map over the
identity);

5.4) ⇤s
0(✓) and ⇤u

0(✓) satisfy k⇤s
0k⇢  � and k(⇤u

0)
�1k⇢  � (as vector bundle maps over the

rotation ! in Cns ⇥ Td and Cnu ⇥ Td, respectively);

5.5) For all points (x, ✓) in the strip

D̄⇢(K0, R) = {(x, ✓) 2 Cn ⇥ T̄d
⇢ | x = K0(✓) + P1(✓)⇠, ⇠ 2 Cn, |⇠|✓  R} ⇢ U ,

the bilinear maps over the rotation !
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B(x, ✓) = P2(✓ + !)D2
xF (x, ✓)[P1(✓)·, P1(✓)·]

satisfy kB(x, ✓)k  b as a norm of a bilinear form.

The norm of such a bilinear form can be defined as

kB(x, ✓)k = sup
(x,✓)2D̄(K0,r̄)

sup
|⇠1|,|⇠2| 6=1

|P2(✓ + !)D2
xF (x, ✓)[P1(✓)⇠1, P1(✓)⇠2]|✓+! .

We now define the constants

"̂ =
"

1� (�+ � + ⌧)
, � =

b

1� (�+ � + ⌧)
, h = �"̂ .

Assume

6) h < 1
2 ;

7) r0 =
1�

p
1�2h
h · "̂  r  min{r1, R}, where r1 =

1+
p
1�2h
h · "̂.

Under the hypotheses 1-7:

a) P1(✓) is invertible and there exists an analytic invariant torus K⇤ : Td
⇢ ! Cn to which

the Newton method converges from the initial approximation K0 and

kP1(✓)
�1(K⇤(✓)�K0(✓))k⇢  r0 < 2"̂ .

But also
kP1(✓)

�1(K⇤(✓)�K0(✓))k⇢  min{r1, R} .

This means that K⇤ is unique within a radius r1 and that, more precisely, it is contained
within a radius r0.

b) The torus K⇤ is normally hyperbolic, that is, the transfer operator M! is hyperbolic.

Let �̂ = k⇤0k⇢. Define the constant

µ =
�

1� �2

1

1� ⌧

⇣
br0 + � + �̂⌧

⌘

and suppose that, moreover, it suffices;

8) µ < 1
2+2

p
2
.

Then:

c) The stable and unstable bundles differ from the initial approximate invariant bundles in
a distance smaller than 2µ

(1�2µ)+
p

�4µ2�4µ+1
, and can be computed using the contraction

principle.
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Remark 2.12. We can actually dispose of the analytic regularity of the torus, since the
Bootstrap Theorem ensures the torus to be at least as regular as the map F .

Proof. The approach we are going to take is similar to the application of a Newton-Kantorovich
method (a method that given enough regularity on the map and suitable bounds, ensures the
quadratic convergence of a Newton method), but using also fixed point methods. This will
suffice to prove the convergence of our method.
Lastly, and in order to provide more clarity to a proof of such length, it will be convenient to
separate it in subsections dedicated to each of the statements that need to be proven.

Invariant Torus

First of all, using condition 5.3) and Lemma 2.6, we see that P1 is invertible. Let us
denote P�1

1 its inverse. By using P1 as a change of coordinates on the bundle Cn ⇥ Td
⇢, we

write K̂ = P�1
1 K, so the approximate invariant torus in the new coordinates is K̂0 = P�1

1 K0.
The functional on Ca(Td

⇢,Cn) we will consider is

F̂ [K̂](✓) = P2(✓)(F (P1(✓ � !)K̂(✓ � !), ✓ � !)� P1(✓)K̂(✓)).

From the regularity properties of the composition operator that can be found in [2], we can
say that F̂ is (at least) C2 when acting on analytic functions (which is enough regularity for
our purpose as we will see further ahead).

Clearly, in order to find a solution to our problem, which is finding an invariant K, we will
have to solve F̂ [K̂] = 0. For that, we can use a Newton method, which is defined as follows.

N̂ [K̂] = K̂ � (DF̂ [K̂])�1F̂ [K̂] .

But in order to simplify, we will apply a quasi-Newton method, which does not update
(DF̂ [K̂i])�1 for every new found tori Ki, but instead fixes it to the first one we calculate,
which is (DF̂ [K̂0])�1. The downside of such method is that the quadratic speed of conver-
gence (once convergence is proven) will drop, but that is not a problem for us since we only
want to see convergence. Hence, our new iterative method is defined as

N̂0[K̂] = K̂ � (DF̂ [K̂0])
�1F̂ [K̂] .

So, in order to prove that the method converges, we want to apply Theorem 2.9, a fixed point
theorem.

Let us define the domain of the operator N̂0[K̂] as

B̄⇢(K̂0, r) = {K̂ 2 Ca(Td
⇢,Cn) | kK̂ � K̂0k⇢  r} ,

which implies that if a torus K̂ is in B̄⇢(K̂0, r), then the torus K(✓) = K0(✓) + P1(✓)(K̂(✓)�
K̂0(✓)) is also in the tube D̄⇢(K0, R).
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Recalling Theorem 2.9, in order to ensure the existence of a fixed point in our operator, we
need to find

kN̂0[K̂0]� K̂0k⇢ = kK̂0 � (DF̂ [K̂0])
�1F̂ [K̂0]� K̂0k⇢

and L(r) for which
kN̂0[K̂2]� N̂0[K̂1]k⇢  L(r) kK̂2 � K̂1k⇢

such that
kN̂0[K̂0]� K̂0k⇢

r
+ L(r)� 1  0 .

Notice that kK̂0 � (DF̂ [K̂0])�1F̂ [K̂0] � K̂0k⇢  k(DF̂ [K̂0])�1k⇢kF̂ [K̂0]k⇢. It is clear that we
have to find bounds for k(DF̂ [K̂0])�1k⇢ and kF̂ [K̂0]k⇢, but recall that

F̂ [K̂](✓) = P2(✓)(F (P1(✓ � !)K̂(✓ � !), ✓ � !)� P1(✓)K̂(✓)),

which means that kF̂ [K̂0]k⇢ is the invariance error, which, by condition 5.1), satisfies kF̂ [K̂0]k⇢ =

kEk⇢  ". Let’s compute now the bound for k(DF̂ [K̂0])�1k⇢. First, we have to calculate
DF̂ [K̂0]. The differential of F̂ is defined by

(DF̂ [K̂0]⇠̂)(✓) = P2(✓)DxF (P1(✓ � !)K̂0(✓ � !), ✓ � !)P1(✓ � !)⇠̂(✓ � !)� P2(✓)P1(✓)⇠̂(✓)

= (⇤0(✓ � !) + Ered(✓ � !))⇠̂(✓ � !)� ⇠̂(✓)� Einv(✓)⇠̂(✓) ,

where ⇠̂ : T̄d
⇢ ! Cn is analytic. Denoting L!, Ered,! the transfer operators associated to ⇤0(✓)

and Ered(✓) respectively (over the rotation by !), and Einv the transfer operator associated
to Einv(✓) (over the identity), that is,

• L! ⇠̂(✓) = ⇤0(✓ � !) ⇠̂(✓ � !)

• Ered,! ⇠̂(✓) = Ered(✓ � !) ⇠̂(✓ � !)

• Einv ⇠̂(✓) = Einv(✓) ⇠̂(✓) ,

we can write

DF̂ [K̂0] = L! + Ered,! � Id� Einv = (L! � Id) + Ered,! � Einv

Notice that, from condition 5.4) and using a Neumann series argument, by decomposing L!

into its stable and unstable blocks (given that K̂0 is hyperbolic) and the fact that each operator
Ls,u
! is bounded, we can say that Id � Ls,u

! are invertible. This means that (Id � Ls,u
! )�1 =

�(Ls,u
! �Id)�1. Separating the stable and unstable cases we can calculate for the stable bundle

(Ls
! � Id)�1 = �(Id� Ls

!)
�1 = �

1X

k=0

(Ls
!)

k .
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Taking norms and using, again, 5.4)

k(Ls
! � Id)�1k⇢ =

����
1X

k=0

(Ls
!)

k
���
⇢


1X

k=0

k(Ls
!)

kk⇢ 
1X

k=0

kLs
!kk⇢ 

1X

k=0

�k =
1

1� �
, (2.1)

given that � < 1. The process for the unstable bundle is analogous, one only has to notice
that

(Lu
! � Id) = Lu

! · (Id� (Lu
!)

�1) �! (Lu
! � Id)�1 = (Id� (Lu

!)
�1)�1 · (Lu

!)
�1

and therefore

k(Lu
! � Id)�1k⇢  k(Id� (Lu

!)
�1)�1k⇢ · k(Lu

!)
�1k⇢ 

1X

k=0

k(Lu
!)

�1kk⇢ · � 
1X

k=0

�k · � =
�

1� �
.

Obtaining thus

k(Ls
! � Id)�1k⇢  1

1� �
, k(Lu

! � Id)�1k⇢  �

1� �
.

Then, L! � Id is also invertible and using the norm defined in 3) (taking the maximum norm
between both blocks), we have

k(L! � Id)�1k⇢  1

1� �
.

Notice that for a z 2 Cn such that |z| = 1, k(L! � Id)�1k⇢ = k(L! � zId)�1k⇢.
By rewriting the expression of the differential of F̂ such as

DF̂ [K̂0] = (L! � Id) + Ered,! � Einv = (L! � Id) · (Id+ (L! � Id)�1(Ered,! � Einv)) ,

we can find an expression for its inverse,

(DF̂ [K̂0])
�1 = (Id+ (L! � Id)�1(Ered,! � Einv))�1(L! � Id)�1 .

From 5.2) and 5.3), and provided that k(L! � Id)�1(Ered,! � Einv)k⇢  1
1��(�+ ⌧) < 1, using

Neumann series we have the estimate

k(DF̂ [K̂0])
�1k⇢  1

1� �+⌧
1��

1

1� �
.

Notice that from condition 4) we have that �+ � + ⌧ < 1, so finally

k(DF̂ [K̂0])
�1k⇢  1

1� (�+ � + ⌧)
.
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With those estimates, we can lastly compute

kK̂0 � (DF̂ [K̂0])
�1F̂ [K̂0]� K̂0k⇢  k(DF̂ [K̂0])

�1k⇢kF̂ [K̂0]k⇢  "

1� (�+ � + ⌧)
= "̂ .

The next step is to find the L(r) term. For that, we proceed as usual, by checking that

kN̂0[K̂2]� N̂0[K̂1]k⇢  L(r) kK̂2 � K̂1k⇢ .

We can start by expressing F̂ [K̂2] in terms of its Taylor approximation plus the residue in its
integral form around K̂1.

F̂ [K̂2] = F̂ [K̂1] +

Z 1

0
DF̂ [K̂1 + t(K̂2 � K̂1)]dt (K̂2 � K̂1) .

Then,

N̂0[K̂2]� N̂0[K̂1] = K̂2 � (DF̂ [K̂0])
�1F̂ [K̂2]� K̂1 + (DF̂ [K̂0])

�1F̂ [K̂1]

= K̂2 � (DF̂ [K̂0])
�1

✓
F̂ [K̂1] +

Z 1

0
DF̂ [K̂1 + t(K̂2 � K̂1)]dt (K̂2 � K̂1)

◆

� K̂1 + (DF̂ [K̂0])
�1F̂ [K̂1] .

Before continuing, let’s find another expression for DF̂ [K̂1 + t(K̂2 � K̂1)].

DF̂ [K̂1 + t(K̂2 � K̂1)] = DF̂ [K̂0] +

Z 1

0

d

ds

⇣
DF̂

h
K̂0 + s(K̂1 + t(K̂2 � K̂1)� K̂0)

i⌘
ds

= DF̂ [K̂0] +

Z 1

0
D2F̂

h
K̂0 + s

�
(K̂1 � K̂0) + t(K̂2 � K̂1)

�i
ds ·

·
⇣
(K̂1 � K̂0) + t(K̂2 � K̂1)

⌘
.

Notice that we can transform

(K̂1 � K̂0) + t(K̂2 � K̂1) = (K̂1 � K̂0) + t(K̂2 � K̂1)� tK̂0 + tK̂0

= (K̂1 � K̂0) + t(K̂2 � K̂0)� t(K̂1 � K̂0)

= (1� t)(K̂1 � K̂0) + t(K̂2 � K̂0)

and obtain

N̂0[K̂2]� N̂0[K̂1] =

Z 1

0

Z 1

0
(DF̂ [K̂0])

�1D2F̂
h
K̂0 + s

⇣
(K̂1 � K̂0) + t(K̂2 � K̂1)

⌘i
ds·

·
⇣
(1� t)(K̂1 � K̂0) + t(K̂2 � K̂0)

⌘
dt (K̂2 � K̂1) .
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We estimate now the norm of D2F̂ on functions in B̄⇢(K̂0, r). Recall that, since kK̂(✓) �
K̂0(✓)k⇢  r  R, then (K(✓), ✓) 2 D̄⇢(K0, R) for ✓ 2 T̄d

⇢. With the second differential being

D2F̂ [K̂][⇠̂1, ⇠̂2](✓) = P2(✓ + !)D2
xF (P1(✓)K̂(✓), ✓)[P1(✓)⇠̂1(✓), P1(✓)⇠̂2(✓)]

and applying condition 5.5) we obtain

kD2F̂ [K̂]k  b

for any K̂ 2 B̄⇢(K̂0, r). This way, we can see that we can bound

���(DF̂ [K̂0])
�1D2F̂

h
K̂0 + s

⇣
(K̂1 � K̂0) + t(K̂2 � K̂1)

⌘i���
⇢
 b

1� (�+ � + ⌧)
= �

and kK̂2 � K̂1k⇢, kK̂1 � K̂1k⇢  r. With this,

kN̂0[K̂2]� N̂0[K̂1]k⇢  1

2
�r kK̂2 � K̂1k⇢ ,

so L(r) = 1
2�r.

Once we have our estimates, we have to check the theorem’s hypothesis, and that is "̂
r +

1
2�r � 1  0, which is equivalent to "̂+ 1

2�r
2 � r  0. By solving the inequation we find two

values,

r0 =
1�

p
1� 2h

�
=

1�
p
1� 2h

h
"̂ , r1 =

1 +
p
1� 2h

�
=

1 +
p
1� 2h

h
"̂

for which r has to satisfy r0  r  min{r1, R} (since we have to remain inside the tube).
Such condition is satisfied due to hypotheses 6) and 7), which implies the satisfaction of the
hypothesis of Theorem 2.9 and therefore the existence of a fixed point in our quasi-Newton
method and hence the existence of an invariant torus K⇤. Notice that Theorem 2.9 also tells
us that our Newton operator is contractive since L(r) < 1.

Recall that the estimates we just found mean that the newly found torus K⇤ will be con-
tained within a radius r0 and that, furthermore, it will be unique in a radius r1.

Hyperbolicity

In order to prove the hyperbolicity of K⇤, we will prove that, for any K̂(✓) 2 B̄⇢(K̂0, r0)

(defined as before) the its transfer operator M! is hyperbolic. As we saw before, we have
to check that the unit circle is in the resolvent of the transfer operator, that is, 8z 2 Cn

such that |z| = 1, we have to check that z 2 Res(M!, Ca(T̄d
⇢,Cn)). This means that

8⌘ 2 Ca(T̄d
⇢,Cn), 9! ⇠ 2 Ca(T̄d

⇢,Cn) such that M! ⇠ � z ⇠ = ⌘.
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Hence, for any z 2 C with |z| = 1, and given ⌘ 2 Ca(T̄d
⇢,Cn), we have to solve the equation

⌘(✓) = DxF (K(✓ � !), ✓ � !)⇠(✓ � !)� z⇠(✓)

which is equivalent to

P2(✓)P1(✓)⌘̂(✓) = P2(✓)DxF (K(✓ � !), ✓ � !)P1(✓ � !)⇠̂(✓ � !)� zP2(✓)P1(✓)⇠̂(✓) (2.2)

once we perform the change of variables giving rise ⇠ = P1⇠̂ and ⌘ = P1⌘̂.

A first step is to compare the transfer operators associated to M(✓) = DxF (K(✓), ✓) and
M0(✓) = DxF (K0(✓), ✓). To do so, we consider the vector bundle map (over the rotation !)
defined by

B(✓) = P2(✓)(DxF (K(✓ � !), ✓ � !)�DxF (K0(✓ � !), ✓ � !))P1(✓ � !) (2.3)

=

Z 1

0
P2(✓)D

2
xF (tK(✓ � !) + (1� t)K0(✓ � !), ✓ � !) (2.4)

[P1(✓ � !)(K̂(✓ � !)� K̂0(✓ � !)), P1(✓ � !)·] dt . (2.5)

The transfer operator for such map would be B! ⇠̂(✓) = B(✓ � !)⇠̂(✓ � !) and we see that
kB!k⇢  br0. Then, we can manipulate equation (2.2) and get

P2(✓)P1(✓)⌘̂(✓) = P2(✓)DxF (K(✓ � !), ✓ � !)P1(✓ � !)⇠̂(✓ � !)� zP2(✓)P1(✓)⇠̂(✓)

= P2(✓)DxF (K(✓ � !), ✓ � !)P1(✓ � !)⇠̂(✓ � !)

� P2(✓)DxF (K0(✓ � !), ✓ � !)P1(✓ � !)⇠̂(✓ � !)

+ P2(✓)DxF (K0(✓ � !), ✓ � !)P1(✓ � !)⇠̂(✓ � !)� zP2(✓)P1(✓)⇠̂(✓)

= P2(✓)(DxF (K(✓), ✓)�DxF (K0(✓), ✓))P1(✓ � !)⇠̂(✓ � !)

+ P2(✓)DxF (K0(✓ � !), ✓ � !)P1(✓ � !)⇠̂(✓ � !)� zP2(✓)P1(✓)⇠̂(✓) , (2.6)

which turns into

(Id+Einv(✓))⌘̂(✓) = (⇤0(✓ � !) +Ered,!(✓ � !) +B(✓ � !))⇠̂(✓ � !)� z(Id+Einv(✓))⇠̂(✓) .

Using transfer operator notation, the previous equation becomes

(Id+ Einv)⌘̂ = ((L! � zId) + Ered,! + B! � zEinv)⇠̂ ,

which can be expressed as a product as

(Id+ Einv)⌘̂ = (L! � zId)(Id+ (L! � zId)�1(B! + Ered,! � zEinv))⇠̂ ,
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where the invertibility of (L! � zId) has been proven before. Following similar procedures,
the solution of the previous equation is:

⇠̂ = (Id+ (L! � zId)�1(B! + Ered,! � zEinv))�1(L! � zId)�1(Id+ Einv)⌘̂ .

Even though the existence (and therefore the hyperbolicity) is already proven, we can go
a bit further and provide a bound for k(M! � zId)�1k⇢. Since ⌘ = (M! � zId)⇠, then
⇠ = (M! � zId)�1⌘, so k⇠k⇢ = k(M! � zId)�1k⇢k⌘k⇢. Recall that ⌘ = P1 ⌘̂ and ⇠ = P1 ⇠̂, so
with the last expression found for ⇠̂, we have

⇠ = P1(Id+ (L! � zId)�1(B! + Ered,! � zEinv))�1(L! � zId)�1(Id+ Einv)P�1
1 ⌘ .

Since we can bound

k(L! � zId)�1(B! + Ered,! � zEinv)k⇢  br0 + � + ⌧

1� �
,

by using Neumann series, one has

k⇠̂k⇢  1

1� ⌧+br0+�
1��

· 1 + ⌧

1� �
k⌘̂k⇢ =

1 + ⌧

1� (�+ � + ⌧ + br0)
k⌘̂k⇢ .

Notice that �+ � + ⌧ + br0 is a “dirtier” hyperbolicity constant than �, therefore, if �+ � +

⌧ + br0 < 1, we can ensure that the operator is a contraction. In order to prove such bound,
we have to check that br0 < 1 and that when added to �+ � + ⌧ , the sum is still less than 1.
For that we use hypothesis 6) and the fact that r0 < 2"̂ to obtain:

br0
1� (�+ � + ⌧)

< 2�"̂ = 2h < 1 .

With that, we have

k⇠k⇢  kP1k⇢
1 + ⌧

1� (�+ � + ⌧ + br0)
kP�1

1 k⇢ k⌘k⇢ ,

which implies

k(M! � zId)�1k⇢  kP1k⇢
1 + ⌧

1� (�+ � + ⌧ + br0)
kP�1

1 k⇢ .

Invariant Bundles

Once we have computed the invariant torus K⇤, we are ready to compute its stable and
unstable subbundles from the approximate invariant bundles.
The equation to be solved is

P (✓ + !)�1DxF (K⇤(✓), ✓)P (✓)� ⇤(✓) = 0 . (2.7)
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The unknowns in the previous equation are P and ⇤ = blockdiag(⇤s,⇤u). Instead of using
these unknowns, we will introduce new variables which take advantage of the fact that we
have an approximate solution. Such variables will be Q,�s and �u, where

Q(✓) =

 
0 Qsu(✓)

Qus(✓) 0

!

with Qus(✓) : T̄d
⇢ ! Cns⇥nu , Qsu(✓) : T̄d

⇢ ! Cnu⇥ns are analytic maps. In addition, we will
have the �s and �u corrections, which will also be analytic maps �s(✓) : T̄d

⇢ ! Cns⇥ns ,
�u(✓) : T̄d

⇢ ! Cnu⇥nu .

The key idea of this is that we are looking for correction variables (the entries of the ma-
trix Q) such that when applied on the approximate fibers they will lead us to the invariant
fibers. We can say that P1 is the matrix of the base of eigenvectors on the approximate subbun-
dles split into stable and unstable eigenvectors (to be precise, the eigenvectors that generate
the stable and unstable subbundles). And the same goes for P and K⇤ (we can affirm that
such splitting exists for K⇤ because we just proved it is normally hyperbolic). Dropping the ✓

dependence for a moment for the sake of the conceptual explanation and calling P1 = (vs1 | vu1 )
and P = (vs | vu), we can write (

vs = vs1 +Qusvu1

vu = vu1 +Qsuvs1

which is equivalent to
(vs | vu) = (vs1 | vu1 ) + (vs1 | vu1 )Q ,

or using matrices
P = P1(Id+Q) .

Hence,

P (✓) = P1(✓) + P1(✓)Q(✓) , ⇤s(✓) = ⇤s
0(✓) +�s(✓) , ⇤u(✓) = ⇤u

0(✓) +�u(✓) . (2.8)

We will use the contraction principle to analyze (2.7).
We take Qus = 0, Qsu = 0, �s = 0 and �u = 0 as the first elements of the iteration. Then,
by adding and subtracting the differential of K0 (more specifically ⇤0(✓) +Ered(✓)), the error
can be expressed as

eEred(✓) = P1(✓ + !)�1DxF (K⇤(✓), ✓)P1(✓)� ⇤0(✓)

= (Id+ Einv(✓ + !))�1(⇤0(✓) + Ered(✓) +B(✓ + !))� ⇤0(✓)

= ((Id+ Einv(✓ + !))�1 � Id)⇤0(✓) + (Id+ Einv(✓ + !))�1(Ered(✓) +B(✓ + !)) ,

(2.9)
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where B is defined as in (2.3) but taking K⇤ as K.
Notice that in the second equality we have applied the same reasoning as in (2.6). Notice that

((Id+ Einv(✓ + !))�1 � Id) = (Id+ Einv(✓ + !))�1(Id� (Id+ Einv(✓ + !)))

= (Id+ Einv(✓ + !))�1(�Einv(✓ + !)) .

Therefore, taking norms directly from the last expression in (2.9) we have

k eEredk⇢  ⌧

1� ⌧
�̂+

1

1� ⌧
(� + br0) = �̃ , (2.10)

where �̂ = k⇤0k⇢ (as defined in the hypotheses). Now equation (2.7) reads

0 = P1(✓ + !)�1DxF (K⇤(✓), ✓)P1(✓)(Id+Q(✓))� (Id+Q(✓ + !))(⇤0(✓) +�(✓))

= ( eEred(✓) + ⇤0(✓))(Id+Q(✓))� (Id+Q(✓ + !))(⇤0(✓) +�(✓))

= ⇤0(✓)Q(✓)�Q(✓ + !)⇤0(✓)��(✓) + eEred(✓)(Id+Q(✓))�Q(✓ + !)�(✓) . (2.11)

We can write
eEred(✓) =

 
eEss
red(✓)

eEsu
red(✓)

eEus
red(✓)

eEuu
red(✓)

!

so we can deal with (2.11) as a product of matrices and express the result block by block. The
diagonal blocks result in

��s(✓) + eEsu
red(✓)Q

us(✓) + eEss
red(✓) = 0 ,

��u(✓) + eEus
red(✓)Q

su(✓) + eEuu
red(✓) = 0 ,

which can be expressed as

�s(✓) = eEsu
red(✓)Q

us(✓) + eEss
red(✓) ,

�u(✓) = eEus
red(✓)Q

su(✓) + eEuu
red(✓) .

Using this expressions, we can write the results of the remaining blocks as

⇤s
0(✓)Q

su(✓)�Qsu(✓ + !)⇤u
0(✓) =�

⇣
eEss
red(✓)Q

su(✓)�Qsu(✓ + !) eEuu
red(✓)

⌘
+

Qsu(✓ + !) eEus
red(✓)Q

su(✓)� eEsu
red(✓) , (2.12)

⇤u
0(✓)Q

us(✓)�Qus(✓ + !)⇤s
0(✓) =�

⇣
eEuu
red(✓)Q

us(✓)�Qus(✓ + !) eEss
red(✓)

⌘
+

Qus(✓ + !) eEsu
red(✓)Q

us(✓)� eEus
red(✓) . (2.13)

Hence, we just have to solve (2.12) and (2.13). We will make explicit the calculations for
(2.12), since the ones for (2.13) can be obtained by applying the results from (2.12) to the
inverse mapping.
Multiplying on both sides of the equation by (⇤u

0)
�1 and by defining the linear operator Lsu

!
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acting on analytic vector bundle maps (over the identity) Qsu(✓) : Rnu ! Rns as

Lsu
! Qsu(✓) := Lsu

! [Qsu](✓) = ⇤s
0(✓ � !)Qsu(✓ � !)(⇤u

0(✓ � !))�1 (2.14)

we can write equation (2.12) as

Qsu = (Lsu
! � Id)�1 � (�eEss

red,!Q
su +Qsu

+ (eEus
red,!Q

su + eEuu
red,!)� eEsu

red,!) � (Lu
!)

�1 , (2.15)

where Q+ := Q(✓ + !). By applying Neumann series reasoning on (2.14),

k(Lsu
! � Id)�1k⇢  1

1� �2
.

From now on, the right hand side of equation (2.15) will be considered as an operator
T (Qsu) := T [Qsu] acting on Qsu. So equation (2.15) reads as a fixed point equation T (Qsu) =

Qsu, which leads us back to the application of the fixed point Theorem 2.9. We will assume
that Qsu is contained in a ball of radius ↵. Again, the first step will be the estimation of
kT (0)� 0k⇢.

Remark 2.13. Keep in mind that when we specify that the map Qsu = 0, we are also saying
that 0 is a matrix of the size of Qsu.

Observe that from estimate (2.10) we obtain estimates keEss
red,!k⇢  �̃, keEsu

red,!k⇢  �̃,
keEus

red,!k⇢  �̃ and keEuu
red,!k⇢  �̃ because the norm of every block of the matrix cannot be

bigger than the norm of the matrix itself given that we work with supremum norms.

We see then

kT (0)� 0k⇢ = kT (0)k⇢  k(Lsu
! � Id)�1k⇢ keEus

red,!k⇢ k(Lu
!)

�1k⇢  �

1� �2
�̃ = µ .

The next step is finding L(↵) such that

kT (Qsu
2 )� T (Qsu

1 )k⇢  L(↵)kQsu
2 �Qsu

1 k⇢ .

For that, we proceed directly

kT (Qsu
2 )� T (Qsu

1 )k⇢ 

 k(Lsu
! � Id)�1 � (�eEss

red,!Q
su
2 +Qsu

+2(eEus
red,!Q

su
2 + eEuu

red,!)� eEsu
red,!) � (Lu

!)
�1

� (Lsu
! � Id)�1 � (�eEss

red,!Q
su
1 +Qsu

+1(eEus
red,!Q

su
1 + eEuu

red,!)� eEsu
red,!) � (Lu

!)
�1k⇢

 �

1� �2
k � eEss

red,!(Q
su
2 �Qsu

1 ) + (Qsu
+2 �Qsu

+1)eEuu
red,! +Qsu

+2
eEus
red,!Q

su
2

�Qsu
+2
eEus
red,!Q

su
1 �Qsu

+1
eEus
red,!Q

su
1 +Qsu

+2
eEus
red,!Q

su
1 k⇢

 �

1� �2
(2�̃ + 2↵�̃)kQsu

2 �Qsu
1 k⇢  2µ(1 + ↵)kQsu

2 �Qsu
1 k⇢ ,

where we have used that kQsu
1,2k⇢  ↵. So L(↵) = 2µ(1 + ↵) and we just have to check the



2.2 The Validation Theorem 25

fixed point theorem’s condition:

µ

↵
+ 2µ(1 + ↵)� 1  0 () µ+ (2µ� 1)↵+ 2µ↵2  0

Solving for ↵ we obtain

↵± =
(1� 2µ)±

p
�4µ2 � 4µ+ 1

4µ
,

for these solutions to exist we need a non-negative discriminant, so it is required

�4µ2 � 4µ+ 1 � 0 ,

and for that, µ needs to satisfy

µ <

p
2� 1

2
=

1

2 + 2
p
2
.

By hypothesis 8), µ < 1
2+2

p
2
, which means that ↵ solutions exist for the inequation of the

fixed point theorem, and therefore there exists a fixed point of the operator T (Qsu) and hence
exists Qsu, which is the correction matrix for approximately invariant subbundles, implying
the existence of actually invariant subbundles.

Recall as well from Remark 2.10 that the estimate given by Theorem 2.9 cannot be fur-
ther improved, meaning that the fixed point is bounded by the radius of the ball within which
it is contained. More specifically, it will be bounded by ↵�.

kQsuk⇢  ↵� =
(1� 2µ)�

p
�4µ2 � 4µ+ 1

4µ
=

2µ

(1� 2µ) +
p
�4µ2 � 4µ+ 1

,

which is the distance between the approximate invariant subbundles and the invariant ones.
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Chapter 3

Fourier Series

Fourier series are widely known for being an excellent tool for alternative function rep-
resentation. The capability of expressing function values using Fourier coefficients can be of
great use when it comes to computation. And that is exactly why we need them. In order to
easily manipulate points on a grid as we will have to when dealing with operations over the
torus, it will be convenient to use their Fourier coefficients so simple transformations can be
applied over exponentials. Since a computer cannot work with continuous arrays, we will also
introduce the discrete version of Fourier series and an algorithm for a faster execution of such
calculations. The statements and results from this chapter have been adapted from [11] and
[3].

3.1 The Fourier Transform and the Discrete Fourier Transform

For an analytic functions u : T⇢ ! C, we write its the Fourier expansion as

u(✓) =
X

k2Z
ûk e

2⇡ik✓ , ûk =

Z 1

0
u(✓) e�2⇡ik✓d✓

and we note the average of u as hui = û0 =
R 1
0 u(✓)d✓. Notice that û⇤k = û�k, where û⇤k

denotes the complex conjugate of ûk.
Then we consider the Fourier norm

kukF, ⇢ =
X

k2Z
|ûk| e2⇡|k|⇢ .

We observe that kuk⇢  kukF, ⇢ , 8⇢ > 0.

Now we are ready to introduce the Discrete Fourier Transform and its properties. We provide
the definition of Fourier series given any function f : T ! C:

f(✓) =
X

k2Z
f̂k e

2⇡ik✓

27
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where the Fourier coefficients are given by the Fourier Transform (FT)

f̂k =

Z 1

0
f(✓) e�2⇡ik✓d✓. (3.1)

We consider a sample of points on the regular grid of size N 2 N, ✓j := j
N , where 0  j < N .

This defines a sampling {fj}, with fj = f(✓j) and a total number of points N.
The integrals in (3.1) are approximated using the trapezoidal rule on the regular grid, obtaining
the Discrete Fourier Transform (DFT)

f̃k =
1

N

N�1X

j=0

fj e
�2⇡ik✓j .

Remark 3.1. f̃k can be defined for all k 2 Z. Moreover, they are periodic with period N ,
f̃k+N = f̃k.

The function f is approximated by the discrete Fourier approximation

f̃(✓) =

[N�1
2 ]X

k=�[N2 ]

f̃k e
2⇡ik✓ .

Along this section, we will use the standard notation [x] = max{j 2 Z : j  x} for the integer
part of x.

Remark 3.2. The DFT approximation f̃(✓) interpolates the data on the grid. That is
8j = 0, . . . , N � 1, f̃(✓j) = f(✓j).

Notice that the stated process turns the sampling of points on the grid onto the Fourier
coefficients for the DFT. The inverse process will get the Fourier coefficients for the DFT and
turn them onto the values on the grid. This process is called the Inverse Discrete Fourier
Transform (IDFT) and uses the following formula

fj =
N�1X

k=0

f̃k e
2⇡i
N jk .

Remark 3.3. As we have previously stated, the Fourier coefficients are symmetrical, that
is, f̂⇤

k = f̂�k, which holds for the DFT coefficients as well, f̃⇤
k = f̃�k. This presents a

problem regarding the way we have defined the DFT. See that since we are treating the real
analytic case, our function f evaluated over the points of the grid will acquire real values,
but depending on the parity of the size of the grid, N , the discrete approximation will not.
The reason behind this phenomenon lies on the fact that if N is odd, due to the coefficients’
symmetry, the resulting function will remain real, but if N is even, then N � 1 is odd, which
means that the term �

⇥
N
2

⇤
of the sum, called the Nyquist term, will be unpaired. The lack

of its symmetrical pair results on a complex function whose derivative will have the imaginary
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term i. This does not present a major issue since the Nyquist term will naturally be very
small. Nonetheless, if it is desired to look for a way to express the function f in terms of its
DFT without this little problem, one shall eliminate the Nyquist term, thus obtaining

p(✓) =

[N�1
2 ]X

k=�[N�1
2 ]

f̃k e
2⇡ik✓ .

Although this solves the previous issue, it presents another one, the main reason why we are
not taking p in our process. Since we have set the Nyquist term to 0, this approximation will
not interpolate the data on the grid, which is a property of great use to us. Thus we will keep
using f̃ .

3.2 Error Estimates on Approximations

3.2.1 Analytic Periodic Functions

As we have seen, there are discrete ways of expressing a function in terms of a trigonometric
polynomial. The DFT supposes a great advantage for computing Fourier series with a machine.
But of course, the loss of exact information when interpolating between grid points produces
an approximation error. Coming up next we present the error between DFT coefficients and
FT coefficients and the error when approximating a function with the DFT approximation.

Lemma 3.4. Fixed the grid size N 2 N, the coefficients of the DFT are obtained from the
coefficients of the FT by

f̃k =
X

m2Z
f̂k+Nm .

Proof. The proof for the Lemma starts by substituting fj by its aforementioned Fourier series
expression

f̃k =
1

N

N�1X

j=0

fj e
�2⇡ik✓j =

1

N

N�1X

j=0

X

l2Z
f̂l e

2⇡il✓j e�2⇡ik✓j =
X

l2Z
f̂l

0

@ 1

N

N�1X

j=0

e2⇡i(l�k) j
N

1

A .

Notice that 1
N

N�1P
j=0

e2⇡i(l�k) j
N = 1 if l � k is a multiple of N since l�k

N , j 2 Z and then

e2⇡i(l�k) j
N = 1 and 1

N

N�1P
j=0

e2⇡i(l�k) j
N = 1

N

N�1P
j=0

1 = 1.

Let’s see now the case where l � k is not a multiple of N .

1

N

N�1X

j=0

e2⇡i(l�k) j
N =

1

N

N�1X

j=0

(e2⇡i
(l�k)
N )j =

1

N

1� (e2⇡i
(l�k)
N )N

1� e2⇡i
(l�k)
N

=
1

N

1� e2⇡i(l�k)

1� e2⇡i
(l�k)
N

.

Since l � k 2 Z, e2⇡i(l�k) = 1 and 1� e2⇡i(l�k) = 0. By hypothesis, l � k is not a multiple of
N , which means that 1� e2⇡i

(l�k)
N 6= 0.
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Wrapping up, we have

1

N

N�1X

j=0

e2⇡i(l�k) j
N =

(
1 if l � k is a multiple of N

0 otherwise
.

This means that the first sum will only have terms if l � k = Nm for m 2 Z, that is for the
terms l = k +Nm and hence

f̃k =
X

l2Z
f̂l

0

@ 1

N

N�1X

j=0

e2⇡i(l�k) j
N

1

A =
X

m2Z
f̂k+Nm .

Proposition 3.5. Let f : T⇢̂ �! C be a real analytic and bounded function in the complex
strip T⇢̂ of size ⇢̂ > 0. Let f̃ be the discrete Fourier approximation of f in the regular grid of
size N 2 N with Fourier coefficients f̃k. Then for k = �

⇥
N
2

⇤
, · · · ,

⇥
N�1
2

⇤
,

|f̃k � f̂k|  S⇤
N (k, ⇢̂) · kfk⇢̂

where
S⇤
N (k, ⇢̂) =

e�2⇡⇢̂N

1� e�2⇡⇢̂N

⇣
e�2⇡⇢̂k + e2⇡⇢̂k

⌘
.

Proof. Let k 2 Z. From Lemma 3.4 and the fact that |f̂k|  e�2⇡|k|⇢̂ kfk⇢̂, we obtain

|f̃k � f̂k| =
���
X

m2Z
f̂k+Nm � f̂k

��� =
���
X

m2Z\{0}
f̂k+Nm

��� 


X

m2Z\{0}
|f̂k+Nm| 

X

m2Z\{0}
e�2⇡⇢̂|k+Nm| · kfk⇢̂.

Then, we define
S⇤
N (k, ⇢̂) =

X

m2Z\{0}
e�2⇡⇢̂|k+Nm|

so we have |f̃k � f̂k|  S⇤
N (k, ⇢̂) · kfk⇢̂. Notice that for k = �

⇥
N
2

⇤
, · · · ,

⇥
N�1
2

⇤
, if m > 0,

k+Nm > 0, and if m < 0, k+Nm < 0. We must find then a suitable expression for S⇤
N (k, ⇢̂),

so

S⇤
N (k, ⇢̂) =

X

m>0

e�2⇡⇢̂(k+Nm) +
X

m<0

e�2⇡⇢̂(�k�Nm) = e�2⇡⇢̂k
X

m>0

e�2⇡⇢̂Nm + e2⇡⇢̂k
X

m<0

e2⇡⇢̂Nm

 e�2⇡⇢̂k
X

m>0

e�2⇡⇢̂Nm + e2⇡⇢̂k
X

m>0

e�2⇡⇢̂Nm =
e�2⇡⇢̂N

1� e�2⇡⇢̂N

⇣
e�2⇡⇢̂k + e2⇡⇢̂k

⌘
.
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Theorem 3.6. Let f : T⇢̂ �! C be an analytic and bounded function in the complex strip T⇢̂

of size ⇢̂ > 0. Let f̃ be the discrete Fourier approximation of f in the regular grid of size N

even. Then, for 0  ⇢ < ⇢̂, we have

kf̃ � fk⇢  CN (⇢, ⇢̂) · kfk⇢̂

where
CN (⇢, ⇢̂) = S⇤1

N (⇢, ⇢̂) + S⇤2
N (⇢, ⇢̂) + TN (⇢, ⇢̂)

with

S⇤1
N (⇢, ⇢̂) =

e�2⇡⇢̂N

1� e�2⇡⇢̂N

e�2⇡(⇢̂+⇢) + 1

e�2⇡(⇢̂+⇢) � 1

⇣
1� e⇡(⇢̂+⇢)N

⌘
,

S⇤2
N (⇢, ⇢̂) =

e�2⇡⇢̂N

1� e�2⇡⇢̂N

e2⇡(⇢̂�⇢) + 1

e2⇡(⇢̂�⇢) � 1

⇣
1� e�⇡(⇢̂�⇢)N

⌘
,

TN (⇢, ⇢̂) =
e2⇡(⇢̂�⇢) + 1

e2⇡(⇢̂�⇢) � 1
e�⇡(⇢̂�⇢)N .

Proof. From the definition of the discrete Fourier approximation f̃ of f , we have

kf̃ � fk⇢ 

N
2 �1X

k=�N
2

|f̃k � f̂k| e2⇡⇢|k| +
�N

2 �1X

k=�1
|f̂k| e�2⇡⇢k +

1X

k=fracN2

|f̂k| e2⇡⇢k .

From Proposition 3.5 and the growth rate properties of the Fourier coefficients of an analytic
function, we get

kf̃ � fk⇢  (S⇤
N (⇢, ⇢̂) + TN (⇢, ⇢̂)) · kfk⇢̂

where

S⇤
N (⇢, ⇢̂) =

N
2 �1X

k=�N
2

S⇤
N (k, ⇢̂) e2⇡⇢|k|

and

TN (⇢, ⇢̂) =

�N
2 �1X

k=�1
e2⇡(⇢̂�⇢)k +

1X

k=N
2

e�2⇡(⇢̂�⇢)k .

Let’s express TN (⇢, ⇢̂) in computable terms. Notice that

TN (⇢, ⇢̂) = e�2⇡(⇢̂�⇢)kN
2 + 2

1X

k=N
2 +1

e�2⇡(⇢̂�⇢)k = e�2⇡(⇢̂�⇢)kN
2 + 2

e�2⇡(⇢̂�⇢)(N2 +1)

1� e�2⇡(⇢̂�⇢)

= e�⇡(⇢̂�⇢)N 1 + e�2⇡(⇢̂�⇢)

1� e�2⇡(⇢̂�⇢)
=

e2⇡(⇢̂�⇢) + 1

e2⇡(⇢̂�⇢) � 1
e�⇡(⇢̂�⇢)N .



32 Fourier Series

Using the results obtained in Proposition 3.5 we compute

S⇤
N (⇢, ⇢̂) =

N
2 �1X

k=�N
2

S⇤
N (k, ⇢̂) e2⇡⇢|k| 

N
2 �1X

k=�N
2

e�2⇡⇢̂N

1� e�2⇡⇢̂N

⇣
e�2⇡⇢̂k + e2⇡⇢̂k

⌘
e2⇡⇢|k|

=
e�2⇡⇢̂N

1� e�2⇡⇢̂N

N
2 �1X

k=�N
2

⇣
e�2⇡⇢̂k + e2⇡⇢̂k

⌘
e2⇡⇢|k| .

Let’s compute the last sum. It is equal to

⇣
e2⇡⇢̂

N
2 + e�2⇡⇢̂N

2

⌘
e2⇡⇢

N
2 +

N
2 �1X

k=�N
2 +1

⇣
e�2⇡⇢̂k + e2⇡⇢̂k

⌘
e2⇡⇢|k|

=
⇣
e⇡(⇢̂+⇢)N + e�⇡(⇢̂�⇢)N

⌘
+ 2 + 2

N
2 �1X

k=1

⇣
e�2⇡⇢̂k + e2⇡⇢̂k

⌘
e2⇡⇢k

= e⇡(⇢̂+⇢)N + e�⇡(⇢̂�⇢)N + 2 + 2e�2⇡(⇢̂�⇢) e
�2⇡(⇢̂�⇢)(N2 �1) � 1

e�2⇡(⇢̂�⇢) � 1
+ 2e2⇡(⇢̂+⇢) e

2⇡(⇢̂+⇢)(N2 �1) � 1

e2⇡(⇢̂+⇢) � 1

= 2 +
e�2⇡(⇢̂�⇢)�⇡(⇢̂�⇢)N � e�⇡(⇢̂�⇢)N + 2e�⇡(⇢̂�⇢)N � 2e�2⇡(⇢̂�⇢) + e�⇡(⇢̂�⇢)N

e�2⇡(⇢̂�⇢)

+
e2⇡(⇢̂+⇢)+⇡(⇢̂+⇢)N � e⇡(⇢̂+⇢)N + 2e⇡(⇢̂+⇢)N � 2e2⇡(⇢̂+⇢)

e2⇡(⇢̂+⇢)

=
e�⇡(⇢̂�⇢)N

�
1 + e�2⇡(⇢̂�⇢)

�
�
�
1 + e�2⇡(⇢̂�⇢)

�

e�2⇡(⇢̂�⇢) � 1
+

e⇡(⇢̂+⇢)N
�
1 + e2⇡(⇢̂+⇢)

�
�
�
1 + e2⇡(⇢̂+⇢)

�

e2⇡(⇢̂+⇢) � 1

=
⇣
1� e�⇡(⇢̂�⇢)N

⌘ 1 + e�2⇡(⇢̂�⇢)

1� e�2⇡(⇢̂�⇢)
+
⇣
e⇡(⇢̂+⇢)N � 1

⌘ 1 + e�2⇡(⇢̂+⇢)

1� e�2⇡(⇢̂+⇢)

=
e�2⇡(⇢̂+⇢) + 1

e�2⇡(⇢̂+⇢) � 1

⇣
1� e⇡(⇢̂+⇢)N

⌘
+

e2⇡(⇢̂�⇢) + 1

e2⇡(⇢̂�⇢) � 1

⇣
1� e�⇡(⇢̂�⇢)N

⌘
.

Hence we have that

S⇤
N (⇢, ⇢̂) =

e�2⇡⇢̂N

1� e�2⇡⇢̂N

 
e�2⇡(⇢̂+⇢) + 1

e�2⇡(⇢̂+⇢) � 1

⇣
1� e⇡(⇢̂+⇢)N

⌘
+

e2⇡(⇢̂�⇢) + 1

e2⇡(⇢̂�⇢) � 1

⇣
1� e�⇡(⇢̂�⇢)N

⌘!
.

Which finally gives us

S⇤1
N (⇢, ⇢̂) =

e�2⇡⇢̂N

1� e�2⇡⇢̂N

e�2⇡(⇢̂+⇢) + 1

e�2⇡(⇢̂+⇢) � 1

⇣
1� e⇡(⇢̂+⇢)N

⌘
,

S⇤2
N (⇢, ⇢̂) =

e�2⇡⇢̂N

1� e�2⇡⇢̂N

e2⇡(⇢̂�⇢) + 1

e2⇡(⇢̂�⇢) � 1

⇣
1� e�⇡(⇢̂�⇢)N

⌘
.
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Remark 3.7. We have proved the case in which N is even since in our implementation we
will choose our N even. As we will soon see, the fact that N is even (and furthermore, a power
of two) speeds the calculations up for a certain type of transform, the Fast Fourier Transform
(FFT). The proof for the case in which N is odd can be found in [11], and a more general
proof for a multi-dimensional scenario can be found in [3].

3.2.2 Matrices of Periodic Functions

In this section we will focus on the control of the propagation error when we perform
matrix operations, mainly products and inverses. The procedures for other operations are
analogous. The results hereby presented are no more than consequences of Theorem 3.6 from
the previous section.

Corollary 3.8. Let us consider two matrix functions A : T ! Cm1⇥m2 , and B : T ! Cm2⇥m3 ,
such that their entries are analytic and bounded functions in the complex strip T⇢̂ of size ⇢̂ > 0.
We denote by AB the product matrix and gAB the corresponding approximation given by DFT.
Given a grid of size N 2 N, we evaluate A and B in the grid, and we interpolate the points
AB(✓j) = A(✓j)B(✓j). Then, we have

kAB �gABk⇢  CN (⇢, ⇢̂) kAk⇢̂ kBk⇢̂

for every 0  ⇢ < ⇢̂.

Corollary 3.9. Let us consider a matrix function A : T ! Cm⇥m whose entries are analytic
and bounded functions in the complex strip T⇢̂ of size ⇢̂ > 0. Given a grid of size N 2
N, we evaluate A in the grid and compute the inverses X(✓j) = A(✓j)�1. Then, if eX is
the corresponding discrete Fourier approximation associated with the sample X(✓j), the error
E(✓) = Idm �A(✓) eX(✓) satisfies

kEk⇢  CN (⇢, ⇢̂) kAk⇢̂ k eXk⇢̂

for 0  ⇢ < ⇢̂. Moreover, if kEk⇢ < 1, there exists an analytic inverse A�1 : T ! Cm⇥m

satisfying

kA�1 � eXk⇢ 
k eXk⇢̂ kEk⇢
1� kEk⇢

.

Proof. To obtain the first inequality of the Corollary, we observe that if gA eX is the discrete
Fourier approximation of A eX, then it turns out that

(A eX)(✓j) = A(✓j) eX(✓j) = Idm

for all points in the grid. This implies that gA eX = Idm, and we end up with

kEk⇢ = kIdm �A eXk⇢ = kgA eX �A eXk⇢
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and the inequality follows applying Corollary 3.8. The second inequality follows from the
expression E = Idm�A eX, simply writing A�1 = eX(Idm�E)�1 and using a Neumann series
argument.

3.3 The Fast Fourier Transform

A Fast Fourier Transform (FFT) is an implementation algorithm for the Discrete Fourier
Transform (DFT) but with a significant decrease of computational cost. Even though the
number of operations of a regular DFT has a O(N2) order, the number of operations for
the FFT has a O(N logN) order. There are several algorithms that are able to achieve such
low computational cost, but the most common and used is the Cooley-Tukey FFT algorithm,
which is the one we are going to explain in this section (as extracted from [7]).

The main idea of the Cooley-Tukey algorithm is to break down a DFT of any composite
size N = N1N2 into many smaller DFTs of sizes N1 and N2. This allows us to combine this
algorithm with any other algorithm for the DFT, for instance algorithms that are able to
handle large prime factors that cannot be decomposed by Cooley-Tukey.
The decomposition we are going to explain is the one used in the best known use of the
Cooley-Tukey algorithm. It divides the transform into two pieces of size N/2 at each step,
which limites itself to values of N = 2p for p 2 N. This is not a problem in general since the
number of sample points N can usually be chosen freely. This decomposition is called the
radix-2 case, and for other factorizations of N we call them the mixed-radix cases or split-radix.

The radix-2 decimation-in-time (DIT) FFT divides a DFT of size N into two interleaved
DFTs of size N/2 with each recursive stage.
The DFT is defined, as we have previously seen, by the formula

f̃k =
1

N

N�1X

j=0

fj e
� 2⇡i

N j k.

The radix-2 DIT first computes the DFTs of the even-indexed inputs (f2m = f0, f2, . . .

. . . , fN�2) and of the odd-indexed inputs (f2m+1 = f1, f3, . . . , fN�1), and then combines
those two results to produce the DFT of the whole sequence. The algorithm rearranges the
DFT of the function fj into a sum over the even-numbered indices j = 2m and a sum over
the odd-numbered indices j = 2m+ 1.
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f̃k =
1

2

0

@ 1

N/2

N/2�1X

m=0

f2m e�
2⇡i
N (2m) k

1

A+
1

2

0

@ 1

N/2

N/2�1X

m=0

f2m+1 e
� 2⇡i

N (2m+1) k

1

A

=
1

2

0

@ 1

N/2

N/2�1X

m=0

f2m e
� 2⇡i

N/2m k

1

A+
1

2
e�

2⇡i
N k

0

@ 1

N/2

N/2�1X

m=0

f2m+1 e
� 2⇡i

N/2m k

1

A

=
1

2
Ek +

1

2
e�

2⇡i
N kOk.

It is clear that the sums within the last two parentheses are the DFT of the even-indexed
part f2m and the DFT of odd-indexed part f2m+1 of the function fj . We can denote the DFT
of the even-indexed part f2m by Ek and the DFT of the odd-indexed part by Ok and simplify
the resulting expression.

Taking advantage of the periodicity of the DFT, we know that Ek+N
2
= Ek and Ok+N

2
= Ok

if k < N/2. Thus, we can rewrite the previous equation as

f̃k =

(
1
2Ek +

1
2 e�

2⇡i
N k Ok , for 0  k < N/2

1
2Ek�N/2 +

1
2 e�

2⇡i
N k Ok�N/2 , for N/2  k < N .

Noticing that
e�

2⇡i
N (k+N/2) = e�

2⇡i
N �⇡i = e�⇡ie�

2⇡i
N k = �e�

2⇡i
N k

we can express f̃k as

f̃k =
1

2
Ek +

1

2
e�

2⇡i
N k Ok for 0  k < N/2 ,

f̃k+N/2 =
1

2
Ek �

1

2
e�

2⇡i
N k Ok for 0  k < N/2 .

Applying this method recursively, splitting into two half-size DFTs, gives a final output of a
combination of Ek and e�

2⇡i
N k Ok, which is a very simple size-2 DFT. This procedure can re-

duce the overall runtime of the DFT, which is O(N2), to O(N logN), and moreover, increase
the precision of the final results.

Notice that, even though we have explained the Cooley-Tukey algorithm to transform grid
points into Fourier coefficients, the algorithm works as well for the inverse process. The only
difference in the procedure is the disappearance of the 1/N factor and the change of sign of
the exponent of the complex exponential, given that the formula for the IDFT, as we stated
previously, is

fj =
N�1X

k=0

f̃k e
2⇡i
N jk.
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Thus, the factor 1/2 preceeding the sums also disappears, leaving us the formula

fk =

N/2�1X

m=0

f̃2m e
2⇡i
N (2m) k +

N/2�1X

m=0

f̃2m+1 e
2⇡i
N (2m+1) k.

Manipulating these terms in the same way we previously did, we obtain

fk =

N/2�1X

m=0

f̃2m e
2⇡i
N/2m k

+ e
2⇡i
N k

N/2�1X

m=0

f̃2m+1 e
2⇡i
N/2m k

= eEk + e
2⇡i
N k eOk.

Again, eEk+N
2
= eEk and eEk+N

2
= eOk for k < N/2. We can now express fk as

fk =

(
eEk + e

2⇡i
N k eOk , for 0  k < N/2

eEk�N/2 + e
2⇡i
N k eOk�N/2 , for N/2  k < N .

This time we have
e

2⇡i
N (k+N/2) = e

2⇡i
N +⇡i = e⇡ie

2⇡i
N k = �e

2⇡i
N k

Which finally gives us

fk = eEk + e
2⇡i
N k eOk for 0  k < N/2 ,

fk+N/2 = eEk � e
2⇡i
N k eOk for N/2  k < N .



Chapter 4

Computer Assisted Proof

In this section we will introduce the procedure for which invariant tori are validated with
a computer. Such validation consists of a computer program in C code that receives a torus
(among other inputs) and checks whether it fulfills the conditions of the validation Theo-
rem 2.11. If so, the computer gives a green light for the affirmaton of the existence of an
invariant torus close to the approximately invariant one given in our input. During this val-
idation process, the computer will have to handle error bounds (such as the invariance error
bound or the reducibility error bound), which will possibly lead to the manipulation of very
small numbers. In order to keep precision, we will use interval arithmetic so our bounds are
precisely enclosed in a small range interval. This forces us to work with multi-precision and
interval arithmetic packages, which are handled quite differently than regular double precision
numbers.

The key point of the validation is the correspondence between Fourier coefficients and grid
points of our torus. The ability to easily move from one space to the other using Fourier
transforms (such as the FFT) will allow us to perform long or complicated calculations in a
matter of just a multiplication by a constant (as in the case of the rotation) or other very
simple and fast operations. Although this sounds very appealing, there is always a drawback.
When performing certain operations on Fourier space, the correspondence with the grid points
might be broken. Those situations may arise both when operating with matrices and when
operating with vectors, and that is when we can make use of the results found in the dedicated
Fourier chapter. In such cases one will have to proceed with care, handling properly the errors
committed in those situations using high precision calculations.

In addition, a brief section on interval arithmetic is presented, so the reader can understand
what is happening in the validation code when dealing with intervals.
Of course, an outline of the programming procedure is given at the end of the chapter so one
can grasp the idea that the code is following.
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4.1 Computation of Error Bounds

Given that we are working with quasi-periodically forced systems on complex environ-
ments, it is not straight-forward to make the computer perform some mathematical tasks,
such as the calculation of the rotated torus on a complex environment of the grid. For such
manipulations, Fourier transforms are commonly used, so it is easier to perform, following the
same example, the rotation on the torus between the Fourier coefficients obtained from the
points on the grid than applying the rotation directly on the grid points. Clearly there is a
correspondence between grid points and Fourier coefficients given by the Fourier transform,
but such relation can be broken when applying operations such matrix inversions or matrix
products. In those cases, one has to proceed with caution, calculating the error produced in
terms of Fourier transformations and taking them into account when bounding errors.
And that is precisely what this section is all about, finding computable expressions for our
one-dimensional objects so the invariance and reducibility errors can be properly bounded by
a computer.

Remark 4.1. Keep in mind that under the same Finsler norm, the errors produced are the
same even if changing the ✓ support point of our torus. This means that in order to simplify
calculations, for instance, we will take the invariance error as

E(✓) = P2(✓ + !)(F (K0(✓), ✓)�K0(✓ + !))

instead of
E(✓) = P2(✓)(F (K0(✓ � !), ✓ � !)�K0(✓)) .

4.1.1 The Invariance Error Bound

Keeping the same notation as in the validation theorem for our analytic map F and our
analytic approximately invariant torus K0, we can write the error produced in the invariance
equation as

E(✓) = P2(✓ + !)(F (K0(✓), ✓)�K0(✓ + !)) .

Notice that P2 will be one of our inputs, provided therefore in the shape of a matrix of peri-
odic functions, that is, truncated Fourier series, the type of object with which we will usually
operate.
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P2(✓) =

0

BBBBBBBBB@

[N�1
2 ]P

k=�[N�1
2 ]

p1,1,k,2 e2⇡ik✓ · · ·
[N�1

2 ]P

k=�[N�1
2 ]

p1,n,k,2 e2⇡ik✓

... . . . ...
[N�1

2 ]P

k=�[N�1
2 ]

pn,1,k,2 e2⇡ik✓ · · ·
[N�1

2 ]P

k=�[N�1
2 ]

pn,n,k,2 e2⇡ik✓

1

CCCCCCCCCA

=

[N�1
2 ]X

k=�[N�1
2 ]

0

B@
p1,1,k,2 · · · p1,n,k,2

... . . . ...
pn,1,k,2 · · · pn,n,k,2

1

CA e2⇡ik✓ .

Since our theorem’s main input object is the approximately invariant torus, we will take it
also as a finite sum, and in case we pick N even, the Nyquist term will already be set to 0.

Remark 4.2. It is true that we have previously said that we have to take into account the error
committed when we break the correspondence between grid points and Fourier coefficients,
which is precisely what happens when we set the Nyquist term to 0. However, when doing so,
we are just claiming that the object to be validated is the torus given in Fourier space with
the Nyquist term set to 0. That means, that the previous torus evaluated on the grid is no
longer our main object of study, and therefore no correspondence is broken.

Such torus will have the form

K0(✓) =

[N�1
2 ]X

k=�[N2 ]

eK0,k e
2⇡ik✓ =

[N�1
2 ]X

k=�[N�1
2 ]

eK0,k e
2⇡ik✓ .

This expression is very useful since we can now easily obtain an analogous expression for
K0(✓ + !),

K0(✓ + !) =

[N�1
2 ]X

k=�[N�1
2 ]

( eK0,k e
2⇡ik!) e2⇡ik✓ .

We should keep in mind that our main goal in this section is to find a computable value for
the error bound of the invariance equation, which will lead us at some point to manipulate
the function F (K0(✓), ✓) and its norm. Since the Fourier series of '(✓) = F (K0(✓), ✓) is an
infinite sum, we would like to approximate it by a finite sum

e'(✓) =
[N�1

2 ]X

k=�[N2 ]

e'k e
2⇡ik✓ .

Then, we want to obtain a rigorous bound of k'(✓)� '̃(✓)k⇢.
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Recalling now the invariance error equation, by taking norms, separating the P2(✓ + !) term
and adding and subtracting e'(✓) we see that,

kE(✓)k⇢  kP2(✓ + !)k⇢ (kF (K0(✓), ✓)� e'(✓)k⇢ + ke'(✓)�K0(✓ + !)k⇢) .

For a given ⇢̂ > ⇢ such that {(K0(✓), ✓) | ✓ 2 T̄⇢̂} ⇢ U , where U is the domain of F , using
Theorem 3.6 we have

kF (K0(✓), ✓)� e'(✓)k⇢ = k'(✓)� e'(✓)k⇢  CN (⇢, ⇢̂) k'k⇢̂  CN (⇢, ⇢̂) kF (K0(✓), ✓)k⇢̂ .

We have then left to calculate the second term of the sum, which follows

ke'(✓)�K0(✓ + !)k⇢ =

����

[N�1
2 ]X

k=�[N2 ]

(e'k � eK0,k e
2⇡ik!) e2⇡ik✓

����
⇢


����

[N�1
2 ]X

k=�[N2 ]

(e'k � eK0,k e
2⇡ik!) e2⇡ik✓

����
F,⇢

 "̃ .

Then we find

kP2(✓ + !)(F (K0(✓), ✓)�K0(✓ + !))k⇢  kP2(✓ + !)k⇢ (CN (⇢, ⇢̂) kF (K0(✓), ✓)k⇢̂ + "̃)  " ,

where " is the invariance bound in Theorem 2.11, and CN (⇢, ⇢̂), even though it depends on
the system, is very small.

4.1.2 The Reducibility Error Bound

The next bound to be computed is the reducibility error bound, where the reducibility
error is given by

Ered(✓) = P2(✓ + !)M0(✓)P1(✓)� ⇤(✓) ,

with M0(✓) = DF (K0(✓), ✓). Clearly, there are more objects in this equation than in the
previous one, so we must know first how are we going to deal with each one of them.
Our first inputs will be, then, the matrix valued maps P1, P2 : T̄⇢ ! Mn(C). Since we already
showed P2, we can directly say that P1 will have the same form

P1(✓) =

[N�1
2 ]X

k=�[N�1
2 ]

0

B@
p1,1,k,1 · · · p1,n,k,1

... . . . ...
pn,1,k,1 · · · pn,n,k,1

1

CA e2⇡ik✓ .

Next we have our analytic block-diagonal matrix-valued map

⇤(✓) =

 
⇤s(✓) 0

0 ⇤u(✓)

!
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where ⇤s : T̄⇢ ! Mns(C) and ⇤u : T̄⇢ ! Mnu(C), with n = ns + nu into which we want to
reduce our system. Again, this can be expressed as

⇤(✓) =

[N�1
2 ]X

k=�[N�1
2 ]

0

BBBBBBBBB@

�1,1,k · · · �1,nS ,k 0 · · · 0
... . . . ...

... . . . ...
�nS ,1,k · · · �nS ,nS ,k 0 · · · 0

0 · · · 0 �nS+1,nS+1,k · · · �nS+1,n,k
... . . . ...

... . . . ...
0 · · · 0 �n,nS+1,k · · · �n,n,k

1

CCCCCCCCCA

e2⇡ik✓ .

All in all, we can think as these inputs as matrices of Fourier coefficients that can be turned
into points on the grid by an inverse DFT.

We need now to approximate M0(✓) with a DFT approximation with a sampling of N points
over the regular grid, where we have our N fixed to a even number. Thus we will have

fM0(✓) =

[N�1
2 ]X

k=�[N�1
2 ]

0

B@
em1,1,k · · · em1,n,k

... . . . ...
emn,1,k · · · emn,n,k

1

CA e2⇡ik✓ .

Recall that the validation theorem also talks about a constant �, saying that there must be
a � such that k⇤sk⇢  � < 1 and k(⇤u)�1k⇢  � < 1. In order to verify such condition we
will need to define the Fourier norm of a matrix. There are several ways of doing so, such as
taking the maximum over ✓ of the k · k1 norm of the matrix, but we are taking a different
one. Let A be an n⇥ n matrix depending on ✓, then

kAkF,⇢ = max
1in

nX

j=1

kaijkF,⇢ .

This norm still satisfies that kA(✓)k⇢  kA(✓)kF,⇢.

Now that we already have the necessary tools for bounding, we have to check if we can
find a value � < 1 such that k⇤sk⇢  k⇤skF,⇢  �. If this value exists, we have to check the
second hypothesis, which is k(⇤u)�1k⇢  �. The calculation of this norm is not as direct as
the previous one. The fact that (⇤u)�1 is the inverse of a matrix of Fourier series breaks the
correspondence between grid points and Fourier coefficients, hence, we will have to proceed
differently.
Notice that

k(⇤u)�1k⇢  k(⇤u)�1 � ^(⇤u)�1k⇢ + k ^(⇤u)�1k⇢  k(⇤u)�1 � ^(⇤u)�1k⇢ + k ^(⇤u)�1kF,⇢ .

We shall take the first term of the sum apart in order to apply Corollary 3.9, which handles
the error while applying a DFT upon inverted matrices as long as the function entries of our
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matrix can be analytically extended to a complex strip of width ⇢̂, T⇢̂, which holds true for
our case since we are working with analytic functions.

k(⇤u)�1 � ^(⇤u)�1k⇢ 
k ^(⇤u)�1k⇢̂ kEfinv(✓)k⇢

1� kEfinv(✓)k⇢

where Efinv(✓) = IdnU � ⇤u(✓) ^(⇤u(✓))�1 as used in Corollary 3.9, which also gave us a very
useful result, that claimed

kEfinv(✓)k⇢  CN (⇢, ⇢̂) k⇤uk⇢̂ k ^(⇤u)�1k⇢̂ .

Now we can finally write

k(⇤u)�1 � ^(⇤u)�1k⇢ 
k ^(⇤u)�1k⇢̂ CN (⇢, ⇢̂) k⇤uk⇢̂ k ^(⇤u)�1k⇢̂

1� CN (⇢, ⇢̂) k⇤uk⇢̂ k ^(⇤u)�1k⇢̂


CN (⇢, ⇢̂) k⇤ukF,⇢̂ k ^(⇤u)�1k2F,⇢̂

1� CN (⇢, ⇢̂) k⇤ukF,⇢̂ k ^(⇤u)�1kF,⇢̂
.

The last inequality holds due to the fact that ⇤u is a matrix of Fourier series, which means
that there is no error produced while turning back to the points of the grid and forth again
to the Fourier series. However, as we have said before, this is not true for (⇤u)�1 given that
the inversion of the matrix breaks the direct and errorless correspondence between grid points
and DFT coefficients.

Once we have expressed the desired norm in computable terms, is time now to check if
k(⇤u)�1k⇢  �, that is, if

k(⇤u)�1k⇢ 
CN (⇢, ⇢̂) k⇤ukF,⇢̂ k ^(⇤u)�1k2F,⇢̂

1� CN (⇢, ⇢̂) k⇤ukF,⇢̂ k ^(⇤u)�1kF,⇢̂
+ k ^(⇤u)�1kF,⇢̂  � .

In case this condition is not satisfied with the first � we have picked, it may be interesting to
play around with the � value and try to find another �0 < 1 such that satisfies both conditions.
Or we can simply increase a bit the value of � until the condition is satisfied.

Once the issue is settled and we have a suitable �, the next step is to find the bound for
the error. Recall that

Ered(✓) = P2(✓ + !)M0(✓)P1(✓)� ⇤(✓) .
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In order to calculate a suitable bound for kEred(✓)k we will have to manipulate some terms
so we can apply Theorem 3.6 and Corollary 3.8.

kEred(✓)k⇢ = kP2(✓ + !)M0(✓)P1(✓)� ⇤(✓)k⇢

 kP2(✓ + !)M0(✓)P1(✓)� P2(✓ + !)M0(✓)P1(✓)
:

k⇢

+ kP2(✓ + !)M0(✓)P1(✓)
:

� ⇤(✓)k⇢

 CN (⇢, ⇢̂)kP2(✓ + !)k⇢̂kM0(✓)k⇢̂kP1(✓)k⇢̂ + kP2(✓ + !)M0(✓)P1(✓)
:

� ⇤(✓)k⇢ ,

where the last term remains the same since it is the norm of the difference of two matrices of
trigonometric polynomials (given that ⇤(✓) is an input), which is a matrix of trigonometric
polynomials. Furthermore, using the Fourier norm inequality we obtain

kEred(✓)k⇢  CN (⇢, ⇢̂)kP2(✓ + !)kF,⇢̂kM0(✓)k⇢̂kP1(✓)kF,⇢̂ + kP2(✓ + !)M0(✓)P1(✓)
:

� ⇤(✓)kF,⇢.

Remark 4.3. In the example we will present in the following section, ⇤ will be constant.

4.1.3 The Invertibility Error Bound

Lastly, we seek a bound for the invertibility error. The invertibility error is the error
produced when treating P2(✓) as the inverse of P1(✓), that is

Einv(✓) = P2(✓)P1(✓)� Id .

By simply taking norms and applying the same procedures as before we obtain

kEinv(✓)k⇢  kP2(✓)P1(✓)� P2(✓)P1(✓)
:

k⇢ + kP2(✓)P1(✓)
:

� Idk⇢

 CN (⇢, ⇢̂) kP2(✓)k⇢̂ kP1(✓)k⇢̂ + kP2(✓)P1(✓)
:

� Idk⇢

 CN (⇢, ⇢̂) kP2(✓)kF,⇢̂ kP1(✓)kF,⇢̂ + kP2(✓)P1(✓)
:

� IdkF,⇢ .

4.1.4 Norm of a Bilinear Form

The last bound to be computed is the one related to the second differential of F , which is
b. Recall from Theorem 2.11, that we had the following condition:

For all points (x, ✓) in the strip

D̄⇢(K0, r) = {(x, ✓) 2 Cn ⇥ T̄d
⇢ | x = K0(✓) + P1(✓)⇠, ⇠ 2 Cn, |⇠|✓  R} ,

the bilinear maps over the rotation !

B(x, ✓) = P2(✓ + !)D2
xF (x, ✓)[P1(✓)·, P1(✓)·]
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satisfy kB(x, ✓)k  b as a norm of a bilinear form.

It is natural, then, that we seek a computable way to find that b. For that we can sim-
ply start by

kB(x, ✓)k  kP2(✓ + !)k kD2
xF (x, ✓)k kP1(✓)k2

Notice that the only expression for which we don’t yet have a computable expression is the
second differential of F . Since it is only a specific case of a bilinear form, let’s define the
norm of a more general bilinear form that we will call H : Cn ⇥ Cn ! Cn such that it has m

components. That is, we have

H =

0

BB@

(H1
ij)
...

(Hm
ij )

1

CCA

i,j=1,...,n

, vs =

0

B@
v1s
...
vns

1

CA s = 1, 2

Hk(v1, v2) =
nX

i,j=1

Hk
ij v

i
1 v

j
2 .

With this, we can define

kHk1 = max
v1,v22Cn\{0}

|H(v1, v2)|1
|v1|1|v2|1

= max
v1,v22Cn\{0}

max
k=1,...,m

|Hk(v1, v2)|
|v1|1|v2|1

 max
v1,v22Cn\{0}

max
k=1,...,m

Pn
i,j=1 |Hk

ij | |vi1| |v
j
2|

|v1|1|v2|1
 max

k=1,...,m

nX

i,j=1

|Hk
ij | ,

where in the last inequality we have used that |vs|  |vs|1 for s = 1, 2.

With such result, we can state that the norm of B(x, ✓) can be bounded by

kB(x, ✓)k  kP2(✓ + !)k max
(x,✓)2D̄(K0,R)

kD2
xF (x, ✓)k1 kP1(✓)k2 .

4.2 Intervalar Arithmetics

It is known that, although computers are great computing machines, they are not flawless.
One of the most notable weaknesses they have is the incapability of representing certain num-
bers such as irrational numbers. Obviously, a computer only has a finite amount of memory
to store floating-point numbers, which means that irrational numbers can only be represented
up to a certain decimal, a truncation point (and not only irrationals, but also infinite decimal
rationals). The error produced when truncating can be problematic in high precision calcula-
tions, such as in validated numerics, and that is why interval arithmetic is used. Instead of
computing approximations of functions, the aim is to compute enclosures of functions. That
is, in validated numerics one has to provide rigorous intervals for the coefficients of the ap-
proximations. Hence, the width of an enclosure gives a rigorous measurement of the quality of
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the computation, so the first step to accomplish a validating program is to perform rigorous
computations with intervals.
In rigorous computations, real numbers are substituted by intervals whose extrema are com-
puter representable real numbers. In particular, when implementing interval operations in a
computer, the result of an operation with intervals is an interval that includes the result. We
must also be careful with this when retrieving the interval extrema after a calculation. The
default rounding mode is usually set to round to the nearest floating-point value, but this is
not the best method since it can leave our value of interest out of the interval when rounding.
It is of more convenience to round the lower extrema towards �1 and the upper extrema
towards +1 so the interval is just enlarged a bit (see [4, 8]). The package we will use for
intervalar arithmetics is called MPFI, and will be implemented in C code. Let us formalize
the expression of intervals a bit more.

From now on, we will denote intervals with boldface notation, such as a = [
¯
a, ā] where

¯
a

and ā are called the lower and upper endpoints of a, respectively. The set of real intervals is
denoted by IR, in which one can define arithmetic operations. We emphasize that, although
real interval addition and multiplication are both associative and commutative, they fail to
satisfy distributive law. Let’s dive then into the definitions of the basic arithmetic operations
between intervals.

4.2.1 Basic Operations

Without going much into detail, we present here the form of basic operations between
intervals, the ones that will be used in our computer program by the interval arithmetic
package [8].

• Addition: x+ y = [
¯
x, x̄] + [

¯
y, ȳ] = [

¯
x+

¯
y, x̄+ ȳ].

• Negation: �x = �[
¯
x, x̄] = [�x̄,�

¯
x].

• Subtraction: x� y = [
¯
x, x̄]� [

¯
y, ȳ] = [

¯
x, x̄] + [�ȳ,�

¯
y] = [

¯
x� ȳ, x̄�

¯
y].

• Multiplication: x · y = [
¯
x, x̄] · [

¯
y, ȳ] = [min{

¯
x
¯
y,
¯
xȳ, x̄

¯
y, x̄ȳ},max{

¯
x
¯
y,
¯
xȳ, x̄

¯
y, x̄ȳ}] =

[
¯
x
¯
y, x̄ȳ].

• Reciprocal: 1/x = 1/[
¯
x, x̄] = [1/x̄, 1/

¯
x] if

¯
x > 0 or x̄ < 0. Then we also have the cases

1/[
¯
x, 0] ! [�1, 1/

¯
x] and 1/[0, x̄] ! [1/x̄,1].

• Division: x/y = [
¯
x, x̄]/[

¯
y, ȳ] = [

¯
x, x̄] · 1/[

¯
y, ȳ] = [

¯
x/ȳ, x̄/

¯
y].

• Powers:

xn = [
¯
x, x̄]n = [

¯
xn, x̄n], if n = 2k + 1 for k = 0, 1, . . .

xn = [
¯
x, x̄]n =

8
>><

>>:

[
¯
xn, x̄n],

¯
x � 0, if n = 2k, for k = 1, 2, . . .

[x̄n,
¯
xn], x̄ < 0 ,

[0,max{
¯
xn, x̄n}] , otherwise .
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• Absolute value:

|x| =
(
[min{|

¯
x|, |x̄|},max{|

¯
x|, |x̄|}] if

¯
xx̄ � 0 ,

[0,max{|
¯
x|, |x̄|}] if

¯
xx̄ < 0 .

Besides arithmetic operations, it is also useful to define equality and inequality operators.

• Equality: x = y () [
¯
x, x̄] = [

¯
y, ȳ] () (

¯
x =

¯
y) ^ (x̄ = ȳ).

• Inequality: x  y () [
¯
x, x̄]  [

¯
y, ȳ] () (

¯
x 

¯
y) ^ (x̄  ȳ).

• Distance: dist(x,y) = max{|
¯
x�

¯
y|, |x̄� ȳ|}.

• Maximum: max{x,y} = max{x̄, ȳ}.

• Minimum: min{x,y} = min{
¯
x,
¯
y}.

These are the basic manipulations between intervals that are performed when using a intervalar
arithmetic package, such as the one we are using, the MPFI, and this is how we will have to deal
with the expressions from the validation theorem, by manipulating intervals around the values
we know instead of using actual numbers. The explanation for the programming procedure
awaits in the following section.

4.3 Computer Validation

Now that we have the required tools, we can proceed and validate a torus. For starters,
we will have to get an approximately invariant torus out of somewhere. For that, we will read
the output file generated by the code presented in [11]. In such code a reducibility method
algorithm is implemented in C in order to calculate a torus.

Since the reducibility method (explained as well in [11]) also updates P1 and ⇤ at each itera-
tion, we will read from file K0, P1 and ⇤ and turn it to Fourier space via FFT. After this, we
just have left to set the Nyquist term of every object to 0 before having the initial data fully
prepared. Notice that in such data there is no P2, so we will have to go back to grid space
with P1, invert it, and return to Fourier space. That should give us a good approximation
for an inverse. The value of ! in [11] was taken as the golden ratio ! =

p
5�1
2 (Diophantine

irrational number) and so we will take it this time again, but enclosed within an interval.

Keep in mind that we are working in the complex field, but we also want to calculate with
intervals instead of numbers. This means that we will have to create a new structure in our
program, complexi, that represents complex intervals, that is, objects of the form [

¯
x, x̄]⇥ [

¯
y, ȳ],

where [
¯
x, x̄] is the real part interval and [

¯
y, ȳ] is the imaginary part interval. With this, all

new functions have to be created so basic operations between complex intervals are covered.
For this, we will use the MPFI package to, firstly set all intervals to work with a ⇠ 30 digit



4.3 Computer Validation 47

precision, and then create all the functions for complex intervals using the package’s own in-
terval operations functions applied to the real and imaginary parts. With the basic operations
between complex intervals we can construct more intricate functions, such as the much needed
FFT or other vectors and matrix operations.

Once all functions are created, the results found in Section 4.1 are applied using complex
intervals so the constants �, ",� and ⌧ from Theorem 2.11 are found (of course, in the form of
a real interval, since they are norm bounds). Notice that we have to evaluate a ⇢-norm of the
non-truncated object F (K0(✓), ✓) and its differential. For that, we will have to evaluate each
object (let’s take F (K0(✓), ✓) as the example) over a complex neighborhood of our grid. Such
new extended domain is made of the complex boxes Cj = {✓j + ' | |Re '|  1

2N , |Im '|  ⇢̂}
(notice that the choice of ⇢ or ⇢̂ will depend on the context). First we will have to calculate the
image of such boxes through K before applying F . Thus, we first need to calculate K0(✓+').
Notice that this is no more than rotating the torus as we have done before, but this time the
rotation is complex.

K0(✓ + ') =

[N�1
2 ]X

k=�[N�1
2 ]

( eK0,k e
2⇡ik') e2⇡ik✓ =

[N�1
2 ]X

k=�[N�1
2 ]

 
eK0,k

e2⇡kIm'
e2⇡ikRe'

!
e2⇡ik✓ .

So we just have to change the Fourier coefficients and rotate by a factor of Re '. With this
new torus, we can calculate F (K(Cj), Cj) for each j and its differential. We just have to find
its supremum norm afterwards.

The procedure for calculating b is quite analogous. The only more problematic object is
the norm of the second differential. Recall that the domain in which kB(z, ✓)k  b (adapted
to our case, where z = (x, y)) is

D̄⇢(K0, R) = {(z, ✓) 2 Cn ⇥ T̄d
⇢ | z = K0(✓) + P1(✓)⇠, ⇠ 2 Cn, |⇠|✓  R} .

Hence, our goal is to evaluate each of our second differential matrices (and picking the largest
one) with z’s that belong to the space created by the sum of an extended torus and an
extended P1⇠. For that, we will need to extend both the torus and P1. After performing
the same operations as before, we go back to grid space with both K0(Cj) and P1(Cj)⇠ for
each j to add them together. Then we evaluate them on the norm of the second differential
(taking the maximum between both components) and take the supremum for each Cj . The
calculation of the remaining constants follows naturally.
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4.3.1 Study Case: The Standard Map

Our case of study is the perturbed Standard Map since it is the one with which the
approximate torus is computed. Thus, F̂ is (F, f) : C2 ⇥ T⇢ ! C2 ⇥ T⇢ given by

8
>><

>>:

f(✓) = ✓ + !

F x(x, y) = x+ y � 
2⇡ sin(2⇡x)� " sin(2⇡✓)

F y(x, y) = y � 
2⇡ sin(2⇡x)� " sin(2⇡✓)

with differential matrix

Dx,yF (x, y) =

 
1�  cos (2⇡x) 1

� cos (2⇡x) 1

!

and second differential matrices for components x and y

D2F x(x, y) =

 
2⇡ sin (2⇡x) 0

0 0

!
D2F y(x, y) =

 
2⇡ sin (2⇡x) 0

0 0

!
.

With this map, the approximate torus is calculated using the reducibility method within a
continuation method for ". Applying the previous explanation to this specific map will yield
the necessary constants and error bounds for the validation (see the Annex for details on the
implementation of the previous explanation to this case).

4.3.2 Results

In this section, some output examples of validations will be displayed. We have taken dif-
ferent inputs for different values of " and checked the conditions for the torus to be validated.

We will start with the first case " = 0.1 (which is almost a planer torus) and play around with
⇢ and ⇢̂ to see what happen to the errors and constants. We can start by setting ⇢ = 0 so we
first look at the real torus with R = 10�4. For the calculation of Fourier norms we will use
⇢̂ = 10�2, but for the inflation of the torus we will use ⇢̂ = 5 · 10�3.

CN(rho, rhohat): [6.8047018919335281312076456046925e-13,6.8047018919335281312076456070531e-13]

Invariance error: [1.5909644176201588172860064471273e-11,1.5932268362185730186487664094488e-11]

Lambda: [3.3828548368011231753495616835876e-1,3.3828548368011613854985332359308e-1]

Reducibility Error: [3.0953037229975405447470059225473e-9,3.0958269249002620014168739252433e-9]

Inversion Error: [9.2463408143891988645614886642009e-10,9.2463408143895368910319512333124e-10]

b: [2.8017225229974841450476962477150,3.4314984707078682189822147117411]

lambda + sigma + tau < 1

h: [1.0179917753413927022556095782971e-10,1.2485907231844659912024893932707e-10]
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h < 1/2

r0: [1.9602613295325132697310121913807e-11,2.9531315149394923545195111500449e-11]

r0 < R

mu: [2.2475075849175180504485006805087e-9,2.2654382229911630953803933481896e-9]

mu < 1/(1+sqrt(2))

Congratulations, there exists a hyperbolic invariant torus with invariant subbundles.
Moreover, it is unique within a radius 9.9999999999999999999999999999998e-5
and it is contained within a radius 2.9531315149394923545195111500448e-11.
What’s more, the distance between approximately invariant bundles

and the invariant bundles is smaller than 2.2654382332555838495193443527494e-9

Let’s see what happens if we take a complex torus with ⇢ = 10�3.

CN(rho, rhohat): [1.7151174562071982359681427214174e-11,1.7151174562071982359681427219777e-11]

Invariance error: [1.2671751643804756352142247008045e-10,1.2728776894796857823594169011216e-10]

Lambda: [3.3828548368568411773038311949549e-1,3.3828548368568793874528040059926e-1]

Reducibility Error: [7.7218585454551975545008788694923e-8,7.7231772699429858729316817325368e-8]

Inversion Error: [2.3305297996373874253806384903207e-8,2.3305297996374717600595203447535e-8]

b: [2.8019370675805860925791246439299,3.4317663589204338906579305969056]

lambda + sigma + tau < 1

h: [8.1087486197811468693993435736664e-10,9.9761551537244109710919947589108e-10]

h < 1/2

r0: [1.5565271442923392613575933794970e-10,2.3666031400294644837325377618902e-10]

r0 < R

mu: [5.5981071546925876047236822389787e-8,5.6129754182266561634778270625012e-8]

mu < 1/(1+sqrt(2))

Congratulations, there exists a hyperbolic invariant torus with invariant subbundles.
Moreover, it is unique within a radius 9.9999999999999999999999999999998e-5
and it is contained within a radius 2.3666031400294644837325377618901e-10.
What’s more, the distance between approximately invariant bundles

and the invariant bundles is smaller than 5.6129760483366231795665949214173e-8
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By looking at CN (⇢, ⇢̂) we can see the estimates are worse, and of course, ⇢ plays a crucial
role in that since it gives the band for which the torus is real-analytic. Let’s see what happens
if we decrease the ⇢̂ used for the norms to 2 · 10�3, for instance.

CN(rho, rhohat): [1.7009250593058399876723639326190e1,1.7009250593058399876723639330356e1]

Invariance error: [1.2007445976031078103181698281255e1,1.2572979712920698955320340248740e1]

Lambda: [3.3828548367999999868516169954091e-1,3.3828548367999999868516169954092e-1]

Reducibility Error: [1.1305503181504561880506866617241e2,1.1307442014153522785221715120637e2]

Inversion Error: [3.4264225308153230639346240352168e1,3.4264225308153230639347506132225e1]

b: [2.8019370675805860925791246439299,3.4317663589204338906579305969056]

lambda + sigma + tau >= 1, condition not satisfied

h: [1.5638150541687520970518216456548e-3,2.0060747890028793391902878200682e-3]

h < 1/2

r0: [-1.1008592908211105868724739470982e-1,-6.3865611346287163627016135577732e-2]

r0 < R

mu: [-2.4596440744294486693543550197822,-2.4571379585268243467905628052118]

mu < 1/(1+sqrt(2))

The initial torus does not meet the requirements
to ensure the existence of an invariant torus

Notice the big change in CN (⇢, ⇢̂), which ultimately leads to the impossibility of validating
the torus. This means that the values ⇢, ⇢̂ and also N are related to each other. A poor
configuration of them can lead to big exponents in complex exponentials, which translates
into large values of CN (⇢, ⇢̂). Let’s revert the value of the ⇢̂ we just changed and increase the
value of the ⇢̂ for which we inflate the torus. Set ⇢̂ = 10�2.

CN(rho, rhohat): [1.7151174562071982359681427214174e-11,1.7151174562071982359681427219777e-11]

Invariance error: [1.1460988119269239890219488624462e-10,3.7366228296279814862444928125141e155]

Lambda: [3.3828548368568411773038311949549e-1,3.3828548368568793874528040059926e-1]

Reducibility Error: [2.3627902796587507103658356522390e-8,2.2981990896026450621867537082922e159]

Inversion Error: [2.3305297996373874253806384903207e-8,2.3305297996374717600595203447535e-8]

b: [0,1.8125957313665597697531662867201e168]

lambda + sigma + tau >= 1, condition not satisfied
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h: [-@Inf@,@Inf@]

h >= 1/2, condition not satisfied

r0: [@NaN@,@NaN@]

r0 >= R, condition not satisfied

mu: [@NaN@,@NaN@]

mu >= 1/(1+sqrt(2)), condition not satisfied

The initial torus does not meet the requirements
to ensure the existence of an invariant torus

The change in this case is even more drastic, we see that solutions explode by just tweaking
⇢̂ a little bit. It is important then to play around and select the best values of ⇢ and ⇢̂ so
everything works properly.
Now we will show the bounds and constants for a couple more values of " with the same
⇢ = 10�3, ⇢̂ = 5 · 10�3 for the inflation and ⇢̂ = 10�2 for the norms values. Starting for
instance with " = 0.5. The x component of the initial torus has the following shape (taken
from [11]):

CN(rho, rhohat): [1.7151174562071982359681427214174e-11,1.7151174562071982359681427219777e-11]

Invariance error: [1.3364537996428360704009295355594e-10,1.3665348908480223800232028358809e-10]

Lambda: [3.5717463727666573959231070015372e-1,3.5717463727666860535348366102287e-1]

Reducibility Error: [7.5676212897829297173314739964981e-8,7.6011799392034107526664262791188e-8]

Inversion Error: [2.2885536863654524298845311645552e-8,2.2885536863663332134927968855888e-8]
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b: [1.5303805966193372656666817547682e1,1.8102967423659252483371854366236e1]

lambda + sigma + tau < 1

h: [4.9495706400868533523120604721764e-9,5.9866603745667573088995375987655e-9]

h < 1/2

r0: [1.7188735150489477615221158007997e-10,2.5712534272931502317776166704568e-10]

r0 < R

mu: [5.8291138190188813977146725006795e-8,5.9257244200849084012035154639138e-8]

mu < 1/(1+sqrt(2))

Congratulations, there exists a hyperbolic invariant torus with invariant subbundles.
Moreover, it is unique within a radius 9.9999999999999999999999999999998e-5
and it is contained within a radius 2.5712534272931502317776166704567e-10.
What’s more, the distance between approximately invariant bundles

and the invariant bundles is smaller than 5.9257251223692313033193228552948e-8

The validation still performs successfully. Let’s increase it a bit more, say " = 1.

CN(rho, rhohat): [1.7151174562071982359681427214174e-11,1.7151174562071982359681427219777e-11]

Invariance error: [1.5226628748035801030337401028769e-10,1.6225121315164687442984533494377e-10]

Lambda: [4.4694956099061944525103200030983e-1,4.4694956099062804253455088253309e-1]

Reducibility Error: [7.0560283822576446595354775950299e-8,7.2199585063103034758875268336808e-8]

Inversion Error: [2.1552180291964324020285335997142e-8,2.1552180292020165461634090105779e-8]
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b: [5.5354007416605775096064972160613e1,5.9500127532316678343831363521980e1]

lambda + sigma + tau < 1

h: [2.7556463974720913612903758798558e-8,3.1562871974132590898752909138025e-8]

h < 1/2

r0: [2.4037321413516475689098011366700e-10,3.3602865763938612939838946786470e-10]

r0 < R

mu: [7.3773242054655672534409686721587e-8,7.8424295237820443203941404235227e-8]

mu < 1/(1+sqrt(2))

Congratulations, there exists a hyperbolic invariant torus with invariant subbundles.
Moreover, it is unique within a radius 9.9999999999999999999999999999998e-5
and it is contained within a radius 3.3602865763938612939838946786469e-10.
What’s more, the distance between approximately invariant bundles

and the invariant bundles is smaller than 7.8424307538563504332985962585107e-8

Notice how the torus is beginning to fractalize. This happens because " is approaching a
critical value in which the hyperbolicity property drops, and therefore it is harder to validate
the torus. A deeper explanation on this phenomenon can be found in [11] or [4]. We can
approach a bit more that critical value by taking " = 1.23.

CN(rho, rhohat): [4.5730019875188309775879928534326e-24,4.5730019875188309775879928562778e-24]

Invariance error: [9.9512038569959792929174098340899e-9,7.2042284186602077935925951692173e204]

Lambda: [6.4652901822691745257909562140192e-1,2.1142393717449225605528340862315]



54 Computer Assisted Proof

Reducibility Error: [2.4118312001358992063980495542665e11,3.0654258154845546997938811529493e239]

Inversion Error: [2.4118312001361417813578648336979e11,2.4118312001378599546280602547596e11]

b: [0,2.8294106485487984763006470336043e231]

lambda + sigma + tau >= 1, condition not satisfied

h: [0,8.7605152205044994410718512354246e412]

h >= 1/2, condition not satisfied

r0: [@NaN@,@NaN@]

r0 >= R, condition not satisfied

mu: [@NaN@,@NaN@]

mu >= 1/(1+sqrt(2)), condition not satisfied

The initial torus does not meet the requirements
to ensure the existence of an invariant torus

As we said before, the closer " gets to the critical value " ⇠ 1.2342, the harder it gets to
validate the torus as seen in this last example. Even though ⇢ and ⇢̂ can be adjusted to obtain
better results, it is still hard to find the sweet spot to validate the torus.
One can go even a bit further and try validate tori within a continuation method for ! or
", or try figure out how the constants ⇢, ⇢̂ and N depend on each other so one can choose
optimally their values for a correct validation.
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Whiskers

In this appendix we want to show the bases of a possible future work encouraged by the
validation process taken to term in the previous chapters. It is a topic that has been discussed
during the research and writing processes but that was left as a possible future project should
the first validation work succeed. Such topic is the study of the invariant manifolds known as
whiskers.

When it comes to the study of quasi-periodically forced maps, there are two main inter-
esting objects of study. One of them has been already addressed, and it is the existence of
invariant tori under the quasi-periodic map. This has already been proven in the previous
chapters through the validation theorem. The second one is the existence of asymptotic man-
ifolds attached to our invariant torus. These manifolds, as we have already said, are usually
called whiskers.

Since the proof of existence of such manifolds can be very complicated, we will present here
just the main definitions and a computation algorithm for the easiest case, the one-dimensional
and constant dynamics case. Keep in mind that our quasi-periodically forced map remains
the same as before, where the dynamics on the torus is given by an ergodic rotation ! 2 Rd.
That is, k · ! /2 Z, 8k 2 Zd\{0}.

Equations for Whiskers

In order to study whiskers of rank m attached to a torus, we seek maps W : Cm⇥Td
⇢ ! Cn

and ⇤ : Cm ⇥ Td
⇢ ! Cm in such a way that

F (W (⌘, ✓), ✓) = W (⇤(⌘, ✓), ✓ + !) , (4.1)
⇤(0, ✓) = 0 . (4.2)

Notice that equation (4.1) implies that the graph of W

W = {(W (⌘, ✓), ✓) | ⌘ 2 Cm, ✓ 2 Td
⇢}

55
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is an m + d invariant manifold under F̂ = (F, f). Recall that f(✓) = ✓ + !. It is useful to
think of W as a d-parameter family of m-dimensional manifolds

W✓ = {(W (⌘, ✓), ✓) | ⌘ 2 Cm} ,

with ✓ 2 Td
⇢. Notice also that the leaves W✓ are not invariant, since F̂ (W✓) = W✓+!.

We note that ⇤ is part of the unknowns that need to be computed, and corresponds to
finding a representation of the dynamics on the invariant manifold. Given a point ⌘ belonging
to a leaf W✓, ⇤ gives the dynamical displacement of such point on the same leaf.

Remark 4.4. Bear in mind that by choosing K(✓) = W (0, ✓) we obtain a K which satisfies
the invariance equation, so the manifold W contains an invariant torus K.

By taking derivatives on (4.1) with respect to ⌘, and evaluating them at ⌘ = 0, we obtain
the equation for the linearization of the whisker:

DxF (W (0, ✓), ✓)D⌘W (0, ✓) = D⌘W (0, ✓ + !)D⌘⇤(0, ✓) .

Hence, we obtain that the vector space based at K(✓) = W (0, ✓) spanned by W1(✓) =

D⌘W (0, ✓) is mapped by DxF (W (0, ✓), ✓) into the corresponding vector space based at K(✓+

!) = W (0, ✓ + !) spanned by W1(✓ + !) = D⌘W (0, ✓ + !) through the linear map ⇤1(✓) =

D⌘⇤(0, ✓) [5].

Summing up, we obtain that W1 is an invariant subbundle of the cocycle. There may be,
of course, several bundles invariant under linearization. For each of these invariant bundles,
we can try to find an invariant manifold (whisker) tangent to it.

One-dimensional Setting and Reducible Case

As we previously said, the matter of whiskers can get very complicated, so we will simplify
our work gradually. For starters, we will work with rank-1 whiskers. That will be our first
step towards simplification. In that case we would be looking for a manifold W : C⇥Td

⇢ ! Cn

such that the invariance equation

F (W (s, ✓), ✓) = W (�(✓)s, ✓ + !)

is satisfied, where s = ⌘ is a one-dimensional parameter and � : Td
⇢ ! C a map such that

9 �s < 1, C > 0 which satisfy

|�(✓ + (k � 1)!) · · ·�(✓ + !)�(✓)|  C · �k
s . (4.3)

The second step for simplicity is to assume that the internal dynamics on the whisker is
given by a multiplication by a constant. As said in section 1.2.3, in this case, the system is
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reducible. We will also assume along this section that ! 2 Rd is Diophantine. The definition
of a Diophantine number is given as follows.

Definition 4.5. Given � > 0 and ⌧ � d, we say that ! 2 Rd is a (�, ⌧)-Diophantine vector
of frequencies if

|k · ! �m| � �

|k|⌧1
, 8k 2 Zd\{0}, m 2 Z,

where |k|1 =
nP

i=1
|ki|.

This basically means that ! cannot be quickly approximated by rationals.

For our desired reduction, we have to express our �(✓) as a constant in our frame, to get
so, we look for a function p : Td

⇢ ! C\{0}. Specifically, we will take it as a positive function
when applied to real torus.

p(✓ + !)�1�(✓)p(✓) = �0 �! �(✓)p(✓) = p(✓ + !)�0 .

Considering the possibility of �(✓) being negative, we will take its absolute value when taking
logarithms on both sides and sign(�(✓)) = ±1 as the sign of �(✓).

log |�(✓)|+ log p(✓) = log p(✓ + !) + log |�0|
� log p(✓) + log p(✓ + !) = log |�(✓)|� log |�0| .

Taking ⇠(✓) = log p(✓), ⌘(✓) = log |�(✓)| and ⌘0 = log |�0|

⇠(✓ + !)� ⇠(✓) = ⌘(✓)� ⌘0 . (4.4)

Let’s express ⇠(✓) and ⌘(✓) in terms of its Fourier series for a better manipulation of the
expressions.

⇠(✓) =
X

k2Z
⇠̂k e

2⇡ik✓

⌘(✓) =
X

k2Z
⌘̂k e

2⇡ik✓ .

So, rewriting equation (4.4) in terms of Fourier series, we obtain

X

k2Z

⇣
⇠̂k e

2⇡ik(✓+!) � ⇠̂k e
2⇡ik✓

⌘
=
X

k 6=0

⇠̂k
⇣
e2⇡ik! � 1

⌘
e2⇡ik✓ =

0

@
X

k 6=0

⌘̂k e
2⇡ik✓

1

A+ ⌘̂0 � ⌘0 .

Equating Fourier coefficients we get

k 6= 0 , ⇠̂k =
⌘̂k

e2⇡ik! � 1

k = 0 , ⌘̂0 = ⌘0 .
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Notice that, thanks to the fact that ! is Diophantine (“very irrational”) the denominator of the
coefficients in the k 6= 0 case, will tend slower to 0, and therefore, the coefficients themselves
will tend to infinity slower. With those expressions we can say now that p(✓) = exp ⇠(✓) and

⌘0 = ⌘̂0 =

Z

✓2Td
⇢

log |�(✓)| d✓ �! |�0| = exp

Z

✓2Td
⇢

log |�(✓)| d✓ .

And therefore, �0 = sign(�(✓)) · |�0|.

Computation of the Manifold

In this section we will specify an algorithm for the computation of whiskers of rank 1,
which are parametrized by the map W (s, ✓). Such map satisfies the invariance equation,
assuming that the invariant bundles are of rank 1 and that ! is Diophantine. For the first
calculations we will assume the linear dynamics are uniform on the bundles and given by a
map � : Td

⇢ ! C. Nonetheless, assuming the dynamics are reduced to multiplication by a
constant can simplify the calculations if the linear dynamics is hyperbolic and if the previous
section’s conditions are fulfilled.
All in all, we are looking for a manifold W : C ⇥ Td

⇢ ! Cn and a map � : Td
⇢ ! C satisfying

condition (4.3), such that the invariance equation

F (W (s, ✓), ✓) = W (�(✓)s, ✓ + !)

holds, with W0(✓) = W (0, ✓) = K(✓), that is, on the invariant torus. To do that, we will
express W (s, ✓) in Fourier-Taylor series form, such that

W (s, ✓) =
1X

k=0

Wk(✓)s
k , (4.5)

where Wk(✓) are the Taylor coefficients of the series, which are also periodic functions (Fourier
series) with respect to ✓. Notice that we already know that W0(✓) = K(✓). By differentiating
the invariance equation with respect to s and taking s = 0, we have

DxF (K(✓), ✓)DsW (0, ✓) = DsW (0, ✓ + !)�(✓) .

From here we get our second Taylor coefficient W1(✓) = DsW (0, ✓), which is a frame of an
invariant bundle, turning the previous equation into

DxF (K(✓), ✓)W1(✓) = W1(✓ + !)�(✓) .

At this point we will assume that we have calculated W<k(s, ✓) =
P
r<k

Wr(✓)sr and we want

to calculate Wk(✓). Substituting expression (4.5) into the invariance equation we have

F (W<k(s, ✓) +Wk(✓)s
k + · · · , ✓) = W<k(�(✓)s, ✓ + !) +Wk(✓ + !)�(✓)ksk + · · ·
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Taylor expanding the left hand side of the equation we have

F (W<k(s, ✓) +Wk(✓)s
k + · · · , ✓) = F (W<k(s, ✓), ✓) + DxF (W<k(s, ✓), ✓)(Wk(✓)s

k + · · · ) + · · ·
= [F (W<k(s, ✓), ✓)]<k + [F (W<k(s, ✓), ✓)]k s

k + · · ·
+DxF (K(✓), ✓)Wk(✓)s

k + · · ·

Recalling that DxF (K(✓), ✓) = M(✓) and equating terms of the same order, we obtain

M(✓)Wk(✓)s
k �Wk(✓ + !)�(✓)ksk = � [F (W<k(s, ✓), ✓)]k s

k .

Thus we obtain the cohomolgy equation

M(✓)Wk(✓)�Wk(✓ + !)�(✓)k = � [F (W<k(s, ✓), ✓)]k , k � 2 .

Keep in mind that, for this equation to be solvable, the condition for

�0 = exp

Z

✓2Td
⇢

log |�(✓)| d✓

to �l
0 /2 Spec(M!) for l � 2 must be satisfied (so M! � �l

0I is invertible), where M! is the
transfer operator defined in Section 1.2.2. With that final expression we are now able to find
the k-th term of the expansion, allowing us to fully calculate the object.
Notice that in order to prove the existence of W (s, ✓), we should prove first that indeed the fact
that �l

0 /2 Spec(M!) for l � 2 ensures the existence of solution of the cohomology equation.
And secondly, we should prove that the series defining W (s, ✓) converges.
Such proof would require a lot of preparation work and, as said, it goes beyond the scope of
this project. However, it is a very interesting topic worth considering for a future work, both
of a theoretical nature and of a more validation focused approach.
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Conclusions

Certainly, skew-product systems are not unexplored territory although there is still a lot
to learn. There are even several ways of proving the validation theorem even though we just
have stated one. Nevertheless, although the approach that has been taken here has already
been used for validations in KAM theory, the implementation to this very specific case can
draw a path for other different and better computer assisted proofs to come. In the same
way, regardless of the commonness and familiarity with Fourier transforms, the validation
process using intervalar arithmetics and multi-precision can teach a lot about scientific coding
that it might not be possible to learn somewhere else. The precision and care with which
every computation has to be performed can be overwhelming at times but also very rewarding
professional-wise.

As it has been already stated, this is just the beginning for what computer validations can
become, by using its tools in other areas such as PDE’s. But without leaving the topic of
skew-product systems, we have also seen that we can move forward and see, for instance, how
can whiskers be validated using similar procedures. As always in science and of course in
mathematics, there is still a lot to progress and learn.

61



62 Conclusions



Annex

1 #include <stdio.h>
2 #include <math.h>
3 #include <complex.h>
4 #include <stdlib.h>
5 #include <mpfi.h>
6 #include <mpfi_io.h>
7
8 typedef struct real {
9 mpfi_t real;

10 }real;
11
12 typedef struct complexi {
13 mpfi_t real;
14 mpfi_t imag;
15 }complexi;
16
17 real PI, DPI , one , two;
18 int prec = 100;
19 double rhod = 1.e-3, hatrhod = 5.e-3;
20
21 void comp_print (complexi x) {
22 /* Prints complex intervals */
23 mpfi_out_str(stdout , 10, 0, x.real);
24 printf(" x ");
25 mpfi_out_str(stdout , 10, 0, x.imag);
26 printf("\n\n");
27 }
28
29 void real_print (real x) {
30 /* Prints real intervals */
31 mpfi_out_str(stdout , 10, 0, x.real);
32 printf("\n\n");
33 }
34
35 complexi comp_init_c (complex x) {
36 /* Initializes a complex interval around a complex number */
37 complexi z;
38 mpfi_init2(z.real , prec);
39 mpfi_init2(z.imag , prec);
40 mpfi_set_d(z.real , creal(x));
41 mpfi_set_d(z.imag , cimag(x));
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42
43 return z;
44 }
45
46 complexi comp_set_c (complex x) {
47 /* Sets a complex interval around a complex number */
48 complexi z;
49
50 z = comp_init_c (0);
51
52 mpfi_set_d(z.real , creal(x));
53 mpfi_set_d(z.imag , cimag(x));
54
55 return z;
56 }
57
58 void comp_clear (complexi x) {
59 /* Clears complex intervals */
60 mpfi_clear(x.real);
61 mpfi_clear(x.imag);
62 }
63
64 void allocm (complexi *m[2][2] , unsigned N) {
65 /* Allocates a matrix of complex intervals */
66 int i, j;
67 for(i=0; i<2; i++)
68 for(j=0; j<2; j++)
69 m[i][j] = (complexi *) malloc(N*sizeof(complexi));
70 }
71
72 void allocv (complexi *v[2], unsigned N) {
73 /* Allocates a vector of complex intervals */
74 int i;
75 for(i=0; i<2; i++)
76 v[i] = (complexi *) malloc(N*sizeof(complexi));
77 }
78
79 void allocv_d (double *v[2], unsigned N) {
80 /* Allocates a vector of real numbers */
81 int i;
82 for(i=0; i<2; i++)
83 v[i] = (double *) malloc(N*sizeof(double));
84 }
85
86 void allocv_real (real *v[2], unsigned N) {
87 /* Allocates a vector of real numbers */
88 int i;
89 for(i=0; i<2; i++)
90 v[i] = (real *) malloc(N*sizeof(real));
91 }
92
93
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94 void allocm_d (double *m[2][2] , unsigned N) {
95 /* Allocates a matrix of complex intervals */
96 int i, j;
97 for(i=0; i<2; i++)
98 for(j=0; j<2; j++)
99 m[i][j] = (double *) malloc(N*sizeof(double));

100 }
101
102 void allocv_c (complex *v[2], unsigned N) {
103 /* Allocates a vector of complex numbers */
104 int i;
105 for(i=0; i<2; i++)
106 v[i] = (complex *) malloc(N*sizeof(complex));
107 }
108
109 void freev (complexi *v[2]) {
110 /* Frees the memory occupied by a vector */
111 int i;
112 for(i=0; i<2; i++)
113 free(v[i]);
114 }
115
116 void freem (complexi *m[2][2]) {
117 /* Frees the memory occupied by a matrix */
118 int i, j;
119 for(i=0; i<2; i++)
120 for(j=0; j<2; j++)
121 free(m[i][j]);
122 }
123
124 void comp_init_m (complexi *m[2][2] , unsigned N) {
125 /* Initializes a matrix of complex intervals */
126 int i, j, k;
127 for(k=0; k<N; k++)
128 for(i=0; i<2; i++)
129 for(j=0; j<2; j++)
130 m[i][j][k] = comp_init_c (0);
131 }
132
133 void comp_init_v (complexi *v[2], unsigned N) {
134 /* Initializes a vector of complex intervals */
135 int i, k;
136 for(k=0; k<N; k++)
137 for(i=0; i<2; i++)
138 v[i][k] = comp_init_c (0);
139 }
140
141 void real_init_v (real *v[2], unsigned N) {
142 /* Initializes a vector of complex intervals */
143 int i, k;
144 for(k=0; k<N; k++)
145 for(i=0; i<2; i++) {
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146 mpfi_init2(v[i][k].real , prec);
147 mpfi_set_d(v[i][k].real , 0);
148 }
149 }
150
151 complexi comp_add (complexi x, complexi y) {
152 /* Sum of complex intervals */
153 complexi z;
154
155 z = comp_init_c (0);
156
157 mpfi_add(z.real , x.real , y.real);
158 mpfi_add(z.imag , x.imag , y.imag);
159
160 return z;
161 }
162
163 real real_add (real x, real y) {
164 /* Sum of real intervals */
165 real sum;
166
167 mpfi_init2(sum.real , prec);
168
169 mpfi_add(sum.real , x.real , y.real);
170
171 return sum;
172 }
173
174 complexi comp_sub (complexi x, complexi y) {
175 /* Substraction of complex intervals */
176 complexi z;
177
178 z = comp_init_c (0);
179
180 mpfi_sub(z.real , x.real , y.real);
181 mpfi_sub(z.imag , x.imag , y.imag);
182
183 return z;
184 }
185
186 real real_sub (real x, real y) {
187 /* Substraction of real intervals */
188 real sub;
189
190 mpfi_init2(sub.real , prec);
191
192 mpfi_sub(sub.real , x.real , y.real);
193
194 return sub;
195 }
196
197 complexi comp_mul (complexi x, complexi y) {
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198 /* Product of complex intervals */
199 complexi z, r;
200
201 z = comp_init_c (0);
202 r = comp_init_c (0);
203
204 mpfi_mul(z.real , x.real , y.real);
205 mpfi_mul(z.imag , x.imag , y.imag);
206 mpfi_sub(r.real , z.real , z.imag);
207
208 mpfi_mul(z.real , x.real , y.imag);
209 mpfi_mul(z.imag , x.imag , y.real);
210 mpfi_add(r.imag , z.real , z.imag);
211
212 return r;
213 }
214
215 real real_mul (real x, real y) {
216 /* Multiplies real intervals */
217 real mul;
218
219 mpfi_init2(mul.real , prec);
220
221 mpfi_mul(mul.real , x.real , y.real);
222
223 return mul;
224 }
225
226 real real_sc_mul (double a, real x) {
227 /* Multiplies a real interval by a real scalar */
228 real mul;
229
230 mpfi_init2(mul.real , prec);
231
232 mpfi_mul_d(mul.real , x.real , a);
233
234 return mul;
235 }
236
237 real real_sc_div (double a, real x) {
238 /* Divides a real interval by a real scalar */
239 real div;
240
241 mpfi_init2(div.real , prec);
242
243 mpfi_d_div(div.real , a, x.real);
244
245 return div;
246 }
247
248 complexi comp_div (complexi x, complexi y) {
249 /* Division of complex intervals */
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250 complexi z1 , r;
251 real z2;
252
253 z1 = comp_init_c (0);
254 r = comp_init_c (0);
255 mpfi_init2(z2.real , prec);
256
257 /*Real numerator */
258 mpfi_mul(z1.real , x.real , y.real);
259 mpfi_mul(z1.imag , x.imag , y.imag);
260 mpfi_add(r.real , z1.real , z1.imag);
261
262 /* Denominator */
263 mpfi_mul(z1.real , y.real , y.real);
264 mpfi_mul(z1.imag , y.imag , y.imag);
265 mpfi_add(z2.real , z1.real , z1.imag);
266
267 /* Division of real part*/
268 mpfi_div(r.real , r.real , z2.real);
269
270 /* Imaginary numerator */
271 mpfi_mul(z1.real , x.real , y.imag);
272 mpfi_mul(z1.imag , x.imag , y.real);
273 mpfi_sub(r.imag , z1.imag , z1.real);
274
275 /* Division of imagaginary part*/
276 mpfi_div(r.imag , r.imag , z2.real);
277
278 return r;
279 }
280
281 real real_div (real x, real y) {
282 /* Divides real intervals */
283 real div;
284
285 mpfi_init2(div.real , prec);
286
287 mpfi_div(div.real , x.real , y.real);
288
289 return div;
290 }
291
292 real real_sqrt (real x) {
293 /* Calculates the square root of a real interval */
294 real sqrt;
295
296 mpfi_init2(sqrt.real , prec);
297 mpfi_sqrt(sqrt.real , x.real);
298
299 return sqrt;
300 }
301
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302 complexi comp_reali_mul (real a, complexi x) {
303 /* Multiplies a real interval by a complex interval as a scalar */
304 complexi z;
305
306 z = comp_init_c (0);
307
308 mpfi_mul(z.real , a.real , x.real);
309 mpfi_mul(z.imag , a.real , x.imag);
310
311 return z;
312 }
313
314 complexi comp_sc_mul (double a, complexi x) {
315 /* Multiplies a complex interval by a real scalar */
316 complexi z;
317 real y;
318
319 z = comp_init_c (0);
320
321 mpfi_init2(y.real , prec);
322 mpfi_set_d(y.real , a);
323
324 mpfi_mul(z.real , y.real , x.real);
325 mpfi_mul(z.imag , y.real , x.imag);
326
327 mpfi_clear(y.real);
328
329 return z;
330 }
331
332 complexi comp_abs (complexi x) {
333 /* Computes the absolute value of a complex interval interval -wise */
334 /* Caution: this is not the modulus of a complex interval */
335 complexi abs;
336
337 abs = comp_init_c (0);
338
339 mpfi_abs(abs.real , x.real);
340 mpfi_abs(abs.imag , x.imag);
341
342 return abs;
343 }
344
345 real real_abs (real x) {
346 /* Calculates the absolute value of a real interval */
347 real abs;
348
349 mpfi_init2(abs.real , prec);
350
351 mpfi_abs(abs.real , x.real);
352
353 return abs;
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354 }
355
356 real comp_mod (complexi z) {
357 /* Calculates the modulus of a complex interval */
358 real mod;
359
360 mpfi_init2(mod.real , prec);
361
362 mpfi_hypot(mod.real , z.real , z.imag);
363
364 return mod;
365 }
366
367 complexi comp_sin (complexi x) {
368 /* Computes complex sine */
369 complexi z;
370 real a, b;
371
372 z = comp_init_c (0);
373
374 mpfi_init2(a.real , prec);
375 mpfi_init2(b.real , prec);
376
377 mpfi_sin(a.real , x.real);
378 mpfi_cosh(b.real , x.imag);
379 mpfi_mul(z.real , a.real , b.real);
380
381 mpfi_cos(a.real , x.real);
382 mpfi_sinh(b.real , x.imag);
383 mpfi_mul(z.imag , a.real , b.real);
384
385 mpfi_clear(a.real);
386 mpfi_clear(b.real);
387
388 return z;
389 }
390
391 complexi comp_cos (complexi x) {
392 /* Computes complex cosine */
393 complexi z;
394 real a, b, one;
395
396 mpfi_init2(one.real , prec);
397 mpfi_set_d(one.real , -1);
398 z = comp_init_c (0);
399
400 mpfi_init2(a.real , prec);
401 mpfi_init2(b.real , prec);
402
403 mpfi_cos(a.real , x.real);
404 mpfi_cosh(b.real , x.imag);
405 mpfi_mul(z.real , a.real , b.real);
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406
407 mpfi_sin(a.real , x.real);
408 mpfi_sinh(b.real , x.imag);
409 mpfi_mul(b.real , one.real , b.real);
410 mpfi_mul(z.imag , a.real , b.real);
411
412 mpfi_clear(a.real);
413 mpfi_clear(b.real);
414 mpfi_clear(one.real);
415
416 return z;
417 }
418
419 real real_sin (real x) {
420 /* Calculates the sine of a real interval */
421 real sine;
422
423 mpfi_init2(sine.real , prec);
424
425 mpfi_sin(sine.real , x.real);
426
427 return sine;
428 }
429
430 real real_cos (real x) {
431 /* Calculates the cosine of a real interval */
432 real cosine;
433
434 mpfi_init2(cosine.real , prec);
435
436 mpfi_cos(cosine.real , x.real);
437
438 return cosine;
439 }
440
441 void matrixmult (complexi *z[2][2] , complexi *x[2][2] , complexi *y[2][2] ,

int N) {
442 /* Multiplies two matrices */
443 int i, j, k, l;
444 complexi p[2][2];
445 for(i=0; i<2; i++)
446 for(j=0; j<2; j++)
447 p[i][j] = comp_init_c (0);
448
449 for(k=0; k<N; k++) {
450 for(i=0; i<2; i++) {
451 for(j=0; j<2; j++) {
452 p[i][j] = comp_set_c (0);
453 for(l=0; l<2; l++){
454 p[i][j] = comp_add(p[i][j], comp_mul(x[i

][l][k], y[l][j][k]));
455 }
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456 }
457 }
458 for(i= 0; i<2; i++)
459 for(j= 0; j<2; j++)
460 z[i][j][k] = p[i][j];
461 }
462 }
463
464 void matrixvecmul (complexi *r[2], complexi *x[2][2] , complexi *v[2], int N

) {
465 /* Multiplies a matrix by a vector */
466 int i, j, k;
467 complexi p[2];
468 for(i=0; i<2; i++)
469 p[i] = comp_init_c (0);
470
471 for(k=0; k<N; k++) {
472 for(i=0; i<2; i++) {
473 p[i] = comp_set_c (0);
474 for(j=0; j<2; j++) {
475 p[i] = comp_add(p[i], comp_mul(x[i][j][k],

v[j][k]));
476 }
477 }
478 for(i=0; i<2; i++) {
479 r[i][k] = p[i];
480 }
481 }
482 }
483
484 void inverse (complexi *inv [2][2] , complexi *a[2][2] , int N) {
485 /* Inverts a matrix */
486 int k;
487 complexi det , adj [2][2];
488
489 det = comp_init_c (0);
490 adj [0][0] = comp_init_c (0);
491 adj [0][1] = comp_init_c (0);
492 adj [1][0] = comp_init_c (0);
493 adj [1][1] = comp_init_c (0);
494
495 for(k=0; k<N; k++) {
496 det = comp_sub(comp_mul(a[0][0][k], a[1][1][k]), comp_mul(a[0][1][k], a

[1][0][k]));
497 adj [0][0] = a[1][1][k];
498 adj [1][1] = a[0][0][k];
499 adj [0][1] = comp_sc_mul(-1, a[1][0][k]);
500 adj [1][0] = comp_sc_mul(-1, a[0][1][k]);
501 inv [0][0][k] = comp_div(adj [0][0] , det);
502 inv [1][1][k] = comp_div(adj [1][1] , det);
503 inv [1][0][k] = comp_div(adj [0][1] , det);
504 inv [0][1][k] = comp_div(adj [1][0] , det);
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505 }
506 }
507
508 complexi comp_exp (real x) {
509 /* Calculates the complex exponential */
510 complexi compexp;
511
512 compexp = comp_init_c (0);
513
514 mpfi_cos(compexp.real , x.real);
515 mpfi_sin(compexp.imag , x.real);
516
517 return compexp;
518 }
519
520 real real_exp (real x) {
521 /* Calculates the real exponential */
522 real exp;
523
524 mpfi_init2(exp.real , prec);
525
526 mpfi_exp(exp.real , x.real);
527
528 return exp;
529 }
530
531 void dft (complexi *coef , complexi *grid , int N) {
532 /* Discrete Fourier Transform */
533 int j, k;
534 complexi sum , compexp;
535 compexp = comp_init_c (0);
536 for(k=0; k<N; k++){
537 sum = comp_init_c (0.);
538 for(j=0; j<N; j++) {
539 compexp = comp_exp(real_sc_mul ( -2.0*k*j/N, PI)); /* Note: -2*k*j/N is

perfectly represented by the computer , but the product by PI is
not */

540 sum = comp_add(sum , comp_mul(grid[j], compexp));
541 }
542 coef[k] = comp_sc_mul (1./N, sum); /* Note: 1/N is perfectly

represented by the computer */
543 comp_clear(sum);
544 }
545 comp_clear(compexp);
546 }
547
548 void idft (complexi *grid , complexi *coef , int N) {
549 /* Inverse Discrete Fourier Transform */
550 int j, k;
551 complexi sum , compexp;
552 compexp = comp_init_c (0);
553 for(k=0; k<N; k++){



74 Annex

554 sum = comp_init_c (0.);
555 for(j=N/2; j<N; j++){
556 compexp = comp_exp(real_sc_mul (2.0*k*j/N, PI));
557 sum = comp_add(sum , comp_mul(coef[j], compexp));
558 compexp = comp_exp(real_sc_mul (2.0*k*(N-1-j)/N, PI));
559 sum = comp_add(sum , comp_mul(coef[N-1-j], compexp));
560 }
561 grid[k] = sum;
562 comp_clear(sum);
563 }
564 comp_clear(compexp);
565 }
566
567 void separate (complexi *a, int n) {
568 /* Copies all even elements to lower -half of a[]
569 and all odd elements to upper -half of a[] */
570 complexi b[n/2];
571 int i;
572 for(i=0; i<n/2; i++) {
573 b[i] = comp_init_c (0);
574 b[i] = a[i*2+1];
575 }
576 for(i=0; i<n/2; i++)
577 a[i] = a[i*2];
578 for(i=0; i<n/2; i++) {
579 a[i+n/2] = b[i];
580 }
581 }
582
583 void _fft (complexi *X, int N) {
584 /* Fast Fourier Transform */
585 int k;
586 complexi e, o, w;
587
588 e = comp_init_c (0);
589 o = comp_init_c (0);
590 w = comp_init_c (0);
591
592 if(N<2){
593
594 }else{
595 separate(X, N);
596 _fft(X, N/2);
597 _fft(X+N/2, N/2);
598 for(k=0; k<N/2; k++) {
599 e = X[k];
600 o = X[k+N/2];
601 w = comp_exp(real_sc_mul (( -2.0*k)/N, PI));
602 X[k] = comp_add(comp_reali_mul(real_div(one , two), e), comp_mul(w,

comp_reali_mul(real_div(one , two), o)));
603 X[k+N/2] = comp_sub(comp_reali_mul(real_div(one , two), e), comp_mul(w

, comp_reali_mul(real_div(one , two), o)));
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604 }
605 }
606 }
607
608 void fft (complexi *coef , complexi *grid , int N) {
609 /* Copies vectors and applies Fast Fourier Transform */
610 int k;
611 for (k=0; k<N; k++){
612 coef[k] = grid[k];
613 }
614 _fft(coef , N);
615 }
616
617 void _ifft (complexi *X, int N){
618 /* Inverse Fast Fourier Transform */
619 int k;
620 complexi e, o, w;
621
622 e = comp_init_c (0);
623 o = comp_init_c (0);
624 w = comp_init_c (0);
625
626 if(N<2){
627
628 }else{
629 separate(X, N);
630 _ifft(X, N/2);
631 _ifft(X+N/2, N/2);
632 for(k=0; k<N/2; k++) {
633 e = X[k];
634 o = X[k+N/2];
635 w = comp_exp(real_sc_mul ((2.0*k)/N, PI));
636 X[k] = comp_add(e, comp_mul(w, o));
637 X[k+N/2] = comp_sub(e, comp_mul(w, o));
638 }
639 }
640 }
641
642 void ifft (complexi *grid , complexi *coef , int N){
643 /* Copies vectors and applies inverse Fast Fourier Transform */
644 int k;
645 for(k=0; k<N; k++){
646 grid[k] = coef[k];
647 }
648 _ifft(grid , N);
649 }
650
651 real real_sup (real x, real y) {
652 /* Finds the supremum of two real intervals */
653 real sup1 , sup2;
654 mpfr_t sup1r , sup2r;
655 int n;
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656
657 mpfr_init2(sup1r , prec);
658 mpfr_init2(sup2r , prec);
659
660 mpfi_init2(sup1.real , prec);
661 mpfi_init2(sup2.real , prec);
662
663 sup1 = real_abs(x);
664 sup2 = real_abs(y);
665
666 mpfi_get_right(sup1r , sup1.real);
667 mpfi_get_right(sup2r , sup2.real);
668
669 n = mpfr_cmp(sup1r , sup2r);
670
671 if(n < 0) {
672 return sup2;
673 } else {
674 return sup1;
675 }
676 }
677
678 void F (complexi *FK[2], complexi *K[2], real b, real e, int N) {
679 /* Calculates the imagage through the Standard Map */
680 int j;
681 real sin;
682 mpfi_init2(sin.real , prec);
683 complexi sine;
684 sine = comp_init_c (0);
685 for(j=0; j<N; j++){
686 sin = real_mul(e, real_sin(real_sc_mul ((1.*j)/N, DPI)));
687 mpfi_set(sine.real , sin.real);
688 FK[1][j] = comp_sub(K[1][j], comp_add(comp_reali_mul(real_div(b, DPI),

comp_sin(comp_reali_mul(DPI , K[0][j]))), sine));
689 FK[0][j] = comp_add(K[0][j], FK[1][j]);
690 }
691 }
692
693 void Fbox (complexi *FK[2], complexi *K[2], real b, real e, int N) {
694 /* Calculates the imagage through the Standard Map */
695 int j;
696 complexi sine , theta[N];
697
698 for(j=0; j<N; j++) {
699 theta[j] = comp_init_c (0);
700 mpfi_interv_d(theta[j].real , (1.*j)/N -1./(2*N), (1.*j)/N+1./(2*N));
701 mpfi_interv_d(theta[j].imag , -hatrhod , hatrhod);
702 }
703
704 sine = comp_init_c (0);
705
706 for(j=0; j<N; j++){
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707 sine = comp_reali_mul(e, comp_sin(comp_reali_mul(DPI , theta
[j])));

708 FK[1][j] = comp_sub(K[1][j], comp_add(comp_reali_mul(
real_div(b, DPI), comp_sin(comp_reali_mul(DPI , K[0][j])
)), sine));

709 FK[0][j] = comp_add(K[0][j], FK[1][j]);
710 }
711 }
712
713
714 void difmatrix(complexi *dif [2][2] , complexi *K[2], real b, int N){
715 /* Evaluates the differential matrix of the Standard Map over K */
716 int k;
717 for(k=0; k<N; k++){
718 dif [0][0][k] = comp_sub(comp_init_c (1), comp_reali_mul(b, comp_cos(

comp_reali_mul(DPI , K[0][k]))));
719 dif [0][1][k] = comp_init_c (1);
720 dif [1][1][k] = comp_init_c (1);
721 dif [1][0][k] = comp_reali_mul(real_sc_mul(-1, b), comp_cos(

comp_reali_mul(real_sc_mul (2.0, PI), K[0][k])));
722 }
723 }
724
725 real diff2norm (complexi *K[2], real b, int N){
726 /* Evaluates the second differential matrix of the Standard Map

over K */
727 int k;
728 real norm , sup;
729 mpfi_init2(norm.real , prec);
730 mpfi_init2(sup.real , prec);
731 mpfi_set_d(sup.real , 0);
732 for(k=0; k<N; k++){
733 norm = comp_mod(comp_reali_mul(real_mul(DPI , b), comp_sin(

comp_reali_mul(DPI , K[0][k]))));
734 sup = real_sup(sup , norm);
735 }
736 return sup;
737 }
738
739 real mu (real delta , int N) {
740 real a, b;
741 mpfi_init2(a.real , prec);
742 mpfi_init2(b.real , prec);
743 a = real_sc_mul (2.0, real_exp(real_mul(PI , delta)));
744 b = real_add(real_exp(real_sc_mul (2.0, real_mul(PI, delta))), one);
745 if(N%2 == 0) {
746 return one;
747 } else {
748 return real_div(a, b);
749 }
750 }
751
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752 real CN (real rho , real hat , int N) {
753 /* Calculation of C_N Fourier error bound */
754 real S1, S2 , T, a, b, c;
755
756 mpfi_init(S1.real);
757 mpfi_init(S2.real);
758 mpfi_init(T.real);
759 mpfi_init(a.real);
760 mpfi_init(b.real);
761 mpfi_init(c.real);
762
763 a = real_div(real_exp(real_sc_mul ( -2.0*N, real_mul(PI, hat))), real_sub(

one , real_exp(real_sc_mul ( -2.0*N, real_mul(PI, hat)))));
764 b = real_div(real_add(real_exp(real_sc_mul (-2.0, real_mul(PI , real_add(

hat , rho)))), one), real_sub(real_exp(real_sc_mul (-2.0, real_mul(PI ,
real_add(hat , rho)))), one));

765 c = real_sub(one , real_mul(mu(real_sub(real_sc_mul(-1, hat), rho), N),
real_exp(real_sc_mul(N, real_mul(PI, real_add(hat , rho))))));

766 S1 = real_mul(a, b);
767 S1 = real_mul(S1 , c);
768
769 b = real_div(real_add(real_exp(real_sc_mul (2.0, real_mul(PI , real_sub(hat

, rho)))), one), real_sub(real_exp(real_sc_mul (2.0, real_mul(PI ,
real_sub(hat , rho)))), one));

770 c = real_sub(one , real_mul(mu(real_sub(real_sc_mul (1, hat), rho), N),
real_exp(real_sc_mul(-N, real_mul(PI, real_sub(hat , rho))))));

771 S2 = real_mul(a, b);
772 S2 = real_mul(S2 , c);
773
774 c = real_mul(mu(real_sub(real_sc_mul (1, hat), rho), N), real_exp(

real_sc_mul(-N, real_mul(PI , real_sub(hat , rho)))));
775 T = real_mul(b, c);
776
777 return real_add(S1 , real_add(S2 , T));
778 }
779
780 void comp_add_v (complexi *s, complexi *x, complexi *y, int N) {
781 /* Sum of vectors */
782 int k;
783 for(k=0; k<N; k++)
784 s[k]= comp_add(x[k], y[k]);
785 }
786
787 void comp_sub_v (complexi *r, complexi *x, complexi *y, int N) {
788 /* Substraction of vectors */
789 int k;
790 for(k=0; k<N; k++)
791 r[k]= comp_sub(x[k], y[k]);
792 }
793
794 void comp_mul_v (complexi *m, complexi *x, complexi *y, int N) {
795 /* Product of vectors component -wise */
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796 int k;
797 for(k=0; k<N; k++)
798 m[k]= comp_mul(x[k], y[k]);
799 }
800
801 void fourierrot(complexi *xrot , complexi *x, real om, int N){
802 /* Rotates the Fourier coefficients */
803 int k;
804 complexi compexp;
805 compexp = comp_init_c (0);
806 for(k=0; k<N/2; k++) {
807 compexp = comp_exp(real_sc_mul(k, real_mul(DPI , om)));
808 xrot[k] = comp_mul(x[k], compexp);
809 }
810 for(k=N/2; k<N; k++) {
811 compexp = comp_exp(real_sc_mul ((k-N), real_mul(DPI , om)));
812 xrot[k] = comp_mul(x[k], compexp);
813 }
814 }
815
816 void fourierrot_c_m (complexi *frotx [2][2] , complexi *fx[2][2] , complexi

phi , int N) {
817 /* Rotates a matrix by a complex factor */
818 real aux;
819 complexi *mat [2][2];
820 int i;
821
822 allocm(mat , N);
823
824 comp_init_m(mat , N);
825
826 mpfi_init2(aux.real , prec);
827
828 mpfi_mul(aux.real , DPI.real , phi.imag);
829
830 for(i=0; i<N; i++) {
831 if(i < N/2) {
832 mat [0][0][i] = comp_reali_mul(real_div(one ,

real_exp(real_sc_mul(i, aux))), fx [0][0][i]);
833 mat [0][1][i] = comp_reali_mul(real_div(one ,

real_exp(real_sc_mul(i, aux))), fx [0][1][i]);
834 mat [1][0][i] = comp_reali_mul(real_div(one ,

real_exp(real_sc_mul(i, aux))), fx [1][0][i]);
835 mat [1][1][i] = comp_reali_mul(real_div(one ,

real_exp(real_sc_mul(i, aux))), fx [1][1][i]);
836 } else {
837 mat [0][0][i] = comp_reali_mul(real_div(one ,

real_exp(real_sc_mul ((i-N), aux))), fx [0][0][i
]);

838 mat [0][1][i] = comp_reali_mul(real_div(one ,
real_exp(real_sc_mul ((i-N), aux))), fx [0][1][i
]);
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839 mat [1][0][i] = comp_reali_mul(real_div(one ,
real_exp(real_sc_mul ((i-N), aux))), fx [1][0][i
]);

840 mat [1][1][i] = comp_reali_mul(real_div(one ,
real_exp(real_sc_mul ((i-N), aux))), fx [1][1][i
]);

841
842 }
843 }
844
845 mpfi_set(aux.real , phi.real);
846
847 fourierrot(frotx [0][0] , mat [0][0] , aux , N);
848 fourierrot(frotx [0][1] , mat [0][1] , aux , N);
849 fourierrot(frotx [1][0] , mat [1][0] , aux , N);
850 fourierrot(frotx [1][1] , mat [1][1] , aux , N);
851 }
852
853 void fourierrot_c_v (complexi *frotx[2], complexi *fx[2], complexi phi , int

N) {
854 /* Rotates a vector by a complex factor */
855 real aux;
856 complexi *vec [2];
857 int i;
858
859 allocv(vec , N);
860
861 comp_init_v(vec , N);
862
863 mpfi_init2(aux.real , prec);
864
865 mpfi_mul(aux.real , DPI.real , phi.imag);
866
867 for(i=0; i<N; i++) {
868 if(i < N/2) {
869 vec [0][i] = comp_reali_mul(real_div(one , real_exp(

real_sc_mul(i, aux))), fx[0][i]);
870 vec [1][i] = comp_reali_mul(real_div(one , real_exp(

real_sc_mul(i, aux))), fx[1][i]);
871 } else {
872 vec [0][i] = comp_reali_mul(real_div(one , real_exp(

real_sc_mul ((i-N), aux))), fx[0][i]);
873 vec [1][i] = comp_reali_mul(real_div(one , real_exp(

real_sc_mul ((i-N), aux))), fx[1][i]);
874
875 }
876 }
877
878 mpfi_set(aux.real , phi.real);
879
880 fourierrot(frotx [0], vec[0], aux , N);
881 fourierrot(frotx [1], vec[1], aux , N);
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882
883 }
884
885
886 void matrixgf (complexi *coef [2][2] , complexi *grid [2][2] , int N) {
887 /* Transforms an array of matrices evaluated over a grid into

matrices of Fourier coefficients */
888 fft(coef [0][0] , grid [0][0] , N);
889 fft(coef [0][1] , grid [0][1] , N);
890 fft(coef [1][0] , grid [1][0] , N);
891 fft(coef [1][1] , grid [1][1] , N);
892 }
893
894 void matrixfg (complexi *grid [2][2] , complexi *coef [2][2] , int N) {
895 /* Transforms an array of matrices evaluated over a grid into

matrices of Fourier coefficients */
896 ifft(grid [0][0] , coef [0][0] , N);
897 ifft(grid [0][1] , coef [0][1] , N);
898 ifft(grid [1][0] , coef [1][0] , N);
899 ifft(grid [1][1] , coef [1][1] , N);
900 }
901
902 real fournorm (complexi *coef , real rho , int N) {
903 real sum;
904 int i;
905
906 mpfi_init2(sum.real , prec);
907 mpfi_set_d(sum.real , 0);
908
909 for(i=0; i<N; i++) {
910 if(i<N/2){
911 sum = real_add(sum , real_mul(real_exp(real_sc_mul (2.0l*fabs(i),

real_mul(PI , rho))), comp_mod(coef[i])));
912 } else {
913 sum = real_add(sum , real_mul(real_exp(real_sc_mul (2.0l*fabs(i-N),

real_mul(PI , rho))), comp_mod(coef[i])));
914 }
915 }
916
917 return sum;
918 }
919
920 real fournorm_v (complexi *x[2], real rho , int N) {
921 real a, b;
922 mpfi_init2(a.real , prec);
923 mpfi_init2(b.real , prec);
924 a = real_abs(fournorm(x[0], rho , N));
925 b = real_abs(fournorm(x[1], rho , N));
926
927 if(a.real <= b.real) {
928 return b;
929 } else {
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930 return a;
931 }
932 }
933
934 real fournorm_m (complexi *x[2][2] , real rho , int N) {
935 real sum1 , sum2;
936
937 mpfi_init2(sum1.real , prec);
938 mpfi_init2(sum2.real , prec);
939
940 sum1 = real_add(fournorm(x[0][0] , rho , N), fournorm(x[0][1] , rho , N));
941 sum2 = real_add(fournorm(x[1][0] , rho , N), fournorm(x[1][1] , rho , N));
942
943 return real_sup(sum1 , sum2);
944 }
945
946 real supnorm (complexi *x, int N) {
947 int i, n;
948 mpfr_t supr , modr;
949 real sup , mod;
950
951 mpfr_init2(supr , prec);
952 mpfr_init2(modr , prec);
953
954 mpfi_init2(sup.real , prec);
955 mpfi_set_d(sup.real , 0);
956 mpfi_init2(mod.real , prec);
957
958 for(i=0; i<N; i++) {
959 mod = comp_mod(x[i]);
960
961 mpfi_get_right(supr , sup.real);
962 mpfi_get_right(modr , mod.real);
963
964 n = mpfr_cmp(supr , modr);
965 if(n < 0) {
966 mpfi_set(sup.real , mod.real);
967 }
968 }
969 return sup;
970 }
971
972 real supnorm_v (complexi *x[2], int N) {
973 real sup1 , sup2;
974 int n;
975 mpfr_t sup1r , sup2r;
976
977 mpfi_init2(sup1.real , prec);
978 mpfi_init2(sup2.real , prec);
979 mpfr_init2(sup1r , prec);
980 mpfr_init2(sup2r , prec);
981
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982 sup1 = supnorm(x[0], N);
983 sup2 = supnorm(x[1], N);
984
985 mpfi_get_right(sup1r , sup1.real);
986 mpfi_get_right(sup2r , sup2.real);
987
988 n = mpfr_cmp(sup1r , sup2r);
989
990 if(n < 0) {
991 return sup2;
992 } else {
993 return sup1;
994 }
995 }
996
997 real supnorm_m (complexi *x[2][2] , int N) {
998 real sum1 , sum2;
999

1000 mpfi_init2(sum1.real , prec);
1001 mpfi_init2(sum2.real , prec);
1002
1003 sum1 = real_add(supnorm(x[0][0] , N), supnorm(x[0][1] , N));
1004 sum2 = real_add(supnorm(x[1][0] , N), supnorm(x[1][1] , N));
1005
1006 return real_sup(sum1 , sum2);
1007 }
1008
1009 real comp_sup (complexi x, complexi y) {
1010 real sup1 , sup2;
1011
1012 mpfi_init2(sup1.real , prec);
1013 mpfi_init2(sup2.real , prec);
1014
1015 sup1 = comp_mod(x);
1016 sup2 = comp_mod(y);
1017
1018 if(sup1.real <= sup2.real) {
1019 return sup2;
1020 } else {
1021 return sup1;
1022 }
1023 }
1024
1025 int main(){
1026 complexi *K[2], *diff [2][2] , *fdiff [2][2] , *frotdiff [2][2] , *FK[2], *fFK

[2], *fK[2], *frotK [2], *P1[2][2] , *fP1 [2][2] , *frotP1 [2][2] , *fP2
[2][2] , *frotP2 [2][2] , *P2[2][2] ,

1027 *Lam [2][2] , *fLam [2][2] , *vec[2], *auxc[2], *fcopy [2][2] , *Id[2][2] , *
fI[2][2] , *xi[2], phi;

1028 int i, n, N, valh , valr0 , valmu , vall;
1029 double *Kc[2], lam0 , lam1 , *P0[2][2] , R = 1.e-4;
1030 FILE *torus;
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1031 real b, e, om , rho , rhohat , inverr , rederr , finverr , fP1norm , fP2norm ,
fdiffnorm , tildeeps , sum[2], *aux[2],

1032 lambda , lams , lamu , lamuinv , lambdap , term1 , term2 , term3 , five ,
kappa , hateps , beta , h, r0 , r1 , mu, Rinterv , hatlambda , alpha;

1033 mpfr_t bound1 , bound2;
1034
1035 /* Initializes 1, 2 and 2*PI */
1036 mpfi_init2(one.real , prec);
1037 mpfi_set_str(one.real , "1", 10);
1038
1039 mpfi_init2(two.real , prec);
1040 mpfi_set_str(two.real , "2", 10);
1041
1042 mpfi_init2(PI.real , prec);
1043 mpfi_atan(PI.real , one.real);
1044
1045 mpfi_mul(PI.real , PI.real , two.real);
1046 mpfi_mul(PI.real , PI.real , two.real);
1047
1048 mpfi_init2(DPI.real , prec);
1049 mpfi_mul(DPI.real , PI.real , two.real);
1050
1051 /* Reads N */
1052 torus = fopen("K0 .100000. txt", "r");
1053 if (!torus) {
1054 puts("File Error");
1055 }
1056
1057 fscanf(torus , "%d", &N);
1058 fclose(torus);
1059
1060 /* Allocates vectors */
1061 allocv(K, N);
1062 allocv(vec , N);
1063 allocv(auxc , N);
1064 allocv(fK, N);
1065 allocv(frotK , N);
1066 allocv(xi, N);
1067 allocv(fFK , N);
1068 allocv_real(aux , N);
1069 allocv_d(Kc , N);
1070 allocm_d(P0 , N);
1071 allocv(FK, N);
1072 allocm(P1, N);
1073 allocm(fP1 , N);
1074 allocm(fP2 , N);
1075 allocm(frotP2 , N);
1076 allocm(frotP1 , N);
1077 allocm(P2, N);
1078 allocm(diff , N);
1079 allocm(fdiff , N);
1080 allocm(frotdiff , N);
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1081 allocm(Lam , N);
1082 allocm(fLam , N);
1083 allocm(fcopy , N);
1084 allocm(Id, N);
1085 allocm(fI, N);
1086
1087 /* Reads grid input and initializes complex intervals */
1088 torus = fopen("K0 .100000. txt", "r");
1089 for(i=0; i<N; i++) {
1090 fscanf(torus , "%*d %*f %lf %lf %lf %lf %lf %lf %lf %lf %*f %*f", &Kc

[0][i], &Kc[1][i], &P0 [0][0][i], &P0 [0][1][i], &P0 [1][0][i], &P0
[1][1][i], &lam0 , &lam1);

1091
1092 K[0][i] = comp_init_c(Kc[0][i]);
1093 K[1][i] = comp_init_c(Kc[1][i]);
1094
1095 P1 [0][0][i] = comp_init_c(P0 [0][0][i]);
1096 P1 [0][1][i] = comp_init_c(P0 [0][1][i]);
1097 P1 [1][0][i] = comp_init_c(P0 [1][0][i]);
1098 P1 [1][1][i] = comp_init_c(P0 [1][1][i]);
1099
1100 Lam [0][0][i] = comp_init_c(lam0);
1101 Lam [1][1][i] = comp_init_c(lam1);
1102 Lam [0][1][i] = comp_init_c (0);
1103 Lam [1][0][i] = comp_init_c (0);
1104
1105 Id [0][0][i] = comp_init_c (1);
1106 Id [1][1][i] = comp_init_c (1);
1107 Id [0][1][i] = comp_init_c (0);
1108 Id [1][0][i] = comp_init_c (0);
1109
1110 }
1111
1112 /* Initialize complex and real intervals */
1113 comp_init_v(FK , N);
1114 comp_init_v(fK , N);
1115 comp_init_v(vec , N);
1116 comp_init_v(auxc , N);
1117 comp_init_v(frotK , N);
1118 comp_init_v(fFK , N);
1119 real_init_v(aux , N);
1120 comp_init_m(fP1 , N);
1121 comp_init_m(P2 , N);
1122 comp_init_m(frotP2 , N);
1123 comp_init_m(frotP1 , N);
1124 comp_init_m(fP2 , N);
1125 comp_init_m(diff , N);
1126 comp_init_m(fdiff , N);
1127 comp_init_m(frotdiff , N);
1128 comp_init_m(fLam , N);
1129 comp_init_m(fcopy , N);
1130 comp_init_m(fI , N);
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1131 comp_init_v(xi , N);
1132 phi = comp_init_c (0);
1133
1134 mpfi_init2(b.real , prec);
1135
1136 mpfi_init2(kappa.real , prec);
1137 mpfi_set_str(kappa.real , "1.3", 10);
1138
1139 mpfi_init2(e.real , prec);
1140 mpfi_set_str(e.real , "0.10", 10);
1141
1142 mpfi_init2(five.real , prec);
1143 mpfi_set_str(five.real , "5", 10);
1144 mpfi_init2(om.real , prec);
1145 om = real_div(real_sub(real_sqrt(five), one), two);
1146
1147 mpfi_init2(rho.real , prec);
1148 mpfi_set_str(rho.real , "1.e-3", 10);
1149
1150 mpfi_init2(rhohat.real , prec);
1151 mpfi_set_str(rhohat.real , "1.e-2", 10);
1152
1153 mpfi_init2(sum [0].real , prec);
1154 mpfi_set_d(sum [0].real , 0);
1155
1156 mpfi_init2(sum [1].real , prec);
1157 mpfi_set_d(sum [1].real , 0);
1158
1159 mpfi_init2(inverr.real , prec);
1160 mpfi_init2(rederr.real , prec);
1161 mpfi_init2(finverr.real , prec);
1162 mpfi_init2(fP1norm.real , prec);
1163 mpfi_init2(fP2norm.real , prec);
1164 mpfi_init2(fdiffnorm.real , prec);
1165 mpfi_init2(tildeeps.real , prec);
1166 mpfi_init2(lams.real , prec);
1167 mpfi_init2(lamu.real , prec);
1168 mpfi_init2(lambdap.real , prec);
1169 mpfi_init2(lamuinv.real , prec);
1170 mpfi_init2(lambda.real , prec);
1171 mpfi_init2(hateps.real , prec);
1172 mpfi_init2(beta.real , prec);
1173 mpfi_init2(h.real , prec);
1174 mpfi_init2(r0.real , prec);
1175 mpfi_init2(r1.real , prec);
1176 mpfi_init2(mu.real , prec);
1177 mpfi_init2(term1.real , prec);
1178 mpfi_init2(term2.real , prec);
1179 mpfi_init2(term3.real , prec);
1180 mpfi_init2(Rinterv.real , prec);
1181 mpfi_set_str(Rinterv.real , "1.e-4", 10);
1182 mpfi_init2(hatlambda.real , prec);
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1183 mpfi_init2(alpha.real , prec);
1184
1185 mpfr_init2(bound1 , prec);
1186 mpfr_init2(bound2 , prec);
1187
1188
1189 /* Invariance Error */
1190
1191 /* The inputs of the algorithm are in Fourier space , but given our input

is in grid space
1192 * we will first transform them into Fourier series */
1193
1194 /* Since the eigenvalues are swapped , we change them back */
1195 for(i=0; i<N; i++) {
1196 fcopy [0][0][i] = Lam [0][0][i];
1197 Lam [0][0][i] = Lam [1][1][i];
1198 Lam [1][1][i] = fcopy [0][0][i];
1199 }
1200
1201 matrixgf(fP1 , P1, N);
1202 matrixgf(fLam , Lam , N);
1203
1204 fft(fK[0], K[0], N);
1205 fft(fK[1], K[1], N);
1206
1207 /* We must set the Nyquist term to 0 */
1208 fP1 [0][0][N/2] = comp_set_c (0);
1209 fP1 [0][1][N/2] = comp_set_c (0);
1210 fP1 [1][0][N/2] = comp_set_c (0);
1211 fP1 [1][1][N/2] = comp_set_c (0);
1212
1213 fLam [0][0][N/2] = comp_set_c (0);
1214 fLam [0][1][N/2] = comp_set_c (0);
1215 fLam [1][0][N/2] = comp_set_c (0);
1216 fLam [1][1][N/2] = comp_set_c (0);
1217
1218 fK[0][N/2] = comp_set_c (0);
1219 fK[1][N/2] = comp_set_c (0);
1220
1221
1222 /* We will take as the first P2 the inverse of P1, for that we will have

to come back
1223 * to grid space and invert , since P2 is the approximate inverse by

hypothesis , we
1224 * won’t mind the inversion error produced by Fourier transforming */
1225 matrixfg(P1 , fP1 , N);
1226 inverse(P2, P1 , N);
1227 matrixgf(fP2 , P2, N);
1228
1229 fP2 [0][0][N/2] = comp_set_c (0);
1230 fP2 [0][1][N/2] = comp_set_c (0);
1231 fP2 [1][0][N/2] = comp_set_c (0);
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1232 fP2 [1][1][N/2] = comp_set_c (0);
1233
1234 /* Rotate K and P2 in Fourier space */
1235 fourierrot(frotK [0], fK[0], om, N);
1236 fourierrot(frotK [1], fK[1], om, N);
1237
1238 fourierrot(frotP2 [0][0] , fP2 [0][0] , om, N);
1239 fourierrot(frotP2 [0][1] , fP2 [0][1] , om, N);
1240 fourierrot(frotP2 [1][0] , fP2 [1][0] , om, N);
1241 fourierrot(frotP2 [1][1] , fP2 [1][1] , om, N);
1242
1243 /* In order to operate on the grid , we must use our Fourier objects and

transform them */
1244 ifft(K[0], fK[0], N);
1245 ifft(K[1], fK[1], N);
1246
1247 F(FK , K, kappa , e, N);
1248
1249 /* Save non -inflated K for next step */
1250 difmatrix(diff , K, kappa , N);
1251
1252 fft(fFK[0], FK[0], N);
1253 fft(fFK[1], FK[1], N);
1254
1255 for(i=0; i<N; i++) {
1256 auxc [0][i] = comp_sub(fFK [0][i], frotK [0][i]);
1257 auxc [1][i] = comp_sub(fFK [1][i], frotK [1][i]);
1258 }
1259
1260 tildeeps = fournorm_v(auxc , rho , N);
1261
1262 fP2norm = fournorm_m(frotP2 , rho , N);
1263
1264 /* Inflate K so we can calculate the norm of FK */
1265 mpfi_interv_d(phi.real , (double) -1/(2*N), (double) 1/(2*N));
1266 mpfi_interv_d(phi.imag , -hatrhod , hatrhod);
1267
1268 fourierrot_c_v(frotK , fK, phi , N);
1269
1270 ifft(auxc[0], frotK[0], N);
1271 ifft(auxc[1], frotK[1], N);
1272
1273 /* Calculate the image through the standard map using complex boxes */
1274 Fbox(FK, auxc , kappa , e, N);
1275
1276 term1 = supnorm_v(FK , N);
1277
1278 inverr = real_add(real_mul(CN(rho , rhohat , N), term1), tildeeps);
1279
1280 inverr = real_mul(fP2norm , inverr);
1281
1282 printf("CN(rho , rhohat): ");
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1283 real_print(CN(rho , rhohat , N));
1284
1285 printf("Invariance error: ");
1286 real_print(inverr);
1287
1288 /* Pick lambda so the norm of the stable block of Lamda and the norm of

the inverse of the unstable
1289 * block are bounded by such lambda */
1290 for(i=0; i<N; i++) {
1291 fcopy [0][0][i] = fLam [0][0][i];
1292 fcopy [0][1][i] = fLam [0][1][i];
1293 fcopy [1][0][i] = fLam [1][0][i];
1294 fcopy [1][1][i] = fLam [1][1][i];
1295 }
1296
1297 lams = fournorm(fLam [0][0] , rho , N);
1298 lamu = fournorm(fLam [1][1] , rhohat , N);
1299 matrixfg(Lam , fLam , N);
1300 inverse(fcopy , Lam , N);
1301 matrixgf(fcopy , fcopy , N);
1302 lamuinv = fournorm(fcopy [1][1] , rhohat , N);
1303 lambda = lams;
1304
1305 lambdap = real_add(real_div(real_mul(CN(rho , rhohat , N), real_mul(lamu ,

real_mul(lamuinv , lamuinv))), real_sub(one , real_mul(CN(rho , rhohat ,
N), real_mul(lamu , lamuinv)))),lamuinv);

1306
1307 mpfi_get_right(bound1 , lambdap.real);
1308 mpfi_get_right(bound2 , lambda.real);
1309 n = mpfr_cmp(bound1 , bound2);
1310 if(n > 0) {
1311 lambda = lambdap;
1312 }
1313
1314 printf("Lambda: ");
1315 real_print(lambda);
1316
1317 /* Reducibility error */
1318 for(i=0; i<N; i++) {
1319 fcopy [0][0][i] = Lam [0][0][i];
1320 Lam [0][0][i] = Lam [1][1][i];
1321 Lam [1][1][i] = fcopy [0][0][i];
1322 }
1323
1324 /* Move to grid space to multiply the differential and P1 and come back

to Fourier space */
1325 matrixgf(fLam , Lam , N);
1326 matrixfg(P2 , frotP2 , N);
1327 matrixmult(fcopy , diff , P1 , N);
1328 matrixmult(fcopy , P2, fcopy , N);
1329 matrixgf(fcopy , fcopy , N);
1330
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1331 for(i=0; i<N; i++) {
1332 fcopy [0][0][i] = comp_sub(fcopy [0][0][i], fLam [0][0][i]);
1333 fcopy [0][1][i] = comp_sub(fcopy [0][1][i], fLam [0][1][i]);
1334 fcopy [1][0][i] = comp_sub(fcopy [1][0][i], fLam [1][0][i]);
1335 fcopy [1][1][i] = comp_sub(fcopy [1][1][i], fLam [1][1][i]);
1336 }
1337
1338 term1 = fournorm_m(fcopy , rho , N);
1339
1340 /* Calculate differential with inflated torus with hatrho */
1341 difmatrix(diff , auxc , kappa , N);
1342
1343 fP2norm = fournorm_m(frotP2 , rhohat , N);
1344 fP1norm = fournorm_m(fP1 , rhohat , N);
1345 fdiffnorm = supnorm_m(diff , N);
1346
1347 term2 = real_mul(CN(rho , rhohat , N), real_mul(fP2norm , real_mul(fdiffnorm

, fP1norm)));
1348
1349 rederr = real_add(term1 , term2);
1350
1351 printf("Reducibility Error: ");
1352 real_print(rederr);
1353
1354 /* Inversion Error */
1355 inverse(P2, P1 , N);
1356 matrixmult(fcopy , P2, P1 , N);
1357 matrixgf(fcopy , fcopy , N);
1358 matrixgf(fI , Id, N);
1359
1360 for(i=0; i<N; i++) {
1361 fcopy [0][0][i] = comp_sub(fcopy [0][0][i], fI [0][0][i]);
1362 fcopy [1][1][i] = comp_sub(fcopy [1][1][i], fI [1][1][i]);
1363 }
1364
1365 term1 = real_mul(CN(rho , rhohat , N), real_mul(fournorm_m(fP2 , rhohat , N),

fournorm_m(fP1 , rhohat , N)));
1366
1367 term2 = fournorm_m(fcopy , rho , N);
1368
1369 finverr = real_add(term1 , term2);
1370
1371 printf("Inversion Error: ");
1372 real_print(finverr);
1373
1374 /* Norm of B */
1375 for(i=0; i<N; i++) {
1376 mpfi_interv_d(xi[0][i].real , -R, R);
1377 mpfi_interv_d(xi[0][i].imag , -R, R);
1378 mpfi_interv_d(xi[1][i].real , -R, R);
1379 mpfi_interv_d(xi[1][i].imag , -R, R);
1380 }
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1381
1382 /* Extend each theta by 1/2N the real part , and rho the imaginary part */
1383 mpfi_interv_d(phi.real , (double) -1/(2*N), (double) 1/(2*N));
1384 mpfi_interv_d(phi.imag , -rhod , rhod);
1385
1386 fourierrot_c_v(frotK , fK, phi , N);
1387
1388 fourierrot_c_m(frotP1 , fP1 , phi , N);
1389
1390 /* Calculate z */
1391 matrixfg(fcopy , frotP1 , N);
1392 matrixvecmul(vec , fcopy , xi, N);
1393 comp_add_v(auxc[0], vec[0], auxc[0], N);
1394 comp_add_v(auxc[1], vec[1], auxc[1], N);
1395
1396 /* Calculate the norm of the second differential */
1397 term2 = diff2norm(auxc , kappa , N);
1398
1399 matrixgf(fP2 , P2, N);
1400 fourierrot(frotP2 [0][0] , fP2 [0][0] , om, N);
1401 fourierrot(frotP2 [0][1] , fP2 [0][1] , om, N);
1402 fourierrot(frotP2 [1][0] , fP2 [1][0] , om, N);
1403 fourierrot(frotP2 [1][1] , fP2 [1][1] , om, N);
1404 fP2norm = fournorm_m(frotP2 , rho , N);
1405
1406 matrixgf(fP1 , P1, N);
1407 fP1norm = fournorm_m(fP1 , rho , N);
1408
1409 b = real_mul(fP2norm , real_mul(term2 , real_mul(fP1norm , fP1norm)));
1410 printf("b: ");
1411 real_print(b);
1412
1413 /* Calculation of constants */
1414 term1 = real_add(lambda , real_add(rederr , finverr));
1415 mpfi_get_right(bound1 , term1.real);
1416 mpfi_get_left(bound2 , one.real);
1417 n = mpfr_cmp(bound1 , bound2);
1418 if(n < 0) {
1419 printf("lambda + sigma + tau < 1\n\n");
1420 vall = 1;
1421 } else {
1422 printf("lambda + sigma + tau >= 1, condition not satisfied\n\n");
1423 }
1424
1425 hateps = real_div(inverr , real_sub(one , real_add(lambda , real_add(rederr ,

finverr))));
1426
1427 beta = real_div(b, real_sub(one , real_add(lambda , real_add(rederr ,

finverr))));
1428
1429 h = real_mul(hateps , beta);
1430



92 Annex

1431 printf("h: ");
1432 real_print(h);
1433
1434 mpfi_get_right(bound1 , h.real);
1435 term1 = real_div(one , two);
1436 mpfi_get_left(bound2 , term1.real);
1437 n = mpfr_cmp(bound1 , bound2);
1438 if(n < 0) {
1439 printf("h < 1/2\n\n");
1440 valh = 1;
1441 } else {
1442 printf("h >= 1/2, condition not satisfied\n\n");
1443 }
1444
1445 r0 = real_mul(real_div(real_sub(one , real_sqrt(real_sub(one , real_mul(two

, h)))), h), hateps);
1446
1447 printf("r0: ");
1448 real_print(r0);
1449 mpfi_get_right(bound1 , r0.real);
1450 mpfi_get_left(bound2 , term1.real);
1451 n = mpfr_cmp(bound1 , bound2);
1452 if(n < 0) {
1453 printf("r0 < R\n\n");
1454 valr0 = 1;
1455 } else {
1456 printf("r0 >= R, condition not satisfied\n\n");
1457 }
1458
1459 hatlambda = supnorm_m(Lam , N);
1460 mu = real_mul(real_div(lambda , real_sub(one , real_mul(lambda , lambda))),

real_mul(real_div(one , real_sub(one , finverr)), real_add(real_mul(b,
r0), real_add(rederr , real_mul(hatlambda , finverr)))));

1461 printf("mu: ");
1462 real_print(mu);
1463
1464 mpfi_get_right(bound1 , mu.real);
1465 term1 = real_div(one , real_add(one , real_sqrt(two)));
1466 mpfi_get_left(bound2 , term1.real);
1467 n = mpfr_cmp(bound1 , bound2);
1468 if(n < 0) {
1469 printf("mu < 1/(1+ sqrt (2))\n\n");
1470 valmu = 1;
1471 } else {
1472 printf("mu >= 1/(1+ sqrt (2)), condition not satisfied\n\n");
1473 }
1474
1475 if((vall == 1) && (valh ==1) && (valr0 == 1) && (valmu == 1)) {
1476 printf("\nCongratulations , there exists a hyperbolic invariant torus

with invariant subbundles. \nMoreover , it is unique within a radius
");
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1477 r1 = real_mul(real_div(real_add(one , real_sqrt(real_sub(one , real_mul(
two , h)))), h), hateps);

1478 mpfi_get_left(bound1 , r1.real);
1479 mpfi_get_left(bound2 , Rinterv.real);
1480 n = mpfr_cmp(bound1 , bound2);
1481 if(n < 0) {
1482 mpfr_out_str(stdout , 10, 0, bound1 , MPFR_RNDD);
1483 } else {
1484 mpfr_out_str(stdout , 10, 0, bound2 , MPFR_RNDD);
1485 }
1486 printf("\n and it is contained within a radius ");
1487 mpfi_get_right(bound1 , r0.real);
1488 mpfr_out_str(stdout , 10, 0, bound1 , MPFR_RNDD);
1489 printf(".\n What’s more , the distance between approximately invariant

bundles \nand the invariant bundles is smaller than ");
1490
1491 term1 = real_sub(one , real_mul(two , mu));
1492
1493 term2 = real_sqrt(real_sub(real_sub(one , real_mul(real_mul(two , two),

mu)), real_mul(real_mul(two , two), real_mul(mu, mu))));
1494
1495 term3 = real_mul(two , mu);
1496
1497 alpha = real_div(term3 , real_add(term1 , term2));
1498
1499 mpfi_get_right(bound1 , alpha.real);
1500
1501 mpfr_out_str(stdout , 10, 0, bound1 , MPFR_RNDD);
1502
1503 printf("\n");
1504 } else {
1505 printf("The initial torus does not meet the requirements \nto ensure

the existence of an invariant torus\n");
1506 }
1507
1508 freev(K);
1509 freev(vec);
1510 freev(auxc);
1511 freev(fK);
1512 freev(frotK);
1513 freev(xi);
1514 freev(fFK);
1515 freev(FK);
1516 freem(P1);
1517 freem(fP1);
1518 freem(fP2);
1519 freem(frotP2);
1520 freem(frotP1);
1521 freem(P2);
1522 freem(diff);
1523 freem(fdiff);
1524 freem(frotdiff);
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1525 freem(Lam);
1526 freem(fLam);
1527 freem(fcopy);
1528 freem(Id);
1529 freem(fI);
1530
1531 return 0;
1532 }
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