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Abstract 

 

We investigate by fast-scanning nanocalorimetry the formation of Freon 113 films from 

the vapor phase at deposition temperatures ranging from 50-to-120 K, that is spanning 

above and below the transition temperature of the glassy crystal to the plastic crystal, 

(Tgc=72 K). Analysis of the heat capacity curves indicates that vapor deposition at T<Tg 

of the highly fragile Freon 113 yields structural and orientational glasses in the as-

deposited state depending on the temperature range of deposition. Interestingly, 

growing above Tgc produces plastic crystals with a conformational C1/Cs ratio that 

changes with Tdep above and below 110-120 K, the temperature at which previous works 

have identified the arrest of the transformations between the C1 and Cs conformers.   
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Introduction 

Plastic crystals (PCs) are considered as model systems to study the glass transition 

phenomena both theoretically and experimentally because, in spite of their translational 

symmetry, they exhibit an orientational disorder. PCs are commonly found for 

molecules displaying pseudo-globular molecular shape with van der Waals molecular 

interactions but displaying short range order. While structural (conventional) glasses 

(SGs) are amorphous solids lacking both translational and orientational long range order, 

commonly obtained by quenching the supercooled liquid, orientational glasses (OGs) 

display translational order and orientational disorder and, in addition, they exhibit 

similar glassy properties that SGs. In molecular systems forming PCs it is difficult to 

access the SG since a transition from the liquid to the PC state and, later on, to a glassy 

crystalline state, typically occurs during cooling. In this case, the center of mass of the 

molecules remains unchanged at the lattice sites but the rotational degrees of freedom 

at the molecular level are frozen in non-equilibrium positions and the glassy crystal (GC) 

is in a non-ergodic state.1–7 Only two cases, ethanol and cyclohexene,2,5,8 have been 

shown to exhibit multiple glass transitions, i.e. glassy crystal to PC and SG to liquid. 

Indeed, for sufficiently high cooling rates (above 30 K/min) the SG can be accessed in 

these organic molecules. It is interesting to note that for both molecular systems the 

glass transition temperature from the GC to the supercooled PC and the SG to the 

supercooled liquid (SCL) occurs at similar temperatures in spite of the differences of the 

starting glass state. 

  

Freon 113 (1,1,2-trichlorotrifluorethane, Cl2FC-CF2Cl) exhibits a PC phase with cubic 

symmetry (bcc) which gives rise to a GC below the temperature of 72 K and an ordered 
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crystal with monoclinic symmetry.9–11 It represents one of the rare examples of fragile 

PC, being in addition the one with the highest kinetic fragility with m=136.11 The stable 

crystalline phase of Freon 113 is extremely difficult to form, a general experimental fact 

for many halo-ethane derivatives due to the existence of internal molecular degrees of 

freedom which promote the appearance of distinct conformers (trans and gauche).12–17 

To obtain it, Kolesov et al.9 cooled the plastic phase of Freon 113 to the liquid-nitrogen 

temperature, and then annealed it for 10-14 h at a temperature of 79 K, that is 3-4 K 

below the transition temperature (T=82.5 K) at which the stable crystalline phase 

transforms into the PC phase on heating. On the contrary, Vispa et al.11 were unable to 

form the stable crystal phase of F113. Previous works on Freon 113 have failed to access 

the SG,10,11 being the unique low-temperature phase the GC that forms upon cooling the 

PC. On heating at 1 K/min Vdovichenko et al.10 found the glass-like transition between 

GC and PC phases at Tgc=72 K and, in addition to this transition, they measured a heat 

capacity anomaly at around 120 K which was attributed to the arrest of the degrees of 

freedom due to the internal molecular rotation from the C1 to the Cs molecular 

symmetry conformation that differs in a 120o rotation around the C-C single bound, 

similar to the anomaly found for Freon112.10,17,18 The trans C1 conformer is energetically 

more stable by approximately 1.6 kJ/mol than the gauche Cs conformer.19 

 

The high fragility of Freon 113 was attributed to the high configurational entropy of this 

system due to the existence of the aforementioned intramolecular modes which 

increase the number of energy minima in the energy landscape.11 Owing to the van der 

Waals intermolecular interactions, halo-ethane derivatives are known to exhibit strong 

orientational correlations related to the small difference between conformers although 
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separated by a large energy barrier strongly temperature dependent. These special 

properties make Freon 113 an interesting system to build up stable glasses by means of 

vapor deposition.20–22 Moreover, the van der Waals intermolecular interactions suggest 

high surface mobility that can support efficient packing during the vapor deposition 

process. Interestingly, the strong temperature dependence of the potential energy 

should provide the possibility to scan the different minima in the energy landscape. As 

far as we know, only ethanol, tetrachlormethane and Freon 134a, all of them exhibiting 

PC phases, have been studied by vapor deposition. 23–26 In all these works, only the SG 

was formed at deposition temperatures below Tg. On the contrary, we show that vapor 

deposition at T<Tg of the highly fragile Freon 113 yields structural and orientational 

glasses in the as-deposited state depending on the temperature range of deposition. 

Growing above Tg produces PCs with a C1/Cs ratio that changes with Tdep above and 

below 110-120 K.   

 

Experimental Section 

Both the growth of the Freon 113 films by vapor deposition and the Cp measurements, 

were carried out within a Helium cryostat with a base vacuum better than 5x10-7 mbar 

in a temperature interval ranging from 50 to 200 K. The cryostat was adapted to hold a 

prechamber linked to an injection system with a tube inserted perpendicular to the 

sample holder. The flow of Freon 113 into the vacuum chamber was controlled by a 

high-precision leak valve. Two nearly identical calorimetric chips were thermally linked 

to the substrate and connected to the instrumentation as described in previous 

publications.27,28 The reference chip was completely isolated from the Freon 113 flow 

while the sample chip had a mask that ensures deposition only onto the active area of 
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the chip that contains a 200 nm thick Al layer to improve the temperature homogeneity. 

The experiments were conducted as follows: once the temperature of the chips was set 

to the desired deposition temperature (Tdep=50-120 K, corresponding to Tdep/Tg=0.60-

1.67) the leak valve was opened and Freon 113 condensed at rates around 1nm/s onto 

the sample chip. After the ≈ 75 nm thick films were formed the chip was passively cooled 

at -500 K/s to 35 K and the calorimetric scan started right away with a typical heating 

rate of 3x104 K/s up to ≈150 K. The second up scan corresponded then to a sample that 

was quenched from the final temperature of the previous scan, typically around 150 K. 

Samples prepared this way are termed glassy crystal fast cooled, GCFC. For the other 

samples the nomenclature used throughout the text is: Glassy crystal vapor deposited 

(GCVD) refers to Freon 113 films prepared directly from the vapor into the glassy crystal 

phase below 72 K, while GC1 are glassy crystals prepared in the plastic crystal phase 

above 72 K but below 110-120 K and quenched to the base temperature of 35 K. 

 

Results and Discussion 

Due to the complex phase pattern of Freon 113, vapor deposition at different 

temperatures may yield a number of slightly dissimilar structures such as structural 

glasses, glassy crystals when the films are deposited at temperatures below the glass 

transition temperatures or supercooled liquid or plastic crystal if Tdep is higher than any 

of the Tg’s or even the stable monoclinic crystal. In addition the subsequent heating scan 

to measure the heat capacity will produce transformations between them. The richness 

of the specific heat, Csp, curves associated with samples vapor-deposited within the 

range 60-120 K is illustrated n Figure 1. This graph permits a fast visualization of the 

influence of the deposition temperature on the progression of the heat capacity. The 
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curves correspond to the first heating scan after the sample has been vapor-deposited 

at Tdep and immediately after quenched at -500 K/s to 35 K. A second up scan that turns 

out to be identical for all samples irrespective of their deposition temperature is shown 

as a black solid line for comparison. As described in the experimental section these 

samples are obtained by cooling the vapor-deposited films that in the first scan have 

been taken to 150 K, well above the GC to PC transition. Since the only possible phase 

upon cooling the PC is the GC11 we identify the endotherm of the black solid curve 

(Ton=88 K, Tpeak=92 K) with the transition from a GC to the PC phase. Samples prepared 

in this way are called glassy crystal fast cooled, GCFC. The temperature shift of 16 K 

between the standard calorimetric Tgc (72 K) and Ton,GCFC (88 K) is mostly related to the 

high heating rates inherent to our nanocalorimetric technique, i.e. 3.5x104 K/s.  

To allow for easier identification of changes in the calorimetric traces we subdivide the 

data into 4 regions: blue open circle curves that show an endothermic overshoot with 

Tpeak=97-98 K followed by an exothermic event of varying enthalpy are deposited in the 

temperature range below 66 K; brown-colored, star symbols, samples with a large 

endothermic transition (Tpeak=97 K) are vapor-deposited between 67 and 72 K; red up 

triangle curves are grown in a wide T range from 73-100 K and the peak maximum 

downshifts from 97 to 92.5 K with increasing Tdep; samples deposited at or above 120 K 

(down triangle orange solid line) are calorimetrically identical to GCFC glasses. 
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Figure 1 Complete dataset of specific heat curves deposited at temperatures ranging from 60 to 
120 K. Colors and symbols correspond to: blue open circles to samples grown below 66K; brown 
stars to Tdep=67-72 K; red up-triangles to those vapor deposited in the interval from 73 to 100 K. 
The orange down triangles correspond to a sample vapor deposited at Tdep=120 K. The 
continuous black line corresponds to a sample quenched from 150 K to 35 K (glassy crystal fast 
cooled, GCFC).  

 

Figure 2 shows representative specific heat curves associated with the different 

deposition temperature regions of Figure 1. We also include a reference curve for a 

sample that is fast quenched from the plastic crystal phase (GCFC, Figure 2a). Next, we 

describe the main features in each of these regions: 

• Vapor-deposition at Tdep≤ 60 K (0.83Tg) enables direct access to a structural glass 

(SG) that upon fast heating experiences a glass transition (onset of devitrification at 

Ton,SG=94 K) into the liquid state (endothermic peak) and immediately crystallizes 

(exothermic signal) into the PC state at Txt=102 K, as shown in Figure 2b. We do observe 

a slight variation of the onset temperature and enthalpy overshoot of the SG with 

deposition temperature (Fig. 2b) that we tentatively ascribe to the formation of SGs with 

varying stability in resemblance to the behavior observed in other molecular glass 

formers such as toluene, ethylbenzene or larger pharmaceutical or semiconductor 
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organic molecules that form highly stable glasses when vapor deposited at around 0.85-

0.9 Tg.29–32 This is to our knowledge the first evidence of a SG in Freon 113. 

• Interestingly increasing the deposition temperature up to 67 K (0.93Tg) yields 

glasses with lower amounts of SG (Figure 2c), as noted by the smaller crystallization peak 

and by the smaller contribution of the peak to the endothermic signal (illustrated by the 

dashed black arrows pointing downwards in Figure 2c). In parallel with the decrease of 

the SG phase, another peak clearly develops at a slightly lower temperature (1 K below) 

increasing its intensity with increasing deposition temperature (arrow pointing upwards 

in Figure2c). We interpret this region as the coexistence of two phases: a structural glass 

(SG) and a glassy crystal (GCVD) with relative amounts that depend on Tdep.  

• Samples grown in the narrow temperature range 68-72 K (0.94-1.03 Tg) (Figure 

2d) grow in a pure glassy crystalline phase (GCVD from Glassy Crystal Vapor Deposited) 

with an onset temperature, Ton,GCVD=93 K. This temperature is only 1 K below the 

devitrification temperature of the structural glass while differs by ≈5 K from Ton, GCFC. 

That is, samples vapor deposited directly as a GC, GCVD, are kinetically more stable than 

samples quenched from the PC, GCFC. Several indirect evidences do support the 

adscription of this peak to a GC to PC transition and not to the ordered crystal towards 

the PC (OC to PC transition) that according to Kolesov et al.9 occurs at 82.5 K.  i) Films 

grown within this temperature interval at different growth rates (between 0.5-2.5 nm/s) 

show different onset temperatures similarly to what is observed in vapor-deposited 

glasses,33 as shown in figure S1. On the contrary, the OC should exhibit a well-defined 

onset temperature nearly independent of the growth rate in this small range variation. 

ii) Due to our fast heating rates during the up scans, the onset temperatures appear 

shifted to higher temperatures. We have analyzed the dependence of this peak with the 
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heating rate in the range 100-to-3.5x104 K/s. The onset at 100 K/s is already below 82 K 

and the extrapolation to lower heating rates (10-2 K/min) (see supplementary 

information and Figure S2) yields onset temperatures in the domain 70-72 K far from 

the 82.5 K measured for the OC to PC transition by Kolesov et al.9 In addition, we recall 

that the OCl in Freon 113 is a sluggish phase that requires extensive annealing protocols 

to be produced. Since Tgc=72 K, depositing a film above this temperature should yield a 

PC that upon quenching transforms into a GC. 

• If the deposition temperature is raised above Tgc=72 K (1.00Tg) the as-deposited 

phase should be a PC that upon fast cooling (q=-500 K/s) transforms into a GC. However, 

we observe significant differences depending on the deposition temperature as clearly 

shown in figure 2e. Between 73 (1.01Tg) and 78 K (1.08Tg), there is a transition region in 

which the endothermic signal continuously shifts to lower temperatures as deposition 

temperature is increased. Above 78 K and up to 100-110 K the endothermic signal of the 

first scan remains constant with an onset temperature around 89 K, slightly above the 

onset temperature of GCFC and below the Ton of the SG. We name samples deposited in 

this temperature region as GC1. If the deposition temperature is raised above 110-120 

K, after quenching we obtain a GC that is calorimetrically equivalent to the GCFC 

described previously.  

The schematics in Figure 3 show the assignment of phases grown within the various 

temperature regions, the corresponding phases upon quenching to low temperature (T= 

35 K) and the transformations occurring during the temperature up scans up to 150 K. 

Based on the above description it is clear that the heat capacity of Freon 113 shows 

multiple glass transitions similarly to ethanol and cyclohexane. 
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Figure 2. Representative specific heat curves as a function of temperature for samples: 
(a) GCFC: 2nd scan after quenching the sample from T=150 K, the temperature attained 
in the first scan and 1st scans of (b) sample vapor-deposited at Tdep=60 K and cooled to 
low-temperature, (c) Tdep=61-67 K (0.85-0.93Tg); (d) Tdep=68-72 K (0.94-1.00Tg); and (e) 
Tdep>74 K (>1.03Tg). The black line corresponds to a sample vapor deposited at 120 K. 
This curve is equivalent to curve GCFC in (a). The up/down vertical arrows refer to 
increase/decrease of the different phases.  
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Figure 3. Schematic illustration of the phases formed at different deposition 
temperatures (upper panel), the corresponding low-temperature phases after 
quenching (middle panel) and the observed transitions during the heating scan (lower 
panel).  

 

The complex scenario of Figure 2e with a progressive variation of the endothermic peak 

associated with the glass transition as the deposition temperature increases up to 110-

120 K and the fact that deposition above 120 K yields a GC calorimetrically equivalent to 

the GCFC merits further discussion.  What could be the reason for having different GC 

phases (GC1-like or GCFC) depending on the value of Tdep above Tgc? To answer this 

question we first plot the enthalpy (Figure 4a) and entropy (Figure 4b) for the PC and GC 

phases for samples GC1, GCVD and GCFC (red, black solid and blue dashed lines, 

respectively, Figure 4a) in the temperature range up to 140 K. The data is obtained after 

numerical integration of the corresponding specific heat curves of Figures 2a, c and d. 

The enthalpy graph shows that the GC grown from the vapor at 67 K has a lower enthalpy 

by 1.5 J/g and a lower limiting fictive temperature (Tf’) by roughly 5 K with respect to 
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GC1 deposited at 93 K. The limiting fictive temperature obtained by the intersection of 

the plastic line with the glass line in the enthalpy plot is a good indicator of the stability 

of the film, the lower the value of Tf’ the higher the stability of the glass. On the contrary, 

in spite of the higher kinetic stability of GCVD compared to GCFC, both glasses show 

relatively similar enthalpy traces with differences of around 0.1 J/g and 1 K for the 

enthalpy and Tf’, respectively that are within our experimental uncertainty. Figure 4a 

also shows the enthalpy curve obtained from the heat capacity data of Vdovichenko et 

al.10 We do observe a small disagreement with our enthalpy data right above Tg.  Figure 

4b shows the entropy of the three samples together with data from Kolesov et al.9 for 

the reference OC and from Vispa et al. for the GC and PC phases.11 Since our 

measurements do start at around 50 K we vertically shift the entropy of the PC to match 

in the temperature interval from 120-140 K the entropy measured in ref. 11 It is worth 

mentioning that the crystalline phase measured by Kolesov et al.9 still has a significant 

amount of residual entropy probably linked to some conformational disorder and 

therefore the excess entropies of the GCVD (Tdep=67 K) and GCFC with respect to the OC 

are vanishingly small, approaching our limit of resolution. On the contrary, the GC1 

obtained by quenching the sample vapor-deposited at 93 K has a large amount of excess 

entropy with respect to the OC and to GCFC and GCVD. To understand this behavior we 

turn to previous heat capacity measurements that showed the change of molecular 

conformations between C1 and Cs is frozen in F113 at around 120 K. In fact, a heat 

capacity change of 1 kJ/mol is apparent in the cp curve of Vdovichenko et al.10 at around 

120 K. Our current heat capacity data is not able to discriminate such transition due to 

the low signal-to-noise ratio in the high temperature region. Despite this, we interpret 

the existence of different GC phases as due to the variation of cis/trans conformations 
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giving rise to glasses of different stability. Samples grown at 120 K or above maximize 

the amount of C1 molecular conformations that are the most stable producing a more 

stable PC. On the contrary, growing roughly below 110-120 K produces PCs that have 

not reached the most stable configuration. It is worth to note that the difference in 

enthalpy in the vapor phase between both molecular conformations is around 6 J/g.19 

The enthalpy difference between GC1 and GCVD (or GCFC) of ≈ 1.5 J/g may reflect that 

growing in the T range from 72 to 110 K results in a PC crystal in which the distribution 

of C1 molecules is not optimized with respect to the most stable configuration.  
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Figure 4. (a) Enthalpy vs temperature for samples GCFC, GC1 and GCVD (Tdep=67 K). The 
black dashed line is the enthalpy calculated from the specific heat of Vdovichenko et 
al.10 The green dashed line is the extrapolation of the PC line to determine the limiting 
fictive temperature as the intersection with the glassy crystal line, marked by the arrows. 
(b) Entropy as a function of temperature for GCVD and GC1 and curves from Kolesov et 
al.9 for the ordered crystal phase (open circles) and its extrapolation (green dashed line) 
and from Vispa et al.11 for the PC and GC phases (dashed black line).  

 

Conclusions  

Vapor-deposition of Freon 113 in the range 50-130 K (0.89-1.80 Tg) produces films with 

different glass transitions depending on the deposition temperature. Deposition at 10 K 

below Tgc produces a SG that upon fast heating undergoes a glass transition followed by 

rapid crystallization into the plastic phase. As we increase temperature the amount of 

SG decreases with a parallel increase of a glassy crystal phase. The SG shows features 

that mimic those of highly stable vapor-deposited glasses such as the variations of the 

onset temperature and the enthalpy overshot with Tdep. Deposition at temperatures 

close to Tgc results in a glassy crystal with enthalpy and excess configurational entropy 

similar to the glass quenched from the PC but with a higher kinetic stability indicated by 

the higher onset temperature of devitrification. However, when Tdep is just above Tgc the 
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heat capacity curves are compatible with a PC that has not reached full equilibration, 

i.e. the number of C1/Cs molecular conformations does not correspond to the lower 

energy phase. When Tdep is much higher than Tgc the films grow in an energetically 

favored plastic phase and transform to a glassy crystal during quenching.  
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