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Abstract: Inferring human operators’ actions in shared collaborative tasks plays a crucial role in
enhancing the cognitive capabilities of industrial robots. In all these incipient collaborative robotic
applications, humans and robots not only should share space, but also forces and the execution of
a task. In this article, we present a robotic system that is able to identify different human’s intentions
and to adapt its behavior consequently, only employing force data. In order to accomplish this
aim, three major contributions are presented: (a) a force based operator’s intention recognition
system based on data from only two users; (b) a force based dataset of physical human–robot
interaction; and (c) validation of the whole system with 15 people in a scenario inspired by a realistic
industrial application. This work is an important step towards a more natural and user-friendly
manner of physical human–robot interaction in scenarios where humans and robots collaborate in
the accomplishment of a task.

Keywords: industrial collaborative robots; shared robotic tasks; physical human–robot interaction;
human intention recognition; time series classification

1. Introduction

Currently, there is a rising trend towards smart factories where all the involved entities cooperate
and communicate with each other. This is often referred to as Industry 4.0 or the fourth industrial
revolution. Settling this aim for the industrial robotics sector would require freeing robots from
their current work cells, closer to operators, compromising human safety [1,2]. In the interest
of overcoming those safety issues, over the last few years, collaborative robots or cobots have
emerged [3–5]. These robots are specifically designed for direct interaction with a human within
a defined collaborative workspace [6]. Collaborative robots have meant great progress towards a safer
coexistence of operators and industrial robots. Nevertheless, scenarios where humans and robots
exchange forces and share the execution of a task require the use of robots equipped with complex
cognitive capabilities [7]. Bauer et al. [8] proposed five levels of cooperation between robots and
humans (see Figure 1). The authors stated that most of the current real applications of industrial
robots are based on the cooperation levels coexistence and synchronized [9,10]. Driven by the lack of
applications where more complex levels of cooperation are addressed, we propose a scenario based
on the fifth level, collaboration. Figure 2 depicts the proposed setup, where a human and a robot
exchange forces while sharing the execution of a task inspired by a realistic industrial scenario.
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(a) Cell. (b) Coexistence. (c) Synchronized.

(d) Cooperation. (e) Collaboration.
Figure 1. Human–robot cooperation levels in industrial environments. (a) The level cell involves
no collaboration at all; the robot remains held inside a work cell. (b) Coexistence removes the cell,
but humans and robots do not share the workspace yet. (c) Synchronized allows the sharing of
the workspace, but never at the same time; humans and robots operate in a synchronized manner.
(d) At the level cooperation, the task and the workspace are shared, but humans and robots do not
physically interact. (e) The level collaboration considers full collaboration where operators and robots
exchange forces.

(a) Robot hardware components. (b) User’s pose with respect to the robot.
Figure 2. Proposed scenario inspired by an industrial collaborative robotic task in which the robot
adapts its state to the human’s intention. (a) The force sensor is used to infer the human’s intention;
the armband is used to inform the user about the robot’s internal state; and the piece adapter eases the
grasping of the object. (b) While the robot holds the object, the human performs a frontal polishing
of it.

In a real industrial environment, operators tend to suffer from injuries related to the usual
repetitive tasks involved in their daily duties. In our scenario, it is important to reduce as much as
possible very mechanical movements and let the users interact with the robot through more natural
kinds of gestures. Moreover, the cooperation between the human and the robot during repetitive
physical human–robot interactions should be fluent [1,6]. Based on our experience, one second is
the maximum amount of time for an efficiently responsive human–robot collaboration. In industrial
surroundings, there is much heterogeneous contextual information that can have an effect on or
modify the progress of a task. In future work, we would like to benefit from using that contextual
information. Therefore, it would be desirable that our machine learning approach be able to cope with
not only temporal sequences, but also other types of environmental variables. To sum up, natural
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interaction, fast prediction, and contextual variables will play a relevant role for the data gathering
and the selection of the most appropriate approach.

The main contributions presented within this work are:

• Force based operator’s intention inference. We implemented two different approaches, and both
were thoroughly evaluated and compared. Finally, one of them was selected and used during the
validation with users. Inference time and the possibility of including contextual information were
considered for the comparison. The first approach consisted of a k-nearest neighbor classifier,
which uses as the metric dynamic time warping. In this case, the time series data are directly
fed to the classifier. The second approach was based on dimensionality reduction together with
a support vector machine classifier. The reduction was performed over the concatenation of all
force axes of the raw time series.

• Force based dataset of physical human–robot interaction. Due to the lack of similar existent
datasets, we present a novel dataset containing force based information extracted from natural
human–robot interactions. Geared towards the inference of operators’ intentions, the dataset
comprises labeled signals from a force sensor. We aimed to generalize from a few users to several.
Therefore, our dataset was only recorded with two users. Indeed, this is compliant with industrial
environments in which the system should be used by new operators, preferably with no need
for retraining.

• Validation in a use-case inspired by a realistic industrial collaborative robotic scenario. The performance
of the selected approach was evaluated in an experiment with fifteen users, who received a short
explanation of the collaborative task to execute. The goal of the shared task was to inspect and polish
a manufacturing piece where the robot adapted to the operator’s actions. To generalize, recall that the
model was trained with data from only two users, while it was evaluated against other fifteen users.

The remaining content of the paper is structured as follows. Section 2 provides an analysis of the
current state-of-the-art related to the topic covered in this document. The data acquisition process
and dataset specifications are introduced in Section 3. In Section 4, we explain the implementation,
evaluation, and comparison of the two approaches to the force based operator’s intent inference.
The validation of the proposed system is presented in Section 5, and the conclusions and future work
are discussed in Section 6.

2. Related Work

In this work, we are primarily interested in exploring force based industrial collaborative robotic
tasks, that is those in which the physical interaction plays an essential role in the accomplishment of
the task. In particular, it is of great interest for us to carry out a twofold research of: (a) applications
where humans physically interact with robots; and (b) datasets containing force based information
extracted from human–robot interaction scenarios.

In the literature, several works have presented applications where humans and robots physically
interact. However, it is difficult to find recent works where, as in ours, the physical interaction
plays a major role in the execution of a shared task. Indeed, in most of the cases, the force exchange
between humans and robots is ignored or undesired. Hence, we analyzed two groups of works:
(a) those in which the physical interaction is ignored or undesired; and (b) those in which the
robot uses the force based information to adapt its state. Regarding the first group of works,
Cherubini et al. [11] discussed a collaborative scenario where a human and a robot shared the task of
Rzeppa homokinetic joint insertion. In this case, even though there was an exchange of force, unlike in
our work, the robot just remained stiff and did not use the force based information to adapt its state.
Maurtua et al. [12] described a set of experiments aimed at measuring the trust of workers on fenceless
human–robot industrial collaborative applications. In all the experiments, the force was undesired;
thus, the robot stopped when an external force was detected. De Gea Fernández et al. [13] described
another industrial situation in which two robotic arms collaborated with an operator. The robots
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avoided the physical interaction with the human as long as possible, and when a physical interaction
occurred, they remained in a compliant mode so that the force was ignored. Raiola et al. [14]
addressed the problem of learning virtual guiding fixtures, analogous to the use of a rule when
drawing, in human–robot collaboration. Even though there was physical interaction during the
task execution, the robot did not use the force based information while guiding the human. In the
work presented by Munzer et al. [15], a human and a robot performed sub-tasks of a shared task:
wooden box assembling. The robot and the human shared forces, and the robot was able to adapt
to the situation, but not using the force, just using vision, or being explicitly asked to do it by
voice commands or instructions using a graphical interface. Some recent works presented cases
in which robots adapted their behavior based on the physical interaction between humans and
robots. Peternel et al. [16] proposed to estimate human fatigue to adapt how much a robot is helping
in human–robot collaborative manipulation tasks: sawing and surface polishing. Rozo et al. [17]
proposed a framework for a user to teach a robot collaborative skills from demonstrations. Specifically,
they presented an approach that combined probabilistic learning, dynamical systems, and stiffness
estimation, to encode the robot behavior along with the task. Hence, the method allowed a robot to
learn not only trajectory following skills, but also impedance behaviors. Unlike in our work, in these
two works, the adaptation was done at the low-level control of the robot by a hybrid force/impedance
controller, while we did it at the symbolic level of the task. A scenario where a human and a robot
physically interact through a handover of an object was discussed by Mazhar et al. [18]. Force
signals were used to identify different phases of the sequence of actions. When a force threshold
was exceeded, the system interpreted that the robotic hand should close to grasp the object during
the handover. Zhao et al. [19] presented an operator’s intention recognition approach inspired by
a collaborative sealant task. The intentions, rather similar to ours, were also used to adapt the state
of the robot, just as in our work. However, the interactions they proposed were simplistic as the
classes could be discriminated between them with thresholds in the force. In our work, we recorded
two different datasets, one that was similar to theirs, containing simpler mechanical movements,
and another one that included more natural human–robot interactions. The latter was used during
the experiments. Gaz et al. [20] presented a new robot control algorithm aimed at being used in
a scenario where a robot grasps a piece while the operator polishes it. The proposed collaborative
task was the same we used, but they considered only two robot modes: (a) stiffness, while the user
polishes’ and (b) compliance, while the user modifies the orientation of the end effector. Unlike in our
work, there was no classification of the user’s intentions; the force was directly applied to different
parts of the robot: (a) a force sensor fastened to the robot’s wrist; and (b) the rest of the robot’s joints.
Losey et al. [21] presented a comprehensive review of intent detection and other aspects within the
context of shared control for physical human–robot interaction. Especially interesting was how this
paper was structured, talking about three aspects covered in our work: (a) user intent recognition;
(b) shared control between humans and robots; and (c) methods to inform the human operator about
the robot’s state.

In the literature, there are datasets extracted from robotics scenarios in which either
the human–robot interaction is not physical or the force based tasks do not include interaction
with humans. The former correspond to social robotics scenarios, where the most common means
of interaction is not physical, but verbal. Those datasets usually contain video, speech (audio
and transcripts), robot joint-sate, physiological data (e.g., bio-signals), or subjective data in the
form of questionnaires [22–26]. On the other hand, it is possible to find some datasets containing
force/torque data extracted from robotic scenarios in which robots and humans do not interact.
Yu et al. [27] presented a dataset in the context of pushing tasks where a robot pushed an object along
a specific surface. For each combination of an object’s shape and a surface’s material, these data
contained forces in the pusher and poses of both the object and the pusher. Another interesting dataset
involving forces was introduced by De Magistris et al. [28], where the authors presented a force-signal
dataset used to learn peg-in-hole robot tasks. The dataset comprised force/torque and pose information
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for multiple variations of convex-shaped pegs. It was used to train a robot to insert polyhedral pegs
into holes. Huang et al. [29] presented a dataset containing force/torque signals and poses of an end
effector tool. Data were recorded from humans performing a set of different motions making use of
the same tool that the robot would use, enabling the transference of knowledge. Datasets containing
information about physical and force based human–robot interaction would be useful for collaborative
robots to learn different task-dependent knowledge. Nevertheless, to the best of our knowledge,
there is no available dataset containing force/torque data that comes from the physical human–robot
interaction during a shared task.

3. Force Based Dataset of Physical Human–Robot Interaction

In this section, we provide all the relevant information related to the dataset (http://doi.org/10.
5281/zenodo.3522205) used along the evaluations presented in this work. The dataset consisted of
force/torque signals resulting from the physical human–robot interaction during the performance of
a collaborative task, polishing a piece. The dataset was geared to teach robots to identify and predict
humans’ intentions during the proposed shared task. In the upcoming paragraphs, we first introduce
the industrial collaborative scenario in which we used the dataset. Then, we explain the different sorts
of operator intents we wanted to infer. Finally, we analyze the specifications of the dataset and how
the data was collected. Note that we assume that the dataset was properly gathered and that it does
not contain any outliers.

3.1. The Industrial Collaborative Robotic Scenario

In this work, we consider a realistic industrial scenario inspired by a manufacturing line of
car emblems. We focus on one sub-process where the emblems are to be coated, and they must be
totally clean and polished. Currently, the plant operator picks, inspects, and polishes the emblems,
to finally place them into another location where they are coated. The objective is that a robot and
the human share the task collaboratively. We have redesigned the process so the robot is in charge
of the picking and placing tasks, while the operator still inspects and polishes the emblem. Once the
robot posed the piece in front of the operator, the human could perform different actions over the
emblem while the robot should infer those actions and adapt to them. In this scenario, the principle
means of human–robot interaction was force based. The interaction should be natural for the human,
and the reaction time of the robot should ensure a fluent and efficient collaboration. Note that it was
not within the scope of this work to tackle how the robot grasps and places the emblems. Instead, we
focused on how the robot, while offering the emblem, can infer the operator’s intent and adapt its
state appropriately.

3.2. Types of Operator Intents

Once the robot was offering the emblem to the user, we considered three different operator’s
intents: (a) polishing, (b) moving the robot, and (c) grabbing the object. Analogously, there were three
different states of the robot w.r.t. them: (a) increasing stiffness (named “hold”), (b) decreasing stiffness
(“move”), and (c) releasing the object (“open gripper”). In the first action, the operator should be able
to do the main objective of the task, polishing the emblem. When applying this sort of force, the robot
should be stiff. Otherwise, the polishing action would not succeed. The second operator’s intent was
regarding ergonomics in industrial scenarios. The operator could get tired of polishing the pieces in
the same pose or there could be another operator with different corporal dimensions and/or abilities.
Hence, this time, the force should be done to move the robot to a more comfortable pose. Finally, we
also contemplated the case in which the human wanted to grab the object (emblem), pulling it from
the robot’s gripper. In this case, the robot should open the gripper to release the piece. These three
actions should be performed naturally, and since they have a fundamental effect on the progress of the
shared task, the robot should be able to react to them. It is worth mentioning that they were chosen
considering the shared task from the scenario proposed in Section 3.1.

http://doi.org/10.5281/zenodo.3522205
http://doi.org/10.5281/zenodo.3522205
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3.3. Dataset Specifications

The dataset was recorded using an ATI Multi-Axis Force/Torque Sensor Mini40 SI-20-1, which was
fastened to the wrist of the robot, the basis of the end effector (see Figure 2a). We used the default
configuration of the sensor, and the measurements were taken at a frequency of 500 Hz.

Every sample contained a single sort of interaction, from the beginning to the end of the physical
contact. It is worth mentioning that the gathered data samples were not of the same length, ranging
from half a second to three seconds long. In the dataset, the shorter samples were padded with zero
values at the end of the temporal sequences so that all of them had the same length. The dataset
contained six different files per each of the three classes, which corresponded to the six axes of the
force sensor. Each file was named using the force/torque axis and the class label; hence, users could
read the samples included in each file and label them appropriately.

Although we aimed to infer force based human intentions from natural and therefore ambiguous
human–robot interactions, we first evaluated our method with less human based intentions, but more
distinguishable mechanical interactions. The mechanical dataset was used as a baseline to check if
the machine learning algorithms we studied could solve a simplified version of the problem we faced.
Meanwhile, the natural dataset was employed to evaluate (see Section 4) and validate (see Section 5)
the proposed approach to infer humans’ intentions. In the mechanical dataset, each class followed
distinct movement patterns, which produced completely different force signals. Therefore, the samples
of each of the intentions/classes were distinguishable from each other. On the contrary, in the natural
dataset, the movement patterns between classes were much more similar to each other; meaning there
was more ambiguity among samples of different classes, which made classifying more complicated.
In Section 4.5, we evaluate how the chosen machine learning approach (see Section 4.4) performed
when it was individually trained and tested with each of the datasets.

Since it was expected to be easier to classify, the mechanical dataset only contained 600 samples.
Recall that we had three classes, and we used two users; thus, each user performed 100 samples of
each class. The physical contact was always done following restricted patterns for each intention/class.
Figure 3 depicts both, the different axes in which the operator was supposed to apply the force and
the corresponding force signals we detected using the sensor. For the polishing intention, we moved
periodically only in the axis Y, and we pushed towards the robot, the negative Z-axis (Figure 3a).
In order to move the robot, we moved just in one direction for each sample and only in the Y-axis
(Figure 3b). Finally, to grab the object, we pulled the robot’s end-effector towards ourselves, the positive
Z-axis (Figure 3c).

Unlike with the mechanical dataset, the natural dataset contained more samples, 900. Recall that
we had three classes, and we used two users; thus, each user performed 150 samples of each class.
In this case, the physical contact for each intention/class could be done following several natural
patterns, which increased the ambiguity between classes. In Figure 4, it is possible to see the different
axes in which the operator was supposed to apply the force and the corresponding force signals we
detected using the sensor. For instance, the intention of polishing could now be done by describing
circles and also using the X-axis (Figure 4a). The patterns to move the robot now included any of the
directions of the three spatial axes (Figure 4b). Finally, the operator could now try to grab the object
pulling, but not only towards the exact direction of the Z-axis (Figure 4c).
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(a) Polish

(b) Move

(c) Grab

Figure 3. Mechanical dataset. Human movement patterns (left side) and appearance of the force signals
produced by those patterns (right side). Observe how each class (a–c) is quite distinguishable from the
rest even after only 0.4 s. Making use of this dataset to train a model would allow predicting fast with
enough confidence. Nevertheless, the movement patterns of the user would be too restricted, and the
human–robot interaction would not be natural.

(a) Polish

(b) Move

(c) Grab

Figure 4. Natural dataset. Human movement patterns (left side) and appearance of the force signals
produced by those patterns (right side). Observe how each class (a–c) is still similar to the rest even
after 0.4 s. Due to the richness in movements, a model trained with this dataset would allow a natural
human–robot interaction.
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It is worth discussing the visual differences between the signals of both datasets. In the mechanical
dataset, signal forces looked different when we considered the entire time series, but also after 0.4 s
of signals. Forces occurred in isolated axes for each of the operator’s actions/intents, and ambiguity
between classes was kept to a minimum. Hence, it was possible to discriminate between classes with
a reduced amount of force information. This was not the case for the natural dataset. Of course, signals
from different classes were still distinct if we considered the whole temporal sequence. Nevertheless,
unlike with the mechanical dataset, we could not be so sure about the label of each of the signals
after only 0.4 s. Please, recall that, although for illustrative purposes, the figures only show the linear
forces, our classification process used both torque and linear signals. Together with the dataset, we also
provide some Python code to run our proposed approaches and use the data (http://doi.org/10.5281/
zenodo.3522205). Therefore, other people can learn how to use the dataset on their own.

4. Force Based Operator’s Intention Inference

In order to infer humans’ intents, we have evaluated the performance of two approaches using
the natural dataset. We compared them and chose one, which was used during the validation carried
out in Section 5. Finally, the chosen approach was also used to analyze the differences between the
natural and mechanic datasets. These results are part of the experimental findings presented in our
work. One of the approaches, kNN + DTW, was based on a classifier that directly used the raw sensor
data to perform the inference, whereas the other one, GPLVM + SVM, used a lower dimensional
representation of the data. Recall that we sought a natural human–robot interaction, a fast reaction of
the robot, and if possible, an approach that dealt with heterogeneous industrial contextual data.

4.1. Evaluation Setup for the Proposed Approaches

The performance of the proposed approaches was evaluated following the considerations
explained in this section. Cross-validation without replacement was applied ten times, and the data
were randomly split into training (75%) and test (25%) sets. The chosen metric to evaluate the
performance was the F1-score, which captures both the precision and the recall of the test.

In order to fulfill the requirement of a profitable robot reaction, the prediction time should be
short enough so that the proposed methods apply to our realistic scenario. For that reason, we did
not consider all the samples, but smaller portions of them (windows), which contained only their
initial information. In total, five different window’s sizes were evaluated: 0.1, 0.2, 0.5, 0.7, and 1 s
(see Figure 5). The intuition is that the larger the sampling window, the higher would be the chances to
classify the human’s intention properly, but the longer the operator would need to wait until the robot
reacts to the interaction. Therefore, we aimed to find a trade-off between the prediction time and the
classification performance. Our experience said that 1 s was a convenient amount of prediction time for
an efficient and feasible human–robot collaboration. Thus, longer inference time would be undesirable.
Note that the total prediction time would include both the sampling window’s size and the time the
approach needs to infer the label of the sample.

Figure 5. Sampling windows evaluated to find an optimal classification-reaction time ratio. The windows
correspond to: 0.1 s (cyan), 0.2 s (red), 0.5 s (green), 0.7 s (purple), and 1 s (orange). Recall that one second is
our task limit time for achieving a suitable human–robot interaction.

4.2. Raw Data Based Classification

In this approach, using the data obtained from the sensor directly, the classification was done
utilizing a k-Nearest Neighbors (kNN) classifier with Dynamic Time Warping (DTW) [30] as the metric.

http://doi.org/10.5281/zenodo.3522205
http://doi.org/10.5281/zenodo.3522205
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In particular, we used k = 1. While being a simple method, 1NN + DTW’s performance seems to be
hard to beat by other approaches in time series classification problems [31].

4.2.1. Implementation Details of the Raw Data Based Classification

Dynamic time warping is a time dependent algorithm used to measure similarity between
two temporal sequences that may vary in speed. For instance, similarities in polishing could be
detected using DTW, even if the operator polishes faster or slower than on other occasions. DTW is
a computationally-intense technique, with quadratic time and memory complexity. However, there
are some ways to accelerate computation. In our case, we used the library Fast DTW [32]. DTW is
meant to be utilized for univariate time series, which was not our case since we had six sensor axes.
From the literature, we know at least two obvious approaches to tackle this and generalize DTW
for multi-dimensional time series: dependent and independent DTW (see Figure 6) [33]. The kNN
classifier was taken from the scikit learn library [34]. Since default implementations of both kNN and
Fast DTW do not allow working with multi-dimensional time series, it was necessary to adapt the
libraries we used. Apart from those modifications, we used the values set by default.

Figure 6. Dynamic Time Warping (DTW) for multi-dimensional time series: dependent (a) and
independent (b) DTW. The former consists of computing the DTW similarity path of both dimensions
(axis) at the same time. The latter is much simpler; normal DTW is computed separately on each
dimension and their results added subsequently.

4.2.2. Evaluation of the Raw Data Based Classification

The proposed method, 1NN + DTW, was evaluated for each of the window sizes previously
defined, concerning the classification performance and the inference time per sample. Recall that two
different implementations of multi-variate DTW were used, dependent and independent, DTWd and
DTWi, respectively. Due to the lazy learning nature of the kNN classifier, we also evaluated how the
length of the samples fed to the classifier affected the inference time. In particular, we sub-sampled the
measurements of the windows to smaller portions. We considered five different lengths, which were
expressed as the percentage of the window’s length that remained after the sub-sampling: 100%
(no sub-sampling), 8%, 6%, 4%, and 2%. Figures 7 and 8 show the results of the evaluation.

There are many conclusions that could be drawn by analyzing the information shown in Figures 7
and 8. In the first place, the bigger the window, the better the performance; see the evolution of
F1-score in Figure 7. It is also true that the growth of the window’s size resulted in an increment of
the inference time per sample (see Figure 8). This is reasonable since the kNN algorithm is a lazy
learner. Any time a new sample is to be classified, the similarity between that sample and the rest of
the training samples is computed. Hence, the longer the samples, the more time it takes to compute
the similarity, prolonging the whole inference process.

The best F1-score result (99.24%) was obtained for the case of using DTWd with the window size
of one second and sub-sampling of 6% of the total window’s size (see the orange bar in Figure 7).
The inference time per sample for this same case was above half a second (0.7 s), which can be seen
looking at the same bar in Figure 8. Therefore, the total operator’s intent inference time would be
around 1.7 s, which is above the one second we sought, so this was not a valid alternative.
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Figure 7. F1-score values for the different types of raw data based classification (dependent
and independent DTW), sampling window’s size (0.1, 0.2, 0.5, 0.7, and 1.0 s), and percentage of
sub-sampling (where 100 means non-sub-sampling). The longer the sampling window, the better the
classification performance. Observe how, for our task, a 0.5 s sampling window already provided
a very good F1-score.

Figure 8. Graphical representation of the values of the inference time per sample for the different
types of raw data based classification (dependent and independent DTW), sampling window’s size
(0.1, 0.2, 0.5, 0.7, and 1.0 s) and percentage of sub-sampling (where 100 means non-sub-sampling).
The longer the window of data we consider, the longer the inference time. The total time to recognize
the operator’s intent is the addition of the window’s size (horizontal axis) plus the inference time per
sample (vertical axis).
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Fortunately, reducing the window’s size, while helping to reduce the inference time, did not
decrement the performance too much. As can be seen in Figure 7, from windows bigger than 0.5 s,
the value of the F1-score was always above 95%. The best F1-score value for that window was
around 97.5%, which was a really good result. It corresponded to the case of using all the data within
the window’s size together with DTWi (red bar). Nevertheless, if we used that configuration for
the approach, the time needed to infer the operator’s intent would be above seven seconds, once
again undesirable.

We needed to find the most convenient combination of: the DTW version, sampling window
size, and whether sub-sampling was needed or not. Indubitably, we discarded the case in which
sub-sampling was not applied, since the inference time (blue and red bars in Figure 8) was always
above the desired one. Any case that used the one second window could also be dismissed, since the
performance was not much better than for the case of using 0.5 or 0.7 s windows. Hence, we focused on
the 0.5 and 0.7 s windows, in which there was not any combination that, at the same time, performed
better and faster than the rest. Nonetheless, should we choose one case, we would select a case in
which the trade-off between inference time (0.8 s) and performance (97.99%) was rather good. This
case corresponded to DTWi, a window of 0.7 s, and sub-sampling of the data to 2% of the window’s
size (pink bar in Figure 7).

4.3. Feature Based Classification

In this section, we propose a twofold machine learning approach to infer the human operator’s
intentions. First, we reduced the dimensionality of the data using an unsupervised method: Gaussian
Process Latent Variable Model (GPLVM) [35]. Then, we used a Support Vector Machine (SVM) classifier,
which was trained using the lower dimensional representation of the data. GPLVM is a non-linear
dimensionality reduction method that can be considered as a multiple-output GP regression model
where only the output data are given. The inputs are unobserved and treated as latent variables;
however, instead of integrating out the latent variables, they are optimized. By doing this, the model
gets more tractable, and some theoretical grounding for the approach is given by the fact that the model
can be seen as a non-linear extension of the linear Probabilistic PCA (PPCA) [36]. Note that in this
case, the temporal sequences are just considered as long feature vectors, so that the temporal relation
between subsequent signal measurements is not explicitly considered. However, dimensionality
reduction has proven to be an effective technique in time series analysis, in which data are remarkably
high dimensional [37–39].

4.3.1. Implementation Details of the Feature Based Classification

The implementation of the proposed method, GPLVM + SVM, relied on two existing libraries: the
GPy library [40] for the dimensionality reduction and the scikit learn library for the SVM classifier [41].
In the case of the latter, we used the default values for all the parameters. However, concerning GPLVM,
it was necessary to set some parameters: kernel, optimizer, and the maximum number of optimization steps.
Firstly, we chose a kernel that was a combination of the Radial Basis Function (RBF) kernel together with
a bias kernel. The RBF kernel was selected because it is one of the most well known kernels for non-linear
problems. We added the bias kernel to enable the kernel function to be computed not only in the origin of
coordinates. Secondly, for the optimization process, we used one of the optimizers already implemented in
GPy, limited-memory Broyden–Fletcher–Goldfarb–Shannon (BFGS) [42]. We chose this optimizer because,
unlike others included in the library, it was quite stable concerning the number of optimization steps needed
to converge. Finally, the maximum number of optimization steps was set to 5000, which in most cases was
enough for the optimization to converge.

The implementation of the GPLVM algorithm allowed us to use two different types of latent
variable inference: with the optimization step (GPLVM-op) and without the optimization step (GPLVM).
For us, the most relevant difference between them was that the inference with optimization took more
time, but it would be more correct in theory and would lead to more accurate results. Nevertheless,
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as we will see in Section 4.3.2, the inference with optimization did not always ensure better performance.
Once an already optimized GPLVM received a new sample to infer its latent variables, the global
inference process was divided into three steps. The first step, nearest neighbor search, was focused
on finding which of the training samples was the most similar to the new sample. This was done
by computing the similarity between the new sample and all the training samples employing the
Euclidean distance. The second step, latent variables’ initialization, consisted of setting the value of
the inferred latent variables to the values of the latent variables of the nearest neighbor found in the
previous step. Finally, during the third step, latent variables’ optimization, the value of the initialized
latent variables was refined through optimization. Figure 9 depicts the global pipeline of the inference
process detailed above.

Figure 9. Global GPLVM inference process of the latent variables given a new sample in the higher
dimensional space. First, the most similar training sample to the new sample is found using Euclidean
distance. Second, the value of the latent variables of the most similar training sample (black dot in the
first step) is used to initialize the inferred value (see the white dot in the second step). Third, the GPLVM
model is optimized considering the new sample, which results in a refinement of the inferred latent
variables. GPLVM with optimization includes the three steps; GPLVM without optimization stops after
the second.

4.3.2. Evaluation of the Feature Based Classification

The proposed method, GPLVM + SVM, was evaluated for all the different already mentioned
window sizes about both the classification performance and the inference time per sample. A priori,
we did not know which size of the latent space would produce a good performance. Therefore, different
sizes of latent space were also evaluated: 2, 3, 5, 10, and 20 latent variables. Besides, the two types of
GPLVM were evaluated as well: optimized (GPLVM-op) and non-optimized (GPLVM). Figure 9 depicts
the global modular structure of the GPLVM inference process. Figures 10 and 11 show respectively the
results of both the F1-score and the inference time with respect to the different window sizes and the
GPLVM methods used.
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Figure 10. F1-score values for the different types of feature based classification (optimized (op) and
non-optimized GPLVM inference), sampling window’s size (0.1, 0.2, 0.5, 0.7, and 1.0 s), and number of
latent variables (2, 3, 5, 10, and 20). Note that the bigger the number of latent variables, the better is
the result, which also happens with the window size. Furthermore, observe that in some cases where
the window’s size is very small (0.1 and 0.2 s), the shorter window outperforms the longer one by a
small amount. This behavior is counter-intuitive, but possible due to the still negligible information
contained within those small samples and the random selection of the training set.

Figure 11. Graphical representation of the inference time per sample for the different types of feature
based classification (optimized and non-optimized GPLVM inference), sampling window’s size (0.1,
0.2, 0.5, 0.7, and 1.0 s), and number of latent variables (2, 3, 5, 10, and 20). GPLVM-op leads to longer
inference time than GPLVM, which also applies when the number of latent variables grows.

Evaluating in detail the results depicted in such figures, probably, the most evident conclusion is
the effect of the optimization during the inference step in the GPLVM. The inference time per sample
was always longer when GPLVM inference was optimized. Indeed, that time grew accordingly to the
number of latent variables (see Figure 11). Another interesting finding was that the inference time per



Electronics 2019, 8, 1306 14 of 22

sample, when there was no optimization, remained quite short and stable no matter the window’s size
nor the number of latent variables (see Figure 11). Hence, in terms of inference time, GPLVM without
optimization was preferred. Moreover, as can be seen in Figure 10, the performance score between both
optimized and not optimized versions was negligible. This fact reinforced the previous result, allowing
us to conclude that the non-optimized version of GPLVM was the most convenient alternative.

Focusing on Figure 10, it is observable that the more latent variables we used, the better was
the result. Specifically, for the cases in which we used two and three latent variables (specially
two), the performance (F1-score) was usually much poorer. The best result in terms of performance,
an F1-score of 99.33%, corresponded to the GPLVM version without optimization, the window of 1 s,
and 20 latent variables. The inference time per sample was around 0.15 s, so the total inference time
was 1.15 s, slightly superior to the one second we set as desirable. Thus, we decided to reduce the
window’s size to 0.7 s. In this case, the best alternative was to use 10 latent variables and, again, the
non-optimized GPLVM. This resulted in losing a bit of quality in the performance, from 99.33% to
98.14%, not noteworthy, but decreasing the time from 1.15 to 0.85 s, fulfilling our requirements.

4.4. Raw Data Based vs. Feature Based Classification

In this section, we compare only the best combination of parameters for each of the two studied
methods. Finally, we selected one of them to be used during the experimental validation proposed
in Section 5. Recall that at the beginning of this work, we stated some requirements that the selected
approach should fulfill. The human and the robot should interact naturally, and the robot adaptation
should last one second at most. Furthermore, in the future, we aim to consider the contextual
information of the industrial processes surrounding the proposed collaborative task. Hence, it would
be desirable that the method to infer the human’s intention could deal with heterogeneous data, not
only temporal sequences.

The selected combination in the case of 1NN + DTW ensured an inference time of 0.8 s and
a performance score of 97.99%, which was rather good. It corresponded to using independent DTW,
a window of 0.7 s, and sub-sampling of the data to 2% of the window’s size (see Section 4.2.2 for more
detail). When using GPLVM + SVM, the selection was GPLVM without optimization, a window of
0.7 s, and 10 latent variables. This approach resulted in an F1-score of 98.14% and an inference time of
0.85 s (see Section 4.3.2 for more detail). As we can see, the quantitative differences between the two
alternatives were negligible. Therefore, to provide more useful insights into the comparison between
1NN + DTW and GPLVM + SVM, we analyzed them using more qualitative measures. They were
extracted from the hands-on experience acquired along the developed work and were meant to ease
the selection procedure.

• Ease of implementation: Both methods were relatively simple to implement and use. Conceptually
and algorithmically, 1NN + DTW was a simple machine learning technique; only the versions of
DTW for multivariate data presented a bit of difficulty. GPLVM was theoretically more complex,
and reaching a profound understanding of the mathematical background of this technique would
require effort. However, the GPy library eased the use of GPLVM without the need to dig too
much into the theoretical details.

• Data visualization: GPLVM allowed us to project the sequential data samples into just a few latent
variables and then visualize the data distribution in either 2D or 3D. This can be useful to analyze
the dataset easily, and it was something that could not be done using 1NN + DTW.

• Generalization to other scenarios: This aspect is rather important for us because in the future,
we would like to include heterogeneous environmental variables in the learning pipeline.
Examples of contextual variables are: if the grasped object is heavy or not and if the user is
inside the workspace or not. In this case, these two variables are binary and could be added to
the feature vector of each sample to learn some environmental aspects related to safety. GPLVM
could be used to reduce the dimensionality of temporal sequences to just a few features. Then,
other contextual variables could be concatenated to the resulted feature vector, and SVM would
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be used to learn not only the physical interactions but also the contextual information. 1NN +
DTW, however, cannot deal with other data apart from sequential. It would be necessary to use
a second kNN model with another metric (e.g., Euclidean) and then apply ensemble learning
techniques.

Based on the previous analysis, we selected GPLVM + SVM. In particular, we proposed to use
GPLVM without optimization during the inference, a sampling window of 0.7 s, and 10 latent variables.
The first reason was that we thought GPLVM’s generalization capabilities could help us in future
works. In robotics, especially in industrial environments, data are presented in heterogeneous ways:
sequential data, digital, etc. Let us consider one of the examples proposed in the generalization
paragraph. If the object the robot grasps is too heavy, we could just add a “1” to the feature vector
of latent variables and train the SVM classifier with the new extended vector. Therefore, it could be
learned that even when the inferred human’s intention is grabbing the object, the robot must never
open the gripper if the object is too heavy. Of course, if we consider only one environmental variable,
the easiest way to tackle this event would be to add a conditional statement to the control code of the
robot. However, if the number of those variables increases, machine learning methods could help.
Furthermore, GPLVM allowed us to visualize the distribution of the data we worked with, which could
be especially useful if the dataset were enlarged by other people, and we wanted to see how the
different datasets related to each other.

4.5. Comparison of Natural and Mechanical Datasets

In this section, we evaluate and compare the performance of the chosen approach, GPLVM +
SVM, using both datasets, the natural and the mechanical. We assumed that the mechanical dataset
would show a good performance even with a small sampling window sizes. Given that, we wanted to
analyze if the proposed method, for the sampling window of 0.7 s, could work similarly well, not only
with the mechanical, but also with the natural dataset. Recall that we chose to use the non-optimized
GPLVM inference and 10 latent variables. Although the selected sampling window’s size was 0.7,
during this section, we tested the approach against the usual five sizes we used along the rest of the
document. As was done previously, we used cross-validation without replacement ten times, and the
data were randomly split into training (75%) and test (25%) sets.

Figure 12 depicts the F1-score values obtained from the evaluation of GPLVM + SVM against both
datasets. This bar diagram shows that indeed, our previous assumption was true. In general, using
the mechanical dataset, we obtained better results than with the natural data. Specifically, when the
window’s size was 0.2 s, the F1-score was even close to 95%. However, we also observed that for the
window chosen for our validation with users, 0.7 s, the differences between the performance using any
of the datasets were minimal. Therefore, the proposed approach worked quite well even when the
dataset contained more natural samples of physical human–robot interaction.
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Figure 12. Evaluation of the natural (blue) and the mechanical (red) datasets of the approach GPLVM +
SVM without optimization and 10 latent variables. The mechanical data need less force information to
classify with good quality. However, if the window of the force signal is large enough (more than 0.5 s),
the model behaves similarly no matter whether the data are mechanical or natural.

5. Validation: Inferring Operator’s Intent in a Realistic Scenario

To validate the selected approach, GPLVM + SVM, we set up an experiment in which several
users individually collaborated with a robotic arm according to the industrial scenario of polishing
car emblems. The validation was conducted using fifteen healthy individuals within an age range of
18 to 35. Users were selected among people who had knowledge about the robotics domain and had
been in contact with robots before. We did not include people with reduced mobility or any cognitive
disability, which could affect the perception of the robot’s behavior, endangering the users’ integrity.
Each of the users received an individual explanation, no more than five minutes, about how they were
expected to interact with the robot. This included both general information about the system and
particular notions about the expected movements for each of the three classes/intentions. Nevertheless,
the users were not allowed to train before the evaluation began, because we wanted to evaluate if
there was an adaptation of the user to how the system inferred the different intentions. Users were
also informed about their rights, possible risks, and were asked to sign an ethical approval specifically
designed for this experiment. Note that we followed CSIC (Spanish National Research Council) ethical
procedures and asked for ethical consent from the Human Subject Research Committee of CSIC before
the validation was conducted.

Recall that the parameter combination for the chosen approach was: GPLVM without optimization,
a sampling window of 0.7 s, and 10 latent variables. In this section, we give the flavor of the validation
setup, and we evaluate and discuss the obtained results.

5.1. Setup

The validation setup was aimed at fulfilling the needs required by a human and a robot to
collaborate on an industrial task in which the force exchange is not only present, but fundamental
for the accomplishment of the task. Using the force based information, the robot should be able
to identify the intent of the operator (Section 3.2) and to adapt its state/behavior to it. In order
to provide a bi-directional communication, we equipped the robot with a force sensor, used to
measure the interaction from the human to the robot, and an armband made of LEDs through
which the robot informed the user of its internal state. The latter allowed us to display different
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patterns (see Figure 13). The finite state machine of the control of robot during the validation
experiment is shown in Algorithm 1.

(a) Ready. (b) Not confident. (c) Hold. (d) Move. (e) Open.
Figure 13. LED patterns used by the robot to communicate with the user using the robot’s armband.
(a) Green pattern used to indicate when the robot is ready for physical interaction. (b) Red pattern
indicating low classification confidence (<70%). Textual patterns showing the state of the robot when
user intents are identified with high confidence: (c) “hold” (polish intent), (d) “move” (move intent),
and (e) “open” (grab intent). The character “e” could not be expressed due to the four row armband
matrix restriction.

Algorithm 1: Finite state machine of the control of the robot during the validation.
Data: Force sensor’s signals
Result: Robot’s state adaptation

1 initialization;
2 while true do
3 robot in initial pose;
4 inform operator: robot is ready for interaction;
5 wait for physical contact;
6 if detected physical contact then
7 prepare sample from raw sensor data;
8 infer operator’s intention;
9 if inference’s confidence ≥ 0.7 then

10 inform operator: next robot’s state;
11 adapt robot’s state to the inferred intention;
12 else
13 inform operator: the inference’s confidence was low;
14 end
15 else
16 do nothing;
17 end
18 end

Recall that this scenario was inspired by a real industrial case in which an operator was meant to
inspect and polish car emblems. Please refer to Figure 2a to see the different parts of the robot setup
used. We can only show the adapter where the emblem is attached since emblems contain private
commercial brand logos and cannot be shown due to confidentiality agreements. Another important
aspect related to the setup is how the user is located with respect to the robot. We chose to pose the
operator in front of the robot so that the physical interaction was comfortable. During the experiment,
the operator will have a rag that would be used to polish. Figure 2b shows an example of the pose of
a user while polishing. A video of the validation with users can be found at www.iri.upc.edu/groups/
perception/SIMBIOTS.

5.2. Evaluation

Each user was asked to perform thirty trials randomly selected from the three operator’s
intent/actions explained in Section 3.2. We made sure that among the thirty trials, ten corresponded to
each of the three classes/intentions. Note that since trials were randomly arranged for each person,
there could not be any bias in our evaluation due to the order of the trials. Both the ground truth

www.iri.upc.edu/groups/perception/SIMBIOTS
www.iri.upc.edu/groups/perception/SIMBIOTS
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and the inferred value were annotated for each user’s trial. In this section, we analyze the overall
performance of the system (confusion matrix) and the overall adaptation of the users throughout the
experimental validation.

A confusion matrix of the performance of the system for each user was computed, then we
calculated the final mean confusion matrix shown in Figure 14, which contained the average result
for all users. The most obvious observation one can make is that the “move” intent was the easiest to
identify. Indeed, the confusion matrix was not symmetric, and this class showed a large percentage
of false positives, which was a symptom of a clear bias of the model in favor of this class. This can
be better understood by looking at Figure 15. This figure shows the sample distribution in the
three-dimensional space defined by the most significant/discriminating latent variables among the
ten used. We can observe how the samples from the “move” class fell in the middle of the other
two classes, which explains why there were many false positives, shared with the other two classes.
However, given the bias in favor of this class and the higher proximity to the “grab” class, this latter
was the class with the biggest number of false positives.

As stated before, we also studied if there was an adaptation of the users to the system,
which would be observable in the performance of the system along the validation experiments. Recall
that users only received a short explanation of the three classes and in which axes they could perform
the movements for each action. There was ambiguity among classes, and users had a particular way
to move for each action. Because of this, during the first trials, the system’s performance was poorer.
When we talk of adaptation, we mean that the users understand which movements for each class
ensure a better performance of the system. Note that this is possible because users could see the result
of the inference.

Figure 14. Normalized confusion matrix of the performance of the system during the validation with
all users and trials. The matrix is non-symmetric, and the biggest portion of misclassified samples of
the classes “grab” and “polish” are inferred as “move”, which indicates the existence of some bias in
favor of the class “move”.

Figure 15. Single perspective of the data visualization using the three most discriminating latent
variables from the original ten. The distribution of the data in this lower space shows that the samples
of the class “move” are rather close to the other two classes, which could be the reason why the model
seems to be a bit biased in favor of this class.

We computed the average performance of the system for all the trials and users, and the result
showed a positive slope of the trend line for the F1-score (Figure 16). We considered that once the



Electronics 2019, 8, 1306 19 of 22

trend line was above 0.8, users had already adapted. In our case, this corresponded to the last five
trials of the experiment.

Figure 16. Average F1-score of the system for all the users along with the experiment’s trials.
The positive slope of the trend line for the F1-score is an indicator of the adaptation of the users
to the system. Please recall that none of the users followed the same sequential trial set since they were
randomly generated.

6. Conclusions

In this article, we presented our work on inferring operators’ intent throughout the execution of
an industrial collaborative task in which a robot and an operator exchanged forces while sharing the
accomplishment of the task. This work consisted of three major contributions: (a) force based operator’s
intention inference; (b) force based dataset of physical human–robot interaction; and (c) validation of
the whole system in a scenario inspired by a realistic industrial application. In our work, the physical
interaction between the robot and the human not only existed, but also played a major role since it
was the main source of information for the robot to infer the human’s intent. Were humans and robots
to collaborate in industrial environments in the factories of the future, the main interaction would be
physical. Hence, our work means a step forward to enhance humans’ and robots’ collaboration in real
case studies with more natural and user-friendly interaction. In the future, we will consider exploring
other model based representations of the inherent contextual knowledge of collaborative shared tasks,
to extend our current system to a wider range of more complicated scenarios.
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