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ABSTRACT 

We probe the dielectric response of the supercooled liquid phase of Morniflumate, an active 

principle with anti-inflammatory and antipyretic properties, studying in particular the pressure and 

temperature dependence of the relaxation dynamics, glass transition temperature Tg, and 

recrystallization kinetics. Tg increases by roughly 20 K every 100 MPa at low applied pressure, 

where the ratio Tg/Tm has a constant value of ∼ 0.8 (Tm = melting point). Liquid Morniflumate 

displays two dielectric relaxations: the structural α relaxation associated with the collective 

reorientational motions which become arrested at Tg, and a secondary relaxation likely 

corresponding to an intramolecular dynamics. The relaxation times of both processes scale 

approximately with the inverse reduced temperature Tg/T. Near room temperature and under an 

applied pressure of 50 MPa, supercooled Morniflumate recrystallizes in a characteristic time of 

few hours, with an Avrami exponent of 1.15. Under these conditions, the recrystallization rate is a 

nonmonotonic function of temperature, displaying a maximum around 298 K, which can be taken 

to be the optimum crystal growth temperature Tnose. The β relaxation becomes kinetically frozen 

at ambient temperature under an applied hydrostatic pressure higher than 320 MPa, suggesting that 

the Morniflumate glass should be kinetically stable under these conditions. 

 

KEYWORDS: glassy drug stability, dielectric spectroscopy, secondary relaxation, 

recrystallization kinetics, optimum crystal growth temperature. 
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1. Introduction 

In recent years many active pharmaceutical ingredients (APIs) with poor aqueous solubility have 

reached the drug development stage by means of formulation in the amorphous solid or 

supercooled liquid state.1-4 Below the melting temperature, the amorphous form of an API (both 

supercooled liquid and glass) has lower density and higher free energy than the crystalline phase. 

This entails on one hand that the amorphous API has a better dissolution profile in the biological 

medium and thus a higher bioavailability,5 but on the other hand, that such phase is 

thermodynamically unstable against recrystallization into the poorly soluble crystal phase.6 In this 

context, it is of interest to study the amorphous form of APIs and the recrystallization kinetics, and 

to determine the metastability conditions of this non-equilibrium form and whether strategies can 

be devised to maintain it for longer storage times.7 

It has been suggested by several authors that the recrystallization rate and onset times, and 

therefore indirectly the kinetic stability of the amorphous phase, are directly correlated with the 

characteristic times of molecular relaxation processes in the amorphous phase, both above the glass 

transition temperature,8,9 where the dynamics is dominated by the cooperative structural (α) 

relaxation which vitrifies at Tg, and below such temperature, where only secondary relaxations 

take place.10,11 These secondary relaxations can correspond to local, intramolecular motions 

involving the rotation of a polar subpart of a molecule, or else be so called Johari-Goldstein (JG) 

relaxations. The JG relaxation is a molecular dynamics process of glass forming materials that 

involves the motion of the constituent molecules as a whole, but that contrary to the α relaxation 

is active also in the glass state below Tg.12,13 It is found in many instances that, as a rule of thumb, 

the amorphous state of an API can be maintained for a commercially significant time if it is stored 

well below the glass transition, following the so-called “Tg − 50 K” rule.14-16 The relatively high 
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kinetic stability of the amorphous phase under these conditions is related to a slow nucleation and 

growth kinetics of the crystal phase; nucleation is generally avoided deep in the glass state, unless 

other external stimuli are applied, inducing phenomena such as strain-induced fracture17 or 

electric-field dependent polymorphism.18 Recent studies indicate that the “Tg − 50 K” rule should 

be reformulated in terms of the freeze temperature of secondary relaxations, that is, long-term 

kinetic stability of the glass state against recrystallization can be obtained at a storage temperature 

below the temperature at which the secondary relaxations freeze out.11,19 

It has been suggested that obtaining the amorphous phase under high pressure conditions may 

improve its kinetic stability, based on the fact that Tg increases with increasing pressure. However, 

this conjecture has not been tested in detail; the effect of applying a pressure on a supercooled 

liquid is in some cases opposite, with an increased tendency towards nucleation of the crystalline 

phase, possibly due to pressure-induced shock accelerating nucleation.20,21 The effect of the 

increased density on the crystallization kinetics is instead different for different compounds.22 In 

general, the relaxation dynamics and recrystallization kinetics are much less studied under an 

applied hydrostatic pressure than at atmospheric pressure. 

The application of pressure allows studying for example the possible existence, for the relaxation 

times of the studied dynamic processes, of scaling relations such as the so-called density-

dependent “thermodynamic scaling”,23-27 whose range of applicability is debated,28,29 or the 

master-curve scaling as a function of the inverse reduced temperature Tg/T. A common scaling of 

the secondary relaxation time and of the structural relaxation time is considered to be a distinctive 

feature of the JG relaxation,30 which is generally not shared by local relaxations corresponding to 

the reorientational motions of polar subgroups of a molecule.31  
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In this contribution, we employ broadband dielectric spectroscopy to study the dependence on 

pressure and temperature of the relaxation dynamics of a glass-forming anti-inflammatory drug, 

Morniflumate, as well as its recrystallization kinetics at high pressure. The glass transition 

temperature displays a very large increase by almost 90 K when the pressure is increased from 

ambient conditions to 520 MPa. The dielectric loss spectra are characterized by the presence of a 

structured, multicomponent main loss feature. By application of pressure, we are able to 

distinguish two separate spectral contributions, and to assign them respectively to the structural 

relaxation (α) associated with the collective diffusional motions which become frozen at the glass 

transition, and to a secondary (β) relaxation likely of intramolecular nature. While the β relaxation 

has approximately constant activation energy and volume, the α relaxation time displays sub-

Arrhenius temperature dependence and an effective activation volume that increases with 

increasing pressure. Despite the fact that both α and β relaxation times follow a common scaling 

as function of the inverse reduced temperature Tg/T, the secondary relaxation lacks other 

characteristic traits of JG relaxations.  

By monitoring the recrystallization kinetics at a pressure of 50 MPa near ambient temperature, 

we find that crystallization of supercooled Morniflumate follows the Avrami law with exponent n 

= 1.15 which suggests a strongly anisotropic, one-dimensional growth of the crystallites with 

sporadic nucleation of new domains. Optical microscopy investigation of samples recrystallized 

under these conditions indeed shows a dendritic-like growth. The recrystallization time is found 

to be a nonmonotonic function of temperature, with an optimum crystallization temperature  near 

room temperature (298 K) at 50 MPa. In particular, the recrystallization time has the opposite 

temperature dependence than the primary and secondary relaxation times above 300 K, 

invalidating the idea that the mutual correlation between these quantities reported in several recent 
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studies8,9,32-34 can be a general feature of amorphous APIs. At the same time, we provide a 

rationalization for the previous observations of such mutual correlation by means of ambient 

pressure dielectric spectroscopy.  

Finally, assuming that well below Tg the correlation between secondary relaxation time and 

recrystallization time is recovered and that the relation recently proposed by Kissi et al.11 is valid, 

we estimate that the recrystallization of amorphous Morniflumate should be effectively quenched, 

at ambient temperature, by the application of a hydrostatic pressure of 320 MPa. 

2. Experimental Methods 

High-Pressure Differential Thermal Analysis (HP-DTA) 

A home-made high-pressure differential thermal analyzer (HP-DTA), similar to the apparatus 

reported in Ref. 35 and working in the pressure range 0.1-300 MPa, was used to determine the 

glass transition temperatures and melting points of unweighed Morniflumate specimens in 

cylindrical tin pans, sealed so as to avoid the presence of air bubbles. The set-up was in thermal 

contact with a bath containing the cryogenic liquid Kryo 51 by Lauda, which allowed varying the 

sample temperature between 223 and 393 K. HP-DTA scans were acquired upon heating at a rate 

of 2 K min–1. 

Ambient-Pressure and High-Pressure Dielectric Spectroscopy 

For dielectric measurements, Morniflumate was placed inside home-made stainless steel 

parallel-plate capacitors designed for measuring liquid samples in the radiofrequency range, with 

the plates kept separated by needle-like cylindrical silica spacers of 50 μm diameter. For 

temperature control, the capacitor was loaded in either a nitrogen-gas cryostat operating between 

120 and 500 K at ambient pressure, or a pressure set-up in thermal contact with a bath of the Kryo 
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51 liquid, which allowed sample temperature control between 223 and 393 K. In the pressure set-

up, the maximum pressure available was 520 MPa. 

The sample was initially melted to reach the supercooled liquid state, and dielectric spectra were 

then acquired between 10–1 and 5∙106 Hz at fixed values of pressure and temperature, with a typical 

temperature stability of ±0.3 K and a pressure stability better than 0.5 MPa, respectively. Four 

series of spectra were acquired while keeping the temperature constant and varying the pressure 

(isothermal series), and three more series while keeping a fixed pressure and varying the 

temperature (isobaric series). 

A Novocontrol Alpha analyzer was employed for dielectric characterization, connected to the 

capacitor plates via electrical contacts, and dielectric data were analyzed with the dedicated WinFit 

software by the same producer. The isothermal dielectric spectra are complex functions of 

frequency, which can be displayed as real permittivity spectra (the dielectric function, ε’(f)) and 

imaginary permittivity spectra (the loss spectrum, ε”(f)). The ε”(f) spectra were fitted as the sum 

of two relaxation processes α and β, each modeled as the imaginary part of the phenomenological 

Cole-Cole function (εCC), and a background representing the dc conductivity contribution: 

(1) ε��� = −� � 	

�
��
�� + ε��,���� + ε��,���� 

The analytical expression of εCC is:36,37 

(2) ������ = �� + ��
������
��� 

Here, ∆ε = εs – ε∞ is the dielectric strength (equal to the step variation of the real part of the 

permittivity ε’), and ε∞ and εs are the high-frequency and low-frequency (static) limits of ε’(f), 

respectively. τ is the characteristic time of each relaxation process, corresponding to the maximum 

dielectric loss, and the Cole-Cole exponent c, which lies in the range from 0 to 1, is related to the 

width of each relaxation feature in the loss spectrum. The fit functions used to model the relaxation 
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processes were of the more general Havriliak-Nagami type, whose spectral line shape is 

asymmetric and depends on a second exponent, but the free fits gave a better agreement with the 

experimental data when such exponent was equal to one, corresponding to the Cole-Cole case.  

The origin of the two relaxation processes will be discussed in Section 3. 

Optical microscopy 

Micrographs of the Morniflumate samples after recrystallization were acquired with an Olympus 

BX51optical microscope with an objective with 20× magnification.  

3. Results and Discussion 

 

Figure 1. Filled markers: Tm and Tg of Morniflumate obtained by HP-DTA, as a function of the 

applied hydrostatic pressure. Continuous lines are linear fits of equations Tm [K] = 0.30 P [MPa] 

+ 345.4 and Tg [K] = 0.23 P[Mpa] + 249.0, respectively. Tm data are taken from Ref. 38. Open 

markers: (Tg,Pg) pairs for Morniflumate as extracted from both isothermal (red circles) and isobaric 

(blue triangles) BDS measurements. Dashed line: fit with Eq. (5). 
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Figure 1 shows the values of the melting point (Tm) and glass transition temperature (Tg) 

determined in isobaric HP-DTA scans on the polycrystalline Morniflumate powder and 

supercooled Morniflumate, respectively. The Tm values were taken from a previous work by some 

of us.38 The experimental critical temperatures for the glass-supercooled liquid transition and for 

the melting of the crystal phase are observed to vary roughly linearly with applied pressure. Linear 

fits are obtained with slopes (dT/dP)g = 0.235 K/MPa and (dT/dP)m = 0.291 K/MPa, respectively. 

The ratio of the linear coefficients is 0.235/0.291 ≈ 0.808, so that, at least for low applied pressures, 

the relation Tg/Tm ∼ 0.8 holds (for many glass formers this ratio is approximately close to 2/3). It 

should be noted that both critical temperatures vary significantly with the applied pressure; in 

particular, at low applied pressure Tg increases by roughly 20 K every 100 MPa. Open markers 

represent (Tg,Pg) pairs obtained by dielectric spectroscopy, to be discussed later on. 

Dielectric spectroscopy experiments were carried out on supercooled liquid Morniflumate in 

order to observe directly the effect of an applied pressure on the molecular relaxation dynamics. 

Figure 2 displays typical dielectric loss spectra as a function of frequency, acquired either during 

an isobaric experiment at 100 MPa while changing the temperature in steps of 2 K (a), or during 

an isothermal series at 313 K while increasing the pressure in a stepwise fashion (b). Each spectrum 

is characterized by a low-frequency background increasing toward lower frequencies, which 

corresponds to the dc conductivity contribution to the dielectric loss, and a prominent loss feature 

with asymmetric shape. Close-up investigation of the loss feature shows that it actually consists of 

two symmetric components, one responsible for the local ε” maximum, and the other visible as a 

shoulder on the high-frequency flank of the latter. Indeed, a fit of all spectra with Eq. (1) shows 

that a single Cole-Cole (or even Havriliak-Negami) function is not enough to account for the 

observed spectra, and that instead two (Cole-Cole) components are necessary, which we label as 
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α and β, respectively. The two relaxation components, the conductivity background, and the 

overall fit are shown in Figure 2 for selected spectra. The rest of the spectra acquired in our study 

(not shown) similarly displayed two relaxation components. 

 

Figure 2. Selected dielectric loss spectra of Morniflumate at different (P,T) conditions (markers), 

and their fits with the imaginary part of Eq. (1) (continuous lines). All spectra were fitted with two 

spectral components. (a) Series of isobaric spectra at different temperatures as indicated, at the 

fixed pressure of 100 MPa. Dashed lines are fit components of the spectrum at 281.2 K. (b) Series 
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of isothermal spectra at different pressures as indicated, at 313.2 K. Dashed lines are fit 

components of the spectrum at 110.5 MPa. 

The fit of the loss spectra with Eq. (1) yields the relaxation times of both relaxation processes. 

The resulting relaxation maps are shown in Figure 3 in two separate panels, namely as a function 

of the inverse temperature in the isothermal series (the so-called Arrhenius plot, panel (a)), and as 

a function of pressure for the isothermal series (b). Of the two processes, the faster and less intense 

β relaxation, appearing as a high-frequency shoulder in the loss spectrum, has a characteristic 

logarithmic relaxation time that varies almost linearly with 1/T and P, respectively. Instead, the 

logarithm of the relaxation time of the slower and more intense process (labeled as α and 

responsible for the local maximum of ε”) displays a nonlinear dependence on these variables. As 

shown below, the α relaxation feature is the structural relaxation of supercooled liquid 

Morniflumate, which justifies the label. In the Arrhenius plot (Figure 3(a)), it is also seen that the 

relaxation times of the α and β processes tend have a similar dependence on temperature at 

sufficiently high T. 

The temperature dependence of the relaxation time of the α process was modelled with the 

Vogel-Fulcher-Tammann equation, which is typical of cooperative structural processes in glass-

forming liquids and whose analytical expression is:39 

(3) � �!� =  ��#$% �& '()
'*'()

�. 

Here the prefactor τ∞ represents the high-temperature limit value of the relaxation time, and the 

so-called “strength parameter” D and the Vogel-Fulcher temperature TVF are phenomenological 

constants that describe the deviation of the temperature dependence of the relaxation time from a 

simply activated behaviour. The pressure dependence of the same relaxation time was modeled 

with an analogous function of P, namely:40 
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(4) � �+� =  �,#$% �&-
-

-()*-�, 

where τ0 is the value of the relaxation time at the same temperature at atmospheric pressure (0.1 

MPa), PVF is a “Vogel-Fulcher pressure”, and DP is the equivalent strength parameter. 

On the other hand, the faster (β) relaxation time had as mentioned a simply-activated Arrhenius 

temperature dependence ���!� =  ��#$% �./
0'�, where is R the gas constant and Ea is the molar 

activation energy, and a linear pressure dependence  ���+� =  �,#$% �-1/
0' �, being Va the molar 

activation volume. The fit parameters for both α and β relaxations are reported in Table 1. 

Isobars 0.1 MPa 100 MPa 200 MPa 300 MPa 

Log(τ∞/[s] ) –12.6 –9.9 –10.6 –12.6 

TVF (K) 207 236 250 249 

D 6.4 3.4 4.4 7.4 

Tg (K) 246.1±0.8 265.4±1.9 288±2 302.9±2.2 

fragility (m) 91±1 108±6 96±4 81±3 

Ea (β-relax) 

(kJ/mol) 
140.5±0.4 150±2 152±3 197±2 

 

Isotherms 292.2 K 313.2 K 333.2 K 

Log(τ0/[s]) –6.0 –7.1 –8.0 

PVF (MPa) 978 1002 992 

DP 52 38 22 

Pg (MPa) 256±33 357±31 513±12 

fragility (m) 78±21 77±18 98±16 

104·Va (β-relax) 

(m3/mol) 
2.3±0.1 1.53±0.03 1.21±0.02 

 

Table 1. Fit Parameters and Fragility Index of the α Relaxation and Activation Energy or Volume 

of the β Relaxation, for Isobaric (Top Rows) and Isothermal (Bottom Rows) Series. 
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Figure 3. Relaxation maps of the structural (α, filled markers) and secondary (β, open markers) 

dynamic processes observed in Morniflumate in the isothermal and isobaric series. (a) Relaxation 

times as a function of inverse absolute temperature (Arrhenius plot), for four different isobaric 

series. Continuous lines are fits with Eq. (3), and the glass transition temperatures are indicated. 

(b) Relaxation times as a function of pressure, for three different isothermal series as indicated. 

Continuous lines are fits with Eq. (4), and the glass transition pressures are indicated.  
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Extrapolation of the exponential fit functions Eq.s (3) and (4) to the value τα = 100 s (that is, 

Log(τα) = 2) yields the values of the thermodynamic variables at the vitrification (freeze) 

temperature of the α relaxation process. These can be compared with (Tg,Pg) pairs for the glass 

transition obtained in HP-DTA measurements, as shown in Figure 1. The agreement between the 

Tg values obtained by both techniques (Figure 1) shows that the relaxation process labelled as α is 

indeed the cooperative structural relaxation of the Morniflumate glass former. It should be noted 

that, while HP-DTA measurements are conducted in a smaller pressure interval, in which the 

dependence of Tg on pressure appears to be linear, in a larger pressure range the same dependence 

is found to be sublinear. In particular, the relation between Tg and Pg is found to be well described 

by the empirical Andersson and Andersson equation, given by:41 

(5) !2 = 3� �1 + 56
57

· +2�
9

:6 , 

Where k1, k2 and k3 are material constants. The fit is displayed with a dashed line in Figure 1. 

The best-fit values of the parameters were k1 = 245.3±1.5 K, k2 = 2.9±0.5, and k3 = 1020±90 MPa, 

respectively. 

The relaxation times of the β relaxation can similarly be extrapolated to a value of 100 s, 

assuming a constant linear dependence on P and 1/T; the corresponding (T,P) values represent the 

thermodynamic conditions at which the secondary relaxation is effectively “frozen”, and the glass 

state of Morniflumate should, according to a recent study, acquire sufficient kinetic stability to 

prevent transformation of the API into the thermodynamically stable crystal phase.11 In particular, 

at ambient temperature the extrapolated “freeze pressure” of the secondary relaxation of 

Morniflumate is approximately 320 MPa. 

It is interesting to plot all obtained relaxation times in a single plot as a function of the inverse 

reduced temperature Tg/T (the so-called Angell plot). This is displayed in Figure 4(a). It may be 
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observed that both the structural (α) and secondary (β) relaxation times of different measurements 

are very roughly superposed in the graph, and that the slope of the β relaxation in the Angell plot 

has similar values for all isobaric and isothermal series. The scaling of both α and β relaxation 

times with the reduced temperature is nontrivial (for example, no such scaling is observed when 

using the reduced pressure P/Pg). On the other hand, however, the τα and τβ relaxation times do 

not tend to converge at the same value at high temperatures; it seems instead that the two dynamics 

remain separated by one decade in time in the high-T region of the plot. This is in contrast with 

the expectations for a Johari-Goldstein (JG) relaxation.13,30 Another characteristic feature of JG 

relaxations is that, since the spectral line shape of the α relaxation is almost independent on 

thermodynamic variables, the value of τβ should have virtually the same value for all (P,T) pairs 

with the same τα value; in other words, the line shape of isochronal spectra with the same structural 

relaxation time should be independent on T and P.30 Figure 4(b) shows several isochronal spectra 

corresponding to approximately τα = 5.8 · 10–5 s, and it is seen that they do not all obey this 

invariance. We therefore conclude that the secondary β relaxation is likely a local relaxation 

involving the relative motions of subparts or side groups of the Morniflumate molecule. 

From the curvature of the Arrhenius (Figure 3(a)) or Angell (Figure 4(a)) plots, the so-called 

isobaric kinetic fragility index m can be extracted, which is a measure of the degree of deviation 

from the simply-activated Arrhenius behaviour. The kinetic fragility is defined42,43 as the slope to 

the Angell plot at Tg/T = 1, namely ; = <�=>?@A�
<B'C '⁄ E F

'G'C
. Using the chain rule of derivation, this 

steepness index can be generalized44 to describe isothermal measurements as ; = 1HB-CE
0IJ��,� �<'C

<- �*�
, 

where Va(Pg) is the extrapolated apparent activation volume of an isotherm at Pg (obtained from 

Eq. (4) with the corresponding fitting parameters), and dTg/dP is the slope of the (Tg,Pg) curve 
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(Anderson-Anderson plot, Figure 1) at the temperature of the isotherm. The so-obtained fragility 

values are listed in Table 1. It is seen that Morniflumate is a relatively fragile glass former, with 

fragility index varying roughly between 80 and 100 depending on the applied pressure. 

 

 

Figure 4. (a) Angell plot of the structural and secondary relaxation times of Morniflumate. Filled 

and open markers are data obtained from isobaric and isothermal series, respectively. (b) 
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Isochronal master plot of three spectra displaying approximately the same structural relaxation 

time (τα = 5.8 · 10–5 s), acquired at the indicated (T,P) conditions. 

In order to determine the impact of pressure on the kinetics of recrystallization, we employed 

our dielectric spectroscopy setup to monitor isothermal crystallization of supercooled liquid 

Morniflumate near room temperature under an applied pressure of P = 50 MPa, at five different 

temperatures. To reach the desired state, we first melted the sample and then cooled it down to the 

desired temperature, and then increased the pressure from ambient pressure to 50 MPa while 

keeping the temperature constant (in other words, we moved towards Pg at ambient temperature 

with the sample in the supercooled liquid state in thermal contact with the bath at fixed 

temperature). The onset time of recrystallization of Morniflumate under these conditions was 

unpredictable: in several occasions, the sample did not show any sign of recrystallization over a 

period of more than one day, in another, the recrystallization started a few minutes after reaching 

the final desired conditions; in some cases, we induced crystallization by suddenly reducing the 

applied hydrostatic pressure. Visual inspection of the samples after recrystallization (see also 

below) showed that the nucleation was likely to occur at the interface between the sample and the 

electrode; in other words, nucleation was heterogeneous rather than homogeneous. As a 

consequence, the so-called induction time (also termed nucleation time) could not be 

unambiguously determined. It would appear that the “intrinsic” induction time at fixed (T,P) 

conditions is relatively long (more than one day), but that mechanical vibrations and especially 

density fluctuations induced by minimal pressure variations are sufficient to trigger nucleation of 

the crystal phase, as reported in other systems.21 

We carried out a study of the crystallization kinetics by acquiring dielectric spectra at fixed (T,P) 

conditions and monitoring the dielectric strength of the structural relaxation process. The latter is 
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equal to the step-like decrease in the real permittivity visible at the characteristic frequency of the 

α relaxation. The series of real and imaginary permittivity spectra acquired at different times 

during recrystallization of Morniflumate at T = 293 K and P = 50 MPa are shown in Figure 5(a,b). 

The effect of recrystallization was visible as a decrease over time of the intensity of the loss feature 

or equivalently of the static permittivity value εs, the latter taken to be equal to the value of ε’(f) at 

a frequency slightly lower than that of the α peak, at which the low-frequency plateau value of ε’ 

is attained (at lower frequency, ε’(f) increased due to polarization effects associated with mobile 

charge carriers). It can be observed that the relaxation frequency increases slightly during 

recrystallization. Such a shift was observed in most measurements, and is possibly due to the 

reduction in the effective internal pressure of the cell as Morniflumate crystallizes into the higher-

density crystal phase or to a confinement effect on the amorphous regions. 

The evolution of εs with the time elapsed from the start of the measurements is displayed in panel 

(c) of Figure 5. The onset time to of the recrystallization process was determined as the intersection 

of the horizontal line representing the constant value of εs in supercooled liquid Morniflumate, and 

the slope of the tangent to the data during recrystallization (see inset to Figure 5(c)).  
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Figure 5. (a,b) Real and imaginary permittivity spectra of a supercooled Morniflumate sample 

during recrystallization at P = 50 MPa and T = 293 K, as a function of time elapsed since the start 

of the measurement. (c) Static permittivity εs (taken as the value of ε’(f) at the frequency of 206 

Hz). The determinations of the 20% recrystallization time tr and of the onset time to are displayed 

in the main panel and in the inset, respectively (see the text for details). (d) Optical micrograph of 

the sample taken after full recrystallization.  
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In order to analyze the crystallization kinetics, we define as customary45 a renormalized static 

permittivity as: 

(6) ���K� = �L�M�*�L�N=�
�L���*�L�N=� 

Here εs(SL) and εs(C) are the static permittivity of the supercooled liquid and the crystal phase, 

as measured before the onset of nucleation of the crystal phase and at the end of the crystal growth, 

respectively, while εs(t) is the static permittivity of the partially crystallized, mixed-phase sample 

as a function of the time elapsed from the start of the measurements. The overall global kinetics of 

crystallization is often described with the help of the Avrami law46,47 which combines together the 

effects of both nucleation of the crystal phase and the subsequent growth of the crystalline nuclei. 

When the recrystallization process follows the Avrami law, the renormalized static permittivity 

varies in time as:48 

(7) ���K� = 1 − exp�−R�K − K>���, 

where n is the Avrami exponent and Z is a constant, from which a crystallization rate with units of 

s–1 can be obtained49 as k = Z1/n. Eq. (7) predicts that the quantity ln(–ln(1 – εn)) should vary linearly 

with the logarithm of elapsed time since the recrystallization onset, t – to. This is indeed observed 

in the so-called “Avrami plot”, displayed in Figure 6(a). The values of the obtained fit parameters 

(n, k) are listed in Table 2. While a certain variability is observed in k, as expected, the value of 

the Avrami exponent was always close to n = 1.15 for all cases. 

The fact that the value of the Avrami exponent is close to unity suggests a strongly anisotropic 

growth of the crystalline nuclei following sporadic nucleation,9,50,51 at least under an applied 

hydrostatic pressure of 50 MPa. Such anisotropic growth is confirmed by inspection of the 

recrystallized samples under the optical microscope (Figure 5(d)), where it is observed that the 

growth occurs in a dendritic fashion in the disk-like Morniflumate sample, with evidence of 
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nucleation sites at the edge of the disk, at the boundary with the external electrode. The latter 

observation implies that nucleation is mainly heterogeneous in character.  

 

T [K] P [MPa] n (±0.01) k⋅10–5  [s–1]  tr ⋅10–3  [s] 1/kn=1.15 ⋅10–5  [s] 

283.2 50 1.12 58±3 150 78±3 

293.2 50 1.15 9.0±0.3 55.4 9.0±0.3 

295.2 50 1.14 16.5±0.2 9.44 1.12±0.01 

303.2 50 1.15 1.43±0.05 10.2 1.39±0.04 

314.2 50 1.18 1.05±0.03 58.2 13.4±0.3 

314.2 100 1.15 21.5±0.7 67.1 21.1±0.7 

314.2 150 1.15 5.40±0.06 37.7 5.51±0.06 

 

Table 2. Recrystallization Times and Avrami Parameters for Recrystallization of Morniflumate 

under Different (T,P) Conditions.  
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Figure 6. (a) Avrami plot of all recrystallization data. Markers are experimental points and 

continuous lines are fits with the Avrami Eq. (7). (b,c) Plot of the 20% recrystallization time tr  and 

of the inverse recrystallization rate 1/kn=1.15 (see the text for details) at 50 MPa as function of 

temperature (b) and as function of the logarithm of the structural relaxation time τα at the 

corresponding temperature (c). Continuous lines are guides to the eye. Insets: plot of tr and 1/kn=1.15 

at the fixed temperature of 312 K, as function of pressure (b) and as function of log(τα) at the same 

T, P conditions (c). 

Following previous studies,8,9,32-34,51 we define a characteristic recrystallization time tr as the 

time required for a certain fraction of the supercooled liquid sample to transform to the crystalline 

phase (measured from the onset of crystallization), which we take here to be 20%. The values of 

tr are listed in Table 2. The sporadic character of the nucleation of the crystal phase is confirmed 

by the fact that in many instances the onset time was significantly longer than the crystallization 

time, so that we can conclude that the intrinsic induction time is longer than the growth time 

(tinduction > tr) for Morniflumate under the studied conditions.  The values of tr obtained at 50 MPa 

are plotted as a function of temperature in Figure 6(b), where it is seen that the recrystallization 

time is a nonmonotonic function of temperature, displaying a minimum at a temperature close to 

room temperature (298 K). We have also calculated a characteristic recrystallization time from the 

Avrami parameters, by refitting the data assuming the same value of n for all crystallizations, 

namely n = 1.15, and determining the corresponding inverse crystallization rate, 1/kn=1.15. The 

obtained values are listed in Table 2 and plotted in Figure 6(b), where it is seen that they follow 

exactly the same trend as tr. 

This minimum in the temperature dependence of the crystallization time is a commonly observed 

feature of glass formers, both organic and inorganic:52,53 in all these systems there exists an 
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optimum temperature for the growth of the crystalline phase from the supercooled liquid, known 

as “nose temperature” from the characteristic shape of the time-temperature-transformation 

curve.52,54. The existence of the nose temperature is a consequence of two competing effects: 

although the thermodynamic driving force for recrystallization (difference between the free energy 

of the liquid and crystal states) increases as T is lowered below the melting point Tm, the molecular 

mobility decreases; the competition results in an optimum temperature at which recrystallization 

is fastest. Our results imply that the optimum crystal growth temperature Tnose of Morniflumate is 

approximately room temperature (298 K) at the pressure of 50 MPa.  An increase of T above such 

value (at the same pressure) actually results in a slower recrystallization rate, as observed 

experimentally in Figure 6(b). The inset to Figure 6(b) shows the variation of tr with pressure at 

the fixed temperature of 314 K. tr has a maximum value for P = 100 MPa, while it has a lower 

value at 50 or 150 MPa. Applying a pressure leads to three different effects: a change in 

thermodynamic driving force, a change in the molecular dynamics, and a change in density; a 

detailed recrystallization study as a function both of T and P under isochronal conditions would be 

required to disentangle the three effects, which is beyond the scope of our work.    

In the Figure 6(c) we plot the characteristic recrystallization time tr and inverse recrystallization 

rate 1/kn=1.15 at 50 MPa at different temperatures (same data as in panel (b)), as function of the 

structural relaxation time τα at the same (T,P) conditions used in our recrystallization study. . It 

may be observed that the crystallization time is a nonmonotonic function of τα, which is a 

consequence of the fact that, at constant pressure, the structural relaxation time is a monotonic 

function of T (Figure 3(a)) while tr and kn=1.15 are not (Figure 6(b)). In particular, above the nose 

temperature the two times are “anticorrelated”: τα decreases as the crystallization time increases. 

Hence the power-law correlation between tr and τα observed for other pharmaceutical compounds 



 25

at ambient pressure8,9,32-34,51 cannot be a general feature of amorphous pharmaceuticals in a large 

temperature window; indeed, it may be observed a priori only below the optimum crystal growth 

temperature Tnose. Since Tnose normally lies between the glass transition temperature Tg (below 

which the structural relaxation is kinetically frozen) and the melting point Tm, between Tnose and 

Tm the two times are necessarily anticorrelated. On the other hand, a power law correlation between 

tr and τα can exist between Tg and Tnose, since at low enough temperature the recrystallization rate 

is fundamentally limited by the molecular mobility, that is, by the diffusion of molecules which 

enables formation and growth of crystal nuclei. The fact that this correlation has been often 

reported in dielectric spectroscopy studies is likely a consequence of the fact that the available 

frequency range of this technique (up to 1 or 10 MHz) is particularly suited to study dynamics 

close to the glass transition temperature, rather than those close to the melting point, where the 

structural relaxation frequency is normally above 1 or 10 GHz. 

The practical implication of our findings for amorphous pharmaceuticals are two. On one hand, 

the fact that the possible (sublinear) correlation between the recrystallization rate and the structural 

relaxation time can at best hold only in a limited temperature interval (namely, between Tg and 

Tnose) indicates that one should look at secondary relaxations, rather than at the structural one, to 

search possible indicators of the stability of amorphous pharmaceuticals. This is of course obvious 

below Tg, where the structural relaxation is dynamically frozen. On the other hand, the fact that 

depressurization of over-pressurized liquid Morniflumate often lead in our experiments to the 

onset of recrystallization, indicates that pressurization may not be a viable means to stabilize 

amorphous pharmaceuticals: besides being scarcely applicable on an industrial scale, 

depressurization after storage may induce the very transformation (recrystallization) which the 

applied pressure might avoid during storage.        
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Conclusions 

We have employed dielectric spectroscopy to study the pressure and temperature dependence of 

the relaxation dynamics and recrystallization kinetics of a glass-forming API with anti-

inflammatory and antipyretic properties, Morniflumate. The dielectric spectra are characterized by 

the presence of two loss features, the structural α relaxation and a secondary β relaxation, 

respectively. Both relaxation times have a steep dependence with pressure. In particular, while the 

β relaxation has fixed activation volume, the α relaxation time displays an effective activation 

volume that increases with increasing pressure. At low applied pressure, the pressure-dependent 

glass transition temperature Tg(P) increases by 20 K every 100 MPa. In the whole pressure and 

temperature range probed, both α and β relaxation times are observed to scale roughly with the 

temperature rescaled to the pressure-dependent glass transition temperature. Since the β relaxation 

can be kinetically frozen at ambient temperature by applying a pressure of approximately 320 

MPa, we predict that Morniflumate should be in a kinetically stable glassy state at this pressure. 

The recrystallization kinetics at a pressure of 50 MPa follows the Avrami law with exponent n = 

1.15, consistent with the dendritic-like growth that we observed in our freshly recrystallized 

samples by optical microscopy. The recrystallization time is a nonmonotonic function both of 

temperature and of the structural relaxation time: the optimum crystallization temperature of 

Morniflumate is found to be between 295 and 300 K under an applied pressure of 50 MPa. 
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