
Duino-Based Learning (DBL) in Control
Engineering Courses

Eneko Lerma, Ramon Costa-Castelló, Robert Griñó
Departament d’Enginyeria de Sistemes, Automàtica i Informàtica Industrial (ESAII)

Universitat Politcnica de Catalunya (UPC)
eneko.lerma@estudiant.upc.edu, ramon.costa@upc.edu, roberto.grino@upc.edu

Carlos Sanchis
Mathworks

Carlos.Sanchis@mathworks.es

Abstract—This document presents a project to develop freely
redistributable materials to conduct educational lab projects with
MATLAB, Simulink, Arduino and low-cost plants. This work
materials introduce the fundamentals of Control Engineering
through exercises and videos. Along with all this, the most
important steps and issues appeared in the project are explained,
so anyone interested on doing a project can have a starting point
instead of starting a project from scratch, which most of times
this results hard to implement.

I. INTRODUCTION

The process of reform of university studies, Bologna pro-
cess, and technological advances have generated a revolution
in the mechanisms used for teaching and teaching materials.
Technological studies have been especially sensitive to these
changes [1], [2].

Automatic control has been one of the most active areas
in this reform. The improvements introduced are numerous.
Some examples are interactive applications [3], [4], virtual
laboratories [5], and remote laboratories [6]. Despite this,
practical on-site experiences continue to be a fundamental
element for any engineering study and in particular for control
engineering [2].

The appearance of low-cost hardware such as the Arduino
and the Rasperry-pi [7]–[10], together with the development of
automatic code generation software [11] and the hardware in
the loop technologies have facilitated much of the development
of industrial applications and at the same time of environments
of novel practices and attractive for students.

This paper describes a project to remodel of the teaching
experimental laboratories from the automatic control labora-
tory of the School of Industrial Engineering (Escola Tècnica
Superior d’Enginyeria Industrial de Barcelona, ETSEIB) from
the Technical University of Catalonia (Universitat Politècnica
de Catalunya, UPC). In this laboratory students learn discrete-
time control and automatic control [12]–[14]. The work de-
scribes how the laboratory has been modified to be able to
use the new low-cost elements and the automatic generation
of code.

The paper is organized as follows: Section II contains a
description of previous and proposed experimental setup, Sec-
tion III contains a description of the Duino-Based Learning,
Section IV contains a couple of examples and finally Section
V provides some conclusions and future works.

Fig. 1: LJ Technical Systems’s servomotor.

II. BRIEF DESCRIPTION OF THE EXPERIMENTAL PLATFORM

A. Previous experimental setup

The experimental plant at the laboratory is a DC servo
system from LJ Technical Systems, see Figure 1. This plant
contains a DC motor along with its power driving electronics
and signal conditioning stages. Specifically, the module con-
tains the necessary sensing elements to close a speed control
loop (tachometric dynamo and encoder) and a position control
loop (potentiometer). In addition, the mechanical axis of the
motor is equipped with a magnetic brake which can be used
as a disturbance.

Before working with the new environment, students ac-
quired speed and position data and send the control signal to
the plant using an analog to digital/digital to analog (AD/DA)
card built in the personal computer (PC), see Figure 2. This
cards were very expensive and used the PCI bus of the PC
which is becoming less and less common and, in this way,
it complicates the continuous update and maintenance of the
equipment.

It is worth noting that in this experimental platform the
controller and its calculation were performed on the PC using
a specific, and not standard, library for MatLab/Simulink.

B. Hardware issues

Recently, a decision was made to use an Arduino board for
AD/DA conversion and controller code execution. The chosen



Fig. 2: AD/DA card with its conditioning stage.

Fig. 3: Arduino Due signal conditioning board.

board was the Arduino Due board, due to three main reasons: it
is one of the few Arduino boards equipped with two real DAC
converter channels; it has twelve multiplexed analog input pins
with three 12 bits AD converters, while other boards, such as
the better known Arduino Uno or the Arduino Mega have only
ten bits of resolution; and because the Arduino Due board has
a high computing performance (ARM Cortex-M3 core) which
improves the execution speed of a digital controllers. Another
relevant reason, this of economic character, is that the Arduino
board is much cheaper than the AD/DA conversion cards for
PCI bus.

The auxiliary hardware also had to be modified as the
input/output voltage ranges of both devices, the Arduino Due
and the LJ servo-system plant, did not match. On one hand,
the Arduino Due board has an operating voltage of 3.3 V. That
is, the maximum voltage that the I/O pins can tolerate is 3.3
V and the minimum voltage is 0 V. On the other hand, the
plant runs its inputs and outputs at ±5 V. This meant that a
conditioning hardware (signal adapter) had to be designed to
connect the Arduino Due board to the DC servo system. As it
can be seen on Figure 3 the conditioning hardware board was
designed to be connected to the Arduino board as a shield.

In this shield three different circuits have been implemented:
one to adapt the DA output signal (control signal), another
two to adapt the two measurement signals (potentiometer and
tachometric dynamo signals) and, finally, one to create the

(a) Signal conditioning circuit for the input of the A/D converter.

(b) Signal conditioning circuit for the output of the D/A converter.

(c) Circuit to obtain the desired offset.

Fig. 4: Three main circuits of the signal adapter

offset for these signals. Figure 4 shows the circuit of those
three signals.

The signals must have change of gain and a change of offset
both in the measurement channels (A/D conversion) and in the
control signal channel (D/A conversion). These two actions
are carried out separately (in cascade) to reduce the coupling
between them and facilitate the analysis by the students.

The conditioning circuits for the input of the A/D converter
and the output of the D/A converter are practically equal
but changing the order of the actions. In the case of the
conditioning chain of the A/D converter the order is: first
the gain change and after that the offset change. For the D/A
converter conditioning chain in the first stage the offset of the
signal is changed and, then, it is scaled. In both cases, a low-



Fig. 5: Automatic control laboratory workplace.

Fig. 6: Arduino MATLAB/Simulink Support Package.

pass filter with a low time constant has been designed in the
last stage of the circuit in order to filter the possible peaks
of the signal and the high frequency noise. The necessary
reference signal has been created using a potentiometer and
an LM385Z voltage reference whose output is connected to a
voltage follower to minimize the effects of the load.

These devices have been implemented and an image of the
final result in one of the lab workplaces can be seen on Figure
5. More information about the steps followed to implement
the signal adapter can be found in three languges (English,
Spanish an Catalan) on the repository linked in Duino-Based
Learning (https://github.com/DuinoBasedLearning/Lab).

C. Software issues

This hardware change leads to modify the MatLab/Simulink
based software used until now to install some toolboxes of
the standard MatLab distribution to enable the data transfer
from the computer to the plant and vice versa. The in-
stalled packages are: MatLab and Simulink Support
Packages for Arduino Hardware in order to ac-
quire inputs and send outputs for Arduino Boards, see
Figure 6, and MatLab Coder, Simulink Coder and
Embedded Coder for the generation of C and C++ code
for embedded systems. This packages can be easily found in
MatLab’s tab home, in adds-on section, see Figure 7.

Once the support packages for Arduino have been in-
stalled, we have to differentiate and explain the two main

methods that Simulink has for working with the Arduino
board and the PC: Normal Mode with Simulink IO
and External Mode. Both methods have their pros and
cons, and, depending on the project, one method may prove
to be more beneficial than the other.

• Normal Mode with Simulink IO: In this mode, the
Simulink model, in our case containing the controller,
runs in normal mode simulation on the PC and it commu-
nicates with an IO server code that runs on the Arduino
board. This code manages the peripherals (AD and DA
converters) of the microcontroller on the Arduino board
and communicates with the simulation model (controller)
on the PC. Thus, in this work mode, no code is gener-
ated corresponding to the controller to execute it in the
microcontroller. The main disadvantage with this mode
of operation is that the whole system does not work in
strict real time as the controller code is running in the
PC. This circumstance also affects the possible recording
of signals entering and leaving the plant. That is, it is not
possible to do a strict timing analysis of real-time data.

• External Mode: In this case, code is generated for the
microcontroller both for peripheral management and for
the control algorithm. This code is executed in real time
in the microcontroller closing the control loop. On the
other hand, the code generated and deployed in the micro-
controller includes the management of communications
with the PC and, in this way, a certain number of signals
can be displayed in the Scopes of the Simulink model.
This approach allows to obtain real-time data from the
control loop and perform a precise time analysis of the
signals since all the execution is done in the micro-
controller in real time and the communication channel
between controller board and PC is only used to transfer
information. It is also worth to mention that, in External
Mode, it is possible to modify the parameters of the
controller without having to re-compile or re-download
the model each time a parameter is changed. However,
as a drawback and as it will be commented below, the
limited bandwidth of the communication channel will
bound from below the sampling period of the signals to
be displayed on the Simulink Scopes.

Besides these two operation modes, it is worth to comment

Fig. 7: MATLAB Coder, Simulink Coder and Embedded
Coder packages.

https://github.com/DuinoBasedLearning/Lab


Fig. 8: Sampling time variability analysis.

2 2.1 2.2 2.3 2.4 2.5

Time (s)

0

1000

2000

3000

4000

B
it
s

Signals sampled with Tg=1ms

Input

Output

2 2.1 2.2 2.3 2.4 2.5

Time (s)

0

1000

2000

3000

4000

B
it
s

Signals sampled with Tg=5ms

Input

Output

0 0.002 0.004 0.006 0.008 0.01
0

1000

2000

3000

4000

5000

5 5.000000000002

10
-3

0

500

1000

1500

2000

2500

3000

Fig. 9: Results with different sampling times for plotting in the
Scopes. On the left, Tg = 0.001s, on the right Tg = 0.005s.

that there is another one called Deploy to Hardware. In
this case, the generated code runs in the microcontroller as a
standalone program without communicating with the PC and,
so, it is independent of Simulink.

As it was mentioned above, a problem with External
Mode operation is the limited bandwidth of the communica-
tion channel between the microcontroller board and the PC
in which various relevant signals from the control loop are
displayed graphically in Scopes. Therefore, it is important to
find the minimum value of the sampling period (associated
with the plotting) without loss of information. In order to do
that, the Simulink model shown in figure 8 has been created.
In it, a sinusoidal signal created in Simulink is compared with
the same signal after passing it through the DA channel and
getting back through an AD input channel.

This model has been run with different sampling times
and the signals and their sampling time variability have been
analyzed for each iteration. We have selected a sinusoidal
signal of 10 Hz and started from a sampling time of 0.001 s
verifying if there is loss of samples in the Scopes. If there are
losses, the sampling period is increased until there is no loss
of information. Figure 9 shows the result of two experiments
done when calculating the loss of samples.

As we can see, from sampling periods higher than 5 ms, no
data is lost. From this value on, the acquired signal period
variability is very small as it can be appreciated on the
histogram because all the samples occur at 5ms of sampling
time with a very small jitter. In contrast, when a sampling
time lower than 5 ms is selected, for example in Figure 9, 1
ms, half of the samples are around 1ms but the other half are
between 5 and 6 ms.

Fig. 10: Homepage of Duino-Based Learning.

III. DUINO-BASED LEARNING (DBL)

A. About DBL

As it is known, projects are hard to implement from scratch
but it is the best way to put into practice and assimilate
all the techniques and concepts of the theoretical sessions
and, in addition, to realize the differences between the real
implementations and their theoretical description. In this sense,
Duino-Based Learning (DBL) provides a set of projects as
a starting point for any educator or learner. In it you can
find build instructions for all setups, MATLAB live scripts
with exercises, Simulink models and walk-through videos.
All this material is available in three languages English,
Spanish and Catalan. The web page can be found in https:
//duinobasedlearning.github.io/. Figure 10 shows the layout of
the platform.

As it can be seen, the web page is divided in five sections.
The first one is the homepage, where all the main information
is embedded; the second one, about us, shows the authors
with a brief description of their activity. In the third one,
download, you can download all the files available in the
repository. In the fourth one, equipment, it is explained all
the instrumentation used to carry out the projects and how they
are interconnected. Finally, in the last section, projects, the
user can find the five projects that have been prepared with
instructions for building low-cost plants, exercises and videos,
see Figure 11. In every lesson, the first link corresponds to
MatLab scripts with data, graphs and explanations, while the
second one corresponds to the tutorial videos where theoretical
issues are explained and the real behaviour of the plant can
be seen.

B. Projects

Along all the web page there are five different practices to
work on that include some proposed exercises. The contents
range from a very basic introduction to Arduino programming
using MatLab/Simulink to the design of controllers in the
frequency domain.

https://duinobasedlearning.github.io/
https://duinobasedlearning.github.io/


Fig. 11: Projects section of Duino-Based Learning web page.

Fig. 12: Speed Control IP controller: implementation.

The list of practical sessions (projects) with a brief descrip-
tion of their content is as follows.
Practice 0: Introduction to Arduino programming using Mat-
Lab/Simulink.

1) Digital output.
2) Digital input.
3) Analog output.
4) Analog input.

Practice 1: Analysis of the time response of a digital control
system.

1) Speed control.
• Open-loop response.
• Closed-loop response.
• Experimental evaluation of closed-loop perfor-

mance.
2) Position control.

• Open-loop response.
• Closed-loop response.
• Experimental evaluation of closed-loop perfor-

mance.

Practice 2: Analysis of the frequency response of a digital
control system.

1) Nyquist diagram calculation.

Fig. 13: Speed Control IP controller: experimental results.

Fig. 14: Position PID controller implementaion.

2) Experimental Nyquist diagram of the discrete-time sys-
tem.

3) Application of the Nyquist criterion.
4) Obtaining the theoretical Bode diagram.

Practice 3: Design and implementation of PID controllers.
1) Design, by pole placement, and implementation of a PI

controller for speed output.
2) Design, by pole placement, and implementation of a PID

controller for position output.

Practice 4: Improvement of PID controllers implemented in
Practice 3.

1) Design, by pole placement, and implementation of an
I-P controller for speed output.

2) Design, by pole placement, and implementation of an
I-PD controller for position output.

Practice 5: Design of controllers in the frequency domain.
1) Determination of the gain and phase margins for the

system.
2) Design of a lead controller.
3) Analysis in simulation.
4) Implementation of the lead controller.

C. Repository

All the projects explained in the web page and the Gerber
files used for the shield implementation are freely available
in GitHub. The objective of this project, together with help-
ing learners to understand the basics of digital control and
educators to have materials on which to base their lessons
or generate new ones, is to encourage people, in general, to
contribute with new ideas or better implementations and, thus,
obtain a continuous update of the web page. The repository
can be found in https://github.com/DuinoBasedLearning/Lab.

https://github.com/DuinoBasedLearning/Lab


Fig. 15: Position PID controller experimental results.

IV. AN EXAMPLE OF A PRACTICE

PID controllers [15], [16] are one of the most popular
controllers used in industry. Due to this, PID controllers are
part of the experimental works students perform during their
laboratories.

As an example, two of the didactic experiences carried out
by the students are described below.

The Figure 12 shows the implementation of an IP controller.
This controller will be used to control the speed of the DC
motor. The IP control, unlike the PI controller, incorporates the
integral action in the direct chain and the proportional action in
the feedback chain. This means that the loop system does not
have an additional zero in the closed-loop transfer function.
For this reason, the response to the step usually presents
an overshoot lower than what a PI with the same closed-
loop poles would obtain. As you can see the implementation
of the controller in MATLAB/Simulink is very easy and
maintains the structure of the controller, which facilitates its
comprehension to students.

Figure 13 shows the closed-loop time response, following
the indicated instructions. As it can be seen the step response
is fast and without overshoot. One of the characteristics of IP
controllers.

Figure 14 shows the implementation of a complete PID
controller. In addition to the controller implementation, using
a color code, the different sampling periods used are shown.
Some just to display purposes, others to close the loop.

Figure 15 shows the time response of the closed-loop system
in position control and using the PID control shown above. As
it can be seen, null steady-state error is obtained in tracking
step references with a slight overshoot. The response presents
the imperfections typical of the non-linearities existing in the
real process.

During the practice sessions, the controllers are tuned by
different methods, being the pole placement one of them [14],
[17], [18].

V. CONCLUSIONS

This work has presented the contents and teaching material
used in the practice sessions of a discrete-time control course.
All material is available on the Internet and it can be freely
used. All the work is based on the use of interactive control
design tools such as MATLAB and Simulink to help students

understand what is a sampled-data system and how to deal
with its control. The proposed experiments are based on low
cost hardware, i.e. Arduino Due boards, that are programmed
using the automatic code generation tools that are included in
MATLAB/Simulink. This approach can encourage people to
get into the digital control field since the software environment
greatly facilitates tasks related to programming embedded
systems.

ACKNOWLEDGMENTS

This work has been partially funded by the Spanish
national projects MICAPEM (ref. DPI2015-69286-C3-2-R,
MINECO/FEDER), DPI2017-85404-P and the donation of
Mathworks UPC-I-01523 .

REFERENCES

[1] J. C. Plaza, A. M. Florido, E. P. Garca, F. R. Montero, and
R. C. Palomino, “Entorno docente universitario para la programacin
de los robots,” Revista Iberoamericana de Automtica e Informtica
industrial, vol. 15, no. 4, pp. 404–415, 2018. [Online]. Available:
https://polipapers.upv.es/index.php/RIAI/article/view/8962

[2] R. Costa-Castelló, V. Puig, and J. Blesa, “On teaching model-based
fault diagnosis in engineering curricula [lecture notes],” IEEE Control
Systems, vol. 36, no. 1, pp. 53–62, Feb 2016.

[3] J. M. Diaz, R. Costa-Castelló, R. Muoz, and S. Dormido, “An interactive
and comprehensive software tool to promote active learning in the loop
shaping control system design,” IEEE Access, vol. PP, no. 99, pp. 1–1,
2017.

[4] R. Costa-Castelló, N. Carrero, S. Dormido, and E. Fossas, “Teaching,
analyzing, designing and interactively simulating of sliding mode
control,” IEEE Access, vol. 6, no. 1, pp. 16 783–16 794, December 2018.
[Online]. Available: https://doi.org/10.1109/ACCESS.2018.2815043

[5] F. Esquembre, “Easy java simulations: a software tool to create scientific
simulations in java,” Comput. Phys. Commun., vol. 156, no. 2, pp. 199–
204, January 2004.

[6] J. Chacn, M. Guinaldo, J. Snchez, and S. Dormido, “A new generation of
online laboratories for teaching automatic control,” IFAC-PapersOnLine,
vol. 48, no. 29, pp. 140 – 145, 2015, iFAC Workshop on Internet Based
Control Education IBCE15.

[7] J. Sobota, R. PiSl, P. Balda, and M. Schlegel, “Raspberry pi and arduino
boards in control education,” IFAC Proceedings Volumes, vol. 46, no. 17,
pp. 7 – 12, 2013.

[8] P. Reguera, D. Garca, M. Domnguez, M. Prada, and S. Alonso, “A low-
cost open source hardware in control education. case study: Arduino-
feedback ms-150,” IFAC-PapersOnLine, vol. 48, no. 29, pp. 117 – 122,
2015.

[9] F. Candelas, G. Garcı́a, S. Puente, J. Pomares, C. Jara, J. Pérez, D. Mira,
and F. Torres, “Experiences on using arduino for laboratory experiments
of automatic control and robotics,” IFAC-PapersOnLine, vol. 48, no. 29,
pp. 105 – 110, 2015.

[10] R. Barber, M. Horra, and J. Crespo, “Practices using simulink with
arduino as low cost hardware,” IFAC Proceedings Volumes, vol. 46,
no. 17, pp. 250 – 255, 2013.

[11] M. ISHIKAWA and I. MARUTA, “Rapid prototyping for control edu-
cation using arduino and open-source technologies,” IFAC Proceedings
Volumes, vol. 42, no. 24, pp. 317 – 321, 2010.

[12] S. Dormido, “Control learning: Present and future,” Annual Reviews in
Control, vol. 28, no. 1, pp. 115–136, 2004.

[13] B. Kuo, Digital Control Systems. Oxford University Press, 1995.
[14] R. Costa Castelló and E. Fossas, Sistemes de Control en Temps Discret.

Edicions UPC, 2014, iSBN: 978-84-9880-492-8.
[15] K. Åström and B. Wittenmark, Computer-Controlled Systems: Theory

and Design. Dover Pubs., 2011.
[16] K. Åström and T. Hägglund, Advanced PID Control. ISA-The

Instrumentation, Systems, and Automation Society, 2006. [Online].
Available: https://books.google.es/books?id=XcseAQAAIAAJ

[17] R. Longchamp, Comande Numériques de Systeèmes Dynamiques. Cours
d’Automatique. Laussane: Presses Polytechniques et Universitaires
Romandes, 2006.

[18] K. Ogata, Discrete-time Control Systems. Prentice Hall, 1994.

https://polipapers.upv.es/index.php/RIAI/article/view/8962
https://doi.org/10.1109/ACCESS.2018.2815043
https://books.google.es/books?id=XcseAQAAIAAJ

	Introduction
	Brief description of the experimental platform
	Previous experimental setup
	Hardware issues
	Software issues

	Duino-Based Learning (DBL)
	About DBL
	Projects
	Repository

	An example of a practice
	Conclusions
	References

