PULLBACKS OF SAITO-KUROKAWA LIFTS AND A CENTRAL VALUE
FORMULA FOR DEGREE 6 L-SERIES

APRAMEYO PAL, CARLOS DE VERA-PIQUERO

ABSTRACT. We prove an explicit central value formula for a family of complex L-series of degree 6
for GL2 x GL3 which arise as factors of certain Garret—Rankin triple product L-series associated with
modular forms. Our result generalizes a previous formula of Ichino involving Saito-Kurokawa lifts, and
as an application we prove Deligne’s conjecture stating the algebraicity of the central values of the
considered L-series up to the relevant periods.

1. INTRODUCTION

Explicit central value formulas for L-series associated with modular forms have always been of interest
in number theory. In this paper we prove a central value formula for certain L-series of degree 6,
generalizing a result of Ichino | ], which involves pullbacks of Saito—Kurokawa lifts. This can be seen
as yet another evidence of the key role that pullbacks of Siegel Eisenstein series or cusp forms play in
the proof of the algebraicity of critical values of certain automorphic L-functions. Previous instances
of this phenomenon are found for example in the works of Garrett | , |, Bocherer | 1,
or Bocherer-Furusawa—Schulze-Pillot | ], or also in a similar flavour in Ichino-Tkeda [I108], where
special values of certain triple product L-series are related with pullbacks of hermitian Maass lifts. All
these results, as well as the result in this paper, fit within the range of the ‘refined global Gross—Prasad
conjecture’ (cf. [IT10]), reflecting the intimate relation between certain periods of automorphic forms on
special orthogonal groups and L-values.

In order to describe the setting considered in this article, let £ > 1 be an odd integer, and let
[ € S5 (To(Ny)) and g € SP¢T(To(Ng),x) be two normalized newforms of weights 2k and &k + 1,
and levels Ny and Ny, respectively. We assume f has trivial nebentypus, whereas g has nebentypus
x (hence x is a Dirichlet character modulo Ny). Write V,(f) (resp. Vi(g)) for the compatible system
of f-adic Galois representations attached to f (resp. g¢), and denote by Ad(Ve(g)) the so-called adjoint
representation of Vy(g). In this paper we are concerned with the complex L-series L(f ® Ad(g),s) of
degree 6 for GLy x GL3 associated with the tensor product V¢(f) ® Ad(Ve(g)). This L-series can be
defined by an Euler product for Re(s) > 0, whose local factors at primes p { Ny N, are given as in | ,
p. 559]. The completed L-series

A(f ® Ad(g),s) :=Tc(s)I'c(s + k)c(s — k+ 1) L(f @ Ad(g), s),

where T'c(s) = 2(27)*T'(s) is the usual complex Gamma function, admits analytic continuation to the
whole complex plane and satisfies a functional equation relating its values at s and 2k — s, with sign
e(f®Ad(g)) € {£1}. Under certain hypotheses, which in particular guarantee that the sign e(f ® Ad(g))
is +1, the main result of this paper is an explicit central value formula for A(f ® Ad(g),k). As an
immediate corollary, we deduce the algebraicity of such value up to a suitable period, as expected by
Deligne’s conjecture.

As the eager reader might have already suspected, the L-series L(f ® Ad(g), s) is closely related to a
suitable triple product Garret-Rankin L-series. Indeed, let f' := f®@x ! be the twist of f by the inverse of
the character x. By construction, the motive associated to the triple tensor product Vz(f") @ Vz(g) ® Vi(g)
is self-dual, and hence the Garret—Rankin L-series L(f' ® g® g, s) attached to it (or rather, its completed
L-series) satisfies a functional equation relating its values at s and 4k — s, with sign ¢(f’,g,9) € {£1}.
In view of the isomorphisms

Vi(g) @ Ve(g) = det(Ve(g)) ® Sym?(Ve(g)) = det(Ve(g)) ® (1 Ad(Ve(9)))

where Sym?(V;(g)) stands for the symmetric square representation of V;(g) and we use that Sym?(V,(g)) ~
Ad(Vy(g)) @ det(Vi(g)), Artin formalism provides a factorization of complex L-series

(1) L(f/®g®g75):L(f75_k)L(f®Ad(g)a3_k)'
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It is well-known that the completed L-series A(f,s) := I'c(s)L(f,s) satisfies a functional equation
relating its values at s and 2k — s, with sign e(f) € {£1}, thus the central critical point for the shifted L-
series A(f,s—k) is at s = 2k. Concerning the central values, suppose that A(f ® Ad(g), k) is non-zero. If
A(f, k) is non-zero as well, then one can use (1) straightforward to express the central value A(f®Ad(g), k)
as a ratio between the central values A(f' ® g ® g,2k) and A(f, k). When A(f, k) vanishes, however, the
identity in (1) is not directly giving a way to obtain an expression for A(f ® Ad(g), k).

Despite the above relation to triple product central L-values, the approach in this article to obtain
an ezplicit central value formula for A(f ® Ad(g), k) does not require determining triple product central
L-values. Instead, as pointed out at the beginning of the introduction, we generalize a result of Ichino
involving Saito-Kurokawa lifts. As a motivation towards our result, suppose in the previous discussion
that Ny = Ny = 1, hence x is trivial as well and f and g are normalized newforms for the full modular
group I'g(1) = SLy(Z). In this case, f' = f, and (1) reads

L(f®g®g,s) = L(f,s —k)L(f ® Ad(g), 5).

Our choice of weights makes that e(f, g, g) = (f) = —1, and therefore the sign in the functional equation
for A(f ® Ad(g),s) is +1. In this particular setting, Ichino proved in | | an explicit formula for
A(f ® Ad(g), k), involving a half-integral weight modular form h € Si41/2(I'0(4)) associated with f by
the Shimura correspondence and its Saito-Kurokawa lift F' € Si41(Spy(Z)), which is a Siegel modular
form of degree 2. In terms of these lifts, Ichino’s formula reads

_ 2k+1 <.f7 f> |<ﬂHXH7g X g>|2

(h, ) (9,9
where Fjy; 7 denotes the restriction (or ‘pullback’) of F' to H xH, embedded ‘diagonally” in Siegel’s upper
half space Hs. Our main result can be seen as a generalization of (2), when removing the assumption
that Ny = Ny, = 1. However, instead of extending Ichino’s arguments, our strategy relies on a more
recent result by Qiu | ].

Indeed, there is a decomposition formula for the SO(4)-period P associated with (the restriction of) a
Saito—Kurokawa representation of PGSp, and an irreducible cuspidal unitary representation of GSO(4).
Here, GSO(4) and SO(4) stand for the group of similitudes and the special orthogonal group of a certain
4-dimensional (split) quadratic space, and PGSp, is identified with the special orthogonal group of a
suitable 5-dimensional quadratic space. The proof of this decomposition result by Qiu in fact reduces to
a decomposition formula for a global SLo-period Q, proved in the same article. This SLo-period, and the
interplay between P and Q, plays a central role in the proof of our main result.

To illustrate our strategy, consider again the general setting in which f and g are of level Ny and Ny,
respectively, and x is not necessarily trivial. Then let 7 (resp. 7) be the automorphic representation
of PGL2(A) (resp. GLa(A)) associated with f (resp. g). The Shimura correspondence, settled and in-
vestigated in detail by Waldspurger [ , ] as a theta correspondence for the pair (PGLy, §I:2),
associates to 7 (and a choice of non-trivial additive character of A/Q) a near equivalence class of auto-

(2) A(f ® Ad(g), k)

morphic representations 7 of the double metaplectic cover §I:2(A) of SLy(A). Classical Shimura lifts of f
give rise to automorphic forms in the representations 7 arising in this theta correspondence. Associated
with the representations 7, 7, and a Weil representation w depending on the fixed additive character of
A/Q, there is a (global) SLa-period functional

Q:TRTRTITRWRw — C

(cf. Section 6 for its precise definition), which by virtue of [ , Theorem 4.5] decomposes (when it is
non-zero) up to certain special L-values as a product of local periods

Ty : Ty @Ty ® Ty @ Ty Qy @y —> C

defined by integrating local matrix coefficients. Among the L-values showing up in this decomposition
formula, one finds L(1/2,7 x adr), which corresponds with the central value A(f ® Ad(g), k) that we
are interested in. Moreover, the non-vanishing of the functional Q is essentially controlled by the non-
vanishing of the special value L(1/2,7 x adr) (cf. Propositions 6.2 and 6.3). Hence, one can obtain
an explicit expression for A(f ® Ad(g),k) by finding a test vector on which Q does not vanish, and
computing the local periods Z,, when evaluated at such test vector. Besides, as hinted above, the global
period Q is related to the SO(4)-period P, when replacing the automorphic representations 7 and 7 with
automorphic representations IT and T, of GSp, and GSO(4) respectively, obtained from 7 and 7 via theta
correspondence. It is via this relation with P that the global period Q evaluated at the test vector can be
interpreted as a classical Petersson product, therefore leading to the aimed expression for A(f ® Ad(g), k)
in purely classical terms. For example, in Ichino’s setting described above, this global automorphic period
2



is the responsible of the factor [(Fiyx,g ¥ g)|? appearing in (2). The main novelty of our work is the
computation of the above mentioned local SLy-periods at ramified primes. It is important to remark that
these local SLo-periods have their own interest, and their computation has potential applications in the
study of the subconvexity problem for the family of automorphic L-functions of the form L(s, 7 x adr).
This will be explored in a forthcoming work.

Although the strategy that we have just sketched works in a rather general setting, for the sake of
clarity and to simplify the (already involved) local computations we will impose some assumptions on f
and g. Most importantly, we will assume that

(SF) N = Ny = N, is odd and square-free.

One could easily relax this assumption to require only that Ny and N, are square-free (but not necessarily
equal), at the cost of dealing with more cases when performing the computation of the local periods Z,
alluded to above. However, we content ourselves with illustrating the method under the assumption (SF).

Besides, let M denote the conductor of the Dirichlet character x. Thus M is a positive divisor of NV,
and by (SF) M is square-free as well. If we write y = le a1 X(p)» Where x(,y is a Dirichlet character
modulo p for each prime p | M, then we assume that

(H1) X(p)(—1) = —1 for all primes p | M.

In particular, this implies that M is the product of an even number of primes. We use hypothesis
(H1) to apply a generalized Kohnen formula due to Baruch and Mao | ], recalled in Theorem
2.1 below. Finally, it is well-known that the sign e(f) € {£1} in the functional equation for L(f,s)
might be written as a product of local signs e(f) = [, €v(f), where v varies over the rational places,
eo(f) =e(1/2,m,) € {£1} for all v, and &,(f) = +1 for all v 1 Noo. We will assume that

(H2) ep(f) = —1 for all primes p | M.

Under our previous assumptions, hypothesis (H2) becomes crucial for the non-vanishing of the period
functional Q (cf. Section 6). Observe that if x is assumed to be trivial, then M = 1 and hypotheses
(H1) and (H2) are empty. In fact, for y trivial, the arguments in this paper would be much less technical
(for example, it would be enough to use Kohnen’s formula instead of its generalization by Baruch-Mao,
computations with the Saito—Kurokawa lift would be simpler, and the whole Section 8 would not be
needed) and consequently the length of this note would be also considerably reduced.

A comment on signs is now in order. Indeed, the assumption that & is odd implies o (f) = —1, and
since the triple of weights (2k, k+ 1,k + 1) is ‘balanced’ (i.e. none of the three weights is at least the sum
of the other two) one also has e (f'®g®g) = —1. Besides, the assumption (SF) together with hypothesis
(H2) imply, by | » Section 8], that [, x p(f) = [I, v p(f' ®9®g). Therefore, e(f) = (' @g®g),
and it follows from (1) that the sign in the functional equation for A(f ® Ad(g), s) is +1.

Now we can finally state our main result. To do so, let S,:ﬁj‘; (4N M, x) denote Kohnen’s subspace of
newforms of weight k + 1/2, level 4N M and character x (see Section 2.2 for details). Under assumptions
(SF) and (H1), it follows from | , Theorem 10.1] (cf. Theorem 2.1 below) that the subspace of
S;ﬁ‘/‘;’(élN M, x) consisting of newforms whose eigenvalues for the Hecke operators at primes p t 2N
coincide with those of f ® x is one-dimensional. Let i be any non-trivial element in this one-dimensional
subspace, thus h is a Shimura lift of f (or of f®X), and let F, € Sk+1(F82)(N), X) be the Saito-Kurokawa
lift of h, as defined in Section 2.3; this is a Siegel cusp form of degree 2, weight k + 1, Hecke-type level

F(()Q)(N ), and character x. One may think of F) as a Saito-Kurokawa lift of f ® x.

Theorem 1.1. Letk, N > 1 be odd integers. Let f € Sz (T'o(N)) and g € Sp$Y (To(NV), x) be normalized
newforms, and assume (SF), (H1), and (H2). If h and F, denote a Shimura lift of f and its Saito—
Kurokawa lift as explained above, then

(f, £) (A @ Unr) Fyppxas 9 X )
(h, h) (9,9)? ’
where Uy = HP‘M U, denotes the product of the usual p-th Hecke operators U,, v(M) denotes the number

of prime divisors of M, and

C(N, M, x) = [x@)*M* N [+ 1D)* [0+ D).
p|N p|M

3) A(f ® Ad(g), k) = 2" 77D C(N, M, x)

In particular, under the assumptions of the theorem we have A(f ® Ad(g),k) > 0.
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Remark 1.2. Let f and g be as in Theorem 1.1, and suppose that x is trivial. Then M = 1, and
hypotheses (H1) and (H2) hold trivially, hence the central value formula (3) reads

<f7f> ‘<F‘|'H><7-Lag X g>‘2
(h, h) (9,9)

This formula coincides with the one obtained by S.-Y. Chen in | |, which appeared after a first version
of this paper was made available. Instead of using Qiu’s decomposition theorems and computing local SLo-
periods, Chen generalizes straightforward the original strategy of Ichino. Besides considering non-trivial
nebentype character, as commented above the novelty of our approach is precisely the computation of local
SLo-periods at ramified primes, which have their own interest and applications to other problems. If we
further restrict to N = 1, observe that we obviously recover Ichino’s formula in (2).

A(f®@Ad(g), k) = 2" N ][ (0 + 1)

p|N

Remark 1.3. If the weight of g is assumed to be £ + 1 with £ > k odd, instead of k + 1, then all
the arguments to prove the above central value formula work through by replacing h and F, with suitable
nearly holomorphic forms obtained from these by applying the relevant derivative operators, and modifying
accordingly the local computation for the archimedean period I, (cf. Section 9.2).

Theorem 1.1 has an immediate application to Deligne’s conjecture | ]:

Corollary 1.4. Let k,N > 1 be odd integers, and f, g be as in Theorem 1.1. If Q(f,g) denotes the
number field generated by the Fourier coefficients of f and g, then

alg .__ A(f ®Ad(g)7k)
A(f © Ad(g), k) ~4@;§§qﬁf€QUﬂL

where ¢t (f) denotes the period associated with the cuspidal form f by Shimura as in | ].

Remark 1.5. When N = 1, this corollary follows of course from Ichino’s formula. And in line with
Remark 1.3, when N =1 and f and g have weights 2k and ¢ 4+ 1, respectively, with £ > k odd integers,
the algebraicity of the relevant central value has been recently shown by H. Xue in [Xue], working with
Jacobi forms instead of Saito—Kurokawa lifts.

Let us close this introduction by pointing out some applications of the present work. One direction
that we want to explore aims for a p-adic analogue of the factorization of complex L-series given in (1).
Even though one could define a two-variable p-adic L-function associated with f ® Ad(g) by making use
of the above hinted relation of L(f ® Ad(g), s) with suitable triple product L-series, the explicit central
value formula provided by Theorem 1.1 gives an alternative approach for the construction of such a p-
adic L-function, which is independent of any triple product p-adic L-function. Namely, one can directly
interpolate the explicit expression in Theorem 1.1 (or rather the algebraic parts as in Corollary 1.4)
as f and g vary in Hida families. With this p-adic L-function at hand, the proof of a factorization of
p-adic L-functions parallel to (1) will require comparing two Euler systems. Namely, the one associated
to generalized Gross—Kudla—Schoen diagonal cycles in the product of three Kuga—Sato varieties, and
the one arising from Heegner points. This would extend the factorization result of Dasgupta in | ]
establishing Greenberg’s conjecture for the adjoint representation, where instead of a triple product L-
series one considers a Rankin L-series of two cusp forms twisted by a Dirichlet character.

In a completely different direction, the computation of local SLo-periods leading to the explicit central
value formula in Theorem 1.1, when relaxing the assumption (SF) to requiring only that Ny and N,
are square-free, provides an important tool in the study of the subconvexity problem for the family
of automorphic L-functions of the form L(s,m X adr). This problem is related to the limiting mass
distribution of automorphic forms (‘arithmetic quantum unique ergodicity’). See for instance | I,
[Nel], and references therein.

1.1. Outline of the paper. Although the strategy of the proof of Theorem 1.1 has already been sketched
above, let us briefly explain the organization of this paper. Sections 2 and 3 are devoted to recall and
set some necessary background material concerning classical modular forms and automorphic forms.
Theorem 2.1, due to Baruch—-Mao, will play an important role later on in the paper. After this, we review
in Section 4 the theory of quadratic spaces, theta functions, and theta lifts, describing also explicit models
for quadratic spaces in low dimension that are used in this paper. Section 5 focuses in the three theta
correspondences that are involved in the proof of the main result of this paper. In particular, we prove
two explicit identities for theta lifts (see Propositions 5.1 and 5.10) for the theta correspondences between
GL5y and GSO(4), and between SL, and PGSp,, respectively, by adapting the ones in [I108, Section 5] and
[ , Section 7]. In Section 6 we can already prove Theorem 1.1, and deduce Corollary 1.4, although
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the computation of the local periods Z, is relegated to Sections 7, 8, and 9, which constitute the most
technical part of this article.

1.2. Notation and measures. Before closing this introduction, we collect here some notations to be
used throughout the paper. We will denote by A = Ag the ring of adeles over Q. We will also write
7 = Hp Z,, for the profinite completion of Z, which will be regarded as a subring of A.

We write ¢ for Riemann’s zeta function, with the usual Euler product ¢ = Hp (p, and (g will stand for
the completed Riemann zeta function defined by Cg(s) := T'r(s)¢(s), where T'r(s) := 7—*/?T'(s/2) and
I'(s) denotes the Gamma function. We also put I'c(s) := 2(2m)°T'(s).

If G is a connected reductive group over Q, we equip G(A) with the Tamagawa measure dg. The
volume of [G] := G(Q)\G(A) with respect to this measure is usually referred to as the Tamagawa
number of G. For GLy(A), we write dg = [], dg, as a product of local Haar measures, satisfying
vol(GL2(Z,), dgp) = 1 for all finite primes p. In the case of SLa(A), we choose the local Haar measures
to satisfy vol(SLa(Z,)) = (,(2)~* for all finite primes p.

If V is a finite-dimensional quadratic space over Q, with bilinear form (, ), and ¢ is an additive
character of A/Q, then we consider the Haar measure on V(A) which is self-dual with respect to 1,
unless otherwise stated. That is to say, the Haar measure such that F(F(¢))(x) = ¢(—z), where F(z) =
fV(A) d(Y)¥((x,y))dy is the Fourier transform of ¢. The orthogonal group O(V') is not connected. We
choose a measure on O(V)(A) as follows: first, we equip SO(V)(A) with the Tamagawa measure; secondly,
at each place v we extend the local measure on SO(V)(Q,) to the non-identity component of O(V)(Q,);
and finally, we consider the measure dh, on O(V)(Q,) to be half of this extended measure, and define
dh = 1], dh,. This is the Tamagawa measure on O(V)(A), and [O(V)] = O(V)(Q)\O(V)(A) has volume
1 with respect to dh.

Continue to consider a finite-dimensional quadratic space V' as before, and a non-trivial additive
character of A/Q. If S(V(A)) denotes the space of Bruhat—Schwartz functions on V(A), and ¢, ¢2 €
S(V(A)), we set (o1, p2) fv (x)dx, where dz is the Haar measure that is self-dual with
respect to 1. If 7 is an 1rredu01ble cuspldal unitary representation of G(A), and fi, fo € m, we define the

pairing (f1, f2) to be:
) Jisr, f1(9)F2(9)dg, if G = SLa;
ii) f[PGLQ] f1(g) f2(g)dg, if G = GLg;
i) [ig f1(9)f2(9)dg, if G =SO(V) or O(V).

Finally, let p be a prime, and fix a non-trivial additive character ¢, : Q, — C of conductor Z,. If
p: Q) — C* is a character such that pu(p) = 1 (or equivalently, a character of Z)'), and a € Q,, we
define the Gauss sum

&(a,u) = Y(ax)p(z)de,
Zy
where dx is the Haar measure which is self-dual with respect to 1, normalized so that Z, has volume 1.
It is well-known that &(a, ;1) = 0 unless p = 1 or ord,(a) = —cond(u), where ¢ = cond(y) is the smallest
positive integer such that p is trivial on 1 + p°Z,. More precisely, we have

1—pt if u =1, ordy(a) > 0,
—p~1 if u=1, ordy(a) =
G(a,u) =10 if =1, ord (a)<
la| =/2e(1/2,p~ )N a) if p# 1, ordp(a) = —Cond(u),
0 if p # 1, ordy(a) # —cond(u).

Here, £(1/2,u~ 1) is the (local) e-factor associated with p~!

e(1/2,m)e(1/2,p71) = p(-1).

, which satisfies (among other properties)
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2. MODULAR FORMS

The main purpose of this section is to recall and set up the notation regarding classical modular forms,
with a particular focus on some features concerning distinct liftings between spaces of classical modular
forms of different nature (namely, modular forms of integral weight, modular forms of half-integral weight,
and Siegel modular forms of degree 2) that will be used in the paper.

2.1. Integral weight modular forms. Let H = {z € C: Im(z) > 0} be the complex upper half plane,
on which the group GL;" (R) of real 2-by-2 matrices with positive determinant acts by

a b L az+b
c d ez 4d
Let £ > 1 be an integer, and consider the usual action of GLJ (R) on the space of holomorphic functions
g : H — C defined by

9le)(2) = §(v,2) " det(v)?g(v2),
where j(v,2) = cz+d if y = (24). If N > 1 is an integer and y : (Z/NZ)* — C* is a Dirichlet
character modulo N, we write M;(N, x) for the C-vector space of modular forms of weight ¢, level N and
nebentype character y. Namely, the space of holomorphic functions g : H — C satisfying

glelv] = x(v)g for all v € T'y(N),

together with the usual holomorphicity condition at the cusps. Here, I'g(IV) denotes the level N Hecke-
congruence subgroup of I'g(1) = SL(Z),

FO(N)—{<‘C‘ Z)GSLQ(Z):CZO (modN)},

on which y induces a character, which we still denote x by a slight abuse of notation, through the rule

(i Z)n—>x(d).

We denote by S¢(N,x) C My(N,x) the subspace of cusp forms, namely the subspace of those modular
forms which vanish at all the cusps. If g1, g2 € My(N, x), and at least one of them belongs to S¢(NV, x),
then we consider the Petersson product of g; and go defined as

— 1 2)qo(2)yt2dz z=x+1
(9092 = ST o] oy PR iy =)

If d is a positive integer, we define operators V; and Uy by

d—1 .
Vagle) = dg(d). Vag(e)i= 3 3o (S57).
J=0

Then the classical Hecke operators T),, for primes p { N, are expressed in terms of V,, and U,: if g €
M,(N,x), then T,,g = U,g + x(p)p*~2V,g. A cusp form g € S¢(N, ) is said to be a Hecke eigenform if g
is an eigenvector for all the Hecke operators T}, for p{ N, and U, for p | N.

If g € My(N, x), recall that one disposes of a g-expansion (at the infinity cusp)

9(9) = alg,n)q"-

n>0

If g is a cusp form, then a(g,0) = 0, and we say g is normalized if a(g,1) = 1. If ¢ is a normalized, new
cuspidal Hecke eigenform, then T),g = a(g, p)g for all primes p. And furthermore, g is also an eigenvector
for the Atkin—Lehner involutions W, at each prime p | N (cf. | | for details, especially Theorem 3).

If A is a Dirichlet character modulo M and g € My(N, x), then we write g ® A for the unique modular
form in M,(NM?,x\?) with ¢ expansion

> An)a(g,n)q"-
n>0
For a careful study of the minimal level of g ® A, at least for new forms, we refer the reader to | ].
When x = 1 is the trivial character, we will write Sy(N) := S¢(N,1). If f € S¢(N) has g-expansion
> ns0@nq", then we write

L(f,s) = Z anpn—?

n>0
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for the L-series associated with f. This Dirichlet series is well-known to converge for Re(s) > 1+ £/2,
and further it extends analytically to a holomorphic function on C. The completed L-series A(f,s) :=
T'c(s)L(f,s) satisfies a functional equation of the form

(4) A(f,s) =e(f)N>T*A(f, 0 - s),

where e(f) € {£1}. If f is a new eigenform, then L(f,s) can be expressed as an Euler product, namely

L(f,s) =[]0 = app™ + epp"'p7>) 7",
p

where e, =0 for p | N, and e, = 1 otherwise.

2.2. Half-integral weight modular forms. We review briefly some aspects of the theory of half-
integral weight modular forms, initiated by Shimura | ] and further studied by Kohnen [ ,
, ] and many others (see, e.g. | , D-
For v = (%) € Ty(4) C SLz(Z) and z € C, define

c
i) = (5) eld)ez+ )72,
where () is the Kronecker symbol as defined in [ , p-442], and €(d) equals 1 if d =1 (mod 4) and
—v/~T1if d =3 (mod 4). Observe that j(v, 2)* = j(v,2)%.
Let k£ > 1 be an integer, N be an odd positive integer, and x be an even Dirichlet character modulo
N. Consider the space Sj1/2(4N, x) of holomorphic functions h : H — C satisfying

a

hv2) = Hr, 21 x(@)h(z) for all 7 = ( o b ) € Ty(AN)

and vanishing at the cusps of I'o(4)V). The Petersson product of two cusp forms h; and hy in Sy41/2(4N, x)
is defined, similarly as in the case of integral weight, as

— 1 DVho(2)yF 32 dx z=x+1
(o) = ST TN Jp 20y (e =),

It is well-known that every cusp form h € Sj11/2(4N, x) admits a Fourier expansion of the form

h(z) = Z c(n)q™.

n>1

whose Fourier expansion is of the form

h(z) = Z c(n)q™.
n>1,
(—1)*n=0,1 (4)

One defines Kohnen’s plus subspace S:+1/2(4N, X) C Sk+1/2(4N, x) as the subspace of those cusp forms

By virtue of | , Proposition 1], the space Slj+1/2 (4N, x) can be characterized as the eigenspace of a

certain hermitean operator satisfying a quadratic equation.
Finally, we recall also that for each prime p { 2N there is a Hecke operator T2 acting on the space

Sk+1/2(4N, x) (see [ , Eq. (11)], | , Eq. (1-6)]); on Fourier expansions, it is given by
—1)Fn _ _ "
> ()" T = (C(P2") + ((p)> x(P)p* ' e(n) + x(p)*p?* 1C(n/pQ)> q",
n>1 n>1

where we read c(n/p?) = 0 if p? { n.

Shimura’s correspondence establishes lifting maps Clgl\ﬂx from S;+1/2(4N, X) to the space Sar (NN, x?)
of cusp forms of weight 2k, level N and nebentype character x2, which depend on the choice of a
(fundamental) discriminant D. When the character x is trivial and N is square-free, there is a well-
behaved theory of new forms of half-integral weight, and a linear combination of the lifting maps C,ff N

provides an isomorphism

SpiiTs (4N) = S5 (N)

commuting with the action of Hecke operators. In particular, for each normalized newform f € SJZ%(N)

there is a unique half-integral weight cusp form h € S,jﬁjg’(le ), up to constant multiples, such that

h|T,2 = a(p)h, where a(p) is the p-th Fourier coefficient of f. Moreover, If h € SL_’;‘;;”MN) corresponds
to f € S§(N) under this isomorphism, then the |D|-th Fourier coefficient ¢(|D|) of h is related to the

e



special value L(f, D, k) of the complex L-series associated to f twisted by the quadratic character xp,
by Kohnen’s formula (cf. | , Corollary 1]):

(5) |C(|D|)‘2 2I/(N) (k ) |D|k 1/2 (faDak")7
(h, h) (£, 1)
where v(N) is the number of prime divisors of N. However7 this formula is valid only for discriminants
D such that (—=1)*D > 0, and (%) = wy for all prime divisors ¢ of N. Here, wy denotes the eigenvalue
of the ¢-th Atkin—Lehner involution acting on f.
In general, the lifting maps C’?Mx : Sk+1/2(4N X) — Sax(N,x?) are given in terms of Fourier expan-

sions by the recipe (see | , Section 3|, for instance)
© Y = LY (7) v teinlye) | o
n>1, n>1

(—1)*n=0,1 (4)

Suppose from now on that f € SJF(N) is as in the introduction; in particular, k&, N > 1 are odd,
and N is square-free. Let also x be an even Dirichlet character modulo N, of conductor M | N, and
write X = [],ar X(p) through the canonical isomorphism (Z/MZ)* ~ [[,(Z/pZ)*, where each x(y) is
a Dirichlet character modulo p. For each prime p | N, let w, € {£1} be the eigenvalue of the p-th
Atkin—-Lehner involution acting on f, and define a set of fundamental discriminants

D D
(M D(N,M):= {D < 0 fund. discr. : (p) =w, for all p | N/M, <p> = —w, for all p | M} .
Besides, consider the twisted cusp form f ® x, which by | , Theorem 3.1] belongs to S (NM, x?),
and define a subspace of Sk+1/2(4NM, X) by setting
S,mjg (ANM,x; f @ x) :={h e S} | 2(ANM, ) : BT,z = ay(p)h for all p 2N} C S,jﬁjg(zLNM, X),
where a, (p) denotes the p-th Fourier coefficient of f®y. The lifting maps (\:IQN,X map S;" Y (ANM, x; f®

k+1/2
X) to the one-dimensional subspace of Sox(N M, x?) spanned by the new form f ® x. The theorem below
follows from | , Theorem 10.1] (cf. loc. cit. for a slightly more general statement).

Theorem 2.1 (Baruch-Mao). Suppose that x ) (—1) = —1 for all p | M. Then the space

Sty (ANM, x; f @ x) C ;155 (AN M, x)

is one-dimensional. Moreover, if h € S;ﬁ%”@JVM, X; f ®Xx) is a non-zero element, with Fourier expan-

sion h=>c(n)q", and D € (N, M), then

|C(|D|)| v(N) (k ) k—1/2 p L(f, D, k)
®) oy 1Dl 5 =50

The identity in (8) is a generalization of Kohnen’s formula (5), relating the special values L(f, D, k) to
the | D|-th Fourier coefficients of certain cusp forms of half-integral weight, for discriminants D to which
(5) does not apply. At the end of Section 5.2 we will explain the meaning of the local sign assumptions

p|M

on D in terms of Waldspurger’s theta correspondence between automorphic forms of PGLy and §f42.

Remark 2.2. In terms of the completed L-series A(f, D, s) =T'c(s)L(f, D, s), the identity in (8) can be
rewritten as

p+1 £ 1)
f,D k _21 k—v(N) D1/2 k .D )
A( ) DI *|e(| D)) H !

Continue to consider a new form f € SI¢*(N) as above, and let x be an even Dirichlet character of
conductor M | N satisfying the hypothesis of Theorem 2.1. In particular, notice that M must be the
(square-free) product of an even number of prime divisors of N. Let

F=>am)g", fox=> an)g
n>1 n>1
be the Fourier expansions of f and f ® x, respectively, so that a,(n) = x(n)a(n). We further assume
that f is normalized, i.e. a(l) = 1, hence f ® x is normalized as well. By virtue of the above theorem,
we can then choose a non-zero cusp form

h € Sy (ANM, x; f @ X).
8



Now fix a fundamental discriminant D € ©(N, M) such that L(f, D, k) # 0. By (8), ¢(|D|) is non-zero,
and this implies that ¢ ,5 N (h) # 0. Indeed, (6) shows that the first Fourier coefficient of ¢ ,ff N (h) equals
¢(|D]). It follows that C,SNA’X(h) = ¢(|D|)f ® x. For later purposes, we determine in the next lemma
the Fourier coefficients of h in terms of the Fourier coefficients of f ® x (hence, in terms of the Fourier
coefficients of f as well).

Lemma 2.3. With the above notation and assumptions, for every integer n > 1 one has

Q c(21D]) = 10D Y e (4 ) <@y /)
d|n,
d>0

Proof. As observed above, CI?,N,X maps h to ¢(|D])f ® x. From (6), we thus have for all n > 1

(Do) = 3 (5 ) @ etu? Dl/a?)
s

Suppose first that n > 1 satisfies (n, ND) = 1. Then we can rewrite this last identity as

(D1) (2] xtm) ey = 3 () e tete o,

n
0<t|n

By applying the Mobius inversion formula, one gets

D) = (D) Y- @) () oo/

0<d|n

Now suppose that n > 1, and write n = ngnynp where ng,ny,np > 1 are integers such that

(ng, ND) = 1 and every prime divisor of ny (resp. np) divides N (resp. D). From (6), we see that

c(ID))ay(nn) = ¢(n%|D]) and ¢(|D])ay(np) = c(n%|D|). Also, for integers r,s > 1 with (r,s) = 1 one

has ¢(r?|D|)e(s?|D]) = ¢(|D|)e(r?s?|D]). In particular, c¢(ng|D|)c(n3;|D|)e(n%|D|) = ¢(|D|)%c(n?|D|),

which together with the above relations imply that

c(ny |D|) c(n},|DI)
c(ID])  <(|DI)

Now one can apply the previous argument for c¢(nZ|D|), since (ng, ND) = 1, to eventually conclude that

D) = (D) Y- @) () oo/

0<d|n

c(n®|D|) = c(ng| D) = ax(ny)ay(np)e(ng| D).

2.3. Siegel modular forms of degree 2 and Saito—Kurokawa lifts. Let
Ho ={Z € My(C) : Z ='Z, Im(Z) positive definite}
denote Siegel’s upper half-space of degree 2,

0 Id
GSp1(R) i= {9 € Ma(R) s 'y = o) v(0) > 0% = (g, 197,

be the group of symplectic similitudes with positive multiplicators, and let Spy(R) = {g € GSpy (R) :
v(g) = 1} € GL4(R) be the symplectic group. The group GSp3 (R) acts on Hy by

(10) 9Z =(AZ + B)(CZ+ D)™ ifg= ( é‘, g )

Put Ty := Spy(Z) = Spy(R) N My(Z). If N > 1 is an integer, one defines a Hecke-type congruence
subgroup of level N > 1 of I's by

A B
(11) I‘((]Q)(N) = {g— (C D> €l :C=0mod N}.

Given a Dirichlet character x : (Z/NZ)* — C*, by a slight abuse of notation we will continue to write
X FSZ) — C* for the character on I‘E)Q)(N) defined by the rule

(12) ( g g ) — x(det(D)).

9



Fix now an integer k > 1, and for a function F' : Hy — C and an element g € GSpy (R), define
(Flesilo))(2) = I (9, 2)™" 7 F(92),

é g) The space Mk+1(I‘(()2)(N),X) of Siegel modular forms of

weight k 4 1, level N, and character x is the space of holomorphic functions F' : He — C such that
Flisi[y] = x(1)F  for all y € T (N).

Notice that there are no additional conditions of holomorphicity at the cusps (‘Koecher’s principle’).

We will write S’kH(F((f)(N), x) C MkH(I‘((JQ)(N), x) for the subspace of Siegel cusp forms. Given F €

Sk+1(Fé2) (N), x), one has a Fourier expansion of the form

F(Z) — ZAF(B)€27T\/?1TT(BZ)7
B

where J(g,Z) = det(CZ+ D) if g =

where B runs over the set of positive definite, half-integral 2-by-2 symmetric matrices. If

p=( ) 7=(12)

with n,7,m € Z such that 4nm —r? > 0 and 7,7’ € H, 2z € C with Im(2)? < Im(7)Im(7’), then notice
that 27V —1T(B2) — ¢2mv _1(”T+7'Z+”LT/), so that we can rewrite the Fourier expansion as

F(r,2,7) = Z Ap(n,r,m)e?™V -1 trztms’)
n,r,mez,
dnm—1r2>0
Given a Siegel modular form F for ng) (N), one can restrict it to H x H, diagonally embedded into Hs.
This way, we obtain a modular form on H X H for I'o(N) x T'o(N), usually referred to as the “pullback”
of F' to the diagonal. Explicitly, this pullback or restriction is obtained by setting z = 0, hence

F‘|'H><H(T7 T/) = Z Z AF <n7 T, m) ezﬂ\/j(nT+77LT,) ]

n,me7Z reZ,
r2<dnm

Later we will also need a more technical operation on Siegel forms, which we define now. Let F' €

Sk+1(F(()2)(N), X) be a Siegel modular form of degree 2 as before, and let p be a prime dividing N. For
each j € Z/pZ, put

100 O
01 0 p'y
wi=| o o1 o |€GpI@,
0 00 1
and define a function R, F on Hs by setting (notice that J(u;, Z) =1 for all )
1 1
(13) R F(Z) =~ > FluZ)== Y Fliulu)(2).
ijZ/pZ pjeZ/pZ

For any integer m # 0, we write I'P?"2™(m) C Sp,(Q) for the paramodular subgroup defined by

7Z mZ 7 Z

Z Z Z m~'Z

Z mZ 7 Z
mZ mZ m Z

TP2ram () = Spy(Q) 1

Lemma 2.4. Let F € Sk+1(F82)(N),X) be as before, and p be a prime with p | N. Then
R, F € Sip (L5 (Np) N TP (p), ).
Ifp? | N, then RyF € Spyq (TSP (N) N TP () ).
Proof. Let v € I‘(()Z)(Np) N I'Param () he written as a block matrix
(A B
’Y - C D 9

where A = (g1 a2), B = (Z; Zi ), C=(a&), D= (g; gj ). Notice that all entries are integral, and we

have c1,ca,c3,c4 € NpZ and as,ds € pZ. Moreover, observe that a4, d4 are invertible modulo p.
10



Similarly, write u; as a block matrix,

([ 1dy E
Yo 1dy )
Choosing i € Z/pZ such that iaqs = jds (mod p), a bit of algebra shows that u;y = 'u;, where v/ =
(A/ B/) € F(()Q)(N) is such that A’ = A and D’ = D modulo N. In particular, x(7') = x(v) and it follows

c D’
from the very definition that

RoFip) = D Fllug) = D Firad = X(0) D Fllu = X()R,F.
The second part of the statement follows by checking carefully the omitted algebra. (Il

Remark 2.5. We might observe that u; € GSpy(Q) is the image of

((01)(5"77))esta@xsm@),

and hence the pullback (RpF') gy xy coincides with (id @ VuUp) Flpxp -

Finally, we recall the classical construction of Saito—Kurokawa lifts that we need in this paper. Assume
as in the introduction that & > 1 is odd, N > 1 is an odd square-free integer, and f € SJ¢Y(N) is a
normalized new cusp form of weight 2k and level N. Let x be an even Dirichlet character of conductor
M, for some M | N, satisfying the hypothesis of Theorem 2.1, and let

he S (ANM, x; f @ x) C 8155 (AN M, x)

be a Shimura lift of f ® x € SI¢W(NM, x?) as in Theorem 2.1. There is an Eichler-Zagier isomorphism

Z: S,jﬁj‘; (ANM,x) = JoETe (Do (N M), x)

between S,:ﬁe/g’ (4N M, x) and the space J¢ 71" (To(NM)7, x) of Jacobi new cusp forms of weight k+1,

index 1, level ['o(NM)” and character x (see | , , ]), which together with Maaf’ lift

M : TP (To(NM) x) = Si(TF) (VM) )
gives an injective homomorphism from Sljﬁ‘j;”(élNM, X) into Sk+1(F(()2) (NM),x). We will refer to the
Siegel modular form F, := M(Z(h)) € Sk+1(I‘é2)(NM), X) associated with h under the composition of Z

and M, as a Saito—Kurokawa lift of f ® x. If we continue to denote by ¢(n) the Fourier coefficients of h,
then the Fourier expansion of F, reads

dnm — r? —ITr
(14) F(2)= Y > afx(a)e () eV IIB),
( n r/2 a|ged(n,r,m),
B*<T/2 m ) ged(a,N)=1

If p is a prime dividing M, notice that p?> | NM, hence our discussion above implies that R Fy €
Sk+1(I‘éZ)(NM) N TP (p), x). By defining the operator Ry := [],,, R, as the compositum of the
operators R, for primes p | M, we thus have

R Fy € Span (0P (NM) NP7 (M), ).

3. AUTOMORPHIC FORMS AND REPRESENTATIONS

Similarly as in the previous one, the aim of this section is to set up some notation and recall some
results concerning the theory of automorphic forms for GLs, for the metaplectic cover SLs of SLs, and
for the symplectic similitude group GSp, of degree 4. Most of this section can therefore be seen as an
automorphic rephrasing of the previous one. We will abbreviate A = Ag for the ring of adeles of QQ, and
A will denote the subring of finite adeles. Then Q sits diagonally in A, and for every rational place v,
the local field Q,, embeds as a subfield of A in the v-th component. If x is a Dirichlet character modulo
N > 1, we will write y for the adelization of x. Namely, x : A /Q* — C* is the unique Hecke character

such that x(w,) = x(q) for every prime ¢ { N and every uniformizer w, € Q < A* at q. For every
finite prime p, we shall denote by X, the restriction of x to Z). At primes p | N, X, coincides with the

inverse of the character Z, — C* inflated from the p-th component x(,) of x.
11



3.1. Automorphic forms for GL,. Let us briefly recall how classical modular forms of integral weight
give rise to automorphic forms and representations of GLy. In the following, we identify Q* and A* with
the centers of GL2(Q) and GLa(A), respectively.

Let N > 1 be an integer, and consider the compact open subgroup

Ko(N) = {( “! ) €CGLa(Z):c=0 (mod N)}

of GL2(Ay). By strong approximation, one has GL2(A) = GL3(Q) GL] (R)Ko(N), where GL3 (R) stands
for the subgroup of 2-by-2 real matrices with positive determinant. If x is a Dirichlet character modulo
N, then y induces a character of Ko(N), which by a slight abuse of notation we still denote y, by

(2 2) s

Observe that this agrees with the Hecke character x when restricted to A* N Kq(V).
Let g € Sp(N, x) be a cusp form of weight ¢, level N and nebentype character y. Then it is well-known
that g induces an automorphic form g for GLa(A), by setting

(15) 8(1vecko) = (Yoo (1)) (ci + d) ~*(det 7o)/ *x (ko)

whenever v € GL2(Q), 700 € GL3 (R) and kg € Ko(N). This gives indeed a well-defined function on
GLa(A) because GL2(Q) N GL (R)Ko(N) = To(N), GL2(A) = GL2(Q) GLF (R)K((N), and g satisfies

g (( “! >z) — (d)(cz+d)g(z) for ( “ ! > € To(N).

Further, it is clear that g satisfies g(vyz) = x(z)g(y) for all z € A*.

The function g just defined belongs in fact to the space of automorphic forms on GLo(A) with central
character x. If 7 = m, denotes the linear span of the right translates of g under GLz(A), then 7
is an admissible smooth representation of GLa(A). Since g is an eigenform, it is well-known that 7 is
irreducible and decomposes as a restricted tensor product ®,m, of admissible representations of GL2(Q,),
and g = ®,8, with g, € m, for each place v of Q.

When the nebentype character x is trivial, g gives rise to an automorphic representation 7 of GLy(A)
with trivial central character, so that we can regard 7 as an automorphic representation of PGLa(A).
Again, m decomposes as a restricted tensor product # = ®,,7, of admissible representations of PGL2(Q,).

We refer the reader to | ] for a good account on local types, newforms, and a careful study of
local e-factors at non-archimedean places. If f € S}¢“(N) is a newform of weight ¢ > 1, level N, and
trivial nebentype character, then the completed complex L-series A(f, s) associated with f coincides with
the L-series L(m, s) associated with the automorphic representation of PGLa(A) corresponding to f. The
root number e(f) appearing in (4) can be therefore written as the product of local e-factors e(m,,1/2) at
places v | Noo. At the finite places p | N, e(mp, 1/2) coincides with the eigenvalue w, € {£1} of the p-th
Atkin—Lehner involution acting on f (cf. | , Theorem 3.2.2]).

3.2. Automorphic forms for éig. We start by setting down some notation concerning metaplectic
groups. If v is a place of Q, we write §I22(Qv) for the metaplectic cover (of degree 2) of SL2(Q,), and
similarly, we denote by é\l—iQ(A) the metaplectic cover (of degree 2) of SLa(A). We will identify SL, (Qy),
resp. éig(A), with SL2(Q,) x {£1}, resp. SLa(A) x {£1}, where the product is given by the rule

[91, €1][92, €2] = 9192, €(g1, g2)€1€2].
At each place v, €,(g1,g2) is defined as follows. First one defines x : SLy(Q,) — Q, by

if c#0
_ (ab e i ,
9=(t3)—alo) {d it c =0,

Then, €,(g1,92) = (x(g1)x(9192), ©(92)x(9192))v, Where (, ), denotes the Hilbert symbol. When v is a
finite place, set also

c,d), if ed , ord,(c) odd,
SU((M)):{< ) #0, ord, (¢)

1 otherwise,

for g = (‘é g) € SLy(Qp), and se(g) = 1 for all g € SLo(R). Then, for each place v, SL2(Q,) embeds
as a subgroup of SLy(Q,) through g — [g,5,(g)]. If v is an odd finite prime, then this homomorphism

gives a splitting of SL2(Q,) over the maximal compact subgroup SLa(Z,), while for v = 2 this is only a
splitting over I'1 (4; Zy) C SLa(Z2). If p is an odd prime (resp. p = 2), and G is a subgroup of SLa(Z))
12



resp. ['1(4;7Z2)), then we will write G - éig Z,) for the image of G under the previous splitting. We
P

will also regard SL2(Q) as a subgroup of SLa(A) through the homomorphism g — [g, ], s.(9)]-
To simplify notation, if v is a place of Q and = € Q,, a € QF, we will write u(z), n(z), t(a) for the
elements of SLy(Q,) given by

u(x)—(é f),n(:ﬂ)—(; ?),m)—(%‘ Ofll).

We will slightly abuse of notation and still write u(x), n(x), t(«) for the elements [u(z), 1], [n(z),1],

[t(a),1] in SLy(Q,) (notice that these coincide with the images of u(z), n(z), t(a), respectively, under

the splitting g — [g, su(g)], as s,(g) = 1 in the three cases). We will also write s = ( % §) € SL2(Q,) (or

in SL, (Qy)). Then observe that
u(z) =t(—=1)-s-n(—x) s forall z € Q,.

Let k£ > 1 be an integer, N be a positive integer, and x be an even Dirichlet character modulo 4N as
before. Write yo = (=1)* - x, and let Xo denote the associated Hecke character.

Let A denote the space of cusp forms on SLQ(Q)\é\I:Q(A), and p denote the right regular representation
of the Hecke algebra of éig(A) on Ag. Following Waldspurger [ ], we define ./I;Hl /2(4N, Xo) to be
the subspace of Ag consisting of elements ¢ satisfying the following properties, where p, denotes the
restriction of 5 to SLa(Q,).

i) For each prime gt 2N, py(v)p = ¢ for all v € SLy(Z,).
ii) For each prime ¢ | N, ¢ # 2, pg(7v)p = Xo,q(d)@ for all v = (¢ 5) € To(g°4«M) C SLy(Z,).
iii) For all y = (¢Y) € Tp(2°7924N)) C SLy(Zs), pa(7)p = €2(7)X, o (d) -
iv) For all 8 € R, foo (7(6))p = e/ FH+1/2)0
V) poo(D)p = 5(k +1/2)(k - 3/2).
Here, D denotes the Casimir element for SLy(R), and the element #(6), for # € R, and the character &

of To(4) C SLy(Qy) are defined as in [ , D. 382].
Let h € Sp41/2(4N, x) be a cusp form of half-integral weight as in Section 2.2. Given z = u +iv € H,

let b(z) € SLa(A) be the element which is 1 at all the finite places and equal to
ol/2 yo—1/2
("0 )
at the real place. Then there exists a unique continuous function h on SLs (Q)\éf/Q (A) such that
h(b(2)R(0)) = vF/2H1/4ei+1/2)0p )
for all z € H, 0 € R. The assignment h — h gives an adelization map

(16) Skt1/2(4N,x) — Agy1/2(4N, Xo):

which is an isomorphism (see | , Proposition 3, p. 386]). Under this isomorphism, the Fourier
coefficients of the classical modular form h are related to the Fourier coefficients of h as follows. Let 9
be the standard additive character of Q\A. That is, 1o (z) = €*™® and, for each finite prime g, 1, is

the unique character of Q, with kernel Z, and such that v,(z) = e=2" for = € Z[1/q]. If ¢ € Ay and
¢ € Q, then the &-th Fourier coefficient of ¢ is defined to be the function on SLy(A) given by

Wee(y) = [@\A o(u(z)y)y(Ex)de.

If h € S41/2(4N, x) has Fourier expansion

EEL,E>0
and h — h under the above isomorphism, then one has (cf. | , Lemme 3])
(17) c(€) = 2™ Wy ¢(1).

For the rest of this subsection, assume that & > 1 is odd, N > 1 is odd and square-free, and y
is an even Dirichlet character satisfying the hypothesis of Theorem 2.1. Let f € S¢*(N) and h €
S:_;?%(ZLNM, X; f ® x) be chosen as in the discussion after Theorem 2.1. By using (17), the relation (9)
proved in Lemma 2.3 can be rephrased in automorphic terms as we will now explain.
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Given any & € Q, set &€ = Dgfg, where 0 € N is such that —0¢ equals the discriminant of Q(v/—¢)/Q.
By (9), we have

(18) c(0e) > pld)x—¢(d)x(d)d*ay (e /d).

dlfe,
d>0

For each prime p{ N, let {ay, ;) ~1} be the Satake parameter of f at p, so that
(1—pF 20, X)(1 = p 720, 1X) = 1 — a(p) X +p** X2,

In particular, notice that a(p) = p*~/2(a, + a, '), More generally, for each integer e > 0 one has

e
a(pe) _ pe(kfl/Q) Zagfm'.
=0

In contrast, if p is an (odd) prime dividing N, being N square-free we have a(p) = —p*~tw,, where

wp = wy(f) € {£1} is the eigenvalue of the Atkin-Lehner involution at p acting on f. Also, one has
a(p®) = a(p)® for all integers e > 0 in this case. For each prime p | N, define o, := p'/>7Fa(p) =
—p’1/2wp. In a similar spirit as for primes not dividing N, now a(p®) = pe(k’l/Q)ag for e > 0.

Given a rational prime p, put e, := ord,(f¢) and define a function ¥,(&; X) € C[X, X '] by

XX VA e(p) =S, i pfNoep >0,
(6 X) = X-¢(P)(X-¢(p) + wp) X7, if p | N/M, e, =0,

X—¢(P)(x-¢(p) — wp) X7, ifp|M,e, >0,

0, ep < 0.

Observe first of all that, fixed £, there are only finitely many primes p with ord,(§) # 0. Since ¥,,(§; X) =1
whenever pt N and e, = 0, we see that ¥, (£; X) = 1 for almost all primes. Secondly, at a prime p | N/M
(resp. p | M) we see that U,(§; X) # 0 if and only if x_¢(p) = w, (resp. x—e(p) = —w,). Hence,

[[%&X)#0 < ¢ez, (pf) = w,, for all p | N/M, and <p§> = —w,, for all p | M.
p

Lemma 3.1. If £ € Z, and v(N) denotes the number of prime factors of N, then
(19) () = 27 Me@e)x(fe)f [[ (e

Proof. First notice that (19) holds if ¢(£) = 0 by our above observation, so we may assume that ¢(§) # 0.
Secondly, both sides in (18) are zero if £ is not an integer, so we may assume that & € Z,. Writing
§ = 0¢f7 as before, and setting fe = f¢,nfe,0, With fe n,fe,0 integers such that (f¢0, N) = 1 and every
prime divisor of f¢ x divides N, equation (18) can be rewritten as

c(€) = e(@¢)x(fe)alfe,n) D u(d)x—¢(d)d" " a(feo/d).

d|fe,
d>0

Using the definition of the functions ¥, (&; X), we deduce that
o(€) = c@e)x(fe)alfen) [T (aw?) =" x-e@)aes™") = c@)x(fe)alien)fen " TT Tol& ap).
Plfe.o plfe.0

Since ¢(€) # 0, in particular ¥, (&;ap) # 0 for all p | N. At each prime p | fe v, we thus have U, (§; ) =
2a;,”. We therefore deduce that

e k 1 2 e v k—1/2
afen) = [[ a@) =5y [I agr =270 d? T1 ol&on).
plfe.n plfe.n plfe.n
At primes p | N with p 1 fe x (if any), we have ¥,,(&; ap) = 2, hence we can rewrite the above identity as
—u(N)sk—1/2
alfen) =27 "Ny ] (& ).
p|N

Since ¥, (&; o) =1 for all primes p{ N, we deduce that (19) holds when ¢(§) # 0. O
14



3.3. Automorphic forms for GSp,. We will now set the basic notation and definitions concerning
automorphic forms for GSp,(A), which will naturally arise in this paper by adelization of Siegel modular
forms as the ones considered in Section 2.3. Write

0 Id
GSpy, = {9 € GLy : 'gJag =v(g)Jo : v(g) € Gy}, Jo = ( ld, 02 ) ,

for the general symplectic group of degree 2, and recall that GSpJ (R) acts on Siegel’s upper half-space
as in (10). Here, v : GSpy — G, is the so-called similitude (or scale) morphism. If N > 1 is an integer,

we set KéQ)(N; Z) = I, Ké2)(N; Z,) C GSpy(Z), where for each prime p,

K(()Q)(N§Zp) = {9 = (é g) € GSpy(Z,) : C =0 mod N}

is the local analogue of the congruence subgroup FéQ)(N ) introduced in (11). Observe that KéQ) (N;Z,) =
GSp,(Z,) for all primes p f N. Compact open subgroups of GSp,(A) of the form Kéz) (N) will play a
special role in the paper, although we will also consider certain subgroups of them.

Let F : GSpy(A) — C be an automorphic cusp form, and II be the automorphic representation of
GSp,(A) associated with F (i.e., the closure of the span of all the right-translates of F). We suppose
that IT is irreducible and unitary. By Schur’s lemma, F has a central character: there exists a Hecke
character A : Q*\A* — C* such that F(zg) = A(2)F(g) for all z € A* = Z(GSpy(A)), g € GSpy(A). If
A is trivial, then F is trivial on the center of GSpy(A), and hence one can regard F as an automorphic
cusp form on PGSp,(A).

Besides, suppose that we are given an automorphic cusp form F : PGSpy(A) — C, and let A :
Q*\A* — C* be a Hecke character. Then one can define an automorphic cusp form F® : GSp,(A) — C
by the rule (F ® \)(g) := F(g)A\(v(g)). It is readily seen that the central character of F @ \ is A\2.

If B € Sym,(Q) is a symmetric 2-by-2 matrix, then the B-th Fourier coefficient of F is by definition
the function on GSpy(A) given by

(20) We5(g) = /S e, FOXIDITEBXNIX, g€ GSpaa),

where n(X) = (¢ ). If F is right invariant by some subgroup K C GSp,(Z), then notice that the
Fourier coefficients Wg g enjoy also the same invariant property. It is well-known that the collection of
all Fourier coefficients Wg p determine the automorphic form F.

We will not develop the general theory of automorphic forms and representations of GSpy(A), but
rather we will focus on the automorphic forms for GSp,(A) that appear by adelization of Siegel modular
forms of degree 2 as the ones considered in Section 2.3. Hence, suppose that k& > 1 is an odd integer,
N > 1is an integer, and x : (Z/NZ)* — C* is a Dirichlet character. As usual, let x : A* — C* be the
Hecke character associated with y as in previous sections. If F' € Sk+1(F(()2)(N), X) is a Siegel modular
form of weight k£ + 1, level FBQ)(N ) and character x, then F' defines an automorphic form F for GSp,(A)
by setting

F(g) = det(goo) **V/2 det(CV—1 + D) "1 F(goov/—1)x(k),

whenever g = vgook with v € GSp,(Q), k € K(()Q) (N), and
_(A B +
goo—(c D)EGSpQ(R).

Here, x induces a character on KSQ)(N ) similarly as in the classical situation explained in (12). Since
GSp,(A) = GSp,(Q) GSps (R)K((,2)(N ) by strong approximation, this gives indeed a well-defined function
on GSp,(A). The fact that F' is a Siegel cusp form in S’;Hl(I’((Jz) (N), x) easily implies that F is GSp,(Q)-
invariant on the left, that F(gk) = x(k)F(g) for all g € GSp,(A) and k € I((()2)(N)7 and that the center of
GSpy(A) acts through x o v, where v : GSp,(A) — A* denotes the similitude morphism. That is to say,
F(zg) = x(v(2))F(g) for all z € Z(GSp,(A)) = A*, g € GSp,(A), hence the central character of F is x2.
We write SkH(Kéz)(N),K) for the space of automorphic cusp forms on GSpy(A) arising by adelization

of Siegel cusp forms in Sk+1(r(()2)(N)7 X)-
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The level-raising operator 9, introduced classically in (13) can be defined analogously in the auto-
morphic setting. Indeed, let p be a prime dividing NV, and define

p—1
R,F = > TI(u;)F,
§=0

where IT is the automorphic representation of GSp,(A) associated with F, acting on F by right translation:
II(h)F : g — F(gh). In line with the classical definition, we now set

Ly  ply Ly Ly
Zpy Zp Zp p'Z
Ly Ly Ly L
Ly pLy Pl L

KPP (p: Z,) := < v € GSpy(Qp) N :det(y) € Z;

Then we write K(N,p;Z,) := K(g2)(N; Z,) N KParam(p: 7,,), and

K(N,p) = K(N,p;Z,) x [ K (N;Zy) C GSpy(Z).
q7p
IfFe Sk+1(Fé2)(N),X) is as above, recall that 3, F belongs to Sk+1(Fé2)(N’) N TParam(p) ), where
N’ = N if p? | N, and N’ = Np otherwise. We have K(N',p) N GSp,(Q) = F(()Z)(N’) N [param ()
and hence Siegel forms in Sk+1(Fé2)(N "y N TParam(p) v induce by adelization automorphic cusp forms

on GSp,y(A) on which K(N',p) acts on the right through the character x : K(N',p) — C*. We write
Sk+1(K(N',p), x) for the space of automorphic forms on GSp,(A) obtained by adelization of Siegel forms

in Sk+1 (FE)Q) (N/) () T'param (p)7 X)'

Lemma 3.2. Let F' € Sk+1(F(()2) (N),x), and F € Sk+1(Ké2) (N),x) be its adelization as above. If p is a
prime dividing N, then RyF is the adelization of Ry F'. In particular, R,F € Sp1(K(Np,p), x). If p?
divides N, then one actually has R,F € Sp1(K(N,p), x).

We now particularize the above discussion to a situation which is of particular interest in this note.
Continue to assume that k > 1 is an odd integer, and let N > 1 be an odd square-free integer, and x be
an even Dirichlet character of conductor M | N. Let f € S5¢*(I'g(N)) be a normalized new cusp form

of weight 2k, level IV and trivial nebentype, and let F, € SkH(I‘(()Q)(NM)7 X) be the Saito-Kurokawa lift
of f ® x defined in Section 2.3. Write F,, € Sk.+1(Ké2)(NM),K) for the adelization of F), hence
(21) F\(9) = det(goo) ¥V/? det(CV=1 + D) ™F " Fy (goo V-1)x (k)

for all g = vgook with v € GSp,(Q), k € K(g2)(N), and

A B
gooz(c D)EGSpg(R).

Let B € Sym,(Q) be a symmetric 2-by-2 matrix, and Wg, g denote the B-th Fourier coefficient of F,
as defined above. By strong approximation, together with (21), W, 5 : GSpy(A) — C is determined by
the values Wr,_ p(goo) for goo € GSpj (R). Every element g, € GSpj (R) can be written as

. 2’12 0 12 X A 0 (0% 5
Jo=\ 0 21 0 1p 0 ‘A J\ -8 a )

where z € RY, X € Sym,(R), A € GL] (R), and (_"B 2) € Spy(R) with k = a++/—18 € U(2). Since

R (00 )o( 5 1)) mewr

for z € RY and (f‘ﬁ g) € Spy(R) as before, we see that W p is actually determined by the values
Wr ., 5(9oc) for elements g € GSp3 (R) of the form

pe=noman = (g 1) (5 ).

with X € Sym,(R), and A € GL3 (R). And for g, = n(X)m(A,1), one checks from the definitions that
Wr, B(9goo) = 0 unless B is positive definite and half-integral, in which case one has

(22) Wr, B(9se) = Ay (B) det(y)(k+1)/2627r\ﬁTr(BZ)7
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where Y = A'A, Z = X + /—1Y € Ho, and A, (B) is the B-th Fourier coefficient of F, (cf. (14)).
Finally, let p be a prime dividing M. In particular, p?> | NM, and the adelization of Rl €

Spa1 (TP (N M) N TParam () y) s precisely (cf. Lemma 3.2)
ERpF)( S Sk-i—l(K(NMvp)aX)'
It is not hard to see from the definitions that the Fourier coefficients of :,F, are closely related to
those of F,,. More precisely, one can prove the following lemma, whose proof is left for the reader.

b:}z biéz) be a positive definite, half-integral symmetric

matriz, and let goo = n(X)m(A, 1) € GSpy(R) be as before. Then Wx ¥, B(goo) = 0 unless by € pZ, and
if this holds then

Lemma 3.3. With notation as above, let B = (

Wor,F,,B(9o0) = Wr, B (goo)-

If we repeat the above for all primes p dividing M, or in other words, if we apply the operator
Ry = HP‘M R, to F,, we obtain an automorphic cusp form

mMFX € Sk+1(K(NM7M)7X)7
and directly from the previous lemma we deduce the following:

Corollary 3.4. Let B be a positive definite, half-integral symmetric matriz as in the previous lemma,
and let goo = n(X)m(A,1) € GSpy(R) be as above. Then Wa ¥, .B(goo) = 0 unless by € MZ, and if
this holds then

WaiFy,B(9oo) = Wr, . B(goo)-
4. QUADRATIC SPACES AND THETA LIFTS

This section is devoted to briefly recall the essentials on quadratic spaces and theta lifts. We focus
especially in the three theta correspondences that will be considered in this paper, which explain the
different lifts of classical modular forms described in Section 2 in the language of automorphic forms
given in Section 3.

4.1. Quadratic spaces. Let F be a field with char(F') # 2, and V be a quadratic space over F. That is
to say, V is a finite dimensional vector space over F' equipped with a non-degenerate symmetric bilinear
form (, ). We denote by @ the associated quadratic form on V', given by
1
Qz) = 5(95,:10)7 zeV.
If m = dim(V), fixing a basis {v1,...v,,} of V and identifying V with the space of column vectors F™,
the bilinear form (, ) determines a matrix @ € GL,(F) by setting @ = ((vs, v;))i ;. Then we have

($,y) = thy for T,y € V.
We define det(V) to be the image of det(Q) in F*/F**2. The orthogonal similitude group of V is
GO(V) = {h € GL,,, : 'hQh = v(h)Q, v(h) € G,,},

where v : GO(V) — G,, is the so-called similitude morphism (or scale map). From the very definition,
observe that det(h)? = v(h)™ for every h € GO(V). When m is even, set

GSO(V) = {h € GO(V) : det(h) = v(h)™?}.

Finally, we let O(V) = ker(v) denote the orthogonal group of V, and write SO(V') = O(V) N SL,, for the
special orthogonal group.

4.2. Explicit realizations in low rank. In this paper, we are particularly interested in orthogonal
groups for vector spaces of dimension 3, 4 and 5. For this reason, we fix here certain explicit realizations
that will be used later on to describe automorphic representations for SO(V)(A) and GSO(V)(A). Our
choices follow quite closely the ones in [ , ].

When dim(V') = 3, one can show that there is a unique quaternion algebra B over F' and an element
a € F* such that (V,q) ~ (Vp,aqp), where Vg = {z € B : Trg(z) = 0} is the subspace of elements in B
with zero trace (sometimes called ‘pure quaternions’), and ¢p(z) = —Nmp(x). The group of invertible
elements B* acts on Vg by conjugation, b -z = brb~!, and this action gives rise to an isomorphism

PB* = SO(Vp,qz) =~ SO(V, q).

When B = M, is the split algebra of 2-by-2 matrices, then notice that PB* = PGLs, thus the above
identifies PGLg with the special orthogonal group of a three-dimensional quadratic space.
17



In dimension 4, consider the vector space V; := Ma(F) of 2-by-2 matrices, equipped with the quadratic
form g(x) = det(x). The associated non-degenerate bilinear form is (z,y) = Tr(zy*), where

T —x 1
a:*:( 4 2) forxz( ! Q)EMQ(F)-
—I3 I T3 T4
There is an exact sequence

(23) 1 — G,, —= GLy xGLy - GSO(V,) — 1,

where t(a) = (ala,a='15) and p(hq, he)x = hixh} for a € G,, and hy, he € GLa. One has v(p(h1, ha)) =
det(hi1ho) = det(hy)det(hy). In particular, when F is a number field, automorphic representations of
GSO(V}) can be seen as automorphic representations of GLs x GLg through the homomorphism p in the
above short exact sequence. Here we might warn the reader that our choice for the homomorphism p in
(23) agrees with the one on | ] and [ ], but differs from the one considered in | ] (or [I108]),
which leads to a slightly different model for GSO(Vy).

Finally, in dimension 5 we will describe a realization of SO(3,2), the special orthogonal group of a 5-
dimensional quadratic space (V,q) of Witt index 2. Although the isomorphism class of such a quadratic
space depends on det(V), the group SO(V,q) does not. We describe a model V5 of such a quadratic
space, with determinant 1 (modulo F*?). Namely, start considering the 4-dimensional space F* of
column vectors, on which GSp, C GL4 acts on the left. Let

€1 = t(17070a0)7 cee 564 = t(050707 1)
be the standard basis on F'*, and equip V := A2F* with the non-degenerate symmetric bilinear form (, )
defined by )
xAy=(x,y) (e1Nea NegANey), forallz,yeV.
Set xg := e1 Aez+ea Aey, and define the 5-dimensional subspace V5 C V to be the orthogonal complement
of the span of z, i.e. )
Vs ={zxeV:(x,zy) =0}
Then the homomorphism j : GSpy — SO(V) given by j(h) = v(h)~* A% (h) satisfies p(h)zo = 0, and
therefore induces an exact sequence
(24) 1 — G, — GSp, 2+ SO(Vs5) — 1,
where t(a) = aly for a € G,,. This short exact sequence induces an identification
PGSp, ~ SO(V5).

We fix an identification of V5 with the 5-dimensional space F?® of column vectors by

5

t
§ T;v; — (x17m2,x3,:v4,x5),
=1

where v1 = eg Aep, va = ejAeq, V3 =e1Neg—esNey, vy = esNes, vs = ez Aey. Upon this identification,
we consider the non-degenerate bilinear symmetric form (, ) on V defined by (z,y) = ‘aQy for z,y € F®,
where
-1 0 0
Q = Ql ; Ql = 0 2
-1 1 00
We shall distinguish the 3-dimensional subspace V3 C V5 spanned by ve, vs, v4, equipped with the
bilinear form (z,y) = ‘xQy, for x,y € F3, under the identification V3 = F? induced by restricting the
above one for V = F®. Notice that V5 = (v1) & V3 & (—v5), where v; and —v5 are isotropic vectors with
(v1,—vs) = 1, and V3 is the orthogonal complement of (vy, —v5) = (v1,v5).
Also, we distinguish a 4-dimensional subspace of V5. Indeed, the subspace {x € V : (z,v3) = 0} =
(1}3)L C V5 is a quadratic 4-dimensional subspace of V5, and it can be identified with the space V,; defined
above by means of the linear map

1 Ty X2
<’l)3> — V4, T1V2 + ToV] + T3Vs5 + T4U4 —— ( T3 T4 )

By restricting the homomorphism p from the exact sequence in (23) to
G(SLQ X SL2)7 = {(hl,hg) € GL2 X GL2 : det(hl) det(hg) = 1} - GLQ X Gth7
one gets an exact sequence

(25) 1 — Gy — G(SLy x SLy)~ 5 SO(Va) — 1.
18



Now notice that G(SLy x SLo)™ is isomorphic to
G(SLQ X SL2 = { hl,hg) € GLy x GLs : det(hl)det(hg) = 1} C GLy x GLo

through the morphism (hi,he) +— (hi,det(hy) thy). Composing this isomorphism with the natural
embedding G(SLs x SLs) < GSp, given by

aq 0 bl 0

ar b as by 0 ay 0 by
(< C1 dl )’( Co dg >) — C1 0 dl 0 ’

0 C2 0 dg

one gets a commutative diagram

1——Gy, — G(SLQ X SLQ)_ p4> SO(V4) —1

o

1 G L > GSp, L - S0(Vs) ——=1

and hence an embedding SO(V,) C SO(V5). This embedding will be of crucial interest later on.

4.3. Weil representations. Let now F be a local field with char(F') # 2 (for our purposes, one can
think of F being Q, for a rational place v), and (V, Q) be a quadratic space over F of dimension m as
above. Let S(V') denote the space of locally constant and compactly supported complex-valued functions
on V. This is usually referred to as the space of Bruhat—Schwartz functions on V. If F is archimedean,
we rather consider S(V') to be the Fock model (which is a smaller subspace, see | , Section 2.1.2]).

We fix a non-trivial additive character ¢ of F'. The Weil representation wy v of SAIZQ(F ) x O(V) on
S(V), which depends on the choice of the character v, is given by the following formulae. If a € F*,
be F,heO(V), and ¢ € S(V), then

oy (B)o(@) = 6(0~"),
wor (520 ) ) olo) = mxo@lal 2o as)

0
wor (5 1 )o1) o) = vi@moto)

(% 3) o= o

Here, v(v), V) is the Weil index, which is an 8-th root of unity. When m = 1 and Q(x) = 2, we will
simply write wy, Xy, and v(¢) for wy v, xy,v, and y(¢, V), respectively. In this case, one has

(g 1) 1Y)

where (, ) denotes the Hilbert symbol. This satisfies x,(ab) = (a,b)rxy(a)xy(b), xy(a?) = 1, and
Xys = Xo * Xa, Where x, stands for the quadratic character (a,-)p.

For a general V, if Q(z) = a12? + - - - + a,, 22, with respect to some orthogonal basis, then v(¢, V) =
[ L vyei, and xo,v = [, xee: . This does not depend on the chosen basis.

When m is even, the above simplifies considerably. Indeed, if m is even, it is clear from the above
description that the Weil representation descends to a representation of SLo(F) x O(V) on S(V'). Further,
the Weil index (¢, V) is a 4-th root of unity in this case, and x,,v becomes the quadratic character
associated with the quadratic space (V,@). This means that

xev(a) = (a,(=1)™?det(V))p, ac F*.

It will be useful in some settings to extend the Weil representation w, - described above. If m is even,
one defines
R = G(SLy xO(V)) = {(g,h) € GLy xGO(V) : det(g) = v(h)},
and then wy, - extends to a representation of R(F') on S(V) by setting

Wy, v (g, h)d = wy, v (g ( (1) det(?;)’l ) ,1) L(h)¢ for (g,h) € R(F) and ¢ € S(V),

where L(h)¢(z) = |v(h) ;m/4¢(h_1x) forx e V.
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4.4. Theta functions and theta lifts. Now let F' be a number field (for our purposes, we will just
consider F' = Q), and consider a quadratic space V over F' of dimension m. Fix a non-trivial additive

character ¢ of Ap/F and let w = wy, v be the Weil representation of SLy(Ap) x O(V)(Ap) on S(V(Ap))
with respect to 1. Given (g,h) € SLa(Ap) x O(V)(Ar) and ¢ € S(V(AF)), let

0(g,h;¢) = > wlg,h)d().

zeV(F)

Then (g, h) s 6(g, h; ¢) defines an automorphic form on SLy(Ar) x O(V)(Ap), called a theta function.
When m is even, this may be regarded as an automorphic form on SLa(Ar) x O(V)(Ap).

Let f be a cusp form on SLy(Ap) if m is even, and a genuine cusp form on SLo(Ag) if m is odd. If
¢ € S(V(Ar)), put

ol f,0) = [ 0(g.h:6)f(0)dg, h e O(V)(Ar)

SL2(F)\ SL2(AF)

Then 0(f,¢) : h — 0(h; f,¢) defines an automorphic form on O(V)(Ar). If m is even and 7 is an
irreducible cuspidal automorphic representation of SLa(AF), or if m is odd and 7 is an irreducible genuine

cuspidal automorphic representation of ﬁg(AF)7 put
Ogt,vo (M) = {0(f,0): f € m ¢ € S(V(Ar))}.

Then Géisz(V) (7) is an automorphic representation of O(V)(Ap), called the theta lift of 7. Going in
the opposite direction, one defines similarly the theta lift (', ¢) of a cusp form f' on O(V)(Afr) and the
theta lift Oy o7, (7") of an irreducible cuspidal automorphic representation 7’ of O(V)(A).

Suppose that m is even. As we did for the Weil representation, theta lifts can also be extended as
follows. If (g,h) € R(Ar) and ¢ € S(V(AFp)), one defines (g, h; ¢) via the same expression as above
(using the extended Weil representation). Then, if f is a cusp form on GLy(Ap) and h € GO(V)(AF),

choose ¢’ € GLy(Ap) with det(¢’) = v(h) and set

0(h; f,¢) = / 0(g9',h; ¢)f(99')dg.
SLa(F)\ SLz(Ar)

The integral does not depend on the choice of the auxiliary element ¢’, and (f, ¢) : h — 6(h; f, @) defines

now an automorphic form on GO(V)(Ap). If 7 is an irreducible cuspidal automorphic representation of

GL2(AF), then its theta lift Oy, xgo(v)(7) is formally defined exactly as before (and the same applies

for ©covyxar, (') if 7’ is an irreducible cuspidal automorphic representation of GO(V)).

5. THREE THETA CORRESPONDENCES

5.1. The pair (GL2,GO322). Let V4 be the (split) four-dimensional quadratic space as above, and write
from now on GSO32 C GOg 2 for the groups GSO(Vy) C GO(Vy), and likewise Og o for O(Vy). The theta
correspondence for the pair (GLg, GOg22) is sometimes referred to as the Jacquet-Langlands—Shimizu
correspondence | ] (cf. also [[108, Section 5], | , Section 6]). We will be interested in the
restriction of automorphic forms on GOz 2(A) to GSO2 2(A) (particularly in those arising as theta lifts
from automorphic forms on GLy(A)).

By virtue of the exact sequence in (23), automorphic forms on GSOg22(A) might be seen through
the homomorphism p as representations 73 K 75 of GLo X GLy with 7 and 79 having the same central
character. The involution z — z* induces an element of order two ¢ € GOg 2, and GOz 2 = GSO4 3 % (c).

Notice that for the theta correspondence to hold between GL3 and GO3 > it does not suffice to consider
the Weil representation of SLa(A) X Og 2; one needs to consider the Weil representation extended to the
group R(A) = {(g,h) € GL2(A) x GO22(A) : det(g) = v(h)} as explained above. If 7 is an irreducible
cuspidal unitary representation of GLg(A), then one has OgL, xGs0,,(7) = 7 B 7, where in line with
the above comment Ogr,, xGs0,,(7) might be read as the restriction to GSOg2(A) of the theta lift
OaL, xG0,., (7). Conversely, suppose that T is an irreducible cuspidal unitary GSOz 2 (A)-representation.
Then there is a unique extension of Ty to an automorphic representation T of GOg 2(A) on which there
is a non-zero O(V})(A)- invariant distribution, where V| = {z € V} : tr(z) = 0}. If ©go, ,xaL, (1) # 0,
then Yq is of the form 7 ® 7 for some irreducible cuspidal unitary representation 7 of GL2(A) and
0G0,,xGL, (T) = 7.

Let us consider a normalized newform g € Sk11(IV, x) as in the introduction, hence & > 1 is an odd
integer, N > 1 is an odd square-free integer, and x is an even Dirichlet character modulo N. Write M
for the conductor of y (in particular, M is also odd and square-free). Let 7 be the irreducible cuspidal
automorphic GLo(A)-representation associated with g, with central character y. Then 7 X 7 can be
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regarded as a representation of GSOz 2(A) and it extends to a unique automorphic representation Y of
GOg22(A) on which there is a non-zero O(V})(A)-invariant distribution. Then one has

o(r)=7", O(T)=r.

Let g € 7 be the adelization of g. Then the cusp form g ® g € 7 X 7 extends to a cusp form G € T
on GOz 2(A) such that G(hh') = G(h) for all h € GO22(A) and A’ € pa(A), where po is the subgroup of
Og 2 generated by the involution * on Vj.

Define gf = ®,gf by setting g = g, for all places v # 2, and gg = 75(t(271)2)g,, where

H2 1), = ( 261 X ) € SLa(Qy).

Further, consider the M-th level raising operator V; acting on 7 by ¢ — 7(was )¢, where s € GLa(A)

is 1 at every place v t M, and equals w, = (Pgl ?) € GL2(Qp) at each prime p | M. Then define

g = Vyg! = (Vyg)? The cusp form g thus obtained is one of the factors in our test vector.

Accordingly, we also modify slightly the cusp form G in the following manner. For each prime p | M,
consider the element h, = (1,@,) € GL2(Q,) x GL2(Q,), which we identify with its image p(h,) €
GS02,2(Qp) € GO22(Qy). Let Y}, denote the operator acting on T given by T (hy), and Yoy := [, Yp.
Similarly as above, if has denotes the element in GO 2(A) whose entries are trivial at every place v away
from M, and equals h, at each prime p | M, then we consider the cusp form Y G = Y(hy)G € T.
With this definition, observe that

YrGigL,xaL, =@ Vyge T

With the above definitions, the main purpose of this paragraph is to prove the following explicit
identity between the cusp forms g and Y;G. This is made upon the choice of a Bruhat—Schwartz
function ¢z € S(V4(A)) to be defined below.

Proposition 5.1. With the above notation, one has
0(YuG, ¢g) = 2" M1 [SL2(Z) : To(N)] " '¢a(2)"*{g, 9)&-

Following the approach of Ichino—Tkeda | , Section 5], it is useful to consider a different model of
the Weil representation. If ¢ € S(V4(A)), one defines its partial Fourier transform ¢ € S(V4(A)) by

(26) ¢ (( 2 ij )) = /A2 @ (( z; Zi )) V(z2ys — Tay2)dy2dya,

where dys, dy, are the self-dual measure on A with respect to our fixed non-trivial additive character
of A/Q. Then, one defines a representation @ of R(A) = {(g,h) € GL2(A) x GO22(A) : det(g) = v(h)}
on S(V4(A)) by setting
@(g,h)¢ = (w(g, h)g).
Observe that w(g, 1)¢(z) = @(xg) for g € SLa(A).
We start defining a Bruhat-Schwartz function ¢g = ®,¢g,, € S(Vi(A)) associated with g as follows:
i) At primes g{ N, ¢g,q equals the characteristic function on My (Z,).
ii) At primes p | N, ¢g,p is determined by requiring that ¢g , is given by
Pep (33 52)) = 1z, (21)1z, (22) Lz, (23) 155 (za)X ) (2a).
iii) At the archimedean place,
Pgoo (55 33)) = (@1 + V=12 + V=Tag — 1) exp(—ntr(z'z)).

Notice that the local components at primes dividing N are defined through their partial Fourier trans-
forms. For later use, we provide an explicit recipe for ¢g , at such primes:
Lemma 5.2. Let p be a prime dividing N, and write 6(1/2,&)) for the root number of the character
X, : Q, — C*. Then, one has

p%e(1/2,x )1z, (21)1z, (24) 1z, (93)1 -1 (22)X (22)  if p | M,
1z, (21)1z, (24) 1z, (x3) (12, (22) — p~'1p-17, (22)) if p| N/M.

The next statement adapts | , Proposition 5.2] to our slightly different model for GSO3 5.

Pg.p ((ié ﬁ )) = {

Proposition 5.3. With the above notation,

0(g, 9| GL x L, = 27 (0(2) 7! [SL2(Z) : To(N)] ‘g @ &.
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Proof. We know that (g, ¢g) € T ¥ 7. A routine calculation shows the following assertions.
i) If p{ N, and (g,h) € R(Zp), then w(g, h)dg,p = g p-

ii) If p | N, and hq, he € Ko(N;Z,), then
w ((det(}élhﬂ %), (h1,h2)) bgp = Xp(hlhz)éﬁg,p-
iii) If kg, ko,, ko, € SO(2), then
w(ke, (Ko, ko,))dg,00 = exp(v/=1(k + 1)(=0 + 01 + 02)) dg,c0-
It follows from these properties that there is a constant C' satisfying
0(g, dg)|aL, x cL, = Cg® g,

and one finds C' = 2¥+1vol(T'y(IV)) by comparing the Fourier coefficients Wy 1(1) and Wo(g,ég),1,1(1) (cf.
loc. cit. for details), where To(N) = SO(2) SL2(Z)NSO(2)['¢(N; Z). The statement then follows by using
that vol(T'g(N)) = (g(2)[SLa(Z) : To(N)] 1. O

Corollary 5.4. With the above notation,
(27) 0(G, dg) = 2"1[SLa(Z) : To(N)] ' ¢a(2) (9. 9)&-

Proof. The invariance properties of ¢g imply that there is a constant C' such that §(G, ¢g) = Cg. Thus
we need to determine the precise value of C'. On the one hand we have (0(G, ¢g),8) = C(g,g). And on
the other hand, by the seesaw principle together with the previous proposition we also have

(0(G, ¢g),8) = (G, b(g, %)) = 2" ((2) ' [SL2(Z) : To(N)] (G, G) =
= 251(g(2) T [SLa(2) : To(N)] (g, 8)*.
Hence, using that (g, g) = (o(2)~ (g, g) we conclude that C' = 2¥+1[SLy(Z) : To(N)]~1¢0(2)"2(g,9). O

Proposition 5.1 will follow straightforward from the identity in Corollary 5.4. We need to suitably
modify the Bruhat-Schwartz function ¢g in order to translate (27) into an explicit analogous relation
between g and Y, G. To do so, define ¢g: = ®,0¢gt , by setting ¢gi ,, = ¢g o at all places v # 2, and
Pgt 2 = 272wy (t(271)2, 1) g 2. From the definition of ¢g o, one can easily check that ¢gr »(2) = 1y, (22,) ()
for x € V4(Q2). With this slight modification at p = 2, Corollary (5.4) gets easily rephrased:

Corollary 5.5. With the above notation,
0(G, ¢gs) = 2" [SLa(Z) : To(N)] ' ¢a(2) (g, 9)8".
Proof. This follows from the very definitions. Indeed, recall that for € GLa(A) one has

0(G.65)() = |

o ]9(ar,y’y;¢g)G(y’y)dy=/ > wl@,y'y)ds(v) | Gy'y)dy,

[O22] \wevi()

where y' € GOg22(A) is any element with v(y’) = det(z). From the last expression, observe that if we
replace ¢g by w(g, 1)¢g with g € SLa(A), then

(Gl o)@) = [ {3 wleynule Déglo) | Gludy =

[022] \vewi (@)

/[O | Z w(zg, y'y)be(v) | G(y'y)dy = 0(G, dg)(xg) = 7(9)0(G, ¢g)(z).

veV4(Q)
Applying this for g = ¢(271)3 € SL2(Q2) < SLa(A) C GL2(A), we deduce that
(G, dg:) = 0(G,27w(t(27 )2, 1)dg) = 2727(1(271)2)0(G, 0g),
and the statement follows from the previous corollary together with the definition of gf. O
Finally, we define ¢5 = ®,¢g,., by keeping ¢y , = dg: ,, for all places v { M, and setting

Pgp = p_lwp(wpv hp)¢gﬁ,p = p_lwp(wp, hp)¢g,p

at each prime p | M. In other words, if wys and hys are as before, we see that ¢z = M~ w(war, har) gt -
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Proof of Proposition 5.1. As above, if € GLy(A) notice that

0(G.0g:) (o) = | S e y'y)oe () | Gy,

02,2(Q)\O2,2(4) veV1(Q)

where y' € GO2 2(A) is such that det(z) = v(y'). In particular, observe that det(zwas) = v(y har), hence

(Y uG, dg)(x) = M~ > w@ yyw(@a, har) g (v) | Gy'yha)dy =
[022] \vevi(@

=M Y wlawny'hay)dg: (v) | Gy'hary)dy.
[022] \vewvy(@
From this we see that (Y G, ¢g) = M '7(war)0(G, ¢g:), and hence the statement follows from the
previous corollary, together with the fact that g§ = 7(wwa/)g?. a

For later use, we will need an explicit description of the Bruhat-Schwartz function ¢g. At places
v{2M, observe that ¢g , = dg ., thus we have:
i) If pf 2M is a finite prime, then ¢y ,(7) = 1y,(z,)(z) for all = € V4(Qy).
ii) If p| N/M is an (odd) prime, then

Sep (23 52)) = 1z, (21)1z, (24) Lz, (23) (12, (22) = p ' Lpm1z, (22)) -
iii) At v = oo,
Pg.o0 (33 52)) = (21 + V=1zo + V=1az — 24) " exp(—mtr(z"2)).
At primes p | 2M, we describe ¢ , in the following lemma.

Lemma 5.6. With the above notation, the following assertions hold.

i) At p =2, ¢go(x) = Ly, (2z,)(x) for all x € Vi(Qo).
ii) At (odd) primesp | M, for x = (3% 32) € Va(Q,) we have

bgp(x) =p 1 2e(1/2, 7)) Lz, (21)1z, (24) 12z, (23)1, 1z (22)x (22)-

Proof. One just have to compute ¢go and ¢z, (p | M) using the definitions of ¢go and ¢g, to-
gether with the properties of the Weil representation, since ¢go = 27 2ws(t(271)2,1)¢g2 and ¢g, =
p~twy(wp, hy)dg p for primes p | M. We omit the details and leave them to the reader. O
5.2. The pair (PGLo, éig) Shimura’s correspondence between half-integral weight modular forms and
integral weight modular forms was investigated by Waldspurger as a theta correspondence between auto-
morphic representations of PGLy(A) and automorphic representations of SLa(A). Here, PGLs is identified
as the special orthogonal group SO(V') of a three-dimensional quadratic space V as in Section 4.2.

The theta correspondence for the pair (PGLa, §I:2) depends on the choice of an additive character v
of Q\A. To emphasize this dependence, we will write

®PGL2 xSLo (m, ) (resp. @gfgxPGLg (7, 9))

for the automorphic representation of SLy (A) (resp. PGL2(A)) obtained as the theta lift of the automor-
phic representation 7 (resp. 7) of PGLa(A) (resp. SL2(A)). On the local setting, we write

@PGL2 xSLo (77”’ ¢v) and ®§Ez xPGLo (ﬁva %)

for the local theta lifts of 7, and 7,, respectively. We will omit the subscripts PGLo ><§I:2 or §f42 x PGLo
if the direction of the theta lift is clear.

In the following, for a fixed irreducible cuspidal automorphic representation 7 of PGLy(A), and D
varying over the set of fundamental discriminants, the representations ©(7 ® xp, ") (and their local
counterparts O(m, ® xp,¥?)) will play a crucial role. Waldspurger’s description of the theta correspon-

dence for (PGLo, SLy) tells us that the set {O(7 @ xp,¢?) : D € Q* fund. discr.} is finite.

In order to describe the local theory, fix a place v of Q and let Py, denote the set of special or
supercuspidal representations (or discrete series representations if v = 00) of PGL2(Q,). For D € QJ,
define the symbol

D
<ﬂ_> = xp(=1)e(my, 1/2)e(my ® XD, 1/2),
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and consider the associated partition QX = Q (m,) U Q; (m,), where

Qi (my) = {D eQy: <£> = il}.

The next statement summarizes Waldspurger’s local theory.

Theorem 5.7 (Waldspurger). With the above notation, the following assertions hold.

i) If 7y € Po.w, then Qf (m,) = QX and 7, := O(my,1y) = O(m, ® Xp, VYY) for all D € Q.
ii) If my € Pow, then there are two representations 7 and 7, of SLa(Qy) such that

rrif D e Qf(my)
O(m, ® , Dy — Mo v )
(o ® XD, %y ) {7%_ i D e (m)
iti) The equality O(m, ® Xp,¥P) = O(my,1,) holds if and only if O(m,,,) admits a non-trivial
YD -Whittaker model.

Remark 5.8. When m, € Py, one has 7 = O(my, ) and 7, = O(JL(m,),¥y)), where JL(m,) is
the Jacquet-Langlands lift of m, to an admissible representation of PB), with B, the unique division
quaternion algebra over Q,. We warn the reader that the labelling +/— in ii) depends on the choice of

the additive character 1, .

Altogether, the local Waldspurger packet Waldy,, (m,) is defined to be the singleton {7,} if m, & Po.q,

and the set {7, 7, } if 7, € Py,. Although the labelling +/— in the set Waldy, (7,) depends on 1,,, the
packet Waldy, (7,) itself does not.
__To state the global side of this theory, write Ago for the subspace of cuspidal automorphic forms on
SL2(A) which are orthogonal to the theta series generated by quadratic forms of one variable. Let Ay ;
be the subspace of cuspidal automorphic forms on PGL2(A) such that for any subrepresentation 7 of Ag ;
there exists some D € Q* with L(m ® xp, 1/2) # 0.

Let 7 be an irreducible cuspidal automorphic representation of PGLy(A), and let X(7) denote the
set of rational places v such that 7, € Py,. For each D € Q*, let ¢(D,7) € {£1}/*(™I be the tuple
determined by setting (D, ), = (%) for each v € ¥(m). Observe that one has by construction

e(m@xp,1/2) =€(r,1/2) [] (D).

T
veX(m) v

For an arbitrary tuple e = (&,),ex(r) € {£1}=(], define the set Q°(r) = {D € Q* : ¢(D,7) = ¢}. In
particular, m determines a partition

Q* =] |Q ().

Having settled this notation, we summarize Waldspurger’s global theory as follows. Below, two irre-
ducible subrepresentations of Agg are called near equivalent, denoted 71 ~ 7o, if it holds that 7 , ~ 72,
for almost all places.

Theorem 5.9 (Waldspurger). With the above notation, the following assertions hold.

i) The global theta correspondence between PGLy and éig is compatible with the local correspon-
dence. That is, if O(7,) # 0, then O(F,v¢) ~ ®,0(Fy, ). And analogously, if ©(m, ) # 0,
then O(m, 1) ~ ®,0(my, ).

i) O(m, ) # 0 if and only if L(w,1/2) # 0. And O(7,v) # 0 if and only if © has a non-trivial
- Whittaker model.

iti) If 7 is an drreducible subrepresentation of Aoo, then there is a unique trreducible automorphic
representation ™ = Shy (%) of PGLa(A) associated to 7 such that O(7,¢P) # 0 = O(7,9P) ®
xp = 7. The association T — Shy(7) defines a bijection between floo/ ~ and Ag;.

iv) If m = Shy(7), then the near equivalence class of T consists of all the non-zero lifts of the form
O(m @ xp,¥p)-

v) Let e € {£1}*M [f [Loesn €0 # €(m,1/2), then ©(x ® xp,¥P) = 0 for all D € Q(w). If
[Loesin) €0 = €(m,1/2), then there is a unique 7 such that for every D € Q(w) it holds

7 if L(m ® xp,1/2) #0,
0 ifL(r®xp,1/2)=0.
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In the previous theorem, if € = (¢, ), € {1}/ then 7€ denotes the irreducible cuspidal automorphic
representation of §I/42(A) whose local components equal 7, at all rational places v ¢ 3(w), and whose
local components at places v € X(7) equal 75, Together with the local theory, the above result motivates
the definition of the (global) Waldspurger packet Waldy, () associated with 7 as the finite set

Waldy () = < 7€ : H €, = €(m,1/2)
veX(m)

Notice that Waldy(m) = Waldyo (7 ® xp) for all D € Q*, similarly as locally at each place v one has
Waldy, (7,) = Waldya (1, ® x,) for all a € Q.

5.2.1. On the result of Baruch—Mao. Having recalled Waldspurger’s theory, we explain briefly how Baruch—
Mao’s result stated in Theorem 2.1, leading to a generalization of Kohnen’s formula, fits in this theory. So

let f € S5 (IN) and x be as in Theorem 2.1, and let 7 be the irreducible cuspidal automorphic represen-

tation of PGL2(A) associated with f. Choose once and for all a fundamental discriminant D € © (N, M),

where the set ©(N, M) is defined in (7), and assume further that L(f, D, k) # 0.

Let v be the standard additive character of A/Q, and write 1) = 1)~! and @D =9~ for the (—1)-th
and (—D)-th twists of 9, respectively. Then, consider the theta lift 7 := O(7 ® XD,@D) of m ® xp with
respect to the additive character @D. Because of the assumption L(f, D, k) # 0, we have ©(r®xp, ED) #*

0, and so T = ®,7, with 7, ~ O(m, ® XD,’l/JUD).
Let € := ¢(D,7) € {1} be defined as above, so that D(N, M) is the set of fundamental dis-
criminants in Q¢(w). It is proved in | ; Section 10] that & = 7 € Waldy (7). In other words, the

automorphic representation # = O(7 & xp, @D) of SL, (A) corresponds to the element in the Waldspurger
packet Walda(ﬂ') whose labelling coincides with ¢ (recall that the labelling of & depends on the choice of

¥). Moreover, one has €5, = —1, and for each prime p | N

<D> (D> w, ifp| N/M,
€, = —_— = —_— =
RN P —w, ifp| M.

If Vz denotes the representation space for 7, then Baruch and Mao show that Vz N A'k:l /2(4N , Xo) is

one-dimensional. The one-dimensional subspace of Sktq%’ (ANM; x) denoted Sktﬁjg (ANM, x; f ® x) in

Theorem 2.1 is then the preimage of Vz N Az+1/2 (4N, x,) under the adelization map (16), and h can be

taken to be the de-adelization of any new vector in Vi N A;‘+1/2(4N, X,)
Summing up, the set D(N, M) in Theorem 2.1 singles out a precise element 7 in the Waldspurger

packet Waldg(m) = Wald» (m ® xp), where the adelizations of the classical half-integral modular forms

in 5’2‘;7;5/;’(4]\] M, x; f ® x) belong to. Together with the local assumptions on Y, this allows Baruch and
Mao to have a clean description of the local types for 7 at primes p dividing N. For later purposes, we
briefly describe these local types, according to whether p divides M or not.

First suppose that p is a prime dividing N/M. The local representation 7, is a quadratic twist of the
Steinberg representation, say m, = St;, - X, for some u € Z. If w, = 1 (resp. w, = —1), then u is a
non-quadratic residue (resp. quadratic residue) modulo p. We have

~ D D
ﬂ-p = G)(ﬂ-p 02y XD7’(/}p ) = @(Stp . XuD7’l/)p )a

and notice that ¢ := uD € Z; is a non-square in Z,, since (%) = wp. In this case, it follows that 7, is a

special representation of SL, (Q,), denoted &° (wp_D) in [ , (10.5.3)]. This representation is realized

as the space of functions @ : SLy (Qp) — C such that

2|6 ) o) = @u@ie

for all g € SL, (Qp) and a € Q,;, and satisfying also the vanishing condition

/ G(ii(x)), (—6A%)dz =0 for all A € Q.

Here, notice that xs is the unique non-trivial quadratic character of Q). A newvector ¢, € 7, can be
chosen as in | , Lemma 8.3], see also Lemma 7.1 below.

25



Secondly, suppose that p is a prime dividing M. We have again m, = St,, - Xy, for some u € Z;, and

therefore 7, >~ ©(St,, - XuD,E;D). But now, § := uD € Z) is a square in Z because (%) = —wp. Then

Tp is a supercuspidal representation of éig((@p). More precisely, it is the odd Weil representation r_,

P

—D ~ ~ .

associated with the character ¢, (cf. [ , (10.5.4)]). In this case, a choice of newvector @, € 7, is
described in | , Proposition 8.5], see also Lemma 8.3 below.

5.3. The pair (éig, PGSp,). Now we focus on the theta correspondence for the pair (éig, PGSp,), which
explains the classical Saito-Kurokawa lift introduced in Section 2.3. We identify PGSp, with the special
orthogonal group SO(3,2) = SO(V5), where Vs is the five-dimensional quadratic space of determinant 1
and Witt index 2 as in Section 4.2. As we did for the pair (PGLo, §£2)7 let us fix a non-trivial additive
character 1 of A/Q.

Global theta lifts can be defined in the same fashion as we have already explained in the previous two
instances, so that for an irreducible cuspidal representation IT of PGSp,(A) and an irreducible component
# C Aoo(SLy), one can define their lifts Obgsp, x5Ts (I1; ) and Ot xPGSp, (7;9), respectively. The
following assertions concerning this theta correspondence can be found in | ]

a) If @PGSP ST, (IT; 7)) is not zero, then it is irreducible cuspidal.

b) If O, par, (T:¢) =0, then eéiszGsz (73 ) is irreducible cuspidal.

¢) If Og,  par, (T:¥) is not zero, then ®§f42XPGSp2 (7;4)) is irreducible noncuspidal and occurs in
the discrete spectrum of PGSp,.
d) @PGSp2 S (IT;¢) = 7 if and only if ®§TJ2><PGSp2 (m;¢) =1L
Similarly as for Waldspurger packets, one can introduce the notion of local and global Saito—Kurokawa
packets. Indeed, let v be a place of Q, and 7, be an infinite-dimensional irreducible admissible represen-
tation of PGL2(Qy). If €, € {£1} and 75» € Waldy, (7,), write I := GﬁQXpGSPQ (75 1hy). Then the
local Saito—Kurokawa packet of 7, is defined to be

SK(my) == {II" : w5» € Waldy, (7,)}-

Now if 7 is an irreducible cuspidal automorphic representation of PGL2(A), the associated global Saito—
Kurokawa packet is just

SK(m) := {O(7;¢) : 7 € Waldy(m)}.

Given a tuple € = (¢,), such that €, € {£1} for every place v, and €, = +1 for all v such that 7, is not
square-integrable, set II¢ = ®,II5". Then we have

SK(r) := {11 : [[ e = (1/2,7)}.

Although the Saito—Kurokawa packet SK(7) associated with 7 is defined through Wald (), it turns
out that SK(7) does not depend on the choice of the additive character . Also, it is well-known that
SK(7) consists only of cuspidal members when L(1/2,7) = 0.

In the rest of this section, we focus on an explicit relation between a newform h € 7, where 7 is as in
Section 5.2.1, and a theta lift of h. From now on, we fix ¥ to be the standard additive character of A/Q.

If F is a cuspidal automorphic form on SO(V5)(A) ~ PGSp,(A) and B € Sym,(Q), we will regard
F as an automorphic form on GSp,(A) trivial on the center. Then its B-th Fourier coefficient Wg g :
GSp,(A) — C is defined as in (20). In particular, for an automorphic form h on SAI/Q(A) and a Bruhat—
Schwartz function ¢ € S(V5(A)), the B-th Fourier coefficient of the theta lift 8(h, ) is the function

9 Watno,59) = | 0, ) (n(X)g) S(BX))AX, g € GSpa(A).
Sym, (Q)\Sym, (4)

As in the introduction, let k, N > 1 be odd integers, with N square-free, and let x be an even Dirichlet
character modulo N, of conductor M | N. Let f € S5 (IN) be a normalized newform of weight 2k and
level N, and let 7 be the automorphic representation of PGLgy associated with f. We assume Hypotheses
(H1) and (H2), so that x,)(—1) = —1 and w, = —1 for all primes p | M.

Let # € Waldj(m) be the automorphic representation of SLa(A) obtained by theta correspondence

as explained in Section 5.2.1. Let h € S;jﬁ?;(élNM,X; f ® x) be a Shimura lift of f as in Theorem

2.1, and let h € 7 be its adelization. Besides, let F,, € SkH(KéQ)(NM),X) be the adelization of the
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Saito-Kurokawa lift F), = M(Z(h)) € Sk-+1(1—‘(()2)(NM), X) as defined in (21) (cf. also Section 2.3). Recall
the operator Py, and consider the automorphic form

m]WFX S Sk+l(K(NM7 M)7X)a

which by Lemma 3.2 is the adelization of Ry Fy, € Spy1 (T (NM) N TParam (A1), ).
The main purpose for the rest of this section is to prove the following identity, where the Bruhat—
Schwartz function ¢n € S(V5(A)) will be defined below.

Proposition 5.10. With the above notation,
(28) O(h,¢n) ® x = 27°x(2) 7'M [SLa(Z) : To(N)] ™' ¢a(2) "' R Fy.

Here, observe that 6(h,¢y) is an automorphic cusp form on PGSp,(A), and as in Section 3.3, the
automorphic cusp form 0(h, ¢n) ® x on GSp,(A) is defined by

(0(h, on) @ x)(9) = 0(h, ¢n)(9)x(¥(9)),

where v : GSpy(A) — AX is the similitude morphism. In particular, the above proposition says
that the automorphic form 6(h, ¢n) ® x is classical, in the sense that it is obtained by adelization of
272x(2) "' M SLo(Z) : To(N)] " 1o(2) 'Ry Fy.

The proof of Proposition 5.10 will proceed by comparing the Fourier coefficients Wy ,)@y,5 and
Wazy,F,,B of the automorphic forms 60(h, p) ® x and Ry Fy appearing in (28), for arbitrary symmetric
matrices B € Symy(Q). Concerning Ry Fy, we know from Lemma 3.4 that W, F, B is zero unless B
is positive definite, half-integral and b3 € MZ if

- by by/2
B= < ba/2 by )
And in that case, Weasy, F,,B is uniquely determined by the values Wa,F,, B(goo) at the elements

1, X A 0
(29) goo =n(X)m(A,1) = ( 02 . ) ( 0 A ) € GSp,(R)
with X € Sym,(R), and A € GL§ (R), for which we know (cf. Corollary 3.4 and equation (22)) that
Wty 8(9o0) = We,5(9oc) = Ay (B) det(Y)FHD/2e2mV/ =TT ED),

where Y = A'A, Z = X ++/—1Y € Hs,. Here, A, (B) is the classical B-th Fourier coefficient of F},, which
can be made precise as in (14).

Regarding 0(h, ¢n), it will follow from Lemma 5.12 below that §(h, ¢ ) ® x satisfies the same invariance
properties with respect to K (NM, M) C GSpy(Z) as Ry F, does (namely, K(NM, M) acts through y
on both O(h, ¢n) ® x and R F,). Therefore, by comparing the Fourier coefficients Wyn, ¢, )0y, B with
Wr, B at elements g, € GSp,(R) as above we will be able to deduce a relation between W@(}:¢h)®x, B
and Wr, p as functions on GSp,(A), leading to the identity claimed in (28). Furthermore, observe that
from the very definitions we have

W9(h,¢h)®5,B(goo) = We(h,q&h),B(goo).

For this reason, we will focus on the computation of Fourier coefficients of the automorphic form 6(h, ¢, )
on PGSp,(A) obtained as a theta lift from h.

In order to determine the Fourier coefficients Wy(n 4,),5, as in the previous section it is useful to
consider another model for the Weil representation. Recall the 3-dimensional quadratic subspace V3 C V5
on which the quadratic form is given by Q1, i.e. V3 = (vq,v3,v4). We identify Vi with F2 in a compatible
way with the fact that

0 0o -1
Q= 0 @ 0
1 0 0

We consider the partial Fourier transform
S(Vs(A)) — S(Va(4)) @ S(A?), ¢+ o,
defined by setting

(30) d(aiy) = / (s 7391 ) (—y22)dz,
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where z € V3(A) and y = (y1,y2) € A% As usual, here dz is the self-dual measure with respect to the
additive character ¢. The Weil representation w of SLa(A) x O(V5)(A) on S(V5(A)) gives rise then to a
representation @ of SLa(A) x O(V5)(A) on S(V3(A)) ® S(A2%) by setting

@(g,h)¢ = (w(g, h)o).
If ¢ = ¢ @ ¢y with ¢ € S(V3(A)) and ¢y € S(A?), then one has

(31) &((g:€), Dol y) = w((g, €), D1 () - a(yg)

for (g,¢) € SL, (A). This change of polarization helps to get simpler computations, and the identity in
(31), which we will use later, is an instance of this. Most importantly, in terms of this new model one can
express the Fourier coefficients of 8(h, ¢), for a given ¢ € S(V5(A)), in terms of the Fourier coefficients
of h. Recall that if £ € Q, then the &-th Fourier coefficient of h is by definition the function

9 Whe(g) = /Q B PEE, g€ STalh)

As quoted in (17), one has ¢(n) = €™ Wy, (1) for all integers n > 1. With this, the following is proved
in [ , Lemma 4.2].

Lemma 5.11. If ¢ € S(V5(A)), then for B # 0 one has

(32) Wotno.z(h) = / (g, h)3(B;0,1) W (9)dg,
U(A)\ SL2(A)

where &€ = det(B) and B = (bs, by /2, —b1) if B = (bj;Q b;f).

The identity in (32) is a crucial ingredient in our computation of the B-th Fourier coefficients of 6(h, ¢y, )
towards the proof of Proposition 5.10. To proceed with this computation, we still need to address two
tasks. First, we must describe an explicit choice of Bruhat-Schwartz function ¢n € S(V5(A)). And
second, we must express the integral on the right hand side of (32) as a product of local integrals, one for
each rational place v. After this is done, we will be able to proceed with the computation of the Fourier
coefficients of 6(h, ¢p,) by performing local computations prime by prime.

Concerning the choice of ¢n € S(V5(A)), recall the Bruhat-Schwartz function ¢z € S(Vi(A)) consid-
ered in the previous section, which is involved in the explicit formula in Proposition 5.1. For our proof
of the main theorem, it is crucial that ¢y is chosen so that its restriction to V4 coincides with ¢g. Since
we have an explicit description of ¢g, we only need to define ¢ on the orthogonal complement of Vj,
which is the one-dimensional quadratic subspace V; := V- of Vs spanned by vz. Notice that we may
identify the space S(V1(A)) with S(A), by identifying V; with the one-dimensional quadratic space over
Q endowed with the quadratic form g(x) = z2. In S(V1(A)), we consider the Bruhat-Schwartz function
¢ = ®,¢, determined by its local components as follows:

e if v = oco.

bu(x) = {1227(52 if v =q # oo,

Considering the basis v1,...,vs of V5 as we did above, so that V; = V- is generated by vs, and taking
into account the embedding V; C V5 explained in Section 4.2, then ¢y, is defined by setting

On(2) = (w3) g (25 21)) -

for z = x1v1 + xov2 + 2303 + T4v4 + 505 € V5(A). By construction, the local components of ¢pn = ®,¢n o
can be easily given in terms of the local components of ¢ and ¢5. For the reader’s convenience, we

describe such local components: if v is a rational place, z = x1v1 + X2vy + T3v3 + 404 + 505 € V5(Qy)
and we put X = (32 7} ), then ¢n ,(2) is given as detailed below.

i) If v =¢{ N is an odd prime, then ¢y, 4 is the characteristic function of V5(Z,). Indeed,
bn,q(2) = @q(23)dg,q(X) = 1z, (21)1z, (22)1z, (23)1z, (24)1z, (25).
ii) If v = 2, ¢n,2 is the characteristic function of Zgvs + V5(2Z3). Indeed,
Pn,2(2) = ¢2(23)dg,2(X) = Loz, (21)12z, (v2) 1z, (23) 12z, (¥4) L2z, (T5).
iii) If v = p | M is prime, then

Pnp(2) = Op(13)dg p(X) = p71/25(1/2,xp)1p7125 (71)1pz, (22)17, (23)17, (I4)1p2zp($5)1p($1)~
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iv) If v =p | N/M is prime, then
Pnp(2) = bp(3) g p(X) = (12, (z1) — p~ ' 1p-1z, (21)) 1z, (22)1z, (23)1z, (£4) 1z, (25).

v) For the archimedean prime v = oo,

Phoo(2) = (w2 + V—1z1 + V—1x5 — 24) T exp(—n(x? + 23 + 222 + 23 + 22)).
In particular, observe that ¢y = ®,¢n,, coincides with the Bruhat-Schwartz function 00 = ®U<p5,5)
defined in [ , Section 7] locally at every place v N. Therefore, we can use Ichino’s computations in

loc. cit. at all such places. s
We need to understand the action of the Weil representation of SLa(A) x O(V5)(A) on ¢n € S(V5(A)).
For later purposes, the properties we are interested in are collected in the following lemma.

Lemma 5.12. Let ¢y, be defined as above, and v be a rational place. Then the following assertions hold:
i) If v = q is an odd prime not dividing N, then ¢y, = Dy © by where o, € S(V3(Qy))
and q%’q € S(QZ) are the characteristic functions of V3(Zg) and Zg, respectively. Besides,
wq((k, 84(k)), K )pn,q = Pn,q for all k € SLa(Z,) and all k' € GSpy(Zy).
ii) If v =2, then wo(k,k')pn,2 = é2(k)pn,2 for all k € To(4;Zs) and all k' € GSpy(Z2).
iil) If v = oo, then
Woo (Ko, K ) h,oo = ™V TLEFH/20 det(k) H gy,
for all ky € S/é\_/(Q) and k' = (_aﬂ g) € Spy(R), withk = a++/—18 € U(2).
iv) If p | N/M, then wy((k, sp(k)), k" )dn,p = én,p for allk € To(NM;Zy,) =To(p; Zp) C SLa(Zy) and
dl k' € K (NM;Z,) = K >(p, ) C GSpy(Zy). And if p | M, then wy((k,s,(k)), K )dn,p =
énp for allk € To(NM;Z,) = To(p*;Zy,) C SLo(Zy) and all k' € K(NM,p; Z,) = K(p*,p; Z,,) C
GSpy(Z,). Euxplicit expressions for q@hm in these cases are given in Lemma 5.13 below.
Proof. Parti)isasin | , Section 7.3]; part ii) is worked out in | , Section 7.4], where one also finds
an explicit expression for &(r, 1)¢n 2, where r varies over a set of representatives for SLa(Z3)/Ko(4; Z2)
(which consists only of 3 elements); part iii) is covered in | , Section 7.5]. As for part iv), one can
check it by routine (and tedious) computation using the explicit description of ¢n ) together with the

rules for the Weil representation and the explicit model of SO(V5) that we are using (cf. Section 4.2).
We omit this computation and leave it for the reader. (Il

At primes p | N, we will also need the partial Fourier transforms q@h}p of each local component ¢, p,
which we collect in the next lemma.

Lemma 5.13. With notation as above, let p be a prime dividing N, and let x = (x1,22,23) € ‘/3(@1))7
y=(y1,y2) € QZ. Then one has

1z, (21)1z, (22)1z, (23)1pz, (Y1) 17x (y2) ifp| N/M,
Lz, (21)1z, (22)1z, (23) Lz, (1) 1zx (v2)X H(y2) if p | M.

Proof. We consider first the case p | M. By applying the definition of the partial Fourier transform and
the recipe in iii) above we have, for z = (21,2, z3) € V53(Q,) and (y1,y2) € Q3,

Pnp(aiy) =p /% (1/27Xp)1pz,,(Il)lzp(%)lzp(933)1;;221,(1/1)/AZX 7p( Yp(—y2z)dz =
l(yz)~

Similarly, for primes p | N/M, we find for © = (21, x2,23) € V3(Qp) and (y1,y2) € Q2 that

Pnp(T3y) = 1Zp(xl)lzp(ﬁz)lzp(ffs)lpzp(yl)/ (12,(2) = p™ "1z, (2)) Pp(—y22)dz

P

The last integral is easily seen to equal 12; (y2), hence the result follows. O

Qg’h,p(z; y) = {

= 1,7, (x1)1z, (v2)17,(23)1,27, (yl)lz; (ZD)X;

Having described our choice for ¢y, together with its main properties, we now focus on the right
hand side of (32). We want to decompose the Fourier coefficients Wh ¢ as a product of local Whittaker
functions Wy, ¢, so that the integral on the right hand side of (32) decomposes as a product of local
integrals that will be eventually computed place by place. By multiplicity one, any decomposition of
Wh,e as a product of local Whittaker functions will differ from a fixed one by a non-zero scalar factor.
Our choice will follow closely the discussion in | , Section 8], with slight renormalizations so that our
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decomposition will reflect the identity proved in (19). Let £ € QT, and write £ = Dgfg with 9¢ € N and
fe € QT, so that —d¢ is the discriminant of Q(v/—¢)/Q. Write e, := ord,(f¢), and recall the functions

\IJp(fé

X) € C[X, X~ 1] defined in Section 3.2. For each rational place v, we define the local Whittaker

function W, ¢ = Wh, ¢ attached to h, and & as follows (we do not enter here in a description of the local
types of 7, at primes p | N, which has been given in Section 5.2.1 and will be recalled and used again in
Sections 7 and 8, where we will need them to perform the computation of local SLo-periods).

i)
ii)

iii)

iv)

If v = p is a finite prime with p { N, then we define W, ¢ as in | , Section 7.2, Appendix A.3].
In particular, for all primes p { N we have W, (1) = ¥, (& ).

—D
If v = p is a finite prime with p | N/M, then 7, is the special representation 65(wp ) as explained
in Section 5.2.1, where § € Z) is any non-square unit. The p-th component hy, € 7, of h lies in

the one-dimensional subspace of vectors fixed by I'g(p) C éig(Zp), and hence it is a multiple of
the newvector ¢, chosen as in | , Lemma 8.3] (see Lemma 7.1 below). We consider the local
Whittaker function

<pp£ g'_>/ 90;0 st )"/}p(fx)

associated with ¢, with respect to ¢§. We may assume that p { 9¢, as otherwise Wy (1) = 0.

Then, it follows from the computations in [ , Section 8] that
2p7% if x—¢(p) +wp # 0,
We,e(1) = ot ol
0 if X—¢(p) + wp = 0.

From the definition of the function ¥, (&; X) in Section 3.2, we see that

U, (&) = pr B2 Ma(pr )W, (1)

We define W, ¢ := per(3/2=Fa(per)Wy ¢, so that we have W ¢(1) = W, (& o).

If v = p is a finite prime with p | M, then 7, is the supercuspidal odd Weil representation r_,
P

explained in Section 5.2.1. The subspace of vectors in 7, on which To(p?) C SL, (Z,) acts through
X, p(: Xp) is one-dimensional, and hence the p-th component h,, € 7, of h is a multiple of the

newvector ¢, chosen as in | , Proposition 8.5] (see Lemma 8.3 below). The representation
Tp = TiD is distinguished, in the sense that it only has non-trivial wg—Whittaker functionals for

& in the ‘same square class as —D. Equivalently, this holds if and only if —¢ is in the same square
class as D. If this is the case, we choose the local Whittaker function Wy, ¢ associated with @,
to satisfy Wy ¢(1) = 1, (Fe)x (fg) (this normalization differs slightly from the one chosen in

[ , Section 8]). From the deﬁnltlon of the function ¥,(&; X) in Section 3.2, we now have
U, (& 0) = 2p7 2 Mg (por)x (f&) W, .6(1).

We define W), ¢ := 2]9%(1/2_’“)(1(;06?)Wq;p@7 so that ¥, (& ap) = Xp(fg)Wpﬁg(l).

At the archimedean place v = oo, again as in [ , Section 7.2] we define Wy, ¢ by setting

W (u(z)H{a)hg) = 27 TE7 @I +1/2g=2m60 (/0417200
for z € R, a € RY, 0 € R/4A7Z and kg = ( %0, 59 € SO(2). In particular, W ¢(1) = e~ 27,

—sin @ cos 6

With these choices, we see from equation (17) and Lemma 3.1 that

(33)

Whe(1) = e 272" M) x (o)t ”2Hw (&) = 27" Ne(g)fE 1/Z’va,g

and so the next lemma follows immediately by Combmlng (33) with (32).

Lemma 5.14. With the above notations, for B # 0 we have

(34)

where

W _ 2 ®™e@of T 2602 T, Waw i E>0,
9(h,¢h),B - .
0 if € <0,

vol(SL(Z,)) " if v =p,

o(h) = X ah ) I ) v d .
Woat = [ >¢h<ﬂ01>w,<<g>gx{vol o

As before, here € = det(B) and 8 = (b, by/2, —b1) if B = ( b1 b2/2).

b2/2 b3
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By using this lemma, we can now determine the Fourier coefficients Wy(n 4,,), by computing the local
functions Wpg . Because of the invariance properties spelled out in Lemma 5.12, we see that 6(h, ¢n)
is right invariant for K (N M, M). In particular, as commented above the Fourier coefficients Wyn ,.),5
are determined by the values Wyn,,,),8(goc) With goo = n(X)m(A, 1) as in (29). Hence we only need to
determine the values Wg (1) at finite primes p, together with Wg o (n(X)m(A4,1)). We discuss case by
case such computations.

5.3.1. Computation at primes p { N. At primes p { N, we can compute Wpg (1) literally as in | ,
Sections 7.3, 7.4]. We summarize the outcome of such computation. At each prime p t N, we continue to
denote by {ay,a, '} the Satake parameter of f at p, and consider the function ¥, (& X) € C[X + X!
as above. Recall that ¢n ;, is the characteristic function of V5(Z,). Further, from Lemma 5.12 we have

wp((k, 8p(K)), k) Pnp = Pnyp
for all k € SLy(Z,) and k' € GSpy(Z,,), and qASh,p = ¢p1 @ Pp2, where ¢, 1 € S(V3(Qp)) and ¢p 2 € S(Qf,)

are the characteristic functions of V3(Z,) and ZQ, respectively. In this case, one finds out that for £ # 0

me(ord p(bi)) "/Q\IJ ( *2"5;0@) if b1, b, b3 € Zp?

n=0

0 otherwise.

(35) Wa (1) = {

At the prime p = 2, the 2-component ¢y, 2 of the Bruhat—Schwartz function ¢y, is the characteristic
function of Zovs + V5(2Z2), which satisfies wo(k, k')dn,2 = €2(k)dn,2 for all k € Tg(4;Zs), k' € GSpy(Zs)
(cf. Lemma 5.12). In this case one finds, for £ # 0,

9-7/2 Z?i:no(‘)fd’z(bi)) 271/2\1,2(272714»25; 052) if by, by, by € Zo,

0 otherwise.

(36) Wga(l) = {

5.3.2. Computation at primes p | N/M. Let p be a prime dividing N/M. Now (;Abh,p is not SLqy(Z,)-
invariant, but only I'g(p)-invariant. Let R, be a set of representatives for SLy(Z,)/I'o(p). Then, using
that SL(Q,) = U(Q,)T(Q,) SL2(Z,) we have

W (h) = vol(SLa(Z / /SL 0k, 1) dnp(B:0. W, £ (t(a)k)al *dkd” a =

= [ 3 Gt ) (50 )Wy @l "o,

Qp reER,
where ¢, := [SL2(Z,) : To(p)]~* = %‘;EQB). We will compute Wp ,(1). If a € Q) and 7 € Ry, recall
from (31) that
@p(t(a)r, Don,p(5;0,1) = wp((t(a)r; 1))d1,p(8)¢2,5((0, )(a)r),
where ¢1,(z) = 1z,(21)1z,(22)1z,(23) and ¢2,(y) = 1z, (y )1Zx(y2) We take R, to be the set

consisting of the elements
10 . 0 -1
(b 1>,W1tthZp/pr,and<1 0 )

Therefore, the elements ¢(a)r with a € Q,, m € Ry, are precisely the elements of the form

a 0 0 —a
( ailb 0,71 ) , ( a,1 0 > , a e Q;, b S Zp/pr

From the very definition of ¢3 ;, it is immediate to see that ¢q ,((0,1)t(a)r) = O unless r = 1 and a € Z,;.
Therefore, we deduce that

Wop1) = &5 [ Gp(t(a). D (3:0.D0W,(t@)da = 0, (8) | W elt(a)a™a =

P

= ¢p1z,(b3)1z, (b2)1z, (b1) » Wpe(t(a))d*a = ¢plz,(b3)1z,(b2)1z, (b1) ¥, (&; ap),

where we have used that for a € Z; one has (here, recall that ¢ = (o D where 1, is the standard additive
character of Q,, and § € Z is any non-square unit)

Wae(t(a)) = xo(a™)xs(a™ ) aly > Wa2e (1) = Wy,a2e(1) = Up(a®6; ) = Wp(& 0vp).
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We conclude that

[SL2(Zy) : To(p)] ', (& ) if by, by, bg € Zy,
0 otherwise.

(37) Wa (1) = {

5.3.3. Computation at primes p | M. We proceed similarly as in the previous case. But now if p is a

prime dividing M, then éhyp is only [g(p?)-invariant. If we denote by R,2 a set of representatives for
SL2(Zy)/To(p?), then we have

Wap ) = vol(SLa(y)) [ [ (el )i (3:0, Wy (e ol ki a =

e [ a0 rh¢hp(6,01) (@) lals2da,

P re€R 2

where now ¢,z := [SLa(Z,) : To(p?)] ! = %. To compute Wg ,,(1), as before we notice that for
a € Qy and r € Ry2 we have

@p(t(a)r, 1)dnp(5; 0, 1) = wy((t(a)r, 1)) d1,5(8)2,((0, t(a)r),

where now ¢1 () = 1z, (21)1z, (22)1z, (23) and ¢2p(y) = 12z, (y1)17x (y2)Xg , (¥2). We might take as
a set of representatives for SLa(Z,)/T'o(p?) the set R,> consisting of the elements

10 . ) 0 -1
<b 1),vmtthZ][,/pZp,aund<1 0 ),

hence the elements t(a)r with a € Q, r € R, are precisely the elements of the form

a 0 0 —a
< a_lb a_l )7 ( a_l 0 >, aGQ;, bE Zp/pzzp.

As in the previous case, one easily checks that ¢g,((0,1)t(a)r) = 0 unless r = 1 and a € Z, hence it
follows that

Wop1) = &2 [ G(t(a). Dy (30 DW (@) = y201,(9) | x, (@ Wy e(t(a))a™a =

= 6Ly, ()1, ()12, 00) [, (W, e(t(a)d"a =

= 1pz,,(53)1zp(52)1z,,(bl)xom(ff)fl‘l’p(f; ap),
where we have used that for a € Z, one has W, ¢(t(a)) = Xp(afg)*l\I/p(g; ap) for a € Z,;. We thus obtain

[SL2(Zy) : To(p*)] ™ X(p) () Up(&; ap)  if b1, ba € Zyp, b3 € Py,
0 otherwise.

(38) Wa (1) = {

5.3.4. Computation at the archimedean place. At the archimedean place, the determination of Wp o is
carried out in [ , Section 7.5]. Recall that the co-component ¢n oo € S(V5(R)) of ¢, is given by

oo () = (29 + V121 + V15 — x4)k+1e—ﬂ($f+w§+2w§+wi+w§)’
and it satisfies (cf. Lemma 5.12)
Woo (K, k') ph,o0 = €™V TTEFID0 det (k) H g,
for kg € SO(2) and k' = (f‘ﬁ g) € Spy(R) with k = o + /=18 € U(2). Then it is proved in | ,
Lemma 7.6] that for £ > 0, A € GL (R) and X € Sym,(R), one has

ok+1 det(y)(kJrl)/QeZﬂ’\/ler(BZ) if B>0,

(39) Wi oo (n(X)diag(4,'A™")) = {0 if B<0

where Y = A*A, 7 = X +/—1Y.
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5.3.5. Proof of Proposition 5.10. We are finally in position to compute the Fourier coeflicients for 8(h, ¢y,).
Let us fix B € Sym,(Q), and

Goo = n(X)m(A, 1) = n(X)diag(A,* A1) € Spy(R)
with X € Sym,(R) and A € GLJ (R). By using (35)-(39) above, we may assume that B > 0, and that
b1, b2, b3 € Z with b3 € MZ; otherwise we have Wy 4,.)(90c) = 0. In that case, by virtue of (34) we have

Wiatn,on),5(950) = 27" M0 (2) (@)t * W00 (950) [[ WE (1)

p

where Wp oo (goo) = 281 det (V) k+1)/227V=TTe(BZ) a5 in (39). For ease of notation, let us write Wa, :=
27" IWp o (goo) = det(Y)FFT1D/2e2nV=1T(BZ) " and to abbreviate put

pn.r = [SLo(Z) : To(NM)]™t = M~ [SLy(Z) : To(N)] .
Then, using (35)-(38), Wa(n,¢),B(9oc) equals

min(ord, (b;))

2=V NI=5260(2) e (@) x (o)W ><H 2. ( )H‘I’ (& ap).

p|N

Next, observe that d4¢ = ¢, hence c¢(d¢) = c(d4¢), and that fk 12 - 2_k+1/2f’Zgl/2. Therefore, the
previous expression can be rewritten as

27262 v are@ax (el W x Y. P[], ( )H‘I’ (& a).

d|(b1,b2,b3), ptN p|N
(d,N)=1
Now, for every integer d with (d,N) = 1, we have c(04¢) = c(0a¢/a), figl/z = dk_1/2f4§/d2, and

U, (&ap) =7, (3—5; ap) for every prime p | N. Hence,

N M Woo — k—1/2
Wo(h,¢h),3(goo) = W Z d*2 (N)C(a4£/d2 f& f4.5/d/2 H\II (d27 ) -

d|(b1,b2,b3),
(d,N)=1
NV SN (/2 2 el )X (e ST
22(p(2) X e/ )X(Fae/ @ ag a2 d2’ N
d|(b1,b2,b3),
(d,N)=1
BN, M Woo k 2 HN,M (k+1)/2 27/—1 Tr(BZ)
_ PnaWVeo dFe(ag/d?) = —PNM ety e A (B).
@@, 2 ML) = o oy det) KB
d\((glj\l;)mba),

Thus, we conclude that when B > 0 and by, by, b € Z with b3 € MZ,
Wotn,om)@x.B(9o0) = Wah,én),B(9o0) = CWr, B(9o0) = CWary ¥, B(9o0)

where C' = 272x(2) " v, mGo(2) " Since both Wyn g,)0x.5 and Wa,, r, B vanish when either B is not
positive definite or (b1, bz, b3) € Z x Z x MZ, it follows that 6(h, ¢n) ® x = CRyF, as desired.

6. THE MAIN RESULT

In this section we finally state precisely and prove the main result of this paper, relegating the technical
local computations to the subsequent sections. Since our approach relies crucially on a decomposition
formula of Qiu | ] for an automorphic SLa-period, we first explain how such period is related to the
central L-value that we want to compute.

1. Qiu’s decomposition formula for the SLy-period. Let m (resp. 7) be an irreducible cuspidal
automorphic representation of PGLg(A) (resp. GL2(A)). Fix a non-trivial additive character ¢ of A/Q,
and let 7 € Waldy () be an irreducible cuspidal automorphic representation of §I:2(A), belonging to the
Waldspurger packet of m with respect to 7 as explained in Section 5.2. Let also w = wy be the Weil
representation of SLy(A) acting on the space S(A) of Bruhat-Schwartz functions (for the one dimensional
quadratic space endowed with bilinear form (x,y) = 2zy) with respect to ¥. Associated with 7, 7 and
w, there is a (global) SLe-period functional

Q:TRTRTRITRWRw — C
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defined by associating to each choice of decomposable vectors hi,hy € T, g1,82 € 7, ¢1,02 € w, the
product of integrals

Q(hy, hy, g1, 82,01, ¢2) == (/{S hl(g)gl(g)%l(g)dg) : (/[SL ]llg(g)gz(g)@¢2(9)dg>-

Lg]

It is proved in | , Theorem 4.5] that this global period, if it is non-vanishing, decomposes as a
product of local SLao-periods up to certain L-values. Namely, one has

1 L(1/2,7 x adT)

40 hi,h = = Iv h v»h vy v vy NOR] v/
( ) Q( 1, Qaglag2a¢l7¢2> 4L(1,7T,ad)L(].,7', ad) 1:[ ( 1, 2,0, 81,05 82, ¢1, ¢27 )

where for each rational place v, the local period Z,, (h1 4, Do 4, 81,0, 82,0, 1,0, P2,0) is defined by integrating
a product of matrix coefficients, and equals
L(1,m,ad)L(1, 7, ad)
L(1/2, 7, x adr,)

/ <7~r(gv)h1,'u7 h2,v> <T(gv)g1,'u7 g?,v> <wv (g'u)¢1,'u7 ¢2,v>dgv'
SL2(Qv)

When 7 (resp. 7) is the automorphic representation of PGLy(A) (resp. GL2(A)) associated with the
newform f (resp. g) as in the introduction, notice that L(1/2,7 x adr) coincides indeed with the special
value A(f ® Ad(g), k) = A(f’ ® Sym?(g), 2k) that we are concerned with.

Remark 6.1. Qiu’s definition of the local periods T, includes a factor (,(2)~1, and then the decomposition
formula in (40) has accordingly a factor (o(2) on the right hand side. We have chosen to redefine the
local periods by the above expression due to our different choice of local measures dg,.

The proof of the central value formula in Theorem 1.1 will rest crucially on this decomposition result,
thus it is essential to characterize the conditions under which Q does not vanish. In this sense, we shall
note the following (see | , Proposition 4.1], and [ , Theorem 7.1]):

Proposition 6.2. The functional Q is non-vanishing on T@TRTRTRw w if and only if the following
conditions hold:
i) L(1/2,7 x adr) # 0;
i) #=7° with e, =€(1/2, 1, @ 7, ® 7));
iii) €(1/2,m, ® 7, @ 7.Y) = 1 when 7, is not square-integrable.

In condition ii), 7 refers to the automorphic representation in Wald,, (7) labelled by the tuple € =
(€0)y € {£1}*=™I as in Theorem 5.9. In particular, notice that fixed the automorphic representation
7 there is only one automorphic representation for SLy(A) in the (finite) set Wald,, () which makes
the period Q non-vanishing. When 7, is not square-integrable, recall from Theorem 5.7 that the local
Waldspurger packet Wald,, (m,) consists of a single element, labelled 7,. Therefore, condition iii) is
meant to ensure that condition ii) is not failing by obvious reasons. Also, condition i) implies that
£(1/2,m x adr) = 1, and hence [[, €, = €(1/2,m, ® 7, ® 7)) = €(1/2,7), ensuring that 7€ is a global
automorphic representation.

6.2. The central value formula. Now we put ourselves in the setting of interest in this paper. Let
k > 1 be an odd integer, N > 1 be an odd square-free integer, and let f € S5 (T'o(NN)) be a normalized
newform of weight 2k, level N, and trivial nebentype. Let also x be a Dirichlet character modulo N,
and g € SP¢7(To(IV), x) be a normalized newform of weight k + 1, level N, and nebentype character x.
Write M > 1 for the conductor of x, which divides N, and assume Hypotheses (H1) and (H2). That
is to say, X(p)(—1) = —1 for all p | M and ,(f) = —1 for all p [ M. Here, the Dirichlet character
X(p) : (Z/pZ)* — C* is the p-th component of x.

Let m and 7 be the cuspidal automorphic representations of PGLg(A) and GL2(A), respectively, as-
sociated with f and g. Fix a fundamental discriminant D € ©(N, M) as in Theorem 2.1, and assume
further that L(f, D, k) # 0. Let ¢ be the standard additive character of A/Q, and let

= 6PGL2 xSLo (m ® xp, 1/)_D) € Walda(w)

be the automorphic representation of §I/42(A) as explained at the end of Section 5.2, where 1) = ¢! is
the (—1)-th twist (equivalently, the inverse, or the complex conjugate) of ¢». Recall that, as an element of
Walda(ﬂ), # corresponds to the automorphic representation labelled by the tuple € = (e,), € {£1}/>)
with e5c = —1 and

€p = wy, for all primes p | N/M, €, = —w, for all primes p | M.
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Under the hypothesis (H2), we thus have €, = 1 for all primes p | M. Recall also that the adelization
of the half-integral weight cuspidal forms h € S;ﬁ%’ (ANM, x; f ® x) as in Theorem 2.1 belong to this
particular element 7 in the Waldspurger packet Waldg(w).

In this setting and under our assumptions, the criterion for the non-vanishing of the SLy-period
Q:ARTRTRTOW;Quwy — C
is reduced to the following statement:

Proposition 6.3. With the above choices, the functional Q is non-vanishing if and only if
A(f ® Ad(g), k) # 0.

Proof. In the current setting, condition iii) in Proposition 6.2 obviously holds, and we claim that condition
ii) holds if and only if hypothesis (H2) is satisfied. Indeed, we only need to take care of condition ii)
in Proposition 6.2 at places v | Noo. First of all, at the archimedean place v = co we have €, = —1,
and our choice of weights implies that €(1/2, 7o ® Too ® TY) = —1 as well. Secondly, suppose that p is
a prime dividing N/M. Then both 7, and 7, are quadratic twists of the Steinberg representation, and
[ , Proposition 8.6] shows that £(1/2,m, ® 7, ® 7)) = £(1/2,7,) = w,, which agrees with ¢,. And
finally, suppose that p is a prime factor of M. In this case, m, is again a quadratic twist of the Steinberg

representation, but 7, is now a (ramified) principal series representation. Then, | , Proposition 8.4]
implies that e(1/2, 7, ® 7, ® TIY) = 1. Under hypothesis (H2), this indeed agrees with €, as pointed out
above, and therefore the statement follows from Proposition 6.2. |

In light of this proposition, the period functional Q is therefore non-vanishing if we assume that
A(f ® Ad(g), k) # 0. When this holds, the strategy for proving our central value formula is now clear.
Indeed, leth € 7, g € 7, and ¢ € wy; be decomposable vectors, and write O(h,g,¢) ;== 9(h,h,g,g,¢,0),

and Iv(ha ga¢) = Iv(hva hvagvagv7¢va¢v)a so that

_ L(1,my,,ad)L(1,7,,ad) —_— B
T8 = L) ) PO BB 0l

Regularizing these local periods by setting

Z,(h,g,¢) Z,(h,g,¢)

f(h = —

Lo 80 = T Ve £0) Bor ) ol Pl FIIuTE
we will write

(41) Iﬁ(h,g,(i)) _ L(1,m,,ad)L(1,7,,ad) a%(h,g,q&),

L(1/2, 7, x adT,)
where

: _ (790, 1) (7(9.)80, 80) (w5, (90)60, 60)
(42) aj(h,g,9): /SLz(Qv) Ihy |2 IFRE ITHE Ju-

Then, if one can choose h, g and ¢ so that Q(h, g, #) does not vanish, then one might rewrite (40) as
_ 4L(1,7,ad)L(1,7,ad)

By virtue of this identity, our proof of Theorem 1.1 consists essentially in choosing an appropriate test
vector h@gR® P €c TRTX® Wy for which the right hand side of (43) does not vanish. Computing the
regularized local periods ZF (h, g, ¢) and translating the global period Q(h, g, ¢) into classical terms, leads
eventually to the desired explicit central value formula.

Theorem 6.4. Let k, N > 1 be odd integers. Let f € Sy (Lo(N)) and g € Si¢Y (To(N), x) be normalized
newforms, and assume (SF), (H1), and (H2). If h € S;’_q%}(llNM,x; f®x) and F, denote a Shimura
lift of f as above and its Saito—Kurokawa lift, then

<f7 f> |<<ld ® UM)FX|'H><’va X g>|2
(h,h) (9.9)* ’
where v(M) denotes the number of prime divisors of M, and

C(N, M, x) = [x@)*M* N [+ 1) [0+ D).
p|N plM

(44) A(f ® Ad(g), k) = 21D (N, M, x)
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Proof. Suppose first that A(f ® Ad(g),k) # 0. By Proposition 6.3, the functional period Q does not
vanish, and so we might use (43) for a suitable choice of test vector. Keeping the notations as above,
consider the pure tensor

h®g®¢eﬁ®7®w¢,
where h € jk+1/2(4NM, Xo) is the adelization of h, g = Visg? € 7 is the automorphic cusp form obtained
from the adelization g € 7 of g as in Section 5.1, and ¢ € wy s the one-dimensional Bruhat—Schwartz

function determined by requiring that ¢, = 1z, at all finite primes p, and ¢ (z) = e=2m" for all z € R.
With this choice, we have

(h,h) =271C(2) 7 (1, 1), (&.8) = (g.8) =2 (g,9), ($,¢) =llpcll®=27".
And by | , Theorem 5.15], | , §3.2.1], it is known that
L(1,m,ad) = 22 N7V [SLy(Z) : To(N)(f, f), L(1,7,ad) = 2" N"1SLy(Z) : T'o(N))(g, 9)-
Therefore, the first factor on the right hand side of (43) for our choice of test vector reads
4L, mad) (1, ryad)  2Go(2)%[SLa(2) : To(N)R(S, f)
(h,h)(g.g)($.4) N2(h, h) '
Because of our choice of h, g, and ¢, it follows from | , Lemma 4.4] that Ig(h, g, ¢) =1 for all
finite primes ¢ 1 2N (notice that our choice for the local measure dg, on SL2(Q,) is different to Qiu’s
choice, but we have modified accordingly the definition of the local periods Z, after (40), cf. Remark

6.1). In the next sections we will compute the regularized local periods at the remaining places: from
Propositions 7.15, 8.19, 9.2, and 9.4, we have:

P if v=p,p| N/M,
Tih,g,¢) ' =S 22D if g =p p| M,
1 ifv=2o0rv=o00.

Therefore, in (43) we have

1:= HIB(hvg»¢)71 = H Ig(h,g,¢)71 =N H (pLzl) — Q*V(M)N H(p+ 1)

p|2N p|M p|M

Finally, it remains to deal with the global SLo-period Q(h, g, ¢). Recall from Sections 5.1 and 5.3 that
we have associated Bruhat—Schwartz functions ¢z € S(V4(A)) and ¢n = ¢ ® ¢5 € S(V5(A)) to g and h.
By virtue of Proposition 5.1, we have

0(YMG7 ¢g) = Clgv

where C; = 28" 1M ~1[SLy(Z) : To(N)]71¢0(2)7%(g,g), and Y ;G € T = O(r) is an automorphic form
for GSOg, 2 whose restriction to GLg x GLy coincides with g® Vg € T 7. Write II for the automorphic
representation of PGSp,(A) associated with 6(h, ¢p). It follows from the proof of | , Theorem 5.3]
that

Q(h, g,¢) = C *P(0(h, ¢n), Y G),
where on the right hand side P: I ® T ® T — C is an SO(Vy)-period defined by associating to any
choice of decomposable vectors F1,Fs € II, Gy, Gy € T the value

P(F1,Fs, G, Gy) = / Fy(h)G1(h)dh / Fa(h)Ga(h)dh |,
[SO(Va)] [SO(Va)]

and we have abbreviated P(6(h, ¢n), Y G) = P(0(h, ¢n),0(h, ¢n), Y G, Y G) (cf. | , Section
5]). Let II, = II ® x be the automorphic representation of GSp,(A) associated with 6(h, ¢n) ® x. Since
the similitude morphism is trivial on SO(V}), if one defines a period functional
P I, I, @ T®YT — C

by the same recipe as for P, then one has P(F1,Fs,G1,G2) = Py (F1 @ x,F2 @ x,G1,G2) for all
decomposable vectors F1,Fo € I, G1, G2 € T. In particular,

Q(h7 g7 ¢) = szpx (9(h7 (bh) & X7 YMG>7
and thanks to Proposition 5.10 we deduce that

Q(h7 gv ¢) = 0;2‘C2|2,PX (mMan YMG)7
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where Cy = 272x(2) "' M ~[SL2(Z) : To(N)]"¢g(2). Now, when restricted to SO(V4), Ry F coin-
cides with the adelization of R F\ |3 x2, Which in turn equals (id ® VasUnr) Fypx3- Besides, Y G
restricted to GLy x GLs is the adelization of M*+1/2=14 » V,,g. Therefore, we have

PyRuFy, Yy G) = CIM* M ((id ® VigUnr) Fyjaexn (id @ Var)g x g)|?,
where C5 = 271(g(2)7? (cf. [I110, Section 9]). Furthermore, one can easily check that
((id @ VarUnt) Fyjaxn, (id @ Var)g x g) = M?7*((id @ Unr) Fyjaexcas 9 X 9),
where now the right hand side makes sense as a Petersson product with respect to T'o(NM) x To(NM).
Therefore,
Py(RuF,, YuG) = CIMP**[((id ® Unt) Fy x> 9 X 9.
Altogether, we have
A @ Ad(g) k) = ¢-T - LT F 2
where we put C = 23%5((2)?[SLa(Z) : To(N)PM3~FN—2|Co|?C3C 2. Plugging the values of the
constants, and of the product of local periods Z, one concludes that
(f. ) {(d @ Unt) Fyjmxrs 9 % 9)|°
(h, 1) (9,9)? ’

A(f ® Ad(g), k) = 287D C(N, M, y)

where C'(N, M, x) is as in the statement.

Finally, when A(f ® Ad(g), k) = 0 the global functional Q vanishes by Proposition 6.3. In particular,
Q(h,g,¢) = 0, and this implies that ((id ® Unr)Fyjsxn,9 X g) = 0. Thus we see that the formula in the
statement holds trivially in this case. ]

An immediate application of Theorem 6.4 is the following algebraicity result, predicted by Deligne’s
conjecture, in which ¢*(f) denotes the period associated with f by Shimura as in | ]

Corollary 6.5. Let f and g be as in Theorem 6.4. If o € Aut(C), then

(A(f ® Ad(g), k))” _ A7 ®Ad(g7), k)
(9,9)*ct(f) (97,97)%ct(f7)
In particular, if Q(f,g) denotes the number field generated by the Fourier coefficients of f and g, then

alg .__ A(.f ®Ad(g)’ k)
A(f @ Ad(g), k)™ : i) © Q(f.9)-
Proof. First of all, we may assume that the Fourier coefficients of h, and hence of F,, belong to the
number field Q(f, x) generated by the Fourier coefficients of f together with the values of x. This is
either a totally real field or a CM field.
Choose a fundamental discriminant D < 0, D € ©(N, M), with L(f, D, k) # 0. By Theorem 2.1 (see
also Remark 2.2), if ¢, (] D|) denotes the |D|-th Fourier coefficient of h, then

<f7f> _ 2k—1+V(N) H p |D‘k_l/2A(f7D7k)

2
(h 1) ALyt ) e

Combined with the central value formula in Theorem 6.4,

. |D|k_1/2A(f7 D7 k) . |<(1d @ UM>FX|H><Hug X g>‘2
ct(f)len(ID)I? (9.9)* ’
where C(N,M,x) = C(N, M, x) [La 557 Now fix 0 € Aut(C). One has ¢, (|D])7 = cpo(|D]), and

hence by the properties of the period ¢ (f) we have
(|D|k1/2A(f,D,k)>" _|D[FV2A(f7, D, k)
ct(fen(|DI)? ct(f7)ene (1D])?
Besides, FY is the Saito-Kurokawa lift of h7 and
(|<(id® UM)Fx\Hx’H,g X g>|2>g _ [((ide UM)F;ZIHXH’QU x ga>‘2
(9, 9)* (97,9°)*
so the statement follows. |
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7. COMPUTATION OF LOCAL PERIODS AT PRIMES p | N/M

This section is devoted to compute the regularized local periods Iﬁ(h, g,¢) at primes p | N/M. First of
all, we will describe the local components g, and h,, (up to scalar multiple), according to the local types
of the representations 7 and 7 at such primes. Then we will compute the matrix coefficients (7,(9)&p, &p)
and (7 (g)hy, hy), for g € SL2(Q,), which together with the Weil parings (w ( )by, dp) will lead to the
determination of I}i(h7 g,®). Thus let us fix through all this section a prime factor p of N/M, and let ¢,
denote the p-th component of the standard additive character ¢ : A/Q — C*.

For the GL; case, 7, a twist of the Steinberg representation St,, by some unramified quadratic character
§:Qy — C*. That is to say, it is the unique irreducible subrepresentation of the induced representation

(€] - |1/2, &|- |_1/2) The representation (| - |1/2, &l |;1/2) is realized as the space of all locally constant
functions ¢ : GLa(Q,) — C satisfying the transformation property

(45) @((Od) )—fad ’d‘ p(z) for all a,deQ;7b€Qp,x6GL2(QP),

and the subspace corresponding to 7, is that of such functions which, in addition, satisfy a certain
vanishing condition.

To describe g, € 7, notice first of all that g, = g, because p t M. Therefore, g, = g, belongs to the
space 715(0 of Ky-fixed vectors, where we abbreviate

Ko = Ko(p) = {( o’ ) € QLy(Z,): c=0 (modp)}.

The space 7'5(0 is well-known to be one-dimensional. When replacing g, by a scalar multiple, the ratio

(1(9)8p, &p)/||8p||* remains invariant, so we can freely choose a new vector in 750 and suppose that

P
g, coincides with such choice. Following | , Section 2.1], we can choose g, : GL2(Q,) — C in the
induced model to be the local vector characterized by the property that

1
(46) gp‘ GLQ(ZP) = 1K0 - ElKDwK[p

where w = (§}) and 1x denotes the characteristic function of X C GLy(Z,). Thanks to the Iwasawa
decomposition for GL2(Q,), this together with the rule (45) determines uniquely g,. Notice that being
§: Q) — C* unramified means that £(a) = 1 for all a € Z), hence § is completely determined by the
value £(p). Since & is quadratic, we have £(p) = £1, and it is well-known that £(p) = —1 (resp. +1) if
and only if the local root number (or the Atkin-Lehner eigenvalue) of 7, is 1 (resp. —1).

Now we move to the case of S\EIQ. Recall from Section 5.2.1 that 7, is the special representation

~‘S(w ) of SLQ(QP) where ¢ € Z, is any non-square unit, and D € Z, satisfies (%) = wp, = (1/2,mp).
In order to lighten the notation, we will write from now on ¢ := Ef. As explained in Section 5.2.1, the

representation space of 7, is then the space of locally constant functions ¢ : §I:2(Qp) — C such that
(47) G([(5 .)€l 9) = exp(a)u(a)lalp@(g) = exy(a)xs(a)laly *3(g)

for all g € éig((@p) and a € Q) together with a certain vanishing condition that we will not need here.
Notice that xs is the unique non-trivial quadratic character of Q hence its restriction to Z, is trivial,
and x5(p) = —1.

In order to describe h,, recall first that SLy(Z,) embeds into é\flg((@p) by g — [g,sp(g)], and let Ty

denote the image of T in SLy (Z,) under this embedding. Then let 1 be the (genuine) function

ST (Zp)
on SL(Q,) which sends [g,¢€] to 0 if g & SLa(Z,) and to es,(g) otherwise (thus it takes value 1 if [g, €]
lies in the image of SL2(Zy), and —1if g € SLa(Z,) but sp(g) = —e¢). Similarly, let 15 be the function
on éig((@,,) which sends [g, €] to 0if g & I'g and to 1g; A )([g, €]) otherwise. With these notations, the
following is proved in | , Lemma 8.3].

Lemma 7.1. The space of Fo ﬁ:ved vectors in mp, s one-dimensional, and a new vector generating such
space is given by the function @y, : SL, (Qp) — C whose restriction to SLQ( p) equals 1gp_ ) —(p+1)15 .

The condition in the statement determines completely ¢,, thanks to the Iwasawa decomposition of
éig((@p) (which is lifted from that of SL2(Q))). The p-th component h, of the adelization h of the
half-integral weight modular form h is therefore a scalar multiple of @,. Since (7,(g)hy, h,)/||h,|? is
invariant under replacing h,, by a scalar multiple of it, we may assume that h, = @,
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Lemma 7.2. For the above choice of hy,, we have ||h,||? = p~1(p? — 1).

Proof. This is a straightforward computation. Indeed, when restricted to SLy(Z,) and I'y the functions

lg, ) and 1 become the characteristic functions of SLy(Z,) and Iy, respectively. Therefore,

||h,||? = / h,(h)h,(h)dh = / dh +p2/ dh = vol(SLy(Z,) — T)) + p* vol(T'y).
SL2(Zp) SL2(Zp)\Io Ty

Since our measure is normalized so that SLa(Z,) has volume (,(2)~* = (1 —p~')(1 +p~'), and 'y has
index p + 1 in SLy(Z,), it follows easily that vol(Tp) = p~(1 — p~!) and ||hy||*> = p~(p? — 1). O

Finally, for simplicity we will write w, = wy; for the local Weil representation of SL, (Qp) acting on
p

the space of Bruhat—Schwartz functions S(Q,), with respect to the character ﬂp =1, 1. Here, Q, is to
be regarded as the one-dimensional quadratic space endowed with the bilinear form (z,y) = 2zy. In our
choice of test vector, the p-th component of ¢ is ¢, = 17, the characteristic function of Z,. It is easily
checked that ¢, is invariant under the action of SLo(Z,). In particular, it is also invariant under T'y.

Having described the local components g, € 7,, h, € 7, and ¢, € S(Q,), observe that the three of
them are invariant under the action of I'g. It thus follows that for any g € SL2(Q,) the values

by, (g) = IR g (). Doleln) g, ) (l0)0 )

depend only on the double coset I'ggl'g. Thus we only need to compute these values for ¢ varying in a
set of representatives for the double cosets for I'g in SL2(Q,). Define elements «, 8 € SL2(Q,) by

_(p O (O P!
a.-(o p‘l)’ 5.—80[—(_]7 0 ),

where s = ( 1 (1)) Then the Cartan decomposition for SLy(Q,) relative to the maximal compact open
subgroup SLo(Z,) gives

G = | | SLa(Zp)om SLa(Zy) = | | SLa(Zp)or— SLa(Zy),
n>0 n>0

0
2

where we put «,, := &' for any integer n. Combining this with the so-called Bruhat decomposition for
SLy over the residue field FF,,, one obtains also a decomposition for SLy(Q,) in terms of T'¢:

(48) SLa(Qy) = | | ToanTo U | | ToBmTo.

nez meZ

where 8, := sa,, = sa™. By virtue of (48) and our above observation, it will be enough to compute the
values ®g (9), Pn,(g), and @y (g) for g € {an, B : n,m € Z}. We will need the volumes of the double
cosets I'pa, I'g and T'gf,,I'g, hence we collect them in the following lemma for ease of reference.

Lemma 7.3. Keep the same notation as above.
i) vol(Tgapl'g) = vol(Tg) = p~1(1 —p~ 1), and for n # 0, one has

Pt 1—-p7h)  ifn >0,

ol(T'ga,, ') =
vol(T'o ) {p‘Q"_l(l —-p 1) ifn<O.

ii) vol(T'gBeLg) = vol(T'gsTy) = (1 — p~1), and for m # 0, one has

p?"2(1—p~t) ifm >0,

vol(ToB3,,Ig) = {p2m(1 _pfl) if m < 0.

Proof. For each g € {ay,, B : n,m € Z}, one writes the double coset T'ggl'y as a disjoint union of finitely
many cosets ['gg;. Then the volume of I'ggl'g equals the volume of I'g multiplied by the number of coset
representatives g;. We omit the details. (]

7.1. The GL; case. In the case of matrix coefficients for GL3, the values ®g (g) for g € SLy(Q,) can
be easily deduced from the results in | , 83]. We explain briefly how to get such values.

Proposition 7.4. For an integer n, we have ®g, (on) = p2Inl
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Proof. Suppose that n > 0, and notice first of all that, as elements of GL2(Q,), we have

2n
Qp = p_np2n7 where P2n = ( pO ? > .

In particular, it follows that ®g (o) = &(p™ ™)@y, (p2n) = £(p) 2" Pg, (p2n). According to [ , Propo-
sition 3.8], for n > 1 we have ®g (p2n) = £(p)*"p~ 2", hence combining the last two identities we find out
that ®g (a,) = p~2". For n =0, ap = Id and we trivially find ®g (Idz) = 1. Thus the statement holds
as well. When n < 0, we can proceed similarly. Indeed, we now have the identity

n h (0 1
an = p wp_onw, wherew ={ ;. |,

so that ®g_(an) = &(p)*" @y, (wp—2pw). Now —2n > 0, and again by | , Proposition 3.8] &g (wp_2,w) =
£(p)~2"p®". Altogether, we conclude as desired that g, (an) = P2, a

The next lemma deals with the case g = B,, = sau,,, for m € Z.

Proposition 7.5. For an integer m, we have ®g () = —p~[2m=11,

Proof. First suppose that m > 0, and observe that

(0 p™m\_ [0 pm 10\ _ ./ 0 1 -1 0
N N G ) R ¢ DIy}

Since 7, is invariant by the rightmost element, we have ®g (6,,) = &(p) " ®g, (wp2m). Again by | )
Proposition 3.8], ®g (wp2m) = —&(p)*™p'~ 2’” hence we conclude that ®g (8,) = —p~ 2™+, When
m = 0, observe that Sy = s. Since
S~ w < -1 0 )
0 1

and 7, is invariant by the rightmost element, we see that ®¢ (s) = ®¢ (w). By | , Proposition 3.8],
g, (w) = —p~ %, hence for m = 0 we have g, (Bo) = —p~!, which fits into the statement. Finally,
suppose that m < 0 and write

_om 0 PPN _ (0 pT -1 0
bm =p (1 0 )_p (1 0 0 1)

From this, &g (8m) = (p)Qmégp(p omW). Since —2m > 0, now | , Proposition 3.8] implieb that
B, (p—2mw) = —&(p)~2™p*™~ !, and hence for m < 0 we conclude as claimed that ®g (8,,) = —p*™ %
|:|

7.2. The é\]:Q case. For the computation of matrix coefficients in the S\I:g case, it will be useful to
introduce the following subsets of SL2(Z,). For each integer j > 0, we define

L;:={(2Y) €SLa(Zp) : ordy(c) =5}, Ry :={(24) € SLa(Zp) : ord,(d) =5} .

Recall that our measure on SLy(A) is chosen so that vol(SL2(Z,)) = (,(2)~' =1 — p~2. By expressing
the sets £; and R; in terms of the subgroups I'g(p’) C SLa(Z,), for j > 0, one can easily prove:

Lemma 7.6. With the above notation, vol(Ly) = vol(Rg) =1 —p~1, vol(Lo NRy) = (1 —p~1)?2, and
vol(L;) = vol(R;) = p (1 —p~ )2 for all j > 0.

For the computation of the (normalized) matrix coefficients ®y,, (v, ) and @y, (8 ), recall that éig (Qp) =

SL2(Qp) x {£1} as sets. The group operation is given by

[g17 61] [92’ 62} = [91927 e(gla 92)6162}7
where €(g1, g2) = (x(g1)x(g192), (92)x(9192))p, With x : SLa(Q,) — Q, being defined as

if c#0
—(abd — _ c 1 )
9=(t3)—alo) {d it ¢ =0,

Recall that we regard SL2(Z,) as a subgroup of SL, (Qp) via the splitting k — [k, s,(k)], where

5 a b ) (c,d), if ed # 0 and ord,(c) is odd,
b c d IR otherwise.

And recall also that h, € 7, is the function §f42((@p) — C described in Lemma 7.1, which satisfies the
transformation rule spelled out in (47).
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7.2.1. Computation of ®n, (). Fix throughout this paragraph n € Z, and identify c,, with the element

[an, 1] € SL, (Qp). In the computation of ®y, (), we encounter products of the form ha,, with h €
SL2(Z,) and n € Z. This is to be seen as the product

[h’5p<h)][am 1] = [hanae] € é‘fﬂ((@p)a
where using the above recipe we have € = s,(h)e(h, o). The sign s,(h) € {£1} is given as above. And
by using the definition of €(:,-), we have

e(h, an) = (z(h)x(hay), x(an)z(hag))p-

[ a b o ap™ bp"
h(c d>’ ha"(cp” dp_”)’
so that we have

sp(h) — (¢,d)p ifed #.O,ordp(c) is odd, w(h) = c %f c#0, w(ho) = cpi ?f c#0,
1 otherwise, d ifec=0, dp™™ ife=0.

Write

Then one can easily check that
(d,p™)p ifec=0,
(49) €= ¢ (c,dp™), if cd # 0 and ord,(c) odd,
(c,p™),  otherwise.
To compute ®p, (), we will need to evaluate hy, at the element [hay,,€]. And to do so, we need to
write down an Iwasawa decomposition of this element, induced from an Iwasawa decomposition for ha,,

in SLy(Q,). The shape of such an Iwasawa decomposition will vary according to whether h belongs to
the subregions A;(n) or Az(n) of SLa(Z,) that we now discuss.

i) Let A;(n) C SLa(Z,) be the subset of h = (¢ 4) € SLy(Z,) with |cp™|, < |dp~"|,. Equivalently,
|c|, < p?"|d|,. Observe that one always has d # 0 in A;(n). If h € A;(n), we have

_(ap™ bpT™ [ d7p" * 1 0\ .
han - ( Cpn dpfn ) - ( 0 dpfn ) ( Cd71p2n 1 =1 9192,

where notice that the rightmost element g, belongs to I'g. This lifts to an identity

o [ ) (e 2]

where e = €(g1, g2)e. Since g192 = hay,, we have

(de,dp™), ifc#0,

€(91,92) = (2(g1)x(hay,), 2(g2)x(hay,))p = {1 if c=0.

From our recipe for € in (49), noticing that d # 0 in A;(n) and using elementary properties of
the Hilbert symbol, the above recipe for e = e(h) when h € A;(n) gets simplified to

B {(cd, d)p(d,p™)p if ¢# 0 and ord,(c) even,

51
(51) (d,p™)p otherwise.

ii) Let Az(n) C SL2(Z,) be the subset of elements h = (¢ 4) € SLy(Z,) with [cp”| > |dp~"]p, or
equivalently, |c|, > p*"|d|,. In A2(n), observe that one always has ¢ # 0. For h € Ax(n), we have

(apm bp™ [ cTlpT 0 -1 .
ha" - ( cpn dp—n ) - ( 0 Cpn > ( 1 dc—lp—Qn =:0192,

where now observe that g € SLa(Z,) — I'g. This identity lifts now to

o (0 52w )]

again with e = €(g1, g2)e. In this case, since ¢ # 0 for all h € Ay(n), we have

e(g1,92) = (a(g1)x(han), z(g2)x(haw))p = (P, ep™)p = 1,
and therefore, when h € As(n) the value of e = e(h) is given as follows:
(53) o (¢, d)ple,p™)p ?f d # 0 and ord,(c) odd,
(c,p™) if d = 0 or ord,(c) even.
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As we know ||h,|[? from Lemma 7.2, to compute ®p, (a,) we need to compute (7,(cy,)hy, hy,). And
since A;(n) and Ag(n) are disjoint by definition, and their union is the whole SLy(Z,), we see that

Folenbyby) = [ by Bdh+ [ by (e By Tah = i) + Ax(n).
Aiq(n) Az (n)

In the remaining of this section we will compute separately A;(n) and As(n). Observe that h,(h) only

takes values 1 and —p for h € SLy(Z,), hence we have h,(h) = h,(h) in the above integrals.

Computation of A1(n). We proceed now with the computation of A;(n) = fAl(n) h,(hay,)h,(h)dh. Writ-
ing h = (2Y) as usual, by virtue of (50) and (47) we see that
Ay(n) = —p' =22 (=1)"xy (") /A ( )(d,p”)pxw(d)e(h)xg(d)|d|;3/2hp(h)dh,
1(n
where e(h) is given by the recipe in (51). Denote by Z;(n) the last integral. Defining
Af(n) :={h € Ai(n) : ¢ # 0 and ord,(c) even}, Aj(n):={h € A;(n):c=0 or ordy(c) odd},
we have, according to (51),
T = [ (d dpadps@ldy Py + [ @u@ld], by (hdh

Al (n) Ap (n)
Observe that d is always a unit in A7 (n), thus the above becomes

i) = [ (e s @@,y + [ (.

AT (n) A7 (n)

From this expression we will now easily obtain the value of A;(n).

Lemma 7.7. With the above notation,
A(n) = pign/Z(_l)an(pn)(l _pil)(l +p—p") ifn>0,
psn/2(71)nxd)(pn)(1 —pLpt-n ifn <0.

Proof. Suppose that n > 0. First of all, observe that A; (n) = A7 (0), which up to a set of measure zero
is the disjoint union of the sets L£o;11 with j > 0. Therefore we have

B _ vol(Laisy) = — 211 _ ,—1\2 _
[ =3 [ i = p S el = p Sy )

5207 L2+ >0 >0

. — ]__ —1)2 _ 1_ —1 1_
:7(171771)22172; _ (l—p )" —-(Q-p) _ P
1—p2 L+p! p+1

j=0
On the other hand, Aj (n) is the disjoint union of the sets Lo; with j > 0, £y N Rg, and R; with
1<j<2n—1.If h € Ly; with j >0, then h € Ty, ord,(c) is even, and d is a unit. Thus

/ (cd, d)pr(d)Xg(d)|d|;3/2hp(h)dh = —p/ Ldh = —pvol(Ly;) = —p' "2 (1 —p~ 1),
Lo Lo

and one deduces that

—3/2 _ —1\2 —2j _ 71(1—1071)2_ 1-p
> / (DX DNy hy(h)dh = —p(1 =™ o7 = 7t o~ SR

When h € Lo N Ry, both ¢ and d are units, and h,(h) = 1, hence

/ﬁ . (cd, d)px¢(d)x5(d)|d\;3/2hp(h)dh =vol(LoNRy) = (1 —p 12

Finally, if h € R; with j > 0, we have ¢ € Z) and ord,(d) = j. Using elementary properties of the
quadratic symbol, it follows that

[ (e ol @l (b = (-1 )2 [ (ed, ).

J R

If j = 2t is even, then (cd, p’), = 1 and we deduce that

/R (ed, d)pxo (d)xs(D)|dl; ¥/ 2y () dh = p*vol(Rar) = p'(1 — p~ )2,
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In contrast, when j is odd, by applying the automorphism of R, given by conjugation by v, = (¢79),
with u € Z a non-quadratic residue, one sees that the above integral equals the same integral multiplied
by —1. Therefore, it must vanish. As a consequence,

2n—1
> / (cd, d) o (d)xs (D]l /by (h)dh = Z /R (ed, d) o (d)xs (D]l /by (h)dh =
n—1 P pn pn—l 1
:1_ —1\2 tzl_ —1\2 B :1_ —1\2 B :1_ —1 n—l_l.
(I=p )" > p'=(0-p )7171) (I-»p )717]),1 (I=p ) )

Summing all the contributions, we find for n > 0
Lin)=-1-p )+ 1—p P +A-p "' =) =p ' 1-p 0" —p-1),

and hence A;(n) = p’3"/2(—1)”x¢(p")(1 —p H(A +p—p").
Next assume that n < 0. In this case, one easily checks that Af (n) is the disjoint union of the sets
Lot for t > —n. Therefore, it follows that (notice d is a unit)

/A oy (e Doxu DX ()l > By ()b = 5 / (cd. d) X (d)xs ()], *hy (h)dh =

t>—n Lot

1—p )2 —1
= Y vol(La) = 23 = 2n1( p):7p2np .

2
t>—n t>—n 1 p p(p+1)

Besides, one can check that up to a set of measure zero the set A (n) equals the disjoint union of the
sets Loj41 with j > —n. Therefore, the integral over A7 (n) in the expression for Z; (n) equals

~2j=1 _ _p2n 1-p")? 2P — 1
> h)dh=—p Y vol(Laj11) = DD =i g
ji>—n £2J+1 j>—n ji>—n p
Altogether, we find for n < 0 that
n_ P~ 1 onP — 1 onP — 1 -1 2n—1
Ih(n) = —p? - =1 4p = —1
1(n) v Rk ey i e L U D At A )

and therefore Ay (n) = p=*"/2(=1)"xy (p")(p — Lp*" = p3”/2(—1)"xw( ") —p O
Computation of Az(n). We now deal with the computation of Az(n fA (m I p(hoy)hy(h)dh. Writing

h=(2}%) as usual, by virtue of (52) and (47) we see that
Az(n) = P> (=1)"xy (") /A ( )(Capn)pr(C)e(h)Xé(C)|C|§3/2hp(h)dh,

where e(h) is given by the recipe in (53). Write Z3(n) for the integral on the right hand side. Then define
A (n) :== {h € Az(n) : d =0 or ord,(c) even}, A (n):={h € Az(n):d+#0 and ord,(c) odd},
so that Ay = A (n) U.A; (n) and
L) = [ ey + [ (e dynulens(@lel, by ().
AT (n) A (n)
Concerning the second integral, applying conjugation by 7, = (¢ {) shows that such integral equals
itself multiplied by —1, hence it vanishes. Therefore, we have

Ty(n) = / yo (©x5 (@)l /2y (h)dh.
A (n)

Using this expression, we can easily compute Zz(n), and hence As(n).

Lemma 7.8. With the above notation,

A2(n) _ p—3n/2(_1>an(pn)(1 _ p—l)pn an >0,
P2 (=1)"xy () (1 —p (L +p—p'™") ifn<0.
Proof. The proof goes along the same lines of the previous lemma, so we omit the computations. We

just point out that when n > 0 (resp. n < 0) the set AJ (n) coincides, up to a zero measure set, with the
disjoint union of the sets R;, with j > 2n (resp. the sets Loy, with 0 <t < —n). O

Proposition 7.9. With the above notation, @y, (a,) = p=3M1/2(=1)"x ., (p™).
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Proof. Recalling that ®y, () = (7p(cn)hy, hy)/||hy| 2, and that [|hy|[* = p~'(p? — 1) from Lemma 7.2,
the statement follows by combining Lemmas 7.7 and 7.8 since (7p(a,)hp, hy) = A1(n) + Aa(n). O

7.2.2. Computation of @y, (Bm). Now we proceed with the computation of @y (8y,). Thus fix from now

on an integer m, and let 8, = sa,, = (ﬂo)m p;m) € SL2(Qp). As before, we identify ,, with the
element [ct,, 1] € SLo (Qp). We will need to evaluate hy, at products of the form
[h, 5p(hs)][tm, 1] = [hsam, €] € SLa(Q,),

where € = sp,(hs)e(hs, ap,). If we write h = (25, then
[ =b a _ o =bp™ ap™™
hs = ( —d ¢ > ) hﬁm - hSOém - ( _dpm Cpim ) 5

—d ifd#0,
c if d=0,

so that

s,(hs) = (e.=d)p if ed # 0,0rdy(d) is odd,
1 otherwise,

o(hs) = {—dpm if d 0,

cp~™ ifd=0.
Besides, z(a,,) = p~™, hence we can compute the sign

e(hs, am) = (x(hs)z(hfm), x(am)z(hBm))p

as follows. If d # 0, we have e(hs, o) = (—d,p™)p, whereas if d = 0, we have ¢(hs, a,) = (¢, p™)p-
Together with the recipe for s,(hs), we have

(¢, =d)p(=d,p™), if ed # 0, 0rd,(d) is odd,

m i .
(54) ¢ = 5, (hs)e(hs, am) — (—d,p™)p 1 cd # 0,0rd,(d) is even,
(C7pm)p lf d = 07
(=d,p™)p if c=0.

As in the case of the elements o, now to compute ®y,(5,,) we need an Iwasawa decomposition for
[hBm.; €], induced from the Iwasawa decomposition in SLs(Q,). Such a decomposition will depend on two
subregions Bi(m) and Bz(m) of SLa(Z,). The discussion is analogous to the one we did above for the
sets Aj(n) and As(n), thus we omit some details.

i) Let Bi(m) C SLy(Z,) be the set of h = (2Y) € SLy(Z,) with |dp™|, < |cp™™|,, or equivalently
|d|, < p?™|c|,. Notice that one always has ¢ # 0 in By (m). If h € B1(m), one has

o a7 ) (e 2]

where one can check that the sign e is given by the recipe

(56)

. (¢, p™)p if d = 0 or ordy(d) is odd,
(¢, d)p(c,p™), if d # 0 and ord,(d) is even.

ii) Let Ba(m) C SLa(Z,) be the set of elements h = (¢ %) € SLy(Z,) such that |dp™|, > |ep™™|,,
or equivalently, |d|, > p*™|c|,. Now, one always has d # 0 in By(m). If h € Bz(m), one has

[0 ) [ )

where the sign e is now computed according to the recipe

B {(c, —d),(—d,p™), if ord,(d) is odd,

58
(58) (—d,p™)p if ord,(d) is even.

Now, to proceed with the computation of ®y,(53,,), we may focus on the computation of the matrix
coefficients (7, (B )hp, hy), since we know ||hy,||* from Lemma 7.2, and we clearly have

FolBn )by by) = [ 8By dh + [ (8, By R)dh = By(m) + Ba(im).
Bi(m) By (m)
Thus from now on, we will focus on the computation of the integrals B;(m) and Bs(m). Notice again

that in the above expression one has h,(h) = h,(h).
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7.2.3. Computation of B1(m). We proceed now with the computation of By (m fB h,(hBm)h,(h)dh.
Writing h = (2 %) as usual, by virtue of (55) and (47) we see that
Bi(m) = *pl*sm/z(*l)mxw(pm)/g ( )(Cvpm)pxw(C)e(h)Xé( o)lel, */*hy(h)dh,
1(m
where e(h) is given by the recipe in (56). Let us denote by J1(m) the last integral, and define
Bf (m) :={h € By(m) :d =0 or ord,(d) odd}, Bj (m):={h € Bi(m):d# 0 and ord,(d) even}.

Then, according to (56) we have

Ji(m) = /B ¢ oy (X5l ¥y (h)dh + /B NG d)p X (©)x5 ()]l */*hy (h)dh.

1 m 1 m

Observe that By (m) C SLa(Z,) — T, hence h,(h) = 1 and c is a unit for all h € By (m). Therefore, the
first integral in the last expression equals vol(B; (m)), and

Fi(m) = vol(5f (m)) + [ Dl g ()

Lemma 7.10. With the above notation,
By(m) = 47 D o (0™ (A = p (A4 p = g™ ifm> 0,
p3m/2(_1)m+1xdj(pm)(1 _p—l)p—m me S 0.

Proof. First, suppose that m < 0. Then, up to a set of measure zero, B (m) equals the union of the sets
R2j+1 Withj > —m. Thus

vol(Bf (m)) = > vol(Roju1) =p ' (1—p™)* Y p =p™ (1 —p ')
i>—m i>—m

Besides, By (m) equals the union of the sets Ro; with j > —m. When h € Ry; we have h,(h) =1 and ¢
is a unit, and one has

) ) 1—p1
/B 5 )(Cvd)pr(C)XJ(C)|C|;3/2hp(h)dh: 3" vol(Ryy) = 2 pE =zl

_1°
j>—m j>—m 1+p

1
1—p2

1—p!
1+pt°

2m—

=D

Altogether, in this case we see that J;(m) = p*™~1(1 — p~1), and hence

Bi(m) = —p' "2 (1) xy (p™) Ta(m) = p" 2 (= 1)y (0™ (1 = p~p T
Now suppose that m > 0. One easily checks that B, (m) = B{ (0), and that B; (m) is the union of
Bi (0) together with the sets Lo N Ry and the sets £; with 1 < j < 2m — 1. Integration over Lo N Ro
gives vol(Lo NRg) = (1 — p~1)2. For odd integers j with 1 < j < 2m — 1, we see with an already used
argument that

[ cdnuexs(@le,
j
vanishes. And for j = 2t even, 1 <t < m — 1, we have
/ (e d)pxy () xa ()l ¥ *hy(h)dh = —p'¥vol(Lay) = —p' (1 —p~1)2.

2t

Summing up all the contributions, for m > 0 one checks that J;(m) = (1 —p~1)(1+p — p™), and hence
in this case By(m) = p'=3™/2(—1)"*Fly, (™) (1 —p (1 +p— pm). O

Computation of Ba(m). We now deal with the computation of Ba(m fB (m) h, (kB )h,(R)dh. Writing
h=(2}%) as usual, by virtue of (57) and (47) we see that

By(m) =P3m/2(—1)m><w(pm)/6 ( )G(h)(—d,pm)Xw(—d)Xa(d)|d|§3/2hp(h)dh7
2
where e(h) is given by the recipe in (58). Let us denote by Jo(m) the last integral, and define

By (m) := {h € Ba(m) : ordp(d) odd}, By (m):= {h € Ba(m) : ord,(d) even}.
Then, by (58) we have
Foton) = [ (e apxoldps(@ld ¥ man+ [ @)y ().
B (m) n

By (m)
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Lemma 7.11. With the above notation,

Bz(m) _ p1—3m/2<_1)m+1Xw<pm>(1 _ p—l)pm me > O,
p3m/2(_1)m+1Xw(pm)(1 —p_l)(l +p—1 _ p—m) zfm <0.
Proof. The proof goes along the same lines of the previous lemma, and hence we omit the computations.
We just stress that when m > 0 the set By (m) is empty, and By (m) is the disjoint union of the sets

L; with j > 2m. And for m < 0, the set B, (m) equals the disjoint union of the sets Ro;11 with
0 <j < —m — 1, whereas By (m) is the disjoint union of the sets Ro; with 0 < j < —m. O

Proposition 7.12. With the above notation, @y (B,,) = p~IPm/2=H(—1)m+ 1y (p™).

Proof. Recalling that @y (8,,) = (7p(8m)hyp, hy) /[|hy|[?, and that ||hy,[|? = p~!(p? — 1) from Lemma 7.2,
the statement follows by combining Lemmas 7.10 and 7.11 since (7,(8pm)hy, hy,) = Bi1(m) + Ba(m). O

7.3. Welil pairings. Finally, we also need to compute the Weil pairings
(Dd)p (an) = <wﬂp (an)¢pa¢p> and (I)¢'p (ﬁm) = <°‘)Ep (ﬁm)¢p7¢p>

for n,m € Z. Notice that ||¢,||> = f@ 1z,(2)1z,(x)dx = vol(Z,) = 1. The next statement is actually
valid for all primes p, and we will use it later not only for primes p | N/M, but also for primes p | M.

Proposition 7.13. Let p be a prime, and ¢, = 1z, € S(Q,) be the characteristic function of Z,. With
the above notation, if n,m € Z we have

q)¢p (ﬁm)

R Y
p

Proof. This follows immediately from the definitions. ]

7.4. Computation of Z!(h, g,¢). Continue to fix a prime p|N/M. Recall from (41), (42) that
P
~ L(,my,ad)L(1,7,ad) 4o o
L h
(1/2,m, x adr,) ay(h, g,9),

where ag(h7§7¢) = fSLz(Qp) Qp(9)dg and Q,(g) = Pn,(9)Pg, (9)Pg,(g) for g € SL2(Q,). By using the
double coset decomposition of SL2(Qy) as in (48), we have

ab(h,g,¢) = > Q(an)vol(ToanTo) + > Q(Bm)vol(ToBmTo).
neZ meZ

Proposition 7.14. Let p be a prime dividing N/M. Then

o _pb-w -1
oz?,(h,ga¢) 2 +Jp<p(2) )

Proof. For n = 0 we have Q,(ag)vol(Toagly) = vol(I'g) = p~1(1 — p~!). Let n # 0 be an integer. From
Proposition 7.13, we have @y (an) = X3 (p”)p"”‘/z, whereas from Propositions 7.4 and 7.9 we have

q)ép (an) = p72|n\7 (I)hp (Oé”) = p73\n|/2(_1)nxdj(pn)'

. —D .
Since 1 = 1), , one has xy = X, - XD and therefore ., (p") = (%)")@p (p™) = ngﬁp (p™). From this,

T!(h, g, ¢)

using the volumes from Lemma 7.3, we deduce that
Qp(an)vol(Toan o) = (—wy)"p~ 2" =1 (1 = p7h),

and therefore

> Qp(an)vol(Toanly) =p ' (1 —p ) (1 + ) (—wp )" + Z(wppz)"> :

nez n>0 n<o
The two geometric sums on the right hand side are the same, and equal p;f;} . Hence,
2w P —w
59 Qp(an)vol(Toa,Tg) =p~t(1 —p~ ! (1 P ) 1 -phHSs—2L.
(59) >y (an)vol(Toan L) = p~ ' (1 —p~') el Bt U Ut ey

ne”Z
Besides, for m = 0 we have Q,(80)vol(To8I0) = (—p~ ) (—p~)(1 —p~!) = p~2(1 —p~!). And if
m # 0, we have again @y (8) = X% (p™)p~1™!/2, and Propositions 7.5 and 7.12 tell us that
p

Dy (Bm) = —p 12" @y (Bn) = p B2 (=) Ty (0™).
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Using again that x,(p™) = wy' Xy (p™), and the volumes from Lemma 7.3, it follows that when m # 0
P

—2m(__ m(1 — p—1 if
Qp(ﬂm)VOI(FOBmFO) = {z2m—§(_w£z)"5:1 —pp_z) ifz Z 87

Summing up all the terms, one easily checks that

1—w
} : _ -1 P
(60) =~ Qp(ﬂm)VOI(FOﬁmFO) - (1 —D )pg T w, .
Finally, combining (59) and (60) we conclude that
. 1-p' p=1 P 4+pl—wp)—w, p-w
th — 10,2 _ 1— _ ) p P _ p
ap( 7g7¢) p2 +wp (p (p wp) + wp) pg pg +wp p +prp( )

Proposition 7.15. Let p be a prime dividing N/M. Then Ig(h,g,zb) =p L
Proof. Recall from the definition of If)(h, g, ¢) that

_ L(1,mp,ad)L(1, 7y, ad) o (h.8,6).

i (h, g
08 0) = = S adr)

Since p | N/M, both 7, and 7, are (unramified) special representations, say m, = £1St,, 7, = £25t,. And
recall that €(1/2,7,) = —&1(p) and similarly for 7,. Then (cf. | ] and | , Section 3]) we have

1 - p4
(1 +wpp=2)(1 + wpp~1)? (P2 + wp)(p +wp)?’

L(1/2,mp @ 7p ® 7p) =

where w, = €(1/2, 7). On the other hand, it is well-known that L(1/2,m,) = ﬁ, so that (since p t M)
L(1/2,7, @ T)p ®Tp) p?
L(1/2,7, x adT,) = P P P .
U2 = = m) W w)e )
Also, from | , Section 10] (cf. also [ ), we have L(1,m,,ad) = L(1,7,,ad) = (,(2). It thus
follows from the previous proposition that
2 2(,.2 _ _ 2(0n2 1 1
Ig(h7g7¢) _ G(2)%(p +130p)(p+wp) p pr =6 (2) (p+wp)§p wy) _p 2(]7 3 —
p G (2)(p? + wp) p S -Dp* p

8. COMPUTATION OF LOCAL INTEGRALS AT PRIMES p | M

In this section we focus on the regularized local periods Ig(h, g, ) at primes p | M. First we will recall
the local types of the representations 7 and 7 at such primes, and describe explicitly the local components
g, and h,. After this, we will be concerned with the matrix coefficients (7,(9)gp, &p) and (7,(g9)hp, hy),
together Wlth the Weil pairings < ( )bp, dp), for g € SLa(Q,), towards obtaining an explicit expression

for If,(h, g,¢). As in the previous sectlon for g € SL2(Q)) we write

B T [ ™

When p divides M, g, and h,, are not I'p-invariant, although our choice guarantees that for any element
g € SL2(Qp), the product Q,(g) := Pn,(9)Pg,(9)Pg,(9) depends only on the double coset T'oogl'go.
Because of this, we will need to refine our decomposition of SL2(Q,) in (48) into a decomposition in
terms of double cosets for I'gg. Then, we will need to compute the products €2,(g) for g varying in a set
of representatives for the double cosets for I'gg in SL2(Q),). As we will see, many of the involved matrix
coefficients vanish, so we will not need to compute all of them in order to obtain the quantities £2,(g).

Fix a prime p | M through all this section. As before, write 1, for the p-th component of the standard
additive character ¢ : A/Q — C*.
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8.1. Local types and explicit description of test vectors. As in last section, we start considering
the GLg case. Now 7, is a (ramified) principal series. More precisely, 7, = m(&1,£2) is the principal series
representation induced by two characters &1,& : Q) — C*. In the induced model, this space is realized
as the space of those functions ¢ : GL2(Qp) — C such that
1/2

o(x) forall a,d € Q) ,b€ Qp,x € GLa(Qy).

p

(61) e (5 2) = @& |3

Because of our assumption that IV is square-free, we may assume that ¢; is unramified (hence &;(a) =1
for all @ € Z,) and & is ramified of (p-power) conductor 1 (meaning that &3(1 + pZ,) = 1). Define

K&:{(i Z)GGLQ(ZP):CEO,dzl (modp)},

and notice that GLy(Z,) = B(Z,)Kg U B(Z,)wK}, where B(Z,) = B(Q,) N GLa(Z,) is the subgroup

of matrices of GL2(Z,) which belong to the Borel subgroup of upper triangular matrices in GL2(Q,),
1

and w = (9}). In the induced model for 7, = 7(&,&2), the subspace T;{O C 7, of vectors fixed by K}

turns out to be one-dimensional, and a non-trivial K}-invariant vector is described in | , Proposition

2.1.2]. Namely, the vector ¢, : GL2(Q,) — C characterized by requiring that

(h) = &(p) " i(a)ea(d)|ad™ Y2 ifhe (§5) K, a.deQf,
U= ifh & B(Q)KL.

Since we are only interested in the normalized value ®z, (g), we may assume that g, coincides with the
local vector ¢, given by the above recipe. In contrast to the case of the previous section, however, when
p divides M the new vector g, does not ensure the non-vanishing of the local periods Z,. To remedy
this, we replace g, by &, = V,8, € 7, where V,, is the p-th level raising operator acting on 7, by

(62)

© = Tp(wp)p, with w, = pgl 9 ) € GL2(Qp). The vector g, is no longer Kl-invariant, but defining

Ky = {( i Z > € GLy(Zp):c=0,d=1 (modpQ)},
we have the following:
Lemma 8.1. With the above notation, g, is Kg,-invariant. Moreover, we have ||g,||* = (p+1)7'.

Proof. 1t is straightforward to check the first assertion, hence we focus in the computation of ||g,||*. By
definition, we have ||g,||? = (g, &p). Using the decomposition GL2(Z,) = Ko LI KowKj, we have

(&p,8p) = / 8y (hwp)gp(hwp)dh = gp(hwy)gp(hwp)dh +/ 8y (hwp)gp(hwy)dh.
CLz(Zp) Ko KowKo

We deal separately each of the two integrals. If h = (1Y) € Ky is an arbitrary element in Ky, using

Iwasawa decomposition in Ky, we can write

b — zp~ by _ p~it~tdet(h) y 1 0
P zp7t ot 0 t t~lp~lz 1 )

where the rightmost element, call it kg, belongs to GL2(Z,,). Moreover, if h € Koo then hg clearly belongs
to K{; and one can check that if h & Koo then hy &€ B(Q,)K{, where recall that B(Q,) stands for the
upper triangular Borel subgroup of GL2(Q,). Thus, it follows from (62) (recall that &; is unramified, &;

is ramified of conductor 1, and & & = Xp) that

1/2 -2 .
gp(hwp):{p &i(p)77x, (k) if b € Koo,

0 if h & Kop.

Now suppose that h = (7 Y) € KowkK) is an arbitrary element in KowKy. Then, again using Iwasawa
decomposition and noticing that z € Z,, we have

e — zp~t y\ [ —z"ldet(h) ap?! 0 1
=\ pt ot )T 0 2pt 1 z%p )

The rightmost element belongs to GL2(Z,), but not to Kj. And further, it can be easily shown that

it does not belong to B(Q,)K} either, hence by applying (62) we deduce that g,(hw,) = 0 for all

h € KowKy. Therefore, we conclude that (g,,&,) = pvol(Ky) = (p+ 1), O
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Remark 8.2. The same arguments of the proof of the previous lemma show that, for an arbitrary
g € SL2(Qy), we have

(8 = |

gp(hgw,)g(hwp)dh =p1/2§1(p)2/ gp(hgw,)x,, ' (h)dh.
Koo

Koo o

Now we turn our attention to the representation 7, of STJQ(QI)). In order to lighten the notation, we will
write as in the previous section 1 = Jf , where Ep =9, 1. Then, as explained in Section 5.2.1, 7p is the
odd Weil representation Ty (which is supercuspidal). The space of Ty 18 the subspace of odd functions in
S(Qp) (where Q,, is regarded as a quadratic space endowed with the bilinear form (z,y) = 2zy). Recall
that the action of §f42(@p) is determined by the following properties: if ¢ € S(Q,) is odd, a € Q,,
r € Qy, and we write s = (,01 é), then

Ty [( ! a1 >1} p(x) = laly/*xp(a)p(ax),
(1) ] et = st
Ty 15,1 o(x) =’y(w)/ oY)y (2xy)dy.

P

For our choice of ¢, we have (1)) = 1, hence the third identity above simplifies to

s o(e) = [ pl(ads

P

Let foo denote the image of I'gg in éig (Zy). The following is proved in | , Lemma 8.5]:

Lemma 8.3. The space of vectors oy, inr,, satisfying rop = Xp(kj)gop forallk € Too is one-dimensional,

and it is generated by the function 125 'X;l

The p-th component hy, of the vector h is thus a scalar multiple of the function given in the lemma.
Since the matrix coefficients ®p (g) are normalized so that they are invariant under replacing h, by a
scalar multiple, we will assume in the following that h, = 125 . X;l. Notice that

(63) Iyl = [ by(oB(oide = [ do=volz;) =157

Qp Zy

Having described our choices for the p-th components g, and h,,, we should note that by construction
the function of SLa(Q,) defined by g — @y (9)®n,(g) is T'go-biinvariant (and it is not I'g-biinvariant).
Indeed, this follows immediately from the invariance properties of g, and h,,, together with the properties
of the matrix coefficients (7;,(9)&p, &p) and (r,, (9)hy, hy).

Finally, as in the previous section we write w, = wy for the Weil representation of §f42 (Qp) acting on

P —
the space of Bruhat—Schwartz functions S(Q,), with respect to the character ¢, = ¢ L. As before, by
our choice of test vector we have ¢, = 1z, and recall that Proposition 7.13 continues to hold when p|M.

8.2. Computation of ag(h7g7¢) for p | M. Recall from last section that
(64) SLa(Qp) = | | ToanTo U | | ToBaTo.
neZ ne”Z

By the comment we have just made above, now one cannot compute ag(h, g,¢) by only computing
the matrix coefficients for g,, h,, and ¢, at the elements o, and $,,. However, starting from this
decomposition we can refine it to obtain a decomposition in terms of double cosets for I'gg. First of all,
one might observe that I'gg is not normal in I'y. However, one has

1 0
FQ = |_| FOOV’y = |_| I/ayro(), Vy = < p 1 > € SLQ(Z;J,

YEZLp/PLyp YEZLp[PLyp
so that for each n and m we can write
(65) ToanTo= |J ToornanvsToo, ToBmlo= ()  ToorBmvsToo-

Y,0€Ly /PLyp Y:0€Zy /PLy
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However, these unions are not disjoint. Nevertheless, it is not so difficult (although labourious) to reduce
these expressions to disjoint unions, so that eventually one obtains a set of representatives for the double
cosets for T'gp in SL2(Q,). We describe this set in the following lemma, whose proof is skipped.

Lemma 8.4. Fiz a non-quadratic residue u € Z, . Then
(66) SLa(Qp) = || ToorToo,
reR

where the set R is the union of the following sets:

) {1 Vlvyu}
1) {an, anvi,anvy :n > 0};
M) {an, v10n, Vuy i 0 < 0};
IV) {8 :m e Z};
V) {Bmv1, B : m > 0} U {1 Bims, VuBmVs : m > 0,0 € Z/pZ}.

Now, we can finally proceed with the main goal of this section, namely the computation of ag(h, g,0),
and therefore of the regularized local period Ig(h,g,q&). To ease the notation, for g € SLy(Q),) we will
write ,(g) := ®n,(9)Pg,(9)Pg, (g), so that

ol (h, &, ¢) = / 0, (9)dg.
SLQ(Q;D)

By our choice of h,, g,, and ¢,, we see that ,(g) depends only on the double coset I'gogI'go. By using
the decomposition explained in Lemma 8.4, we see that

(67) i(h,g ¢) = Z Q, (r)vol(ToorToo).
rER

Therefore, we will proceed by computing Q,(r)vol(T'gerTgo) for each r € R. We will deal with the cases

I) - V) listed in Lemma 8.4 one by one. First we will concentrate in computing €,(r).

8.2.1. Case I). We start computing Q,(v.,) for v € Z,. First of all we have the following vanishing
statement for ®g .

Lemma 8.5. Ify € Z, then &g (v,) = 0.

Proof. Let v € Z;. By Remark 8.2, we have

(Tp(vy)8p, 8p) = /K gp(hvy @) gy (hwy)dh.
00

But for h € Kqg, an Iwasawa decomposition for hv,w, reads

—1;-1
_( pitThdet(h) y 1 0
Ty wp = ( 0 t tlpTla 4y 1)

Under the assumption that v € Z;;, and taking into account that h € Koo, we see from this identity that
hvytw, does not belong to B(Q,)Kg, thus it follows from (62) that g, (hv,w,) = 0 for all h € Koo, and
hence the statement follows. O

With this we can easily deduce Q,(r) for elements r as in Case I).

Proposition 8.6. We have Q,(1) = 1. And for v € Z,5, Q,(v,) = 0.

Proof. Recall that Q,(g) := ®n,(9)®g,(9)Pg,(g). By our normalization of ®y,,, @y , and &y , it is clear
that ,(1) = 1. And for g = v, with v € Z,1, the previous lemma implies that Q,(v,) = 0. O

8.2.2. Case II). Now we focus on elements of the form a,v., with n > 0 and ¢ € Z,. When ¢ ¢ Z;,
ve € Koo and therefore Q,(a,v.) = Qp (o).

Lemma 8.7. The following assertions hold:
i) ®n,(an) =0 for all n > 0.
ii) Ifn>0and ce Z;, then ®p, (anve) = 0.
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Proof. From one of the rules for the odd Weil representation Ty We have

(ry (an)hy) (@) = ol 2 xw (0" Py (") = [l x0 (P") L, -0 (2)x, (0" ).
Therefore, if n # 0 we find that

(ry (om)hy, hy) = plZ”m(p")/@ Loz (@), (") 15 ()

P

and i) follows. Notice that the argument does not require n > 0, but only n # 0. To show ii), notice that

Ve = (1)5< oo )s

By applying repeatedly the rules for the Weil representation to the elements on the right hand side of
this identity, one arrives to

T;(uc)hp(x) = , P(—2xy — cpy2)®(2y,&:1)dy =1z, (z) A P(—2xy — cpy2)®(2y,X;1)dy,

and applying r (o) to this expression we get

ry (anve)hy (2) = xu (0")p~" 1z, (2p") /@ Y(=22p"y — epy®)B(2y, X )dy.

Completing the squares and with some elementary computation, we find more explicitly

2nx2 —c o 2
o nyla) = P P (12,3, 201y ez, ) () [ < (v+25) >x (v)dy.

Ccp P C —Pp

Using that w(ptpw
it follows that

(g b by) =50 2 0)e/20, 1, 2) [0 (Z25) (0 [ x (o

P P
b p

c p

)= Land [, ¥(5(y + p"m)Z)Xp(y)dy = Jux ¥(Z25)x, (y)dy for n > 0 and = € Z;,

But the last integral vanishes by orthogonality of Dirichlet characters, hence (7"1; (anve)hy, hy,) = 0, which
gives @ (anv.) = 0 as we wanted to prove. O

As a consequence, we immediately have the next vanishing statement.
Proposition 8.8. For alln >0 and ¢ € Zp, Qp(anv.) = 0.
8.2.3. Case III). Now we consider the case of elements v.a, with n < 0 and c € Z,,.

Lemma 8.9. The following assertions hold:
i) @n,(an) =0 for alln <O.
ii) If n <0 and c € Z;, then @y, (veay,) = 0.

Proof. The first assertion follows as in Lemma 8.7, where we only used n # 0. To prove ii), observe that

ry (an)hy(2) = xu (")~ P 1y (0" @)X (0" 2) = X ("0 ™21 ()X (2).

1

0 ’f”) s as in the previous case, one finds

Secondly, using again the decomposition v, = (—1)s (

T;(Vcan)h ( ) Xw n n/2/ 7/’ —2xp"z — 2n+1 2)6(227X;1)d2'

From this, we have

(ry (Vean)hy, hyp) = Xy (p")p~"/? /ZX ( P(—2zp™z — cp2"+122)6(2z,xg1)dz> X, (@)dz.

Qp
We have 6(22’,&;1) = p_1/26(1/2,Xp)xp(Z)lp,lzg (z)xp(z), thus the inner integral in the above expres-
sion for (r,, (vean)hy, hy) equals

p'%e(1/2,x )x / P(=2ap" 'z — p* 2Py (2)d.

=P



By completing squares and plugging this in the expression for (7’1; (veam)hyp, hy,), one eventually obtains

(ry (veom)hy, hyp) = X (p")p4 " 2e(1/2, x ) / Y(=ep®™ 2%y (2)B(=22p" 1 x )dz.

But notice that —2zp™~! ¢ p*12;< for 2 € Z,; because n < 0. Since X, has conductor 1, it follows that
6(*2217”717&)) =0, and therefore (r,, (vcan)hy, hy) = 0 as well, which implies @n, (vean) = 0. O

Proposition 8.10. For alln <0 and ¢ € Zj, Q,(veay,) = 0.
8.2.4. Case IV). Now we deal with Case IV) in Lemma 8.4, consisting only of elements 3, with m € Z.

Lemma 8.11. The following assertions hold:

i) ®n,(Bm) =0 for all m # 1.
ii) @y (61) =0.

Proof. 1) Since B, = sam, we compute r, (8m)hy(2) by applying first 7, () and then r, (s). We have

ry () (2) = X (™)™ 2Ly (0™ )X (™) = X (0" )PP g ()X (),

Ap
and therefore applying r (s) gives
7y (Bn)hp(2) = xu (™)~ / Y (2ey)x,  (y)dy = xu (™)™ 26 (2ep™", X ).
pmLy

From this, we have

(g B ) = o™ [ (a7, 3 )

p(:ﬂ)d:c.

But (’5(23:]3*’”,&;1) = p*1/25(1/2,Xp)1pm,1Z§ (m)&p@x). If m # 1, we have p™~'ZX N ZX = (), which
implies that <T; (Bm)hyp, hy) = 0 and therefore @y, (8,,) = 0.
i) If h=(3Y) € Koo is an arbitrary element in Ko, an Iwasawa decomposition for hB;w, reads

~1 -1 -1
-y xp [ t~tdet(h)p —y 0 1
hbrey = ( —t zp7? ) o ( 0 —t 1 —tiptz )7

and it is easy to check from this expression that hf1w, ¢ B(Q,)K{. Thus we have g,(hB1w,) = 0 for
all h € Ko by (62), and Remark 8.2 implies that (7,(51)&p,&p) = 0. Therefore ®5 (81) = 0 as well. [

Directly from the lemma, and the definition of 2,, we deduce:
Proposition 8.12. Q,(8,,) =0 for all m € Z.

8.2.5. Case V). Finally, we consider the computation of matrix coefficients for elements in Case V) from
Lemma 8.4. We start considering the elements of the form f3,,,v5 with m > 0 and § € Z;. First of all, we
note the following vanishing statement for m > 1:

Lemma 8.13. If 0 € Z, then @y, (Bnvs) =0 for allm > 1.

Proof. As in previous lemmas, we have
5 (@mvs) (@) = Xy (P™)p~ "1y mg, () /@ W (=2wp™y — opy*)B(2y, X 1) dy.

By applying r (s), we deduce that

ry (Bmvs)hy(z) = xw(pm)p_’”/g/ | V2e2) ( Y(=22p™y — 5py2)®(2y,x;1)dy> dz =
o

Q»

P

=" [ oomte ( R —y)z)dz> dy.

Using that &(2y, x Y =p 2% e(1/2,x,)x, ()1 125 (¥)x,, (), one finds

13 B ye) = xo o120, 1, ) [0 (2 ( [ () dz) X (W)dy.

P
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m

The inner integral vanishes unless x € pmflzg and zp'~™ =y (mod p), so one easily gets

_ e (rm— —z?
15 (B (2) = o (™) 22(1/2, X ) (2)L0s ()0 (pm) X, (@),
From this, it follows easily that (r, (8mvs)hy, hy) = 0 for all m > 1, since Z) Np™ 2% =9. O

It follows from this lemma that Q,(3,,v5) = 0 for all 6 € Z)* and m > 1. So we are left with the case
m = 1. However, looking at ®z (81v5) we find:

Lemma 8.14. For all 6 € 7}, one has &g, (f1vs) = 0.

D’

Proof. Let h = (7 Y) € Koo be an arbitrary element. An Iwasawa decomposition for hf;vstw, reads

t~Ldet(h)p~t =« ) 1
hbvs, = ( ()( ) —t ) ( 1-6t"1p~lz —t71ip~ iz >

Using this decomposition we see that h31vsw, ¢ B(Q,)Kj. Thus it follows from (62) that g, (hS1vsw,) =
0 for all A € Koo, and hence by Remark 8.2 (7,(51v5)8p, &p) = 0, which implies that &3 (f1vs) =0. O

Therefore, together with the above discussion we see that €, (8,v5) = 0 for all m > 0 and all 6 € Z);.
Let us next consider the elements of the form v, 3,,vs when both v,0 € Z). In the next lemma we will
deal with matrix coefficients of the form (7,(vyBmVs)&p, &p), With m > 0. To compute these, we need
to find an Iwasawa decomposition for elements hv., 3, vsw, with h € Ky (cf. Remark 8.2). Using that
hvy BmVsto, = hvs B, (4 9), one can first determine an Iwasawa decomposition for

—yp™ Tt apT™ +yp
hV’Yﬂmw;D - < —tpm_l Zzp~™ +’Ytp1_m )
and then multiply it on the right by (}9). This is how we proceed in the proof of the next lemma.

Lemma 8.15. Let m > 0 be an integer, and let 7,6 € Z,'. Then ®g, (vBmvs) = 0 unless m =1 and
v6 =1 (mod p), and in that case one has ®g, (v, [1vs) = Kp('y).

Proof. Let us first consider the case m = 1. In this case, if h € Ky then one has

= (T Y (8,

where n(h) =t~ 'p~tz+~ € Z,. Since h € Kqg, observe that n(h) = v (mod p), and therefore 1—dn(h) =
1—v4 (mod p). By looking at the right hand side, it is easy to check that hv., 315w, belongs to B(Q,) K}
if and only if v0 =1 (mod p). We deduce from (62) that

a0t Y = p 26 m) ) (V)x (h) ifrd=1 (mod p),
8p(hvy Prvstoy) = P P .
0 otherwise.
In particular, it immediately follows from this that (7,(v,81v5)8p,&p) = 0 whenever 4§ # 1 (mod p),

and so ®z (v, f1vs) = 0 as well in this case. When 7§ =1 (mod p), the above tells us that

X, (7)

<TP(V751V5)gp7gp> :P1/2§1(P)2/ gp(hV’yBlVﬁwp)Xgl(h)dh = PXP(’Y)VOMKOO) ==—.
Koo p+1

Dividing by [|g,||* = (p+1)~" (cf. Lemma 8.1), we get Oy (vy51v5) = X, () when 6 =1 (mod p).

Now suppose that m > 1. Then an Iwasawa decomposition for hv.,3,,vsw, reads

m—21—1 -1 -m 1-m
_ ( pmtT det(h)n(h)™0 apT™ 4 yyp 1 0
hV’y/Bmyéwp = ( 0 pl_mtn(h) 5 — n<h)—1p2m—2 1 y

where n(h) =t~ 'p~'z + ~ as before. Since h € Koo, we have n(h) € Z, and since we are now assuming
m > 1, we see that 6 — n(h)"1p*™2 ¢ Z, because § € Z, . Therefore, the rightmost element in the
above identity does not belong to K¢, and it is not difficult to see that it does not belong to B(Q,)Kg
either. Hence, by applying (61) we deduce that g,(hv, By, vsw,) = 0 for all h € Kyo. It follows that
(Tp(Vy BmVs)8p, &p) = 0, and hence 5 (v Bmvs) = 0 as well. O

By virtue of the last lemma, for any integer m > 0 we have Q,(v,8mnvs) = 0 unless m =1 and v6 =1
(mod p). Therefore, we only need to compute ®p,(v,8,vs) for m = 1 and v,d € Z,; with v0 = 1
(mod p). Further, we see from Case V) in Lemma 8.4 that the latter condition is only satisfied for the
representatives v4 8111 and v,B1v,-1. That is to say, there will be only two elements r arising in Case
V) for which Q,(r) might be non-zero. The next lemma addresses the computation of &y (v, 31v.,-1) for
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v € Zy; for v = 1,u it thus provides the values that we are looking for In the proof we will need to deal
with certam quadratic Gauss sums. For each a € Q;, we write G(a fz . Here, recall that

Y = wp = wp_D, and that D € Z) is a square thanks to hypothems (H2)7 together with the fact that
(%) = —w,. In particular, if a € Z), then we have G(a/p) = p~'G(a,p), where G(a,p) denotes the usual
quadratic Gauss sum defined by

p) =D ¢, with ¢ = 2™V,

Recall that one has G(a,p) = (%) G(1,p), and G(1,p)? = (%) .

Lemma 8.16. Let vy € Z;, and put v = v, and V' =wv,-1. Then

X (P)x, (V)p~"/?

p—1

Dy, (VB1V') = (p — G(=7,p))-

Proof. From previous lemmas, we know that

ry (v )y (z) = xy ()p ™ /* 11, (r)[@ D(=2ayp — 7~y p)S(2y, X ) dy.

1 - 1 -
vBiv' = (—1)s ( 0 ti ) ssaV = s ( 0 iyp > o

we compute (r;(yﬂly’)hp)(x) by applying r,, (5 (é 7;“’)) to the above expression. This gives

Observing that

7y (V1Y )hy(x) = Xw(p)p1/2/ (0 (W) < o P(—y(2z +7_1yp))(’5(2y,><;1)dy> dz.

ZP
Using that &(2y, X, D) = p1/2 (1/27&7)&7(2)1]9,%; (y)xp(y), the inner integral becomes
—y(22+77 "y
p1/2€(1/2,xp)xp(2) v (P
s p
Setting C' = pxy (p)e(l/Q,XP)Xp@), one can then rewrite r  (vS10/)h,(z) as

—-1,,2 o _ 2
r;(uﬁly’)hp(x) =C . ¥ <7py> Xp(y) </Zp " <2mz2;yvz) dz> dy.

Completing squares, the inner integral is essentially a (translated) quadratic Gauss sum, and it is not
difficult to see that the above expression can be simplified to

r, (vB1V )hy(x) = CG (_;) 1z, (z)y (i) & ( ;f’x >

Replacing & (‘7—?, Xp) and C by their value, we eventually find that

B ) = o, 000 () 1 @0 (2] 3,0

and using this expression, we deduce that

(g 0yt = s 2,06 (1) K (jp) = x,009 () (5(5) - 1).

Dividing by ||h,||? =1—-p~! =p~!(p — 1), we obtain
3/2

P, (vB1) = W 9 (_;) (g (Wpl) B zlo) |

Finally, using that G (—7> = 1% (77) G(1,p), and G (7771) = % (%)

Q
—~
—_
=
~—~
£
@
Q
e}
=]
o,
i
o
@
+
=
&
t+
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Combining the previous four lemmas, we summarize our discussion for Case V):

Proposition 8.17. Let m > 0 be an integer, and let v, € Z,5. Then Qp(Bmvs) =0, and

p=G(v.p) ifm=1v=1 d
- =L70= mod p),
Qp (vyBmvs) :{ p(p=1) ( )

0 otherwise.

Proof. The first assertion follows immediately from Lemmas 8.13 and 8.14. As for the second one,
combining Lemmas 8.15 and 8.16 yields that €,(vy8mvs) = 0 unless m = 1 and v§ = 1 (mod p). And
in that case, the same lemmas together with Proposition 7.13 tell us that

(p)x, (P~
prfpjlp (P=G(=7.p), Py, (1 B1v5) = x5, (PIP™12, Dy, (3 B105) = X, (7).

Notice that x.(p) = x5 (P)Xp(p) = X5_(p) because D € Zj is a square. Therefore,

p=G(=v.p) _pr=-GO,p)
pp—1) plp—1)

q)hp(l/’Y 1vs) =

Qp (v B1s) = P, (V4 B1v5) Py, (V4 B1V5) Py, (v B115) =
O

8.3. Computation of If)(h, g,¢). Finally, we conclude with the computation of the regularized local
periods l'g(h7 g, ¢) at primes p | M. Recall from (67) that

h g ¢ Z Q VOl FO()’I“FO())

reER
where R is the set described in Lemma 8.4. However, by Propositions 8.6, 8.8, 8.10, 8.12, 8.17,
(68) af;(ha g,0) = Q,(1)vol(Too) + 2y (r1)vol(Too71T00) + Qp (1) vol(Too7uT00),

where u € Z; is a fixed non-quadratic residue, and 7., = v, f1v,-1 for v = 1,u. It is not hard to see that
vol(T'go) = p~2(p — 1), and that
p°(p—1)?
5 .
Proposition 8.18. Let p be a prime dividing M. Then ag(h,g,qﬁ) =2p73(p—1).

VOl(FoQTlroo) = VOl(FooTuroo) =

Proof. We just need to compute the three terms on the right hand side of (68). Clearly, we have
Q,(1)vol(Tgg) = vol(T'gp) = p~2(p — 1). As for the other two terms, it follows from Proposition 8.17 that

— G 1, - G U,
Qp(Tl)Vol(Foorlroo) = pp(p_(l)p)VOI(FOOrlro()), QP(TU)VOI(FOOruFOO) = pp(p_(l)p)vol(roo’f‘uroo).
Therefore, the sum of these two equals
-3
pp—1 -
2= 20— GlLp) - Glu) =50 - 1),
since G(u,p) = —G(1,p). It follows that of(h,g,¢) = 2p~*(p — 1). O
Proposition 8.19. Let p be a prime dividing M. Then
2
Iﬁ ha ga¢ = N
o ) p(p+1)

Proof. From the definition of the regularized local period, we have

L(1,mp,ad)L(1, 7, ad) o (h. 8
T8 9) = o (12, x adry) P E )

As in the case where p divides N/M, m, is an unramified Steinberg representation, so that we have again

2
P 1 P p
L(l,m,,ad) = ——, L(1/2,7,) = = = ,
(1,7, 8d) p*—1 (1/2,) (I+wpp™') ptw, p-1
where now we are using that w, = —1 by hypothesis (H2). In contrast, as already explained, 7, = 7(&1, &2)
is a (ramified) principal series representation induced by a pair of characters &;,&; : Q) — C* (with &
unramified and & of conductor 1). In this case, from [ , Section 10] (or | ]) we have
1
L(1,7, ad) = S

1—-p~1 p-1
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Besides, one can now check using | | and | , Section 3| that

L(1/2,mp, ©@ 1 @ 1)) = L(1/2,m,)* = 17

Therefore, L(1/2,m, x ad7y) = ;255 and the statement follows. O

9. COMPUTATION OF LOCAL INTEGRALS AT p=2 AND v = 00

Let f € Sop(N), g € Si+1(N,x), and h € S’;+1/2(4N, X) be as usual, and let f, g, and h be their
adelizations. Write 7w, 7 and 7 for the corresponding automorphic representations as in Section 6. Con-
tinue to consider our test vector h@ g®¢ € T® T @ w, where w = Wi Recal that 1) denotes the standard

additive character of A/Q, and ¢ = 1.

9.1. Computation at p = 2. For simplicity, in the following we write 1 for the local additive character

¥y = 5! of Qa, so that wy = wy. Write also t(2) = ((2) 291) € SL2(Q2), which we identify with

[t(2),1] € SLy(Qs), and recall that g, = gh = 75(t(2)"1)gs. Then define
h{? = 7o (t(2)hy, %) 1= 212wy (4(2)) o

Lemma 9.1. With the above notation, we have ¢§2) =11z, Furthermore, the following identities hold:

(b b)) = (hy,ho),  (82.82) = (g2.82), (85 .05) = 2(h2.62).

Proof. Recall that ¢ = 17,. Then by applying the rules of the Weil representation we have
1/2
wa(1(2))$2 = wa(t(2))1z, = xp(2)[2];* 112,

One can check that x,(2) = 1 for our choice of ¢, and hence wa(t(2))¢2 = 2*1/21%22. It follows that

§2) = 11, as stated. Furthermore, by definition we have

(@2, Py = / Ly, (2)115, (@)ds = vol(27 Zz) = 2 = 2vol(Zy) = 2(¢2, b2).
Qp
As for the other identities, we show only the one concerning g (the other one can be dealt with similarly).
First of all, go is a GLgy(Zs)-fixed vector in the unramified principal series representacion 5 = 7(&,£71),
where ¢ : Q) — C* is an unramified character. The space of such vectors is known to be one-dimensional,

and a non-trivial choice is given by the function s : GL2(Z2) — C defined by (cf. | , Section 2])
E(ad™Y)|ad™?! 1/2 if v € (2%5)CLo(Zy), a,de Q,

(69) 902(7) _ ( )| |2 (.O d) 2( 2) 2
0 otherwise.

Since we are only interested in the ratio (g2, g2)/(g2,82), we may assume that go = ¢3. Then, one has
(82,82) = fGLQ(Zz) g2(x)go(z)dr = vol(GLy(Z3)) = 1. To compute

(2, 82) = (&b, ) = / & ((271))ga(at(@ 1)) d,
GL2(Z2)

we divide GL2(Z2) into three subregions, namely
Ly := {1': (gg) GGLQ(ZQ):CGZ;}, Ly = {:r: ((CIZ) GGLQ(ZQ):C€2Z§<},

and Lo := GLa(Zs) — Lo — L1 = Ko(4). Working separately each of these regions, finding an Iwasawa
decomposition for x¢(271) one checks that

272 ifz e Lo,

go(rt(27))ga(xt(271)) = ¢ 1 ifxe Ly,

22 ifx e Ls.
Therefore, (g2, &) = 2~ 4vol(Lg)+vol(L1)+2%vol(Ls). Since Ly = GLa(Zs)— Ko(2) and Ly = K(4), and
Ky (2) (resp. Ko(4)) has index 3 (resp. 6) in GLa(Z2), one can easily compute (82,82) = 1 = (g2,82). U

The next proposition computes the local regularized period Ig (h,g,¢), by relating it to the period
Ig(h@), g,¢6?) and invoking the computation done in | , Section 6].

Proposition 9.2. Ig(h,g,(ﬁ) =1.
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Proof. Recall that by definition we have

IQ(ha ga ¢
(hy, hy)(82, &2) (2, d2)’

~

Ti(h,g,¢) =

where
L(].,ﬂ'g, ad)L(l, Tg,ad)
L(1/2,7T2 X adTQ)

To(h, . 6) = /S o, P B ()i ) (a0} )

Denote by az(hg, &2, #2) the integral on the right hand side. By replacing g with #(2)~!gt(2), one checks
ag(hz, 82, ¢2) = aa(T2(t(2))ha, 2(1(2))82, w2 (t(2))p2) = aa(T2(t(2))hz, g2, w2(t(2))d2),

using that go = gg = 75(t(2)71)gy. Since 72(¢(2))hy = hf) and wo(t(2))p2 = 2_1/24552) by definition, the
above shows that Zy(h, g, @) = 27 'Z5(h®), g, ¢?). Hence, by the previous lemma,

T>(h,g,¢) 2717,(h?, g,¢?) 4

Zi(h,g,¢) = — = =7, (h®? g ¢?).
: (2 5o) (82 ) 62,02) (00 1) (oo g2 (90 60)
Finally, it follows from Xue’s computation in | , Section 6] that the right hand side equals 1. (|

9.2. Computation at the archimedean place. Finally, we deal with the computation of the regu-
larized local period Zf_(h, g, ¢) at the real place v = co. The approach we follow here has already been
considered in [Xue] (where the case that g has weight £+ 1 with £ > k odd is also covered). For simplicity,
in what follows we will write ¢ = 1! for the twist of the standard additive character 1, on R by —1,
so that ¥(x) = e 2™V=17 for all z € R. Then we = wy. By Iwasawa decomposition, every element

g € SLa(R) can be written as
~(y 0 1 =
=00 ) (0 1)

for some y € Ry, # € R and k € SO(2). We consider the Haar measure dg = y~2dxdydk, where do and
dy are the Lebesgue measure on R, and dk is the Haar measure on SO(2) with vol(SO(2)) = .

Observe that 7o, (resp. moo) is a discrete series representation of PGLg(R) of weight k + 1 (resp. 2k).
The archimedean component go, = g 0f g is a lowest weight vector in 7. Similarly, Te is a discrete
series representation of SLy(R) of lowest K-type k 4+ 1/2, and h, is a lowest weight vector in 7.

Let J be the Jacobi group, which arises as the semidirect product of SLy with the so-called Heisenberg

group H, and it can be realized as a subgroup of Sp, (see | , Section 1.1]). In explicit terms, elements
in J can be written as products
a b 1 1 a b
a b _ 1 Al u & 1
( c d)()‘auag)_ c d 1 =\ ) c d GSL27()‘7Ma§)€H
1 1 1
By virtue of | , Theorem 7.3.3], oo ® Woo is isomorphic to a discrete series representation poo of

J(R) of lowest K-type k + 1. In particular, the vector hy ® ¢op € Too ® W is then identified under the
previous isomorphism with a lowest weight vector Jo, € poo. Being the isomorphism 7o ® weo ™~ pso an
isometry (see loc. cit.), we have

ob (h, & ¢) = / (7(9)8o0, Bc) (7(9) e, Doc) (e (9) e, fc)

SLa®)  |[8ooll? oo ]2 ||¢ool |2
UOC) uC)O JOO’ JOO 9
:/ (r(9)g g ) (p(g) . >dg (o, T).
SLs(R) ||€co [[J oo ||
To compute af_(h,g, ), we will consider the explicit model D(k + 1, N) of the discrete series repre-
sentation p, that can be found in [ , Chapter 3]. As vector spaces, one has
Dk+1LN)= B C-omy

m,£>0,0 even

and SO5(R) acts on vy, ¢ through the character u +— u*+1+m+f The element vy is a lowest weight

vector, and SO2(R) acts on the line spanned by vg o through the character u — u**1. Let v be the Lie

algebra of R(R), and denote by t¢ its complexification. Then there are certain operators X, X_ | Y,
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Y_ acting on t¢ (see loc. cit.). One has that sl is a Lie subalgebra of v, and X € slp ¢. Also, one has
dpoe X _Joo = dpsoY_Joo = 0. The action of these operators is given by the following recipe:

1
dpooYJrUm,Z = Um+1,¢, dpooXJrUm,Z = - Um+2,05
2n N

14
dpocY_Um e = =20 Nmvm_10, dpooX_Vme =TNm(m — 1) vy,_2e — Z(2k + 0 — 1)U e—2.

The space D(k+1, N) is endowed with an inner product (, ), and the vectors vy, ¢ form an orthogonal
basis with respect to this inner product. We put ||v||?> = (v,v). For each pair of integers m, ¢ > 0 with
¢ even, one can compute ||v,, ¢||* in a recursive manner from |[|vg||?, where we abbreviate vg := vg9. We
shall normalize the inner product (, ) so that ||vg||? = 1.

Lemma 9.3. With the above notation, of_(h, g, ¢) = 2m2k~1.

Proof. With respect to the above model, 7., might be realized as a subrepresentation of puc|sr,(®),
spanned by vg. Then we can assume the inner product for 7, to be given by the restriction of the inner
product for peo. As af (g, Js) is normalized so that it is invariant under replacing g., and J., by
scalar multiples of them, we can therefore assume that g., = Joo = v9. Then we have

o . 1
ab(h,g,¢) = (oo, Joo) = 74/ (7o (9)v0, v0) [*dg :/ {70 (9)v0, v0) | dg.
[[vol| SLs(R) SL(R)

Write AT := {(et e*t) it > 0}, and consider the map
(SO2(R) x A" x SO2(R))/{£1} — SLa(R)/{%1},

t t

where on the left hand side —1 is identified with the element (—1,1,—1). This map is bijective outside
the boundary of A", by virtue of Cartan decomposition. Using a similar argument to the one in | ,
Section 12], one deduces that dg = 2sinh(2t)dtdkdk’, where dk and dk’ are the Haar measure as above
for which SO2(R) has volume 7, and dt is the Lebesgue measure. It is well-known (cf. | ]) that

<T°° (( ‘ e )) voavo> — cosh(t)~ (D),

{Too (9)v0, v0)|?dg = vol(SOg(]R))2/ cosh(t) 2R+ 2ginh (2t)dt =
0

and hence it follows that

ihgd) = [

SL2(R)

= 27r2/ cosh(t) " 2*+Dginh (2t)dt = 2n%k 1.
0

O
Proposition 9.4. We have Z_(h,g,¢) = 1.
Proof. We have seen in the previous lemma that of_(h, g, ¢) = 272k~!. Besides, we have
L(1, 70, Ad)L(1, 700, Ad)  2(27) %7 'T(k + 1)n~'T(1) - 2(27) “ 2T (2k)7~'T(1) k-
L(1/2, 7o x Ad(g)) 22(2m) 2F 1T (2k)T(k — k + 1) - 2(27) FT (k) 272’
and thus it follows from the definition of Z% (h, g, #) that
Té (g d) = S et et (g ) = 1.
(I
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