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Abstract. The main goal of this paper is to study the asymptotic behavior

of a coupled Cahn-Hilliard/Allen-Cahn system with temperature. The work is

divided into two parts: In the first part, the heat equation is based on the usual
Fourier law. In the second one, it’s based on the type III heat conduction law.

In both parts, we prove the existence of exponential attractors and, therefore,

of finite-dimensional global attractors.

1. Introduction. J. Cahn and A. Novick-Cohen introduced, in [4], the following
system:

∂u

∂t
= h2∆(f(u+ v) + f(u− v)− h2∆u),

∂v

∂t
= −f(u+ v) + f(u− v)− αv + h2∆v,

where u is the concentration of one of the components and it is a conserved quan-
tity, v is an order parameter, h is a (positive) parameter which represents the lattice
spacing, α is a parameter that reflects the location of the system within the phase
diagram (it may be either positive or negative), and the nonlinear term f is the
derivative of a double-well potential F .

The system models simultaneous order-disorder and phase separation in binary
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alloys on a BCC lattice in the neighborhood of the triple point.

We further note that it is a gradient flow in
(
H1
)′ × L2 for the free energy

J(u, v) =

∫
Ω

{
F (u+ v) + F (u− v) +

α

2
v2 +

1

2
h2(|∇u|2 + |∇v|2)

}
dx,

These equations, endowed with Neumann boundary conditions, have been studied in
[2] by A. Novick-Cohen, D. Brochet, and D. Hilhorst who proved the well-posedness
and the existence of maximal attractors and inertial sets (i.e., exponential attrac-
tors) for the usual cubic nonlinear term f(s) = s3 − βs in three space dimensions.
These results were improved in [24]: taking initial conditions in H2(Ω) allowed the
authors to prove the existence of exponential attractors (and, thus, of the finite-
dimensional global attractor) for a large class of nonlinear terms containing poly-
nomials of arbitrary odd degree with a strictly positive leading coefficient in three
space dimensions. This model has been also studied in [25], where an exponential
attractor for singular potentials was found, and by consequence a global attractor
of finite dimension.

A similar system, with a non-constant mobility, was treated in [6] where the authors
proved the existence of weak solutions for the Neumann problem for a degenerate
parabolic system consisting of a fourth-order and a second-order equations with
singular lower-order terms in one space dimension. In addition, asymptotics for a
similar system with a non-constant mobility, proposed as a diffuse interface model
for simultaneous order-disorder and phase separation, was studied in [28]. This
work was extended in [29], where the authors studied the partial wetting case, and
their analysis accounts for motion in three space dimensions.

We also mention that numerical methods to solve coupled AC/CH systems were
studied in, e.g. [19, 38, 40, 41, 42]. Furthermore, a NKS method for the implicit
solution of a coupled AC/CH system was proposed in [43].

In this work, we study two systems of three simultaneous equations: a Cahn-Hilliard
equation, an Allen-Cahn equation and a heat equation. In the first part of the paper,
the heat equation is based on the usual Fourier law. We are able to find exponential
attractors hence the global attractor associated to the system. In the second part,
the heat equation is based on the type III law of thermoelasticity (note that type
I corresponds to the usual Fourier law, while type II yields a purely hyperbolic
(and nondissipative) equation for the temperature). There, to find exponential at-
tractors, we were obliged to decompose the system into the sum of two systems to
overcome the difficulties created by a second-order derivative term.
Not much work has been done in similar cases. However, in a recent paper, [18],
the authors studied a coupled AC/CH system with temperature and long-time os-
cillating properties were found.

It is important to note that an exponential attractor is expected to be more ro-
bust than a global attractor under perturbations. And that’s because the rate of
attraction of the global attractor is slow and it’s very hard to estimate it with
respect to the physical parameters of the problem in general. Therefore, global
attractors may change drastically under small perturbations. However, the rate of
attraction of exponential attractors is considerably fast (an exponential rate) and
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that gives them some kind of resilience. We refer the reader to [7] and [27] for more
details on this subject.

Throughout this paper, the same letter c (and, sometimes, c′, c′′, and c′′′) denotes
constants which may change from line to line, or even in a same line. Similarly,
the same letter Q denotes monotone increasing (with respect to each argument)
functions which may change from line to line, or even in the same line.

2. Part I: The Classical Fourier Law. In this part, as mentioned before, the
generalized heat equation is based on the classical Fourier law for heat conduction.
Indeed, we can rewrite this equation as

∂H

∂t
= −div q,

where q is the thermal flux vector and, assuming the Fourrier law

q = −∇θ.

The function H is the enthalpy defined by

H = v + θ,

and θ is the relative temperature.

2.1. Setting of the Problem. We take h = 1 and α = 0 for simplicity, and
consider what follows

∂u

∂t
+ ∆2u−∆(f(u+ v) + f(u− v)) = 0, (1)

∂v

∂t
−∆v + f(u+ v)− f(u− v) = θ, (2)

∂θ

∂t
−∆θ = −∂v

∂t
, (3)

u = ∆u = v = θ = 0 on Γ, (4)

u|t=0 = u0, v|t=0 = v0, θ|t=0 = θ0, (5)

where Ω is a bounded domain of IRN (N = 1, 2, or 3) with smooth boundary Γ.

As far as the nonlinear term is concerned, we make the following assumptions:

f is of class C2, f(0) = 0, (6)

f ′(s) ≥ −c, c > 0, s ∈ IR, (7)

and f(s)s ≥ cF (s)− c′, F (s) ≥ −c′′, c > 0, c′, c′′ ≥ 0, s ∈ IR, (8)

where F (s) =
∫ s

0
f(ξ)dξ.

We denote by ||.|| the usual L2-norm, ((., .)) its associated scalar product, ||.||−1 =

||(−∆)
−1
2 ||, and ||.||X is the norm in the Banach space X.
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2.2. Existence and Uniqueness of Solutions. We rewrite equation (1) in the
equivalent form

(−∆)−1 ∂u

∂t
−∆u+ f(u+ v) + f(u− v) = 0. (9)

We multiply (9) by ∂u
∂t , (2) by ∂v

∂t , and (3) by θ and then integrate by parts over Ω,
we obtain ∣∣∣∣∣∣∣∣∂u∂t

∣∣∣∣∣∣∣∣2
−1

+
1

2

d

dt
||∇u||2 + ((f(u+ v) + f(u− v),

∂u

∂t
)) = 0, (10)

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 +

1

2

d

dt
||∇v||2 + ((f(u+ v)− f(u− v),

∂v

∂t
)) = ((θ,

∂v

∂t
)), (11)

1

2

d

dt
||θ||2 + ||∇θ||2 = ((−∂v

∂t
, θ)). (12)

Summing (10), (11), and (12), we obtain

1

2

d

dt

(
||∇u||2 + ||∇v||2 + ||θ||2 + 2

∫
Ω

[F (u+ v) + F (u− v)]dx

)
+ ||∇θ||2

+

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 = 0.

(13)

Based on (13), we have the following result

Theorem 2.1. Assume that (u0, v0, θ0) ∈ H1
0 (Ω)3. Then, (1)-(5) possesses at least

one solution (u, v, θ) such that
(u, v, θ) ∈ L∞(IR+;H1

0 (Ω)2 × L2(Ω)) ∩ L2
loc(IR

+;H2(Ω)3), θ ∈ L∞(IR+;L2(Ω) ∩
H1

0 (Ω)) and (∂u∂t ,
∂v
∂t ,

∂θ
∂t ) ∈ L

2(IR+;H−1 × L2(Ω)2).

Proof. The proof of existence (as well as the above and the subsequent a priori
estimates) are based, e.g. on a classical Galerkin scheme. Let A denote the mi-
nus Laplace operator associated with Dirichlet boundary conditions. This operator
is a bounded, selfadjoint and strictly positive operator with compact inverse from
H1

0 (Ω) onto H−1(Ω). There is a set of eigenvectors {φi, i ≥ 1} for this operator,
associated with the eigenfunctions 0 < λ1 ≤ λ2 ≤ ..., such that it is orthonormal
relative to the inner product in L2(Ω) and orthogonal relative to the one in H1

0 (Ω).
Setting Vm = Span{φ1, ..., φm}, we consider the following approximating problem,
written in the fuctional form:

dum
dt

+A2um +A(f(um + vm) + f(um − vm)) = 0, (14)

dvm
dt

+Avm + f(um + vm)− f(um − vm) = θm, (15)

dθm
dt

+Aθm = −dvm
dt

, (16)

together with suitable initial conditions, namely,

um|t=0 = Pmu0, vm|t=0 = Pmv0, θm|t=0 = Pmθ0,
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where Pm is the orthogonal projector from L2(Ω) onto Vm (for the L2−metric).

This is equivalent to the following problem:

d

dt
((um, p))− ((∆um,∆p)) + ((∇f(um + vm),∇p)) + ((∇f(um − vm),∇p)) = 0,

d

dt
((vm, q)) + ((∇vm,∇q)) + ((f(um + vm), q))− ((f(um − vm), q)) = ((θm, q)),

d

dt
((θm, r)) + ((∇θm,∇r)) = − d

dt
((vm, r)),

∀ p, q, r ∈ Vm, together with the above initial conditions. The proof of existence
of a local (in time) solution to the approximating problem is standard (indeed, one
has to solve a continuous system of ODEs).

Furthermore, we can write the equivalent of the previous and the subsequent esti-
mates (with u, v and θ replaced by um, vm, and θm respectively); this is now fully
justified and no longer formal. Then we can deduce from (13) that this solution
is actually global. And, the passage to the limit is based on classical (Aubin-
Lions type) compactness results. Indeed, we have, in particular, um bounded
in L∞(0, T ;H1

0 (Ω)) and dum

dt bounded in L2(0, T ;H−1(Ω)), independently of m,
which yields that (at least for a subsequence which we do not relabel) um converges
strongly to, say, u in C([0, T ];H1−δ(Ω)),∀ δ > 0. In addition, vm is bounded in
L∞(0, T ;H1

0 (Ω)) and dvm
dt is bounded in L2(0, T ;L2(Ω)), independently of m, which

also yields the strong convergence of vm to, say, v in C([0, T ];H1−δ(Ω)),∀ δ > 0.

We also note that it follows from (13) that (u, v) ∈ L∞(IR+;H1
0 (Ω)2), θ ∈ L∞(IR+;L2(Ω))∩

L2(IR+;H1
0 (Ω)) and that (∂u∂t ,

∂v
∂t ) ∈ L2(IR+;H−1(Ω)× L2(Ω)).

We now multiply (9) by −∆u, (2) by −∆v, (3) by −∆θ, and integrate over Ω
to obtain

1

2

d

dt
||u||2 +||∆u||2 +((f ′(u+v)∇(u+v),∇u))+((f ′(u−v)∇(u−v),∇u)) = 0, (17)

1

2

d

dt
||∇v||2 + ||∆v||2 + ((f ′(u+ v)∇(u+ v),∇v))− ((f ′(u− v)∇(u− v),∇v))

= ((θ,−∆v)),

(18)
and

1

2

d

dt
||∇θ||2 + ||∆θ||2 = ((

∂v

∂t
,∆θ)). (19)

Summing (17), (18), and (19) and using (7), we obtain

1

2

d

dt
(||u||2 + ||∇v||2 + ||∇θ||2) + ||∆u||2 + c′(||∆v||2 + ||∆θ||2)

≤ c(||∇u||2 + ||∇v||2) + c

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2. (20)

Hence, we can deduce from (20) that (u, v, θ) ∈ L2
loc(IR

+;H2(Ω)3).

We finally multiply (3) by ∂θ
∂t and get
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d

dt
||∇θ||2 +

∣∣∣∣∣∣∣∣∂θ∂t
∣∣∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣∣∣∂v∂t

∣∣∣∣∣∣∣∣2. (21)

Then ∂θ
∂t ∈ L

2(IR+;L2(Ω)) which finishes the proof of the regularity of the solution.

Lemma 2.2. The solution of (1)-(5) in Theorem 2.1 verifies formally the following
inequalities:

• a)

E2(t) ≤ e−ctE2(0) + c′, ∀ t ≥ 0, c > 0, (22)

where

E1 = ε||u||2−1 + ε||v||2 + ||∇u||2 + ||∇v||2 + ||θ||2 + 2

∫
Ω

[F (u+ v) + F (u− v)]dx

and E2 = E1 + ε′||∇θ||2,
• b) For every r > 0,∫ t+r

t

(∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂θ∂t
∣∣∣∣∣∣∣∣2)dτ ≤ ce−c′t(||∇u0||2 + ||∇v0||2 + ||∇θ0||2

+

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
+ c′′(r),

(23)
• c) There exists T0 = T0(||u0||H2(Ω), ||v0||H2(Ω), ||θ0||H1(Ω)) such that∣∣∣∣∣∣∣∣∂u∂t (t)

∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t (t)

∣∣∣∣∣∣∣∣2 ≤ 1

t
ec
′tQ(||u0||H2(Ω), ||v0||H2(Ω), ||θ0||H1(Ω)),

t ∈ (0, T0],

(24)

and∣∣∣∣∣∣∣∣∂u∂t (t)

∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t (t)

∣∣∣∣∣∣∣∣2 ≤ ectQ(||u0||H2(Ω), ||v0||H2(Ω), ||θ0||H1(Ω)),

t ≥ T0,

(25)

• d)

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) + ||θ(t)||2H1(Ω)

≤ ectQ(||u0||H2(Ω), ||v0||H2(Ω), ||θ0||H1(Ω)),

t ≥ 0,

(26)

and we can say that (u, v, θ) belongs a priori to L∞(0, T ;H2(Ω)3), T > 0.
• e)

d

dt
||∆θ||2 + ||∇∂θ

∂t
||2 ≤ ||∇∂v

∂t
||2, (27)

hence ∂θ
∂t ∈ L

2(0, T ;H1
0 (Ω)) a priori.
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Proof. • a)
We start by multiplying (9) by u, (2) by v, sum them together and use (8)

to obtain
1

2

d

dt
(||u||2−1 + ||v||2) + ||∇u||2 + c||∇v||2 + c′

∫
Ω

[F (u+ v) + F (u− v)]dx

≤ c′′ + c||θ||2.
(28)

Then, we sum (13) and ε(28), where ε is small enough so that

d

dt

(
ε||u||2−1 + ε||v||2 + ||∇u||2 + ||∇v||2 + ||θ||2 + 2

∫
Ω

[F (u+ v) + F (u− v)]dx

)
+ c
(
ε||∇u||2 + ||∇v||2 + ||∇θ||2 +

∫
Ω

[F (u+ v) + F (u− v)]dx
)

+

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 ≤ c′′.

(29)
We set

E1 = ε||u||2−1 + ε||v||2 + ||∇u||2 + ||∇v||2 + ||θ||2 + 2

∫
Ω

[F (u+ v) + F (u− v)]dx.

Whence, we deduce from (29) the inequality

dE1

dt
+ c

(
E1 +

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 + ||∇θ||2

)
≤ c′. (30)

Next, we add ε′(21) and (30), we obtain

dE2

dt
+ c

(
E2 +

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂θ∂t
∣∣∣∣∣∣∣∣2) ≤ c′, (31)

where E2 = E1 + ε′||∇θ||2.

Applying Gronwall’s lemma to (31) yields

E2(t) ≤ e−ctE2(0) + c′, ∀ t ≥ 0, c > 0.

• b) We can deduce from (31) and (22) that, for every r > 0,∫ t+r

t

(∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂θ∂t
∣∣∣∣∣∣∣∣2)dτ ≤ ce−c′t(||∇u0||2 + ||∇v0||2 + ||∇θ0||2

+

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
+ c′′(r).

• c) We differentiate equations (2) and (9) with respect to time, we obtain

(−∆)−1 ∂

∂t

∂u

∂t
−∆

∂u

∂t
+ f ′(u+ v)(

∂u

∂t
+
∂v

∂t
) + f ′(u− v)(

∂u

∂t
− ∂v

∂t
) = 0, (32)

∂

∂t

∂v

∂t
−∆

∂v

∂t
+ f ′(u+ v)(

∂u

∂t
+
∂v

∂t
)− f ′(u− v)(

∂u

∂t
− ∂v

∂t
) =

∂θ

∂t
, (33)

with
∂u

∂t
=
∂v

∂t
=
∂θ

∂t
= 0 on Γ. (34)
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We then multiply (32) by t∂u∂t , (33) by t∂v∂t and we sum the resulting equations,
we obtain

1

2

d

dt

(
t

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+ t

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2)+ ct

∣∣∣∣∣∣∣∣∇∂u∂t
∣∣∣∣∣∣∣∣2 + t

∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2+

((f ′(u+ v)(
∂u

∂t
+
∂v

∂t
),
∂u

∂t
+
∂v

∂t
)) + ((f ′(u− v)(

∂u

∂t
− ∂v

∂t
),
∂u

∂t
− ∂v

∂t
))

= t

((
∂θ

∂t
,
∂v

∂t

))
+

1

2

(∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2),

which yields, owing to (7),

1

2

d

dt

(
t

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+ t

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2)+ ct

∣∣∣∣∣∣∣∣∇∂u∂t
∣∣∣∣∣∣∣∣2 + t

∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2

≤ c′t
(∣∣∣∣∣∣∣∣∂u∂t

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂θ∂t
∣∣∣∣∣∣∣∣2)+

1

2

(∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2).

Employing the interpolation inequality∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2 ≤ c′∣∣∣∣∣∣∣∣∂u∂t

∣∣∣∣∣∣∣∣
−1

∣∣∣∣∣∣∣∣∇∂u∂t
∣∣∣∣∣∣∣∣, c′ > 0,

and the Young’s inequality, we deduce that

1

2

d

dt

(
t

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+ t

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2)+ ct

∣∣∣∣∣∣∣∣∇∂u∂t
∣∣∣∣∣∣∣∣2 + t

∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2

≤ c′t
(∣∣∣∣∣∣∣∣∂u∂t

∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂θ∂t
∣∣∣∣∣∣∣∣2)+

1

2

(∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2).

(35)

We now apply Gronwall’s lemma and use (23) to obtain∣∣∣∣∣∣∣∣∂u∂t (t)

∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t (t)

∣∣∣∣∣∣∣∣2 ≤ 1

t
ec
′tQ(||u0||H2(Ω), ||v0||H2(Ω), ||θ0||H1(Ω)),

t ∈ (0, T0].

Moreover, summing (32) times ∂u
∂t and (33) times ∂v

∂t , then using (7) and an
interpolation inequality, we find

d

dt

(∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2)+

∣∣∣∣∣∣∣∣∇∂u∂t
∣∣∣∣∣∣∣∣2+

∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2 ≤ c(∣∣∣∣∣∣∣∣∂u∂t

∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2)+c′

∣∣∣∣∣∣∣∣∂θ∂t
∣∣∣∣∣∣∣∣2.

(36)
Applying Gronwall’s lemma and using (23) and (24), we obtain

∣∣∣∣∣∣∣∣∂u∂t (t)

∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t (t)

∣∣∣∣∣∣∣∣2 ≤ ectQ(||u0||H2(Ω), ||v0||H2(Ω), ||θ0||H1(Ω)),

t ≥ T0.
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• d) We multiply (9) by −∆∂u
∂t , (2) by −∆∂v

∂t , and (3) by −∆θ and sum the

resulting equations. Then using (6) and the continuous embedding H2(Ω) ⊂
C(Ω), we obtain

1

2

d

dt
(||∆u||2 + ||∆v||2 + ||∇θ||2) + c(||∇∂v

∂t
||2 +

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2 + ||∆θ||2)

≤ Q(||u||H2(Ω), ||v||H2(Ω)).

(37)

Setting y = ||∆u||2 + ||∆v||2 + ||∇θ||2, we deduce from (37) a differential
inequality of the form

y′ ≤ Q(y).

Let z be the solution of the ordinary differential equation z′ = Q(z) with
z(0) = y(0). It follows from the comparison principle that there exists
T0 = T0(||u0||H2(Ω), ||v0||H2(Ω), ||θ0||H1(Ω)) belonging to, say, (0, 1

2 ) such that

y(t) ≤ z(t), t ∈ [0, T0],

whence

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) + ||θ(t)||2H1(Ω) ≤ Q(||u0||H2(Ω), ||v0||H2(Ω), ||θ0||H1(Ω)),

t ≤ T0.

(38)
We now rewrite equations (2) and (9) in the following forms

−∆u+ f(u+ v) + f(u− v) = hu(t), (39)

−∆v + f(u+ v)− f(u− v) = hv(t), (40)

with u = ∆u = v = θ = 0 on Γ, (41)

for t ≥ T0 fixed, where

hu(t) = −(−∆)−1 ∂u

∂t
,

and

hv(t) = −∂v
∂t

+ θ,

satisfy, owing to (22) and (25)

||hu(t)|| ≤ ectQ(||u0||H2(Ω), ||v0||H2(Ω), ||θ0||H1(Ω)), t ≥ T0, (42)

and

||hv(t)|| ≤ ectQ(||u0||H2(Ω), ||v0||H2(Ω), ||θ0||H1(Ω)), t ≥ T0. (43)

We multiply (39) by u and (40) by v and we sum the result.
Noting then that f(s)s ≥ −c, c ≥ 0, we obtain

||∇u||2 + ||∇v||2 ≤ c(||hu(t)||2 + ||hv(t)||2) + c′. (44)

Next, we multiply (39) by −∆u and (40) by −∆v, we sum the resulting
equations and obtain, using (7),

||∆u(t)||2 + ||∆v(t)||2 ≤ c(||hu(t)||2 + ||hv(t)||2 + ||∇u(t)||2 + ||∇v(t)||2). (45)

We thus deduce from (42)-(45) that

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) ≤ e
ctQ(||u0||H2(Ω), ||v0||H2(Ω), ||θ0||H1(Ω)), t ≥ T0.

(46)
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Therefore,

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) ≤ e
ctQ(||u0||H2(Ω), ||v0||H2(Ω), ||θ0||H1(Ω)), t ≥ 0.

Finally, we can say that (u, v) belongs a priori to L∞(0, T ;H2(Ω)2), T > 0.

• e) We note from (19) that we have

d

dt
||∇θ||2 + ||∆θ||2 ≤

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2. (47)

Integrating (47) between T0 and t, then using (23) and (38), we obtain

||∇θ(t)||2 ≤ ectQ(||u0||H2 , ||v0||H2 , ||θ0||H1). (48)

Combining (38) with (48), we get

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) + ||θ(t)||2H1(Ω)

≤ ectQ(||u0||H2(Ω), ||v0||H2(Ω), ||θ0||H1(Ω)),

t ≥ 0.

(49)

Multiplying then (3) by −∆∂θ
∂t , we obtain

d

dt
||∆θ||2 + ||∇∂θ

∂t
||2 ≤ ||∇∂v

∂t
||2.

Hence θ ∈ L∞(0, T ;H2(Ω)) and ∂θ
∂t ∈ L

2(0, T ;H1
0 (Ω)) a priori.

Lemma 2.3. The same solution also verifies:

• a)

||u(t)||2 + ||∇v(t)||2 + ||∇θ(t)||2 ≤ ec
′tQ

(
||∇u0||2 + ||∇v0||2 + ||∇θ0||2

+

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
.

(50)

• b)

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) + ||θ(t)||2H2(Ω) ≤ e
−ctQ(||u0||H2(Ω), ||v0||H2(Ω),

||θ0||H1(Ω)) + c′(r), c > 0, r > 0.
(51)

Proof. • a) We start by recalling the inequality (20)

1

2

d

dt
(||u||2 + ||∇v||2 + ||∇θ||2) + ||∆u||2 + c(||∆v||2 + ||∆θ||2)

≤ c(||∇u||2 + ||∇v||2) + c′′
∣∣∣∣∣∣∣∣∂v∂t

∣∣∣∣∣∣∣∣2. (52)

Using the interpolation inequality

||u||2H1(Ω) ≤ c||u|| ||u||H2(Ω), c ≥ 0,

and then the Young’s inequality, we obtain

d

dt
(||u||2 + ||∇v||2 + ||∇θ||2) + c(||∆u||2 + ||∆v||2 + ||∆θ||2)

≤ c′(||u||2 + ||∇v||2) + c

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2. (53)



ASYMPTOTIC BEHAVIOR OF A CAHN-HILLIARD/ALLEN-CAHN SYSTEM WITH TEMPERATURE11

Applying now Gronwall’s lemma and using(23), we find

||u(t)||2 + ||∇v(t)||2 + ||∇θ(t)||2 ≤ ec
′tQ

(
||∇u0||2 + ||∇v0||2 + ||∇θ0||2

+

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
.

• b) It follows from (53) after using (23) and (50) that∫ 1

0

(||u||2H2(Ω) + ||v||2H2(Ω) + ||θ||2H2(Ω))dt ≤ Q
(
||∇u0||2 + ||∇v0||2 + ||∇θ0||2

+

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
.

(54)

Hence, there exists T ∈ (0, 1) such that

||u(T )||2H2(Ω) + ||v(T )||2H2(Ω) + ||θ(T )||2H2(Ω) ≤ Q
(
||∇u0||2 + ||∇v0||2 + ||∇θ0||2

+

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
.

(55)
Repeating the estimates leading to (49), but starting from t = T instead of
t = 0, we have

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) + ||θ(t)||2H1(Ω) ≤ e
ctQ

(
||u(T )||2H2(Ω) + ||v(T )||2H2(Ω)

+ ||θ(T )||2H1(Ω)

)
.

Then using (55), we obtain

||u(1)||2H2(Ω) + ||v(1)||2H2(Ω) + ||θ(1)||2H1(Ω) ≤ Q
(
||∇u0||2 + ||∇v0||2 + ||∇θ0||2

+

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
.

(56)
We now repeat the estimates leading to (56), and since our equations are
autonomous, we can make a translation in time. We obtain, for t ≥ 1,

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) + ||θ(t)||2H1(Ω) ≤ Q
(
||∇u(t− 1)||2 + ||∇v(t− 1)||2

+ ||∇θ(t− 1)||2 +

∫
Ω

[F (u(t− 1) + v(t− 1)) + F (u(t− 1)− u(t− 1))]dx

)
,

(57)
which yields, owing to (22),

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) + ||θ(t)||2H1(Ω) ≤ e
−ctQ

(
||u0||2H1(Ω) + ||v0||2H1(Ω)

+ ||θ0||2H1(Ω) +

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
+ c′, c > 0, t ≥ 1.

(58)
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Combining the above estimate with (49) from 0 to 1, we obtain

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) + ||θ(t)||2H1(Ω) ≤ e
−ctQ

(
||u0||2H2(Ω) + ||v0||2H2(Ω)

+ ||θ0||2H1(Ω)

)
+ c′, c > 0, t ≥ 0.

(59)

Furthermore, we recall the equation (27)

d

dt
||∆θ||2 +

∣∣∣∣∣∣∣∣∇∂θ∂t
∣∣∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣∣∣∇∂v∂t

∣∣∣∣∣∣∣∣2. (60)

Noting that it follows from (23), and (77) that∫ t+r

t

(∣∣∣∣∣∣∣∣∇∂u∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2)dx ≤ e−ctQ(||∇u0||2 + ||∇v0||2 + ||∇θ0||2

+

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
+ c′(r), c > 0, r > 0,

(61)

and from (47), (58) and (61) that∫ t+r

t

||∆θ||2dx ≤ e−ctQ
(
||∇u0||2 + ||∇v0||2 + ||∇θ0||2 +

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
+ c′(r), c > 0, r > 0.

(62)
We deduce from (60)-(62) and the uniform’s Gronwall lemma, (see, e.g. [39]),
that

||θ(t)||2H2(Ω) ≤ e
−ctQ

(
||∇u0||2 + ||∇v0||2 + ||∇θ0||2 +

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
+ c′(r), c > 0, r > 0.

(63)
Collecting (59) and (63), we obtain

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) + ||θ(t)||2H2(Ω) ≤ e
−ctQ(||u0||H2(Ω), ||v0||H2(Ω),

||θ0||H1(Ω)) + c′(r), c > 0, r > 0.

Theorem 2.4. Let (u, v, θ) be the solution to the problem with initial data (u0, v0, θ0)
obtained in Theorem 2.1. If (u0, v0, θ0) ∈ (H2(Ω)∩H1

0 (Ω))2×H1
0 (Ω), then there ex-

ists a unique solution (u, v, θ) ∈ L∞loc(IR
+; (H2(Ω)3), and (∂u∂t ,

∂v
∂t ,

∂θ
∂t ) ∈ L

∞
loc(IR

+;H−1(Ω)×
L2(Ω)2) ∩ L2

loc(IR
+;H1

0 (Ω)3).

Proof. The proof of the existence (as well as the above a priori estimates) are based
on a classical Galerkin scheme as in the previous section and mainly on the esti-
mates (49) and (27).

We now turn our attention to prove the uniqueness:
We consider two solutions (u1, v1, θ1) and (u2, v2, θ2) to the problem with initial
data (u0,1, v0,1, θ0,1) and (u0,2, v0,2, θ0,2) respectively.
We set (u, v, θ) = (u1, v1, θ1) − (u2, v2, θ2) and (u0, v0, θ0) = (u0,1, v0,1, θ0,1) −
(u0,2, v0,2, θ0,2).
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We then have the following system

(−∆)−1 ∂u

∂t
−∆u+ f(u1 + v1)− f(u2 + v2) + f(u1 − v1)− f(u2 − v2) = 0, (64)

∂v

∂t
−∆v + f(u1 + v1)− f(u2 + v2)− f(u1 − v1) + f(u2 − v2) = θ, (65)

∂θ

∂t
−∆θ = −∂v

∂t
, (66)

with u = ∆u = v = θ = 0 on Γ, (67)

u|t=0 = u0, v|t=0 = v0, θ|t=0 = θ0. (68)

We multiply (64) by ∂u
∂t , (65) by ∂v

∂t , and (66) by θ. We then sum the result to
obtain

1

2

d

dt

(
||∇u||2 + ||∇v||2 + ||θ||2

)
+

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 + ||∇θ||2

+ ((f(u1 + v1)− f(u2 + v2),
∂

∂t
(u+ v)))

+ ((f(u1 − v1)− f(u2 − v2),
∂

∂t
(u− v))) = 0.

(69)

Furthermore,((
f(u1 + v1)− f(u2 + v2),

∂

∂t
(u+ v)

))
=

∣∣∣∣(((−∆)
1
2

(
f(u1 + v1)− f(u2 + v2)

)
, (−∆)

−1
2
∂

∂t
(u+ v)

))∣∣∣∣
≤ c
∣∣∣∣∣∣∣∣ ∂∂t (u+ v)

∣∣∣∣∣∣∣∣
−1

||∇(f(u1 + v1)− f(u2 + v2))||, c > 0,

(70)
and similarly((

f(u1 − v1)− f(u2 − v2),
∂

∂t
(u− v)

))
≤ c′

∣∣∣∣∣∣∣∣ ∂∂t (u− v)

∣∣∣∣∣∣∣∣
−1

||∇(f(u1 − v1)− f(u2 − v2))||, c′ > 0.
(71)

Therefore,

1

2

d

dt

(
||∇u||2 + ||∇v||2 + ||θ||2

)
+ c

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+ c′
∣∣∣∣∣∣∣∣∂v∂t

∣∣∣∣∣∣∣∣2 + ||∇θ||2

≤ c(||∇(f(u1 + v1)− f(u2 + v2))||2 + ||∇(f(u1 − v1)− f(u2 − v2))||2).

(72)
Owing to (51), we can see that
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||∇
(
f(u1 + v1)− f(u2 + v2)

)
||

=||∇
(∫ 1

0

f ′(u1 + v1 + s(u2 + v2 − u1 − v1))ds(u− v)
)
||

≤||
∫ 1

0

f ′(u1 + v1 + s(u2 + v2 − u1 − v1))ds∇(u− v)||

+ ||(u− v)

∫ 1

0

f ′′(u1 + v1 + s(u2 + v2 − u1 − v1))
(
∇(u1 + v1)

+ s∇(u2 + v2 − u1 − v1)
)
ds||

≤Q
(
||∇(u− v)||+ || |u− v| |∇(u1 + v1)| ||+ || |u− v| |∇(u2 + v2)| ||

)
≤Q(||∇u||+ ||∇v||).

(73)

In the same way,

||∇
(
f(u1 − v1)− f(u2 − v2)

)
|| ≤ Q(||∇u||+ ||∇v||), (74)

where

Q = Q(||u0,1||H2(Ω), ||u0,2||H2(Ω), ||v0,1||H2(Ω), ||v0,2||H2(Ω), ||θ0,1||H2(Ω), ||θ0,2||H2(Ω)).

We deduce from (69)-(74) that

1

2

d

dt

(
||∇u||2 + ||∇v||2 + ||θ||2

)
+

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 + ||∇θ||2

≤ Q(||∇u||2 + ||∇v||2).

(75)

Now using Gronwall’s lemma, we obtain

||∇u(t)||2 + ||∇v(t)||2 + ||θ(t)||2 ≤ eQt(||∇u0||2 + ||∇v0||2 + ||θ0||2), (76)

whence the uniqueness (taking (u0, v0, θ0) = (0, 0, 0)), as well as the continuous
dependence with respect to the initial data.

2.3. Global and Exponential attractors. We set E = (H2(Ω) ∩H1
0 (Ω))3.

Note that it follows from Theorem 2.2 that we can define the semigroup

S(t) : E −→ E
(u0, v0, θ0) −→ (u(t), v(t), θ(t)),

where (u, v, θ) is the unique solution to our system.

Theorem 2.5. The semigroup S(t) associated with (1)-(5) possesses a bounded
absorbing set B0 in E such that, for every bounded set B ⊂ E, there exists t0 =
t0(B) ≥ 0 such that t ≥ t0 implies S(t)B ⊂ B0.

It comes directly from (22) and (51).

Remark 1. We can assume, without loss of generality, that B0 is positively invari-
ant by S(t), i.e., S(t)B0 ⊂ B0,∀ t ≥ 0.

Theorem 2.6. The semigroup S(t) possesses an exponential attractor M ⊂ B0,
i.e.,
(i) M is compact in H1(Ω)2 × L2(Ω);
(ii) M is positively invariant, which means that S(t)M⊂M, ∀ t ≥ 0;
(iii) M has a finite fractal dimension in H1(Ω)2 × L2(Ω);
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(iv) M attracts exponentially fast the bounded subsets of E : ∀ B ⊂ E bounded,
distH1(Ω)2×L2(Ω)(S(t)B,M) ≤ Q(||B||E)e−ct, c > 0, t ≥ 0, where the constant c is
independent of B and distH1(Ω)2×L2(Ω) denotes the Hausdorff semidistance between
sets defined by

distH1(Ω)2×L2(Ω)(A,B) = sup
a∈A

inf
b∈B
||a− b||H1(Ω)2×L2(Ω).

Proof. Here, we assume that the initial conditions are in the bounded absorbing
set B0. To complete the proof, we need an asymptotic smoothing property on the
difference of two solutions, a Hölder estimate with respect to space and time, and
a compactness estimate of the solution. These are the key tools to construct expo-
nential attractors (see [8]-[10], [11], [26], and [27]).

The Hölder estimate is as follows

||u(t1)− u(t2)||H1(Ω) + ||v(t1)− v(t2)||H1(Ω) + ||θ(t1)− θ(t2)||L2(Ω)

≤ c(||∇(u(t1)− u(t2))||+ ||∇(v(t1)− v(t2))||+ ||(θ(t1)− θ(t2))||)

≤ c
(∣∣∣∣∣∣∣∣ ∫ t2

t1

∇∂u
∂t
dτ

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣ ∫ t2

t1

∇∂v
∂t
dτ

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣ ∫ t2

t1

∂θ

∂t
dτ

∣∣∣∣∣∣∣∣)
≤ c|t1 − t2|

1
2

∣∣∣∣ ∫ t2

t1

(∣∣∣∣∣∣∣∣∇∂u∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂θ∂t
∣∣∣∣∣∣∣∣2)dτ ∣∣∣∣ 12 .

We now differentiate equations (2) and (9) with respect to time, then we multiply
the resulting equations by ∂u

∂t and ∂v
∂t respectively, we use (7) and an interpolation

inequality to find

d

dt

(∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2)+

∣∣∣∣∣∣∣∣∇∂u∂t
∣∣∣∣∣∣∣∣2+

∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2 ≤ c(∣∣∣∣∣∣∣∣∂u∂t

∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2)+c′

∣∣∣∣∣∣∣∣∂θ∂t
∣∣∣∣∣∣∣∣2.

(77)

We note that it follows from (23), (24), (77) and the fact that the initial conditions
are in a bounded absorbing set that∫ t2

t1

(∣∣∣∣∣∣∣∣∇∂u∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2)dτ ≤ c, (78)

where c only depends on B0 and T ≥ T0 such that t1, t2 ∈ [T0, T ].

Moreover, it follows from (75) and (76) that∫ t

0

(∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2+||∇θ||2

)
dx ≤ ceQt(||∇u0||2+||∇v0||2+||θ0||2) ≤ c′′, (79)

where c′′ only depends on B0.

Plus, it follows from (21), (50), and (79) that∫ t2

t1

∣∣∣∣∣∣∣∣∂θ∂t
∣∣∣∣∣∣∣∣2dx ≤ c, (80)

where c only depends on B0.
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Therefore, we have

||u(t1)−u(t2)||H1(Ω) +||v(t1)−v(t2)||H1(Ω) +||θ(t1)−θ(t2)||L2(Ω) ≤ c|t1−t2|
1
2 , (81)

where c only depends on B0, and t1, t2 ∈ [T0, T ], where T ∈ IR+.

We now want to find a compactness estimate:

First, we differentiate (64) and (65) with respect to time, we multiply the resulting
equations by (t−T0)∂u∂t and (t−T0)∂v∂t respectively, where T0 is the same as before
and we obtain

1

2

d

dt

(
(t− T0)

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+ (t− T0)

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2)+ (t− T0)

∣∣∣∣∣∣∣∣∇∂u∂t
∣∣∣∣∣∣∣∣2

+ (t− T0)

∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2 ≤ c(t− T0)

(∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2)

+
1

2

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+
1

2

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 − (t− T0)

((
∂θ

∂t
,
∂v

∂t

))
+ (t− T0)

∫
Ω

(
|f ′(u1 + v1)− f ′(u2 + v2)|

∣∣∣∣ ∂∂t (u+ v)

∣∣∣∣∣∣∣∣ ∂∂t (u2 + v2)

∣∣∣∣)dx
+ (t− T0)

∫
Ω

(
|f ′(u1 − v1)− f ′(u2 − v2)|

∣∣∣∣ ∂∂t (u+ v)

∣∣∣∣∣∣∣∣ ∂∂t (u2 − v2)

∣∣∣∣)dx.
Noting that

∫
Ω

(
|f ′(u1 + v1)− f ′(u2 + v2)|

∣∣∣∣ ∂∂t (u+ v)

∣∣∣∣∣∣∣∣ ∂∂t (u2 + v2)

∣∣∣∣)dx
≤ c

∫
Ω

(
|u+ v|

∣∣∣∣ ∂∂t (u+ v)

∣∣∣∣∣∣∣∣ ∂∂t (u2 + v2)

∣∣∣∣)dx
≤ c||∇(u+ v)||

∣∣∣∣∣∣∣∣∇ ∂

∂t
(u+ v)

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ ∂∂t (u2 + v2)

∣∣∣∣∣∣∣∣,
(82)

using Hölder inequality and the continuous embeddingsH1(Ω) ⊂ L3(Ω) andH1(Ω) ⊂
L6(Ω).

Similarly,

∫
Ω

(
|f ′(u1 − v1)− f ′(u2 − v2)|

∣∣∣∣ ∂∂t (u+ v)

∣∣∣∣∣∣∣∣ ∂∂t (u2 − v2)

∣∣∣∣)dx
≤ c||∇(u− v)||

∣∣∣∣∣∣∣∣∇ ∂

∂t
(u+ v)

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ ∂∂t (u2 − v2)

∣∣∣∣∣∣∣∣. (83)
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Owing then to a proper interpolation inequality, we obtain

1

2

d

dt

(
(t− T0)

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+ (t− T0)

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2)+ c(t− T0)

(∣∣∣∣∣∣∣∣∇∂u∂t
∣∣∣∣∣∣∣∣2

+

∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2) ≤ c(t− T0)

(∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂θ∂t
∣∣∣∣∣∣∣∣2)

+
1

2

(∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2)+ c′(t− T0)||∇(u+ v)||2

∣∣∣∣∣∣∣∣ ∂∂t (u2 + v2)

∣∣∣∣∣∣∣∣2
+ c′(t− T0)||∇(u− v)||2

∣∣∣∣∣∣∣∣ ∂∂t (u2 − v2)

∣∣∣∣∣∣∣∣2.

(84)

Noting also that it follows from (23), (77), and (25) that∫ t

T0

(∣∣∣∣∣∣∣∣∇∂u∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2)dx ≤ cec′t, t ≥ T0,

where the constants only depend on B0. Hence we deduce that∫ t

T0

(∣∣∣∣∣∣∣∣∂u2

∂t

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂v2

∂t

∣∣∣∣∣∣∣∣2)dx ≤ cec′t, t ≥ T0, (85)

for (u, v) = (u2, v2) and the constants only depend on B0.

Furthermore, applying Gronwall’s lemma on (84) over (T0, t) and owing to (76),
(79), (80) and (85), we obtain∣∣∣∣∣∣∣∣∂u∂t (t)

∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t (t)

∣∣∣∣∣∣∣∣2 ≤ cec′t(||u0||2H1(Ω) + ||v0||2H1(Ω) + ||θ0||2),

t ≥ 1,

(86)

where the constants only depend on B0.

Next, we rewrite equations (64) and (65) in the following forms

−∆u = h̃u(t), (87)

and

−∆v = h̃v(t), (88)

where u = ∆u = v = θ = 0 on Γ, for t ≥ 1 fixed,

and

h̃u(t) = −(−∆)−1 ∂u

∂t
−
(
f(u1 +v1)−f(u2 +v2)

)
−
(
f(u1−v1)−f(u2−v2)

)
, (89)

h̃v(t) = −∂v
∂t
−
(
f(u1 + v1)− f(u2 + v2)

)
−
(
f(u2 − v2)− f(u1 − v1)

)
+ θ, (90)

satisfy, owing to (76) and (86),

||h̃u(t)||2 ≤ cec
′t(||u0||2H1(Ω) + ||v0||2H1(Ω) + ||θ0||2), t ≥ 1, (91)

and

||h̃v(t)||2 ≤ cec
′t(||u0||2H1(Ω) + ||v0||2H1(Ω) + ||θ0||2), t ≥ 1, (92)
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where the constants only depend on B0.

Multiplying now (87) by −∆u and (88) by −∆v, we obtain

||∆u(t)|| ≤ ||h̃u(t)||, t ≥ 1,

and

||∆v(t)|| ≤ ||h̃v(t)||, t ≥ 1,

whence

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) ≤ ce
c′t(||u0||2H1(Ω) + ||v0||2H1(Ω) + ||θ0||2),

t ≥ 1,
(93)

where the constants only depend on B0.

We also multiply (66) by −(t− T0)∆θ and find

d

dt
((t− T0)||∇θ||2) + (t− T0)||∆θ||2 ≤ c(t− T0)

(∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2 + ||∇θ||2

)
. (94)

We find combining (84) and (94) then applying Gronwall’s lemma (applied over
(T0, t); note that T0 ≤ 1) and using (76)-(80), and (85), we find∣∣∣∣∣∣∣∣∂u∂t (t)

∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t (t)

∣∣∣∣∣∣∣∣2 + ||∇θ(t)||2 ≤ cec
′t(||u0||2H1(Ω) + ||v0||2H1(Ω) + ||θ0||2),

t ≥ 1,

(95)
where the constants only depend on B0.

At the end, we can see from (93) and (95), that

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) + ||θ(t)||2H1(Ω) ≤ ce
c′t(||u0||2H1(Ω) + ||v0||2H1(Ω) + ||θ0||2),

t ≥ 1,

(96)
And the result follows from (76), (81), and (96).

Moreover, we can deduce from Theorem 4.1 and standard results the

Corollary 1. The semigroup S(t) possesses the finite dimensional global attractor
A ⊂ B0.

Remark 2. The global attractor A is the smallest (for the inclusion) compact set
of the phase space which is invariant by the flow (i.e., S(t)A = A, ∀t ≥ 0) and
attracts all bounded sets of initial data as time goes to infinity; that’s why, it’s
important in the study of the asymptotic behavior of the system. Furthermore, the
finite dimensionality means, roughly speaking, that, even though the initial phase
space is infinite dimensional, the reduced dynamics can be described by a finite
number of parameters. We refer the reader to [1], [3], [39], and [27] for more details
and discussions on this topic.
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3. Part II: The Type III Law. The classical Fourier law presented in the pre-
vious section has one essential drawback, that is, it predicts that thermal signals
propagate with an infinite speed, which violates causality (the so-called ’paradox
of heat conduction’, see, e.g., [5]). That is why, several modifications of this law
have been proposed in the literature to correct this unrealistic feature, leading to a
second order in time equation for the temperature.

In particular, in [23], the authors considered in the place of the Fourier law, the
Maxwell-Cattaneo law (

1 + η
∂

∂t

)
q = −∇θ, η > 0,

which leads to

η
∂2θ

∂t2
+
∂θ

∂t
−∆θ = −η ∂

2v

∂t2
− ∂v

∂t
,

(see also [16], [17]).

On the other hand, Green and Naghdi proposed in [12]-[15] an alternative treatment
for a thermomechanical theory of deformable media which presents an entropy bal-
ance rather than the usual entropy inequality. However, if we restrict our attention
to the heat conduction, we recall that three different theories, labelled as type I,
type II and type III, were proposed. In particular, the Fourier law is found when
type I is linearized. The linearized versions of the two other theories are described
by the following constitutive equations (knowing that we are going to study only
the type III in what follows)

q = −k∇α, k > 0, (Type II) (97)

and

q = −k∇α− k∗∇θ, k, k∗ > 0, (Type III), (98)

where

α(t) =

∫ t

t0

θ(τ)dτ + α0,

(
θ =

∂α

∂t

)
is called the thermal displacement variable. These theories were well studied in the
recent years and, particularly, a special interest was given to the qualitative study
of the solutions (see e.g. [30]-[35] for studies concerned with linear thermoelas-
tic theories). In addition, non-linear acceleration waves have been studied for types
II and III non-linear thermoelasticity [36] and fluids without energy dissipation [37].

Adding equations (97) and (98) to the equation

∂H

∂t
+ div q = 0, (99)

we obtain the following equations

∂2α

∂t2
− k∆α = −∂v

∂t
for type II and

∂2α

∂t2
− k∗ ∂

∂t
∆α− k∆α = −∂v

∂t
for type III.
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3.1. Setting of the New Problem. We consider the following initial and bound-
ary value problem (for simplicity, we take k = k∗ = 1):

∂u

∂t
+ ∆2u−∆(f(u+ v) + f(u− v)) = 0, (100)

∂v

∂t
−∆v + f(u+ v)− f(u− v) =

∂α

∂t
, (101)

∂2α

∂t2
−∆

∂α

∂t
−∆α = −∂v

∂t
, (102)

u = ∆u = v = α = 0 on Γ, (103)

u|t=0 = u0, v|t=0 = v0, α|t=0 = α0,
∂α

∂t

∣∣∣
t=0

= α1, (104)

where Ω is a bounded domain of IRN (N = 1, 2, or 3) with smooth boundary Γ.

We assume that f is of class C2 and satisfies

− c ≤ F (s) ≤ f(s)s, c ≥ 0, s ∈ IR, (105)

where

F (s) =

∫ s

0

f(τ)dτ.

We also assume that

f(0) = 0, f ′(s) ≥ −c′, s ∈ IR, c′ ≥ 0. (106)

3.2. Global and Exponential Attractors.

Lemma 3.1. The solution of (100)-(104) verifies formally the following:

• a)

d

dt

(
||∇u||2 + ||∇v||2 + 2

∫
Ω

[F (u+ v) + F (u− v)]dx+

∣∣∣∣∣∣∣∣∂α∂t
∣∣∣∣∣∣∣∣2 + ||∇α||2

)
+ 2

(∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2) = 0,

(107)

• b)

E3(t) ≤ ce−c
′t

(
||u0||2−1 + ||v0||2 + ||α0||2 + ||∇u0||2 + ||∇v0||2 + ||∇α0||2 + ||α1||2

+

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
, c′ > 0, t ≥ 0,

(108)
where

E3 = ε1||u||2−1 + ε1||v||2 + ||∇u||2 + ||∇v||2 + 2

∫
Ω

[F (u+ v) + F (u− v)]dx

+ (1 + ε2)||∇α||2 + 2ε2((
∂α

∂t
, α)) +

∣∣∣∣∣∣∣∣∂α∂t
∣∣∣∣∣∣∣∣2,
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• c)∣∣∣∣∣∣∣∣∂u∂t (t)

∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t (t)

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂α∂t (t)

∣∣∣∣∣∣∣∣2 + ||∇α(t)||2 ≤ ectQ
(
||u0||2H1(Ω)

+ ||v0||2H1(Ω) + ||α0||2H1(Ω) + ||α1||2 +

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
,

t > 0.

(109)

• d)

1

2

d

dt

(
||∆α||2 +

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2)+ c

∣∣∣∣∣∣∣∣∆∂α

∂t

∣∣∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2, (110)

• e)

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) + ||α(t)||2H2(Ω) +

∣∣∣∣∣∣∣∣∂α∂t (t)

∣∣∣∣∣∣∣∣2
H1(Ω)

≤ ectQ(||u0||H2(Ω), ||v0||H2(Ω), ||α0||H2(Ω), ||α1||H1(Ω)), t ≥ 0.

(111)

Proof. • a) We rewrite (100) in the equivalent form

(−∆)−1 ∂u

∂t
−∆u+ f(u+ v) + f(u− v) = 0 (112)

We multiply (112) by ∂u
∂t , (101) by ∂v

∂t and have, summing the results,∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 +

d

dt

(
1

2
||∇u||2 +

1

2
||∇v||2 +

∫
Ω

[F (u+ v) + F (u− v)]dx

)
=

((
∂α

∂t
,
∂v

∂t

))
.

(113)

We then multiply (102) by ∂α
∂t to obtain

1

2

d

dt

(∣∣∣∣∣∣∣∣∂α∂t
∣∣∣∣∣∣∣∣2 + ||∇α||2

)
+

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2 = −

((
∂α

∂t
,
∂v

∂t

))
. (114)

Thus, summing (113) and (114), we find

d

dt

(
||∇u||2 + ||∇v||2 + 2

∫
Ω

[F (u+ v) + F (u− v)]dx+

∣∣∣∣∣∣∣∣∂α∂t
∣∣∣∣∣∣∣∣2 + ||∇α||2

)
+ 2

(∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2) = 0.

• b) We multiply (112) by u, (101) by v and sum the results to have, owing to
(105),

d

dt
(||u||2−1+||v||2)+||∇u||2+||∇v||2+

∫
Ω

[F (u+v)+F (u−v)]dx ≤ c
∣∣∣∣∣∣∣∣∇∂α∂t

∣∣∣∣∣∣∣∣2. (115)

Then, we multiply (102) by α and obtain

d

dt

(
||∇α||2 + 2(

∂α

∂t
, α)

)
+ c||∇α||2 ≤ c′

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 + c′′

∣∣∣∣∣∣∣∣∂α∂t
∣∣∣∣∣∣∣∣2. (116)



22 ALAIN MIRANVILLE, RAMON QUITANILLA, AND WAFA SAOUD

We sum (107), ε1(115) and ε2(116), where ε1 and ε2 > 0 are chosen small
enough so that∣∣∣∣∣∣∣∣∂α∂t

∣∣∣∣∣∣∣∣2 + ε2

(
||∇α||2 + 2(

∂α

∂t
, α)

)
≥ c
(∣∣∣∣∣∣∣∣∂α∂t

∣∣∣∣∣∣∣∣2 + ||∇α||2
)
, c > 0, (117)

2− ε1c− ε2c′ > 0, (118)

2− ε2c′′ > 0, (119)

and have an inequality of the form

dE3

dt
+ E3 +

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2 + ||∇α||2 ≤ 0, (120)

where

E3 = ε1||u||2−1 + ε1||v||2 + ||∇u||2 + ||∇v||2 + 2

∫
Ω

[F (u+ v) + F (u− v)]dx

+ (1 + ε2)||∇α||2 + 2ε2((
∂α

∂t
, α)) +

∣∣∣∣∣∣∣∣∂α∂t
∣∣∣∣∣∣∣∣2,

satisfies

E3 ≥ c
(
||∇u||2 + ||∇v||2 +

∫
Ω

[F (u+ v) + F (u− v)]dx+ ||∇α||2

+

∣∣∣∣∣∣∣∣∂α∂t
∣∣∣∣∣∣∣∣2)− c′, c > 0.

(121)

In particular, we deduce from (120) the following estimate

E3(t) ≤ ce−c
′t

(
||u0||2−1 + ||v0||2 + ||α0||2 + ||∇u0||2 + ||∇v0||2 + ||∇α0||2 + ||α1||2

+

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
, c′ > 0, t ≥ 0.

Furthermore, for every r > 0,∫ t+r

t

(∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2 + ||∇α||2

)
dx ≤ ce−c

′t

(
||u0||2−1 + ||v0||2

+ ||α0||2 + ||∇u0||2 + ||∇v0||2 + ||∇α0||2 + ||α1||2

+

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
+ c′′(r), c′ > 0, t ≥ 0.

(122)
• c) We multiply (100) by ∂u

∂t , (101) by −∆∂v
∂t , and (102) by −∆∂α

∂t , we obtain

d

dt
||∆u||2 +

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2 ≤ Q(||u||2H2(Ω) + ||v||2H2(Ω)), (123)

d

dt
||∆v||2 +

∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2 ≤ Q(||u||2H2(Ω) + ||v||2H2(Ω)) +

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2, (124)

and

d

dt

(
||∆α||2 +

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2)+ c

∣∣∣∣∣∣∣∣∆∂α

∂t

∣∣∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2, (125)
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Summing (123), (124), and (125) yields

d

dt

(
||∆u||2 + ||∆v||2 + ||∆α||2 +

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2)+

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2 + c

∣∣∣∣∣∣∣∣∆∂α

∂t

∣∣∣∣∣∣∣∣2
≤ Q(||u||2H2(Ω) + ||v||2H2(Ω)).

(126)

In particular, we set

y = ||∆u||2 + ||∆v||2 + ||∆α||2 +

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2.

Thus, we deduce from (126) a differential inequality of the form

y′ ≤ Q(y).

Let z be the solution of the ordinary differential equation

z′ = Q(z),

with z(0) = y(0). It follows from the comparison principle that there exists
T0 = T0(||u0||H2(Ω), ||v0||H2(Ω), ||α0||H2(Ω), ||α1||H1(Ω)) belonging to, say, (0, 1

2 )
such that

y(t) ≤ z(t), t ∈ [0, T0],

whence

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) + ||α(t)||2H2(Ω) +

∣∣∣∣∣∣∣∣∂α∂t (t)

∣∣∣∣∣∣∣∣2
H1(Ω)

≤ Q(||u0||H2(Ω), ||v0||H2(Ω), ||α0||H2(Ω), ||α1||H1(Ω)), t ≤ T0.

(127)

Therefore (u, v, α, ∂α∂t ) ∈ L∞(0, T0;H2(Ω)3 ×H1(Ω)) a priori.

We now differentiate (101) and (112) with respect to time to find, owing to
(102)

(−∆)−1 ∂

∂t

∂u

∂t
−∆

∂u

∂t
+ f ′(u+ v)(

∂u

∂t
+
∂v

∂t
) + f ′(u− v)(

∂u

∂t
− ∂v

∂t
) = 0, (128)

∂

∂t

∂v

∂t
−∆

∂v

∂t
+f ′(u+v)(

∂u

∂t
+
∂v

∂t
)−f ′(u−v)(

∂u

∂t
− ∂v
∂t

) = −∂v
∂t

+∆
∂α

∂t
+∆α, (129)

with
∂u

∂t
=
∂v

∂t
=
∂α

∂t
= 0 on Γ. (130)

Multiplying then (128) by t∂u∂t , (129) by t∂v∂t , and (102) by t∂α∂t to obtain,
summing the three resulting inequalities and using (106) and an interpolation
inequality,

1

2

d

dt

(
t

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+ t

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 + t

∣∣∣∣∣∣∣∣∂α∂t
∣∣∣∣∣∣∣∣2 + t||∇α||2

)
+ ct

(∣∣∣∣∣∣∣∣∇∂u∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2

+

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2) ≤ 1

2

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+
1

2

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 +

1

2

∣∣∣∣∣∣∣∣∂α∂t
∣∣∣∣∣∣∣∣2 +

1

2
||∇α||2

+ c′
(
t

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+ t

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 + t

∣∣∣∣∣∣∣∣∂α∂t
∣∣∣∣∣∣∣∣2 + t||∇α||2

)
.

(131)
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We apply Gronwall’s lemma to (131) and we use (122), we get∣∣∣∣∣∣∣∣∂u∂t (t)

∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t (t)

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂α∂t (t)

∣∣∣∣∣∣∣∣2 + ||∇α(t)||2 ≤ 1

t
Q

(
||u0||2H1(Ω)

+ ||v0||2H1(Ω) + ||α0||2H1(Ω) + ||α1||2 +

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
,

t ∈ (0, T0].

(132)
Summing (128) times ∂u

∂t , (129) times ∂v
∂t , and (102) times ∂α

∂t and interpolating
yields

1

2

d

dt

(∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂α∂t
∣∣∣∣∣∣∣∣+ ||∇α||2

)
+ c

∣∣∣∣∣∣∣∣∇∂u∂t
∣∣∣∣∣∣∣∣2

+

∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2 + c′

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2 ≤ c′′(∣∣∣∣∣∣∣∣∂u∂t

∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂α∂t
∣∣∣∣∣∣∣∣2 + ||∇α||2

)
.

(133)
Applying then Gronwall’s lemma to (133) from t to T0 and using (132), we
obtain∣∣∣∣∣∣∣∣∂u∂t (t)

∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t (t)

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂α∂t (t)

∣∣∣∣∣∣∣∣2 + ||∇α(t)||2 ≤ ectQ
(
||u0||2H1(Ω)

+ ||v0||2H1(Ω) + ||α0||2H1(Ω) + ||α1||2 +

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
,

t ≥ T0.

(134)

Combining (132) and (134) yields∣∣∣∣∣∣∣∣∂u∂t (t)

∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t (t)

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂α∂t (t)

∣∣∣∣∣∣∣∣2 + ||∇α(t)||2 ≤ ectQ
(
||u0||2H1(Ω)

+ ||v0||2H1(Ω) + ||α0||2H1(Ω) + ||α1||2 +

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
,

t > 0.

• d) We rewrite (101) and (112) in the following forms

−∆u+ f(u+ v) + f(u− v) = hu(t), (135)

−∆v + f(u+ v)− f(u− v) = hv(t), (136)

where u = ∆u = v = 0 on Γ, t ≥ T0,

and

hu(t) = −(−∆)−1 ∂u

∂t
(137)

hv(t) =
∂α

∂t
− ∂v

∂t
, (138)

satisfy, owing to (134),

||hu(t)|| ≤ ectQ(||u0||H2(Ω), ||v0||H2(Ω), ||α0||H1(Ω), ||α1||), t ≥ T0, (139)

and

||hv(t)|| ≤ ectQ(||u0||H2(Ω), ||v0||H2(Ω), ||α0||H1(Ω), ||α1||), t ≥ T0. (140)
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Next, we multiply (135) by u, (136) by v and sum the result. Then, noting
that f(s)s ≥ −c, c ≥ 0, we obtain

||∇u||2 + ||∇v||2 ≤ c(||hu(t)||2 + ||hv(t)||2) + c′. (141)

Multiplying now (135) by −∆u and (136) by −∆v, summing the result, then
noting that f ′(s) ≥ −c′, we obtain

||∆u(t)||2 + ||∆v(t)||2 ≤ c(||hu(t)||2 + ||hv(t)||2 + ||∇u(t)||2 + ||∇v(t)||2). (142)

We finally deduce that

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) ≤ ce
c′tQ(||u0||H2(Ω), ||v0||H2(Ω), ||α0||H1(Ω),

||α1||), t ≥ T0.
(143)

Moreover, we multiply (102) by −∆∂α
∂t and find

1

2

d

dt

(
||∆α||2 +

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2)+ c

∣∣∣∣∣∣∣∣∆∂α

∂t

∣∣∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2.

• e) Integrating (133) between t and T0 and using (134), we obtain∫ T0

t

(∣∣∣∣∣∣∣∣∇∂u∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2)dx ≤ ectQ(||u0||2H1(Ω) + ||v0||2H1(Ω)

+ ||α0||2H1(Ω) + ||α1||2 +

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
, t ≥ T0.

(144)
Applying then Gronwall’s lemma to (110) and using (144), we find

||∆α(t)||2 +

∣∣∣∣∣∣∣∣∇∂α∂t (t)

∣∣∣∣∣∣∣∣2 ≤ cec′tQ(||u0||2H1(Ω) + ||v0||2H1(Ω) + ||α0||2H1(Ω)

+ ||α1||2 +

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
, t ≥ T0.

(145)
Thus, we deduce from (127), (143), and (145) that

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) + ||α(t)||2H2(Ω) +

∣∣∣∣∣∣∣∣∂α∂t (t)

∣∣∣∣∣∣∣∣2
H1(Ω)

≤ ectQ(||u0||H2(Ω), ||v0||H2(Ω), ||α0||H2(Ω), ||α1||H1(Ω)), t ≥ 0.

Lemma 3.2. The solution also satisfies the following inequality:

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) + ||α(t)||2H2(Ω) +

∣∣∣∣∣∣∣∣∂α∂t (t)

∣∣∣∣∣∣∣∣2
H1(Ω)

≤ e−ctQ(||u0||H2(Ω),

||v0||H2(Ω), ||α0||H2(Ω), ||α1||H1(Ω)), c > 0, t ≥ 0.

(146)
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Proof. We start by multiplying (112) by −∆u, (101) by −∆v, and (102) by ∂α
∂t , we

obtain, after summing the result and using (106),

1

2

d

dt

(
||u||2 + ||∇v||2 + ||∇α||2 +

∣∣∣∣∣∣∣∣∂α∂t
∣∣∣∣∣∣∣∣2)+ ||∆u||2 + c||∆v||2 + c′

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2

≤ c′′(||∇u||2 + ||∇v||2) +

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2.

(147)
Using an interpolation inequality and Young’s inequality, we have

||u||2H1(Ω) ≤ c||u|| ||u||H2(Ω) ≤
1

2
||∆u||2 + c||u||2, c ≥ 0.

Therefore

d

dt

(
||u||2 + ||∇v||2 + ||∇α||2 +

∣∣∣∣∣∣∣∣∂α∂t
∣∣∣∣∣∣∣∣2)+ c

(
||∆u||2 + ||∆v||2 +

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2)

≤ c′(||u||2 + ||∇v||2) +

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2.

(148)
It follows from (148), using (122) and (109), that∫ 1

0

(||u||2H2(Ω) + ||v||2H2(Ω) +

∣∣∣∣∣∣∣∣∂α∂t
∣∣∣∣∣∣∣∣2
H1(Ω)

)dt ≤ Q
(
||u0||2H1(Ω) + ||v0||2H1(Ω)

+ ||α0||2H1(Ω) + ||α1||2 +

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
.

(149)

Hence, there exists T ∈ (0, 1) such that

||u(T )||2H2(Ω) + ||v(T )||2H2(Ω) +

∣∣∣∣∣∣∣∣∂α∂t (T )

∣∣∣∣∣∣∣∣2
H1(Ω)

≤ Q
(
||u0||2H1(Ω) + ||v0||2H1(Ω)

+ ||α0||2H1(Ω) + ||α1||2 +

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
.

(150)
Repeating now the estimates leading to (111) from t = T instead of t = 0, we have

||u(1)||2H2(Ω) + ||v(1)||2H2(Ω) +

∣∣∣∣∣∣∣∣∂α∂t (1)

∣∣∣∣∣∣∣∣2
H1(Ω)

≤ Q
(
||u0||2H1(Ω) + ||v0||2H1(Ω)

+ ||α0||2H1(Ω) + ||α1||2 +

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
.

(151)

Similarly, repeating the estimates leading to (151) also, we have, for t ≥ 1,

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) +

∣∣∣∣∣∣∣∣∂α∂t (t)

∣∣∣∣∣∣∣∣2
H1(Ω)

≤ Q
(
||u(t− 1)||2H1(Ω) + ||v(t− 1)||2H1(Ω)

+ ||α(t− 1)||2H1(Ω) +

∣∣∣∣∣∣∣∣∂α∂t (t− 1)

∣∣∣∣∣∣∣∣2 +

∫
Ω

[F (u(t− 1) + v(t− 1))

+ F (u(t− 1)− v(t− 1))]dx

)
.

(152)
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Owing to (108), the above estimate yields

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) +

∣∣∣∣∣∣∣∣∂α∂t (t)

∣∣∣∣∣∣∣∣2
H1(Ω)

≤ e−ctQ
(
||u0||2−1 + ||v0||2 + ||∇u0||2 + ||∇v0||2

+ ||∇α0||2 +

∫
Ω

[F (u0 + v0) + F (u0 − v0)]dx

)
, c > 0, t ≥ 1.

(153)
Combining (153) with (111) for t = 0, we get

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) +

∣∣∣∣∣∣∣∣∂α∂t (t)

∣∣∣∣∣∣∣∣2
H1(Ω)

≤ e−ctQ(||u0||H2(Ω), ||v0||H2(Ω), ||α0||H2(Ω),

||α1||H1(Ω)), c > 0, t ≥ 0.

(154)
Moreover, we note that it follows from (126) and (154) that

d

dt

(
||∆u||2 + ||∆v||2 + ||∆α||2 +

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2)+

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∆∂α

∂t

∣∣∣∣∣∣∣∣2
≤ e−ctQ(||u0||H2(Ω), ||v0||H2(Ω), ||α0||H2(Ω), ||α1||H1(Ω)).

(155)
Multiplying then (102) by −∆α, we have

d

dt

(
||∆α||2 + 2((∆α,

∂α

∂t
))

)
+ c||∆α||2 ≤ c

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 + 2

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2. (156)

We now sum (120) and ε3(148), where ε3 > 0 is small enough so that

dE4

dt
+ c(E4 +

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2) + c′||∆u||2 + ε3||∆v||2 + c′′

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2 ≤ 0, (157)

where

E4 = E3 + ε3(||u||2 + ||∇v||2 + c||∇α||2 +

∣∣∣∣∣∣∣∣∂α∂t
∣∣∣∣∣∣∣∣2).

We also sum (155), ε4(156), and (157), where ε4 > 0 is small enough so that∣∣∣∣∣∣∣∣∂α∂t
∣∣∣∣∣∣∣∣
H2(Ω)

+ ε4(||∆α||2 + 2((∆α,
∂α

∂t
))) ≥ c(

∣∣∣∣∣∣∣∣∂α∂t
∣∣∣∣∣∣∣∣
H2(Ω)

+ ||∆α||2),

and

dE5

dt
+ c

(
E5 +

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂α∂t
∣∣∣∣∣∣∣∣2
H2(Ω)

)
≤ e−c

′tQ(||u0||H2(Ω), ||v0||H2(Ω),

||α0||H2(Ω), ||α1||H1(Ω)), c > 0, t ≥ 0,

(158)
where

E5 = E4 + ||∆u||2 + ||∆v||2 + (1 + ε4)||∆α||2 + ε4((∆α,
∂α

∂t
)) +

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2.

We finally deduce from (158) the inequality

||u(t)||2H2(Ω) + ||v(t)||2H2(Ω) + ||α(t)||2H2(Ω) +

∣∣∣∣∣∣∣∣∂α∂t (t)

∣∣∣∣∣∣∣∣2
H1(Ω)

≤ e−ctQ(||u0||H2(Ω),

||v0||H2(Ω), ||α0||H2(Ω), ||α1||H1(Ω)), c > 0, t ≥ 0.



28 ALAIN MIRANVILLE, RAMON QUITANILLA, AND WAFA SAOUD

Theorem 3.3. For every (u0, v0, α0, α1) ∈ (H2(Ω)∩H1
0 (Ω))3×H1

0 (Ω), (100)-(104)
possesses a unique solution (u, v, α, ∂α∂t ) such that (u, v, α) ∈ L∞(IR+; H1

0(Ω)3)

∩ L∞loc(IR+; H2(Ω)3), (∂u∂t ,
∂v
∂t ) ∈ L∞(IR+; H−1(Ω) ×L2(Ω)) ∩ L2

loc(IR
+; H1

0(Ω)2) and
∂α
∂t ∈ L

∞(IR+; H1
0(Ω)) ∩ L2(IR+; H2(Ω)).

Proof. The proof of existence is based on the a priori estimates mentioned in the
previous lemmas and on, e.g., a standard Galerkin scheme similar to the proof of
Theorem 2.1 based mainly on (107) and (111). Therefore, we will only be proving
the uniqueness.

Let (u(1), v(1), α(1), ∂α∂t
(1)

) and (u(2), v(2), α(2), ∂α∂t
(2)

) be two solutions of (100)-(104)

with initial data (u
(1)
0 , v

(1)
0 , α

(1)
0 , α

(1)
1 ) and (u

(2)
0 , v

(2)
0 , α

(2)
0 , α

(2)
1 ) respectively.

We set

(u, v, α) = (u(1), v(1), α(1),
∂α

∂t

(1)

)− (u(2), v(2), α(2),
∂α

∂t

(2)

),

and
(u0, v0, α0) = (u

(1)
0 , v

(1)
0 , α

(1)
0 , α

(1)
1 )− (u

(2)
0 , v

(2)
0 , α

(2)
0 , α

(2)
1 ).

Hence (u, v, α) satisfy

(−∆)−1 ∂u

∂t
−∆u+f(u(1) +v(1))−f(u(2) +v(2))+f(u(1)−v(1))−f(u(2)−v(2)) = 0,

(159)
∂v

∂t
−∆v+f(u(1) +v(1))−f(u(2) +v(2))−f(u(1)−v(1))+f(u(2)−v(2)) =

∂α

∂t
, (160)

∂2α

∂t2
−∆

∂α

∂t
−∆α = −∂v

∂t
, (161)

u = ∆u = v = α = 0 on Γ, (162)

u|t=0 = u0, v|t=0 = v0, α|t=0 = α0,
∂α

∂t

∣∣∣
t=0

= α1. (163)

First, we multiply (159) by ∂u
∂t , (160) by ∂v

∂t , (161) by ∂α
∂t , and we sum the resulting

equations to obtain, using the continuous embedding H2(Ω) ⊂ C(Ω),

1

2

d

dt

(
||∇u||2 + ||∇v||2 + ||∇α||2 +

∣∣∣∣∣∣∣∣∂α∂t
∣∣∣∣∣∣∣∣2)+

∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2

+

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2 ≤ Q(||u(1)

0 ||H2(Ω), ||u
(2)
0 ||H2(Ω), ||v

(1)
0 ||H2(Ω), ||v

(2)
0 ||H2(Ω),

||α(1)
0 ||H2(Ω), ||α

(2)
0 ||H2(Ω), ||α

(1)
1 ||H1(Ω), ||α

(2)
1 ||H1(Ω)

)
.

(164)

It thus follows from (164) and Gronwall’s lemma that

||u(t)||2H1(Ω) + ||v(t)||2H1(Ω) + ||α(t)||2H1(Ω) +

∣∣∣∣∣∣∣∣∂α∂t (t)

∣∣∣∣∣∣∣∣2 ≤ eQt(||u0||2H1(Ω)

+ ||v0||2H1(Ω) + ||α0||2H1(Ω) + ||α1||2
)
, t ≥ 0,

(165)

hence the uniqueness, as well as the continuity (with respect to the H1
0 (Ω)3×L2(Ω)-

norm) with respect to the initial data.
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It follows from the previous theorem that we can define the family of solving oper-
ators

S(t) : E ′ −→ E ′

(u0, v0, α0, α1) −→ (u(t), v(t), α(t),
∂α

∂t
(t)), t ≥ 0,

where (u, v, α, ∂α∂t ) is the unique solution to our system and E ′ = (H2(Ω)3×H1
0 (Ω)).

Furthermore, this family of solving operators forms a continuous semigroup (for
the H1(Ω)3×L2(Ω)-topology), i.e. S(0) = Id and S(t+ τ) = S(t)◦S(τ),∀ t, τ ≥ 0.

Theorem 3.4. The semigroup associated with (100)-(104) possesses a bounded
absorbing set B1 in E ′.

The result follows directly from (146).

We will be searching now for exponential attractors:

The term ∂2α
∂t2 creates difficulties in the calculations. This is the reason why, as

in [21] and [22], we decompose the solution (u, v, α, ∂α∂t ) to our system with initial
data (u0, v0, α0, α1) into the sums

u(t) = w1(t) + w2(t), (166)

v(t) = q1(t) + q2(t), (167)

and

α(t) = r1(t) + r2(t), (168)

where w1, q1, and r1 are solutions to

(−∆)−1 ∂w1

∂t
−∆w1 = 0, (169)

∂q1

∂t
−∆q1 =

∂r1

∂t
, (170)

∂2r1

∂t2
−∆

∂r1

∂t
−∆r1 = −∂q1

∂t
, (171)

w1 = ∆w1 = q1 = r1 = 0 on Γ, (172)

w1|t=0 = u0, q1|t=0 = v0, r1|t=0 = α0,
∂r1

∂t

∣∣∣
t=0

= α1. (173)

and w2, q2, and r2 are solutions to

(−∆)−1 ∂w2

∂t
−∆w2+f(u(1)+v(1))−f(u(2)+v(2))+f(u(1)−v(1))−f(u(2)−v(2)) = 0,

(174)
∂q2

∂t
−∆q2+f(u(1)+v(1))−f(u(2)−v(2))−f(u(1)−v(1))+f(u(2)−v(2)) =

∂r2

∂t
, (175)

∂2r2

∂t2
−∆

∂r2

∂t
−∆r2 = −∂q2

∂t
, (176)

w2 = ∆w2 = q2 = r2 = 0 on Γ, (177)

w2|t=0 = 0, q2|t=0 = 0, r2|t=0 = 0,
∂r2

∂t

∣∣∣
t=0

= 0. (178)
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Repeating the same calculations leading to (158), but considering now (169)-(173),
where f = 0, we obtain

dE6

dt
+ cE6 ≤ 0, c ≥ 0, (179)

where

E6 = ||∆w1||2 + ||∆q1||2 + (1 + ε4)||∆r1||2 + ε1||w1||2−1 + ε1||q1||2 + ||∇w1||2

+ (1 + ε3)||∇q1||2 + (1 + ε2 + cε3)||∇r1||2 + 2ε2((
∂r1

∂t
, r1)) + (1 + ε3)

∣∣∣∣∣∣∣∣∂r1

∂t

∣∣∣∣∣∣∣∣2
+ ((∆r1,

∂r1

∂t
))|+ ε3||w1||2 +

∣∣∣∣∣∣∣∣∇∂r1

∂t

∣∣∣∣∣∣∣∣2.
(180)

Using Gronwall’s lemma on (179), we get

E6(t) ≤ e−ctE6(0). (181)

On the other hand,

||u(t1)− u(t2)||H1(Ω) + ||v(t1)− v(t2)||H1(Ω) + ||α(t1)− α(t2)||H1(Ω)

+

∣∣∣∣∣∣∣∣∂α∂t (t1)− ∂α

∂t
(t2)

∣∣∣∣∣∣∣∣ ≤ c(||∇(u(t1)− u(t2))||+ ||∇(v(t1)− v(t2))||

+ ||∇(α(t1)− α(t2))||+
∣∣∣∣∣∣∣∣∂α∂t (t1)− ∂α

∂t
(t2)

∣∣∣∣∣∣∣∣)
≤ c
(∣∣∣∣∣∣∣∣ ∫ t2

t1

∇∂u
∂t
dτ

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣ ∫ t2

t1

∇∂v
∂t
dτ

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣ ∫ t2

t1

∇∂α
∂t
dτ

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣ ∫ t2

t1

∂2α

∂t2
dτ

∣∣∣∣∣∣∣∣)
≤ c|t1 − t2|

1
2

∣∣∣∣ ∫ t2

t1

(∣∣∣∣∣∣∣∣∇∂u∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂2α

∂t2

∣∣∣∣∣∣∣∣2)dτ ∣∣∣∣ 12 .
(182)

In addition, it follows from (122), (133), (134) and the fact that the initial data are
in a bounded absorbing set, that∫ t2

t1

(∣∣∣∣∣∣∣∣∇∂u∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣)2

≤ c, (183)

where c only depends on B1 and T ≥ T0 such that t1, t2 ∈ [T0, T ]..

Moreover, looking at the equation (161), we can see that∣∣∣∣∣∣∣∣∂2α

∂t2

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∆∂α

∂t

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣+ ||∆α||. (184)

Thus, it follows from (110), (111), (183), and (184) that∫ t2

t1

∣∣∣∣∣∣∣∣∂2α

∂t2

∣∣∣∣∣∣∣∣ ≤ c, (185)

where c only depends on B1.
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Whence, we have

||u(t1)− u(t2)||H1(Ω) + ||v(t1)− v(t2)||H1(Ω) + ||α(t1)− α(t2)||H1(Ω)

+

∣∣∣∣∣∣∣∣∂α∂t (t1)− ∂α

∂t
(t2)

∣∣∣∣∣∣∣∣ ≤ c′|t1 − t2| 12 . (186)

It is important to note that w2, q2, and r2 verify the same system as u, v, and α so
they satisfy the same estimations found in the previous sections.

Furthermore, we differentiate (174) and (175) with respect to time and we mul-

tiply the resulting equations by (t−T0)∂w2

∂t and (t−T0)∂q2∂t , respectively. Then, we

sum the result with (t− T0)∂r2∂t times (176), and similarly to (84), we obtain

1

2

d

dt

(
(t− T0)

∣∣∣∣∣∣∣∣∂w2

∂t

∣∣∣∣∣∣∣∣2
−1

+ (t− T0)

∣∣∣∣∣∣∣∣∂q2

∂t

∣∣∣∣∣∣∣∣2 + (t− T0)

∣∣∣∣∣∣∣∣∂r2

∂t

∣∣∣∣∣∣∣∣2 + (t− T0)||∇r2||2
)

+ c(t− T0)

(∣∣∣∣∣∣∣∣∇∂w2

∂t

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∇∂q2

∂t

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∇∂r2

∂t

∣∣∣∣∣∣∣∣2)
≤ c′(t− T0)

(∣∣∣∣∣∣∣∣∂w2

∂t

∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂q2

∂t

∣∣∣∣∣∣∣∣2 + ||∇r2||2
)

+ c′′(t− T0)

(∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2)+

1

2

(∣∣∣∣∣∣∣∣∂w2

∂t

∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂q2

∂t

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂r2

∂t

∣∣∣∣∣∣∣∣2 + ||∇r2||2
)

+ c′′′(t− T0)||∇(u+ v)||
∣∣∣∣∣∣∣∣∇∂w2

∂t

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ ∂∂t (u2 + v2)

∣∣∣∣∣∣∣∣
+ c′′′(t− T0)||∇(u+ v)||

∣∣∣∣∣∣∣∣∇∂q2

∂t

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ ∂∂t (u2 + v2)

∣∣∣∣∣∣∣∣
+ c′′′(t− T0)||∇(u− v)||

∣∣∣∣∣∣∣∣∇∂w2

∂t

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ ∂∂t (u2 − v2)

∣∣∣∣∣∣∣∣
+ c′′′(t− T0)||∇(u− v)||

∣∣∣∣∣∣∣∣∇∂q2

∂t

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ ∂∂t (u2 − v2)

∣∣∣∣∣∣∣∣.
(187)

It follows from (133), (134) that∫ t

T0

(∣∣∣∣∣∣∣∣∇∂u∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∇∂v∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2) ≤ cec′t, t ≥ T0, (188)

where the constants only depend on B1.

We can thereby deduce that∫ t

T0

(∣∣∣∣∣∣∣∣∂u2

∂t

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂v2

∂t

∣∣∣∣∣∣∣∣2)dx ≤ cec′t, t ≥ T0, (189)

for (u, v) = (u2, v2) and the constants only depend on B1.

It also follows from (164) and (165) that∫ t

0

(∣∣∣∣∣∣∣∣∂u∂t
∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂v∂t
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∇∂α∂t
∣∣∣∣∣∣∣∣2)dx ≤ c(||u0||2H1(Ω) + ||v0||2H1(Ω)

+ ||α0||2H1(Ω) + ||α1||2), t ≥ 0.

(190)
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Applying Gronwall’s lemma to (187) over (T0, t) and owing to (165)and (188)-(190),
we obtain∣∣∣∣∣∣∣∣∂w2

∂t
(t)

∣∣∣∣∣∣∣∣2
−1

+

∣∣∣∣∣∣∣∣∂q2

∂t
(t)

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∂r2

∂t
(t)

∣∣∣∣∣∣∣∣2 + ||∇r2(t)||2 ≤ cec
′t(||u0||2H1(Ω)+

||v0||2H1(Ω) + ||α0||2H1(Ω) + ||α1||2), t ≥ 1.

(191)

where the constants only depend on B1.

We now rewrite equations (174) and (175) in the following forms

−∆w2 = h̃w2
(t), (192)

and

−∆q2 = h̃q2(t), (193)

where w2 = ∆w2 = q2 = 0 on Γ, for t ≥ 1 fixed, and

h̃w2
(t) = −(−∆)−1 ∂w2

∂t
−
(
f(u(1)+v(1))−f(u(2)+v(2))

)
−
(
f(u(1)−v(1))−f(u(2)−v(2))

)
,

(194)

h̃q2(t) = −∂q2

∂t
+
∂r2

∂t
−
(
f(u(1)+v(1))−f(u(2)+v(2))

)
+
(
f(u(1)−v(1))−f(u(2)−v(2))

)
,

(195)
satisfy, owing to (165) and (191),

||h̃w2(t)||2 ≤ ceQt(||u0||2H1(Ω) + ||v0||2H1(Ω) + ||α0||2H1(Ω) + ||α1||2), t ≥ 1, (196)

and

||h̃q2(t)||2 ≤ ceQt(||u0||2H1(Ω) + ||v0||2H1(Ω) + ||α0||2H1(Ω) + ||α1||2), t ≥ 1. (197)

where the constants only depend on B1.

Multiplying now (192) by −∆w2 and (193) by −∆q2, we obtain

||∆w2(t)|| ≤ ||h̃w2
(t)||, t ≥ 1,

and

||∆q2(t)|| ≤ ||h̃q2(t)||, t ≥ 1.

Whence

||w2(t)||2H2(Ω) + ||q2(t)||2H2(Ω) ≤ ce
Qt(||u0||2H1(Ω) + ||v0||2H1(Ω) + ||α0||2H1(Ω)

+ ||α1||2), t ≥ 1.
(198)

Next, we multiply (176) by −(t− T0)∆∂r2
∂t and find

1

2

d

dt

(
(t− T0)

∣∣∣∣∣∣∣∣∇∂r2

∂t

∣∣∣∣∣∣∣∣2 + (t− T0)||∆r2||2
)

+ (t− T0)

∣∣∣∣∣∣∣∣∆∂r2

∂t

∣∣∣∣∣∣∣∣2
≤ c(t− T0)

∣∣∣∣∣∣∣∣∇∂r2

∂t

∣∣∣∣∣∣∣∣2 + c(t− T0)

∣∣∣∣∣∣∣∣∇∂q2

∂t

∣∣∣∣∣∣∣∣2 +
1

2

∣∣∣∣∣∣∣∣∇∂r2

∂t

∣∣∣∣∣∣∣∣2 +
1

2
||∆r2||2.

(199)
Applying then Gronwall’s lemma over (T0, t) and using (145) and (188), we obtain∣∣∣∣∣∣∣∣∇∂r2

∂t
(t)

∣∣∣∣∣∣∣∣2 + ||∆r2(t)||2 ≤ cec
′t. (200)
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Finally, summing (198) and (200), we obtain

||w2(t)||2H2(Ω) + ||q2(t)||2H2(Ω) + ||r2(t)||2H2(Ω) +

∣∣∣∣∣∣∣∣∂r2

∂t
(t)

∣∣∣∣∣∣∣∣2
H1(Ω)

≤ ceQt(||u0||2H1(Ω)

+ ||v0||2H1(Ω) + ||α0||2H1(Ω) + ||α1||2), t ≥ 1,

(201)
where the constants only depend on B1.

The existence of exponential attractors then follows from ((165)), (181), (186), and
(201) (see [7]- [8]). Therefore, we have

Theorem 3.5. The semigroup S(t) possesses an exponential attractor M′ ⊂ B1,
i.e.,
(i) M′ is compact in H1(Ω)3 × L2(Ω);
(ii) M′ is positively invariant, S(t)M⊂M′, ∀ t ≥ 0;
(iii) M′ has a finite fractal dimension in H1(Ω)3 × L2(Ω);
(iv) M′ attracts exponentially fast the bounded subsets of E ′:

∀ B ⊂ E ′ bounded, distH1(Ω)3×L2(Ω)(S(t)B,M′) ≤ Q(||B||E′)e−ct,
c > 0, t ≥ 0, where the constant c is independent of B and distH1(Ω)3×L2(Ω) denotes
the Hausdorff semidistance between sets defined by

distH1(Ω)3×L2(Ω)(A,B) = sup
a∈A

inf
b∈B
||a− b||H1(Ω)3×L2(Ω).

Consequently, we deduce from standard results the

Corollary 2. The semigroup S(t) possesses the finite dimensional global attractor
A′′ ⊂ B1.
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