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Abstract 

This thesis deals with the feasibility of having lower latency for radio communication of 

short packets, which is the major traffic in the fifth generation (5G) of cellular systems. We 

will examine the possibility of using turbo synchronization instead of using a long preamble, 

which is needed for Data-Aided (DA) synchronization. The idea behind this is that short 

packets are required in low-latency applications. The overhead of preambles is very 

significant in case of short packets. Turbo synchronization allows to work with short or null 

preambles. The simulations will be run for a turbo synchronizer which has been 

implemented according to the Expectation Maximization (EM) formulation of the problem. 

The simulation results show that the implemented turbo synchronizer outperforms or 

attains the DA synchronizer in terms of reliability, accuracy and acquisition range for carrier 

phase synchronization. It means that the idea of eliminating the preamble from the short 

packet seems practical. The only downward is that there is a packet size limitation for the 

effective functionality of turbo synchronizer. Simulations indicate that the number of 

transmitted symbols should be higher than 128 coded symbols. 
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1. Introduction 

The concept of Internet of things is supposed to bring wireless connectivity to anything 

which is capable to be connected, which ranges from static tiny sensors to drones and 

cars. In this scenario, the number of devices which will be connected is huge. Also, there 

are some critical applications (e.g., autonomous driving, industrial automation, etc.) that 

require lower latency and higher reliability. So far, each new generation of cellular system 

has been designed to surpass the previous generation in terms of data rate. But 5G departs 

from this scheme. By the best of our knowledge, the design of 5G wireless system standard 

aimed at addressing all the aforementioned challenges globally. 

At the first step, according to its typical scenarios or applications, the researchers 

considered three dimensions performance metric cube based on throughput, number of 

links and delay. Then, ITU IMT-2020 has divided the 5G network services into three 

categories which are shown in Figure 1.1: 

1. Enhanced mobile broadband (eMBB)  

2. Ultra-reliable low-latency communications (URLLC)  

3. Massive machine type communications (mMTC)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To make these services a reality, three potential research directions have been defined 

according to the typical layered protocol architecture: 

1. Network Architecture: in which both the information technology (IT) and the 

telecom industries have promoted the concepts of “Software Defined Networks 

(SDN) [2] and “Network Functionality Virtualization” (NFV) [3] in order to provide 

more flexible network control and also to reduce the network capital and operational 

 

Figure 1. 1. 5G services from ITU-T L.1310 – Study on methods and metrics to evaluate energy 
efficiency for future 5G systems [1] 
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expenditures (CAPEX) for these new complex network functionalities and inter-

connection relations. Besides, they proposed the decoupling of the control plane 

signalling [4] from the traditional transmission approaches to alleviate the “signalling 

storm” problem. 

2. MAC mechanism: for which they recommended a flexible MAC protocol design 

with dynamic scheduling and variable packet length characteristic. In order to 

achieve that, two important research directions have been introduced. One way is 

to incorporate the software defined MAC concept with local caching capabilities. In 

software defined MAC concept, different data transmission requirements will be 

allocated to different types of base stations. Another way is to consider the “user-

centric” scheduling where the radio resource management and the transmission 

mode adaptation are moved from the base station to the user terminal side. 

3. Physical layer schemes: In order to perfectly match the physical layer design with 

the flexible MAC mechanism, it is expected to provide a tuneable air interface 

design with adaptable frame structures, waveforms and other transmission 

technologies. 

In this work, the focus will be on the physical layer scheme, especially for the URLLC 

category. It is known that the stringent requirements of URLLC services, i.e. ultra- high 

reliability and low latency, are the most challenging feature of the fifth generation of mobile 

networks. The problem becomes even more challenging for those services beyond the 5G 

horizon such as tele-surgery and factory automation which require latencies less than 1ms 

and packet error rates as low as 10−9 . The reason is that ultra-high reliability and low 

latency are two conflicting requirements. “One could use short packets to reduce latency 

which in turn causes a severe loss in coding gain” [8]. On the other hand, in order to 

enhance reliability, it is needed to use strong channel codes eventually paired with 

retransmission techniques which indeed increase the latency [8]. According to [5], four key 

metrics, requirements and performance benchmarks are considered for designing the 

physical layer of URLLC which are: 

1) Latency: In the physical layer, the main focus is on the user plane latency, which 

is defined as the time to successfully deliver a data block from the transmitter to the 

receiver via radio interface in both uplink and downlink directions. The user plane 

latency consists of four major components: the time-to-transmit latency, the 

propagation delay, the processing latency and finally the retransmission time. The 

time-to-transmit latency corresponding to the time to transmit a packet, which is 

required to be in the order of a hundred microseconds. It is much less than 1ms 

which is currently considered in 5G.  The propagation delay is typically defined as 

the delay of propagation through the transmission medium, and it depends on the 

distance between the transmitter and the receiver. The processing latency is the 

time to perform the encoding and decoding and also the channel estimation and 

synchronization in the initial transmission. 

“The general vision of URLLC requirement by 3GPP is that the user plane average 

latency should be 0.5 ms for both uplink and downlink, without an associated 

reliability value [41], [14]”. 

2) Reliability: The reliability is defined as the probability of receiving correctly a frame 

of 𝐾 information bits within the admitted latency at a certain channel quality (e.g., 

5-percentile signal-to-interference-plus-noise ratio (SINR)) [41]. Sources of failure 
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from higher layer perspective are: when the packet is lost, or it is received late, or 

it has residual errors. It is essential to maximize the reliability of every packet, 

meaning to minimize the error rate, leading to less retransmissions. In this thesis, 

Packet-Error-Rate (PER) and Bit-Error-Rate (BER) have been used as two metrics 

in order to compare different methods in terms of reliability. 

“The general URLLC requirement according to 3GPP is that the reliability of a 

transmission of one packet of 32 bytes should be (1 − 10−5), within a user plane 

latency of 1ms (with or without HARQ) [5], [14]”. 

3) Flexibility: The flexibility of the channel coding scheme is an important aspect 

along with the evaluation of the coding performance. Bit-level granularity of the 

codeword size is desired for URLLC. Therefore, the single–bit information block 

length granularity should be supported by lifting, puncturing and shortening. In other 

words, the actual coding rate used for transmission should not be restricted and 

optimized for specific ranges. Thus, the channel codes will be sufficiently flexible to 

enable hybrid automatic repeat request (HARQ). However, the number of 

retransmissions needs to be kept as low as possible to improve latency.[6] 

4) Performance Benchmark: There are two effects which should be distinguished 

here to understand better the code design problem for short packets. The first one 

is that if we decrease the block length, the coding gain will be reduced and the gap 

between the code performance and the Shannon’s limit will grow. The problem is 

not the code design but it is mainly due to the reduction in channel observations 

that comes with finite block lengths. It means Ergodic and outage capacity are not 

applicable. The second effect is that if we decrease the block length, the gap 

between modern codes such as low density parity check (LDPC) codes or Turbo 

codes, and the finite length performance bounds will widen significantly. This is 

often due to the suboptimal decoding algorithms.  

In the first part of the thesis, introduction part, the rationale behind this thesis is explained. 

The second part is devoted to the state of the art of the contributed techniques.  In the third 

part, we address some background information about digital communications and then 

explain the implemented techniques in detail. In chapter four, first the short packet 

transmissions will be explained and then there is some explanation about encountered 

synchronization issue in short packet transmissions. Afterwards the solution used in this 

work will be explicated. Finally, some metrics will be considered for the assessment of the 

aforementioned solution. Then, in the fifth part, the simulation results are examined. 

Eventually, in the conclusion part, the overall result of the work will be mentioned and some 

future ideas will be proposed for the improvement of the synchronization. 
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2. State of the art of the technology used or applied in this 

thesis 

One of the key requirements of URLLC is to fulfil low latency. In order to get lower latency, 

it is needed to support short packet transmissions. The physical layer design rules for short 

packet transmissions are quite different from classic asymptotic long packet transmissions. 

One of the reasons is that the use of preamble symbols, which are inserted into each 

transmitted block to facilitate the receiver synchronization, can incur significant 

performance losses in short packet transmission. It is shown in [7] that inserting pilots for 

channel estimation leads to significant rate loss when the coherence block is short. In [8] 

and [9], they recommend to decrease the preamble size according to the data information 

size not keeping the size of preamble fixed. In [10], a synchronization word is superimposed 

to the data symbols instead of being embedded in a frame header. The advantage is that 

the synchronization word length is as large as the frame itself. In [11] and [20], it is proposed 

to use the reliable soft data symbols called virtual pilots (VPS) among all possible soft data 

symbols in order to improve the channel estimation quality and detection and decoding 

quality. It is observed that the gain obtained by the virtual pilot signals diminishes as the 

number of virtual pilot symbols increases (saturated) [11]. In [13], the following two short 

packet structures are compared in terms of detecting and decoding performance: 1) time-

multiplexed structure in which a fraction of degrees of freedom (DoFs) is used as a 

preamble for detection and the remaining for data transmission and 2) the superimposed 

structure in which all DoFs are used for both packet detection and data decoding. It shows 

that for delay-constrained data and ACK exchange, there is a trade-off between the DoFs 

spent for detection and for decoding. In the second structure, the optimal PER has been 

achieved for higher detection overhead. As a result, PER is higher than in the preamble 

case. But this structure is advantageous due to its flexibility to achieve optimal operation 

without the need to use multiple codebooks.  

Based on [41], the packet size for control-oriented applications is 20 bytes or smaller. 

Generally, in order to have highly reliable transmission in URLLC, a channel code with low 

code rate is used. Several channel code candidates such as LDPC codes [15], Polar codes 

[16], tail-biting convolutional codes (TBCC) and Turbo codes were considered for both the 

eMBB and URLLC data channels. It was recognized that while LDPC codes, Turbo codes 

and Polar codes have similar performance at large block sizes, they have considerable 

performance differences at small block sizes. 

Although turbo codes are considered as powerful codes, they are not recommended to use 

for short packet transmission. Turbo codes are very sensitive to synchronization errors. 

That is, even small mismatches between the transmitter’s local oscillator and receiver’s 

local oscillator and small phase shifts introduced by the wireless channel can lead to severe 

performance degradation [8]. 

 According to [5], LDPC codes have been already selected for the eMBB data channel.  But 

recent investigations show that there exists some error floors for LDPC codes which are 

constructed by using base graph (BG) 2, which is considered for short block low rate 

scenarios [5]. However, if one focuses on a low signal-to-noise ratio (SNR), LDPC codes 

achieve a lower PER according to [17] and [18]. 
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Polar codes, based on [5], have been selected for the eMBB control channel. They 

outperform LDPC codes without any sign of error floor. According to [20], they bring nearly 

one dB coding gain in terms of PER over convolutional codes. Also, based on [8], they 

outperform TBCC for code rate lower than 1/3.  In addition, they outperform other codes 

such as TBCC, LDPC codes and turbo codes in terms of complexity.   

Therefore, it has been recommended to use polar codes or LDPC codes for low code rates.  

Regarding convolutional codes, the result of [9] is that the shorter the block length, the 

more favorable are convolutional codes in general. They are not able to outperform the 

fundamental lower block-code bounds (sphere packing bound (SPB), the improved sphere 

packing bound (ISPB), and converse bound) in terms of PER but they offer more flexibility 

in terms of block size than comparable block codes. Also, it is concluded that the gap 

between the block-code lower bound and the convolutional code performance increases 

with an increment in the code rate. Furthermore, it is proved that reducing the code rate 

results in less structural delay, which is the delay that occurs due to the fact that encoder 

and decoder can only perform their operations once a certain number of symbols is 

available. For very low structural delay, convolutional codes are able to outperform even 

lower block code limits for the BER, hence show a general superiority. This superiority 

shrinks with increasing code rate. In [17], [18], it has been shown that convolutional codes 

are still the first choice for applications which require a very low data delay and consider 

the BER as performance criterion. Based on [19], it is concluded that using convolutional 

codes in Internet of Thing (IoT) systems is preferable over turbo codes or LDPC codes. 

Based on [8], although for short packet transmission, terminated convolutional code seems 

useful, it is not recommended due to its rate loss which is introduced by a zero tail 

termination. According to [22], TBCC outperforms tail-terminating convolutional code 

(TTCC) for QPSK modulated signal corrupted by AWGN. It is also seen that TTCC with 

memory of 6 has worse performance than TTCC with 8 memory and TBCC with 6 memory 

for all code rates. The lower the code rate the better the block-error-rate performance. 

TBCC is currently considered within 5G standardization for URLLC [8]. “The LTE (L1/L2) 

downlink control channel uses tail-biting 64-state convolutional codes” [25]. Also, according 

to [8], it is shown that LTE TBCC outperforms LTE turbo codes for short packet lengths 

(e.g., 40 bits information block length). They also surpass polar codes for code rate greater 

than 1/3 in terms of block-error rate. However, it is illustrated that for code rate 1/2, and 

codeword length 128, the extended Bose-Chaudhuri-Hocquenghem (BCH) code 

outperforms TBCC with memory of 14 and 11, LDPC codes and polar code in terms of 

complexity.  

It has been shown in [8] that higher modulation order leads to more loss in the spectral 

efficiency when we reduce the preamble size (the loss increases from 9.8% to 18% when 

the modulation changes from QPSK to 16-QAM). According to [21], which has performed 

analyses for different modulation schemes and has compared them to random coding 

bound (RCB), it is seen that 16-ary and 32-ary non-coherent orthogonal modulation 

schemes provide reasonable balance between energy and bandwidth efficiency and also 

lead to better estimate of parameters. It has also been proposed to use non-coherent 

orthogonal modulations rather than differentially encoded phase shift keying (PSK) which 
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is limited in achieving a high level of energy efficiency despite excellent bandwidth 

efficiency.  

Regarding the TBCC in LTE, although it is seen in [25] and [26] that 2x wrap-around (2 

Viterbi decoding iterations) is sufficient to get an acceptable decoding performance, it is 

not acceptable in terms of latency, especially for short packet transmission. However some 

lower latency decoders, which are based on the extension of the decoder trellis but not on 

its full trellis, some fraction of it [22], have been used. There, the ending state does not 

have to be the same as the starting state on the circular trellis, as in TBCC. The decoded 

bits are taken from the middle of the trace-back path and a circular shift is applied to restore 

the right ordering of the decoded bits. It is worth mentioning that the level of trellis extension 

depends on the code rate. The lower the code rate the less trellis extension, the less 

decoding complexity and latency. In [17] and [18], the BCJR algorithm and Viterbi decoder 

provide the best results for very short latencies while the sequential decoding approach 

performs the best for slightly longer delays. Also, based on [18], it is seen that the stack 

sequential decoding is more practical than BCJR decoding and Viterbi algorithm when 

using large memory convolutional codes (punctured).  
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3. Methodology / project development 

In this chapter, first we will explain the background of the digital communication system in 

brief. Then, the utilized techniques for each of the digital communication system 

components will be explained in detail.  

3.1. Theoretical Background/ Digital Communication System 

A basic digital communication system is made of several components, as seen in Figure 

3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An information source can be any source of data, a continuous waveform or discrete 

symbols. Then a source encoder converts the source output into a sequence of binary 

digits with little or no redundancy. This is because of the fact that ideally the source output 

is expected to be represented by as few binary digits as possible. After, the output of source 

encoder, which is now called the information sequence, is passed to a channel encoder to 

add some redundancy to it in a controlled way in order to mitigate the effects of noise and 

interference of the channel at the receiver side. So in this way, it is possible to increase the 

reliability of the received signal. The output of this step called a codeword.  Afterwards, the 

codeword goes through a modulator which is an interface to a communication channel and 

its primary duty is to map the codeword into signal waveforms. 

The communication channel is a physical medium that is used to send the signal from the 

transmitter to the receiver. The essential feature of it is that the transmitted signal is 

corrupted in a random manner by a variety of possible mechanism such as additive thermal 

noise.  

At the other side of the channel, a demodulator processes the channel-corrupted 

transmitted waveform and converts the waveforms into a sequence of numbers 
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Figure 3. 1. Basic elements of digital communication system [27] 
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representing estimates of the transmitted data symbols. Thereafter, it is passed to a 

channel decoder to reconstruct the original information sequence. This is possible because 

of the knowledge of the code used by the channel encoder and the redundancy contained 

in the received data. It is notable to mention that the channel decoder output is not equal 

to the original information because of some decoding errors caused due to the noise.  

At the end of the system, the source decoder reconstructs the original source signal by 

using the knowledge of the source encoder. 

3.2. System Model 

In this section, we will explain the different parts of a digital communication system which 

have been designed in this thesis, and the reasons why each technique has been chosen. 

3.2.1. Coding  

In late 1940s Shannon showed that it is possible to get arbitrarily low error probability by 

using coding techniques, provided that the bit rate is below a threshold called  “channel 

capacity”.[28] 

As a result of this fact, coding is considered for enhancing the performance of the digital 

communication system in the presence of additive noise. There are two main classical 

types of channel coding: block codes and convolutional codes.  

In this work, based on the following facts, the focus will be on convolutional codes. The first 

reason is that soft decoding may lead to better performance than hard decoding and 

performing economical soft decision decoding on convolutional codes is possible.  The 

second is that convolutional codes have the block length and the code rate flexibility which 

is needed for 5G scenarios.  Another fact is that according to [22], although the extended 

BCH codes, which are circular block codes, perform very close to the normal approximation 

benchmark given in [23], they are not recommended to be used because of their very 

complex decoding. The next reason is that based on [21], which is about coding for short 

packet transmission, convolutional codes have excellent performance in terms of energy 

efficiency and relative simplicity in comparison with BCH codes and reasonable robustness 

to imperfections such as estimation errors. And the final reason is that based on [7], 

capacity achieving codes like LDPC codes and turbo codes do not perform as well as their 

lengths are reduced. Furthermore, for short block length, less than 1000 symbols, 

convolutional codes outperform turbo codes. 

3.2.1.1. Convolutional Code 

Convolutional coding is one of the powerful, effective and widely used error-correcting 

codes. Convolutional codes are different from block codes because of the existence of 

memory (𝑚) in the coding scheme. 𝑘′  information bits enter the encoder at each time and 

they produce 𝑛′  binary symbols at the output of encoder and change the state of the 

encoder. The output depends not only on the recent 𝑘′  bits that just entered the encoder, 

but also on the (𝐿 − 1)𝑘′  previous content of the encoder that constitutes its state. The 

quantity 𝐿  is defined as the constraint length of convolutional code. The output dependence 

on the previous information bits causes the encoder to be described as a finite-state 

machine. The number of states of convolutional code is equal to  2(𝐿−1)𝑘
′ 
 . Convolutional 
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codes can also be represented by a shift register of length 𝑘′ 𝐿 as shown in Figure 3. 2. It 

is seen that 𝑛′  bits at the output of encoder are linear combination of various shift-register 

bits. The base code rate of convolutional code is defined as 𝑅𝑐 =
𝑘′ 

𝑛′ ⁄   whose unit is 

information bits per transmission. Because 0 < 𝑘′ < 𝑛′   are arbitrary integers, 𝑅𝑐 < 1. Note 

that inputs and outputs for convolutional codes are binary and convolutional codes are 

often characterized by the base code rate and the trellis depth [𝑅𝑐 , 2
(𝐿−1)𝑘′ ]. 
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There are three alternative methods that are often used to describe a convolutional code 

i.e. tree diagram, trellis diagram and state diagram. Depending on the application, the error 

correction capabilities of convolutional codes can be increased or decreased by decreasing 

or increasing code rate. The error correction capability depends on constraint length, code 

rate and generator polynomials.  

There are three different termination methods for convolutional codes: truncated, 

terminated (zero tail termination) and circular (tail-biting). According to [36], the drawback 

of the truncated convolutional codes is that the block error probability rises in the last bits. 

Although terminated convolutional codes are expected to be beneficial for short packet 

transmission due to an improvement in block error probability, they are not recommended 

because of their rate loss introduced by the zero tail termination. Therefore, tail-biting 

convolutional codes, which eliminate this rate loss, deserve special attention. 

3.2.1.1.1. Tail-biting Convolutional Code 

Tail-biting convolutional codes always start from and end at the same state, but starting 

and ending states are not necessary the all-zero state. Also, this equality of initial state and 

final state makes the codeword trellis circular as shown in Figure 3. 3. Because the starting 

and ending states are unknown, the decoding complexity is slightly increased. 
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3.2.2. Modulation 

The modulation is the process of converting an input sequence of bits into a waveform 

which is suitable for transmission over the communication channel. The basic parts of a 

modulator are two: a procedure for mapping a sequence of binary digits into a sequence 

of real or complex numbers, followed by an approach for mapping a sequence of numbers 

into a waveform. Hereinafter, square-QAM (quadrature amplitude modulation), which 

involves the following three stages, will be adopted; first, mapping a sequence of bits to a 

sequence of complex symbols; then, mapping the complex symbols to a complex 

baseband waveform; and finally mapping the complex baseband waveform to a real 

passband waveform. In this thesis, among other reasons, QAM is selected because it 

allows the analytical calculation of Code-Aided Cramer Rao bound for the estimation of the 

carrier phase.  

3.2.2.1. Mapping   

In QAM, the bit sequence is segmented into 𝑚′-tuples. Then, there is a mapping from 

binary 𝑚′-tuples to a set of 𝑀 = 2𝑚
′
 complex numbers. The set of 2𝑚

′
 possible complex 

numbers resulting from the mapping is called the constellation. Here, the focus will be on 

4-QAM (QPSK) because of its simplicity and its lower loss in the spectral efficiency with a 

short preamble [8]. 

Suppose that {𝑐′1𝑐
′
2…} denote the incoming binary sequence from the encoding step, 

where each 𝑐′𝑛 is ±1 (rather than the traditional 0/1). Then, that sequence is segmented 

into 2-tuples and converted into a sequence of complex signals 𝑎𝑘  chosen from the 

constellation 𝒜 = {(1 + 𝑗), (−1 + 𝑗), (−1 − 𝑗), (1 − 𝑗)} of size 𝑀 = |𝒜| = 2𝑚
′
= 22 = 4 for 

QPSK.  

3.2.2.2. Pulse Shaping  

It is known that the baseband filters in a communication system should satisfy the Nyquist 

criterion so that symbols can be transmitted over the channel with flat response within a 

limited frequency band, without ISI. 

A QAM baseband modulator is determined by the symbol period 𝑇 and a waveform 𝑝(𝑡). 

The discrete-time sequence {𝑎𝑘} modulates the amplitude of a sequence of time shifts 

{𝑝(𝑡 − 𝑘𝑇)} of the basic pulse 𝑝(𝑡) to create a complex transmitted signal 𝑎(𝑡) as follows: 

𝑎(𝑡) = ∑ 𝑎𝑘𝑘∈ℤ 𝑝(𝑡 − 𝑘𝑇)                                                                                                                         (3.1)    

 

Figure 3. 3.  Trellis of tail-biting 

convolutional code [29] 
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As mentioned before, 𝑝(𝑡) could be chosen in a way to decay fast with increasing 𝑡. This 

means that 𝑃(𝑓) should be a continuous function that goes to zero rapidly but not 

instantaneously as 𝑓 increases beyond 𝑊𝑚′ = 1
2𝑇⁄ , where 𝑊𝑚′  is defined as the nominal 

baseband bandwidth of the QAM modulator (the Nyquist bandwidth) and 𝐵𝑚′  is the actual 

design bandwidth which is slightly larger than 𝑊𝑚′. 

One of the examples of such baseband filters is the raised-cosine filter. To improve noise 

cancellation, this filter is usually split into two parts, two square-root-raised–cosine filters: 

one at the transmitter side and the other at the receiver side. The transfer function of the 

square-root-raised-cosine filter for any given rolloff factor 𝛼′ = (
𝐵
𝑚′  

𝑊𝑚′
− 1), which is between 

0 and 1, is: 

𝐻𝑆𝑅𝑅𝐶(𝑓) =

{
 
 

 
 √𝑇   𝑓𝑜𝑟  0 ≤  |𝑓| ≤

1−𝛼′

2𝑇

√
𝑇

2
. √(1 + 𝑐𝑜𝑠 [

𝜋𝑇

𝛼′ (|𝑓| −
1−𝛼′

2𝑇
)])  𝑓𝑜𝑟 

1−𝛼′

2𝑇
< |𝑓| <

1+𝛼′

2𝑇

0 𝑓𝑜𝑟  |𝑓| >
1+𝛼′

2𝑇

                              (3.2)   

And its impulse response is: 

ℎ𝑆𝑅𝑅𝐶(𝑡) =
1

√𝑇

sin ((1 − 𝛼′)𝜋
𝑡
𝑇) + 4𝛼′ 𝑡

𝑇 cos (
(1 + 𝛼′)𝜋

𝑡
𝑇)

𝜋
𝑡
𝑇
(1 − (4𝛼′ 𝑡

𝑇
)
2

)

                                                       (3.3)  

3.2.2.3. Baseband to Passband (frequency conversion)  

In QAM, the complex baseband waveform 𝑎(𝑡) is shifted up to passband as 𝑎(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡  . 

This waveform is complex and is converted into a real waveform for transmission through 

the channel by adding its complex conjugate. The resulting real passband waveform is 

then: 

𝑥(𝑡) = 𝑎(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡 + 𝑎∗(𝑡)𝑒−𝑗2𝜋𝑓𝑐𝑡                                                                                                       (3.4) 

The passband 𝑥(𝑡)  can also be written in the following equivalent ways: 

𝑥(𝑡) = 2ℜ{ 𝑎(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡 } = 2ℜ{ 𝑎(𝑡)} cos(2𝜋𝑓𝑐𝑡) − 2ℑ{ 𝑎(𝑡)} sin(2𝜋𝑓𝑐𝑡)                               (3.5) 

3.2.3. The Channel Effects 

The most common form of signal degradation comes in the form of additive noise which is 

generated physically from electronic components and amplifiers at the receiver of the 

communication system, or interference encountered in transmission, as in the case of radio 

signal transmission. The first one, which is called thermal noise, is characterized 

statistically as a Gaussian noise process and has dominant effect on many communication 

systems. 

3.2.3.1. The Effect of AWGN 

The simplest mathematical model for a communication channel is the additive noise 

channel, illustrated in Figure 3.4. In this model, the transmitted signal 𝑥(𝑡) is corrupted by 

an additive random noise process 𝑤(𝑡). It is known that for additive noise, the assumption 
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is that the transmitted signal and noise are statistically independent. Mostly, the additive 

noise is modelled as a Gaussian process whose probability density function is: 

𝑓𝑁(𝑛1) =
1

√2𝜋𝜎𝑁
2  
exp [

−(𝑛1 − 𝜇)2

2𝜎𝑁
2  

]                                                                                                       (3.6) 

where 𝜇 = 0 is the mean of 𝑛1, and 𝜎𝑁
2 is its variance. 

 

 

 

 

 

 

 

It is worth mentioning that 𝑤(𝑡) is white and has infinite variance. Therefore, there is a need 

to filter the received signal so that only the in-band noise, 𝑛1(𝑡), which has finite 

variance 𝜎𝑁
2, is considered. 

3.2.3.2. Carrier Synchronization Error 

In practice, besides the noise, there is uncertainty because of the randomness of certain 

signal parameters. This randomness is the result of the propagation delay in the transmitted 

signal. One of the most common unknown signal parameter, which is considered in this 

work, is the carrier phase offset 𝜑. Taking into account the carrier phase error 𝜑, the 

lowpass equivalent of the received signal will be: 

𝑟(𝑡) = 𝑎(𝑡)𝑒𝑗𝜑 + 𝑛2(𝑡)                                                                                                                             (3.7) 

where 𝑛2(𝑡) stands for the lowpass equivalent complex noise at the input of matched filter. 

3.2.4. Demodulation  

At the receiver side, the demodulator performs the inverse of the modulation operations in 

the reverse order; first mapping the received passband waveform into a baseband 

waveform, then recovering the sequence of complex symbols, and finally recovering the 

binary digits. 

3.2.4.1. Passband to Baseband  

The received signal can be demodulated to baseband by the reverse of the two steps used 

in 3.2.2.3.  Next the involved operation are explained. 

3.2.4.2. Matched Filter  

Matched filter is the optimal implementation of the receiver in the presence of AWGN. First 

it is proved in [37] that the matched filter maximizes the output SNR if the transmitted signal 

is corrupted by AWGN. 

                Channel   

𝑥(𝑡)                           𝑥(𝑡) + 𝑤(𝑡)                              𝑥(𝑡) + 𝑛1(𝑡) 

 

                    𝑤(𝑡) 

 
Figure 3. 4.  The additive noise channel 

𝐻𝑅𝑋(𝑓) 
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The baseband demodulator is determined by the interval 𝑇 (the same as at the modulator) 

and a waveform 𝑞(𝑡) = 𝑝(𝑇 − 𝑡). The demodulator filters 𝑟(𝑡) by 𝑞(𝑡) and samples the 

output at 𝑇-spaced sample times. Denoting the filtered output by 

𝑧(𝑡) = 𝑟(𝑡) ∗ 𝑞(𝑡) = ∫ 𝑟(𝜏)𝑞(𝑡 − 𝜏)𝑑𝜏
∞

−∞

=  ∫ 𝑟(𝜏)𝑝(𝑇 − 𝑡 + 𝜏)𝑑𝜏
∞

−∞

                                        (3.8) 

As a result, it is possible to represent the output 𝑧(𝑡) as 

𝑧(𝑡) =∑𝑎𝑘𝑒
𝑗𝜑

𝑘

𝑔(𝑡 − 𝑘𝑇) + 𝑛(𝑡)                                                                                                        (3.9) 

where 𝑔(𝑡) is the convolution of 𝑝(𝑡) and 𝑞(𝑡), and 𝑛(𝑡) is the complex noise at the matched 

filter output. The received complex 𝑧(𝑇), 𝑧(2𝑇), … are obtained by sampling the signal 𝑧(𝑡) 

at multiples of the symbol period 𝑇.  

3.2.4.3. De-mapping  

This step is the reverse of mapping. It maps a sequence of complex numbers to a sequence 

of real numbers. Theses real numbers are soft decisions on the sequence of noisy received 

symbols at the input of the decoder. This step is considered as a part of the demodulation 

process and, it will be done after synchronization.  

3.2.5. Synchronization 

Synchronization, from the Greek synchronous [i.e., syn (together) + chronos (time)], 

denotes the function of making two systems or two signals running exactly together at the 

same pace. It is a fundamental function in digital communication systems because without 

initial synchronization, the codewords will not be able to be decoded correctly. Its mission 

is to estimate certain signal parameters, such as the carrier phase offset, which are 

necessary in the demodulation and data detection processes. Because the coherent 

detection scheme is used, it is necessary to estimate and compensate the carrier phase 

shift before proceeding with data decoding. As such, the synchronization parameters are 

estimated directly from the received samples at the output of the matched filter. 

Traditionally, synchronizers used to operate in either data-aided (DA) or non-data-aided 

(NDA) modes. Then, with recent advent of powerful coding techniques, these conventional 

modes have been shown to be unable to properly synchronize state-of-the-art receivers. 

Therefore, a new family of synchronizers referred to as code-aided (CA) synchronizers 

were introduced. In the following, a brief explanation for each of these three types of 

synchronizer has been given. 

3.2.5.1. Data-Aided Synchronization (Pilot-Aided), in which a preamble is transmitted 

along with the data-bearing signal. The preamble is considered completely reliable, 

meaning that the training sequence, say 𝒂̌ , is perfectly known. The received preamble 

contains information about the carrier and symbol timing, which is extracted by processing 

appropriately the received signal. In DA method, the estimation is only based on the first 

𝐾𝑝𝑟𝑒  symbols at the matched filter output. Therefore, this method is suboptimal because it 

does not use the information data symbols to estimate the synchronization parameters. 

The performance of DA technique can be improved by inserting more preamble symbols 

or increasing the transmitted power. This leads to unacceptable losses in terms of power 
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and spectral efficiency and impinges directly on the whole throughput of the system and 

decreases its effective transmission rate.  

This method is commonly used in wireless communications where the goal is to minimize 

the time required to synchronize the receiver with the transmitter. According to [34], the DA 

phase estimator is: 

𝜑̂𝐷𝐴 = 𝑎𝑟𝑔 { ∑ 𝑎̌𝑘
∗𝑧𝑘(𝑣̂𝐷𝐴, 𝜏̂𝐷𝐴)

𝐾𝑝𝑟𝑒−1

𝑘=0

}                                                                                              (3.10) 

where 𝑧𝑘(𝑣, 𝜏) denotes the matched filter output at the time 𝑘𝑇 + 𝜏, 𝑣 is carrier frequency 

offset and 𝑎̌𝑘 is the value of the preamble symbol at time 𝑘.  In the following, we will assume 

that the timing error 𝜏  and carrier frequency offset 𝑣 are perfectly known, i.e., 𝜏̂𝐷𝐴 =  𝜏, and 

𝑣𝐷𝐴 = 𝑣. 

3.2.5.2. Non-Data-Aided Synchronization (Non-Pilot-Aided and Non-Code-Aided), in 

which the receiver does the synchronization task by extracting the necessary information 

from the modulated signal 𝑧(𝑡)  (the output of matched filter). It is assumed that all possible 

transmitted sequences are a priori equiprobable. As a result, the prior does not provide any 

information about the transmitted sequence. Because of the two aforementioned reasons, 

compared to DA synchronization, the downsides of NDA synchronization are: taking more 

time to establish synchronization and having very poor results at low SNR. The 

performance of NDA technique can be improved by increasing the observation window size 

which is limited by the delay tolerated by the system.  

According to the Viterbi &Viterbi carrier phase synchronizer, the NDA phase estimator is: 

 𝜑̂𝑉𝑉 =
1

𝑀
arg {∑𝑧𝑘

𝑀

𝑘

(𝑣, 𝜏̂)}                                                                                                                 (3.11) 

where 2𝜋 𝑀⁄  is the minimum angle for which the constellation is rotationally-invariant. 

It is worth mentioning that, because the above arg-function only delivers values between 

−𝜋 to 𝜋, the Viterbi &Viterbi synchronizer is only able to recover phase offsets belonging 

to the interval [−
𝜋

𝑀
,
𝜋

𝑀
]. Therefore, the Viterbi & Viterbi synchronizer suffers from M-fold 

ambiguity because of the NDA nature of the synchronizer.    

3.2.5.3. Code-Aided Synchronization 

The idea behind CA synchronization is to get benefit from the structure of the code, which 

is used to protect the data, to improve the estimation quality achieved by the synchronizers. 

The CA synchronizer uses the channel code structure and properties to perform good non-

pilot-aided synchronization. Although the CA synchronization may seem as a natural 

solution for improving synchronization functions, depending on its implementation, its 

results may differ. There are two main distinguishable approaches among the 

implementation algorithms [12]. “The first approach consists in modifying the detection 

/decoding device in order to embed parameter estimation. For example, combined iterative 

decoding and estimation is performed by modifying the decoder using a sort of pre-survivor 

estimation technique” [12]. The second one is based on the estimation of the 



 

 23 

synchronization parameters from some information outputs provided by the decoder. The 

latter consists of two approaches: one using hard symbol decisions, implying a loss of 

information about the decision reliability, and the other which uses soft symbol decisions 

(the symbol hard decision and its reliability).  

3.2.6. Decoding  

Convolutional codes decoding is based on detection theory and chooses the most likely 

transmitted codeword. There are basically two criteria that are widely applied to 

convolutional codes decoding: the maximum-likelihood (ML) criterion in which the 

codeword (sequence) with the maximum likelihood among all the possible codewords, is 

selected and the maximum a posteriori probability (MAP) criterion in which the transmitted 

symbol with the maximum a posteriori probability among all the possible symbols, is 

selected. 

Usually, it is assumed that the incoming binary digits are i.i.d and equiprobable. This means 

that all codewords are equally likely, which then justifies maximum likelihood decoding. The 

detector selects the codeword that has the maximum likelihood among all the possible 

codewords. Therefore, the Viterbi decoder, which implements the ML criterion and is 

optimal for determining the maximum likelihood sequence (codeword), is used. 

It is known that Wrap-Around Viterbi Algorithm (WAVA), which is a circular Viterbi 

algorithm, is the optimum decoder for decoding of TBCCs. According to [25] and [26], the 

complexity of using TBCC is very high when the WAVA is used for decoding, and it is 

mainly dominated by the memory order, especially for short packet transmission [8]. The 

memory order should be usually large to guarantee good performance in case of short 

codewords, and the complexity increases exponentially with the memory. As a result, the 

WAVA is impractical. In addition, if the receiver complexity is limited, the performance of 

WAVA is not acceptable in terms of latency. 

 Although, according to [17] and [18], the performance of the BCJR algorithm is the same 

as Viterbi decoder in terms of the complexity and the impact of the memory, the BCJR 

algorithm will be used in this thesis because it provides soft decisions, which are required 

to implement CA synchronization. Additionally, it is the optimal soft-input soft-output (SISO) 

algorithm in the sense of minimum BER [24].  

3.2.6.1. BCJR Algorithm  

Decoding method of Bahl, Cocke, Jelinek, and Raviv (BCJR), introduced in 1974, is a 

decoding scheme which is based on the maximum a posteriori (MAP) algorithm [27]. The 

BCJR applies to Markov data source. It makes decisions on a symbol-by-symbol basis, but 

each symbol decision is based on an observation of the whole received signal sequence. 

The BCJR algorithm, which is a trellis-based decoding algorithm, generates a posteriori 

probability for each received bit/symbol and can be used in an iterative decoding scheme. 

It provides a hard decision on each received bit/symbol and the a posteriori probability 

metric serves as a measure for the reliability of the hard decision.  

In order to apply this algorithm for decoding of a tail-biting convolutionally coded sequence, 

first we need to unroll the circular tail-biting trellis as shown in Figure 3.5. Therefore, the 

trellis will have the same initial and final states. 
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We know that convolutional codes are finite memory encoders in which the output and the 

next state depend on the current state and the input. If  𝒃 = (𝑏1𝑏2…𝑏𝐾) is the information 

sequence of length 𝐾 where the length of 𝑏𝑘 is 𝑘′ = 1 and 𝑏𝑘 ∈ {0,1},  𝒄 = (𝒄𝟏𝒄𝟐…𝒄𝑲) is the 

corresponding encoded sequence where the length of 𝒄𝒌 is  𝑛′ and 𝜎𝑘  is the encoder state 

at time 𝑘, we will have for 1 ≤ 𝑘 ≤ 𝐾:     

𝒄𝒌 = 𝑓𝑐𝑜(𝑏𝑘, 𝜎𝑘−1)                                                                                                                                    (3.12) 

𝜎𝑘 = 𝑓𝑠(𝑏𝑘 , 𝜎𝑘−1)                                                                                                                                      (3.13) 

where functions 𝑓𝑐𝑜 and 𝑓𝑠 define the codeword and the new state as functions of the input 

and the previous state. It is clear that any pair of states (𝜎𝑘 , 𝜎𝑘−1) that satisfies 

equation (3.13), corresponds either to 𝑏𝑘 = 0 or to 𝑏𝑘 = 1. Therefore, it is possible to 

partition the set of all pairs of states (𝜎𝑘 , 𝜎𝑘−1), which correspond to all possible transitions, 

into two subsets 𝑆0 and 𝑆1 corresponding to 𝑏𝑘 = 0 and 𝑏𝑘 = 1, respectively. 

If 𝒛′ = (𝒛𝟏
′ , 𝒛𝟐

′ , … , 𝒛𝑲
′ ) is the received vector at the output of de-mapper, decisions on the 

transmitted information bit 𝑏𝑘  are based on the observation 𝒛′ and are computed using the 

MAP rule as follows: 

𝑏̂𝑘 = 𝑎𝑟𝑔 max
 𝑏𝑘∈{0,1}

𝑃(𝑏𝑘|𝒛
′) = 𝑎𝑟𝑔 max

 𝑏𝑘∈{0,1}

𝑃(𝑏𝑘 , 𝒛
′)

𝑃(𝒛′)
= 𝑎𝑟𝑔 max

 𝑏𝑘∈{0,1}
𝑃(𝑏𝑘, 𝒛

′)                           (3.14) 

    = 𝑎𝑟𝑔 max
𝑙∈{0,1}

∑ 𝑃(

(𝜎𝑘−1,𝜎𝑘)∈𝑆𝑙

 𝜎𝑘−1, 𝜎𝑘 , 𝒛
′)                                                                                         (3.15) 

where the last equality is concluded from the fact that 𝑏𝑘 = 𝑙  corresponds to all pairs of 

state (𝜎𝑘−1, 𝜎𝑘) ∈ 𝑆𝑙 for 𝑙 = 0,1.  

To solve this, we partition 𝒛′ into three parts as following: 

𝒛′ = (𝒛′𝟏
(𝒌−𝟏)

, 𝒛𝒌
′ , 𝒛′𝒌+𝟏

(𝑲)
)                                                                                                                         (3.16) 

where 𝒛′𝟏
(𝒌−𝟏)

= (𝒛𝟏
′ , 𝒛𝟐

′ , … , 𝒛𝒌−𝟏
′ ) and  𝒛′𝒌+𝟏

(𝑲)
= (𝒛𝒌+𝟏

′ , 𝒛𝒌+𝟐
′ , … , 𝒛𝑲

′ ).  

Now, it is possible to rewrite 𝑃( 𝜎𝑘−1, 𝜎𝑘 , 𝒛
′) as: 

 

 

 

Figure 3. 5. The unrolled trellis [29] 
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𝑃(𝜎𝑘−1, 𝜎𝑘, 𝒛
′) = 𝑃 ( 𝜎𝑘−1, 𝜎𝑘, 𝒛

′
𝟏
(𝒌−𝟏)

, 𝒛𝒌
′ , 𝒛′𝒌+𝟏

(𝑲)
)   

= 𝑃 ( 𝜎𝑘−1, 𝜎𝑘 , 𝒛
′
𝟏
(𝒌−𝟏)

, 𝒛𝒌
′ )𝑃 (𝒛′𝒌+𝟏

(𝑲)
| 𝜎𝑘−1, 𝜎𝑘 , 𝒛

′
𝟏
(𝒌−𝟏)

, 𝒛𝒌
′ )

=  𝑃 ( 𝜎𝑘−1, 𝒛
′
𝟏
(𝒌−𝟏)

)𝑃 (𝜎𝑘, 𝒛𝒌
′ |𝜎𝑘−1, 𝒛

′
𝟏
(𝒌−𝟏)

)𝑃 (𝒛′𝒌+𝟏
(𝑲)

| 𝜎𝑘−1, 𝜎𝑘, 𝒛
′
𝟏
(𝒌−𝟏)

, 𝒛𝒌
′ )

= 𝑃 ( 𝜎𝑘−1, 𝒛
′
𝟏
(𝒌−𝟏)

)𝑃(𝜎𝑘, 𝒛𝒌
′ |𝜎𝑘−1)𝑃 (𝒛

′
𝒌+𝟏
(𝑲)

| 𝜎𝑘)                                             (3.17) 

where the first three steps follow from the chain rule and the last step follows from Markov 

properties of the state in a trellis. 

At this point, let define 𝛼𝑘−1(𝜎𝑘−1), 𝛽𝑘(𝜎𝑘) and 𝛾𝑘(𝜎𝑘−1, 𝜎𝑘) as: 

 𝛼𝑘−1(𝜎𝑘−1) = 𝑃 ( 𝜎𝑘−1, 𝒛
′
𝟏
(𝒌−𝟏)

) 

𝛽𝑘(𝜎𝑘)  =  𝑃 (𝒛′𝒌+𝟏
(𝑲)

| 𝜎𝑘)  

𝛾𝑘(𝜎𝑘−1, 𝜎𝑘) = 𝑃(𝜎𝑘 , 𝒛𝒌
′ |𝜎𝑘−1) 

Using these definitions in equation (3.17), we have  

𝑃(𝜎𝑘−1, 𝜎𝑘 , 𝒛
′) =  𝛼𝑘−1(𝜎𝑘−1)𝛾𝑘(𝜎𝑘−1, 𝜎𝑘)𝛽𝑘(𝜎𝑘)                                                                          (3.18) 

Then, the equation (3.15) can be rewritten as  

𝑏̂𝑘 = 𝑎𝑟𝑔 max
𝑙∈{0,1}

∑  𝛼𝑘−1(𝜎𝑘−1)𝛾𝑘(𝜎𝑘−1, 𝜎𝑘)𝛽𝑘(𝜎𝑘)                                                         (3.19)

(𝜎𝑘−1,𝜎𝑘)∈𝑆𝑙

 

This equation indicates that calculation of the values of 𝛼𝑘−1(𝜎𝑘−1), 𝛽𝑘(𝜎𝑘) and 𝛾𝑘(𝜎𝑘−1, 𝜎𝑘) 

is needed for MAP decoding. 

In order to facilitate the computation, there is a need to derive recursion relations for 

𝛼𝑘−1(𝜎𝑘−1) and 𝛽𝑘(𝜎𝑘). 

The Forward Recursion for 𝜶𝒌(𝝈𝒌): 𝛼𝑘(𝜎𝑘) can be obtained by using a forward recursion 

of the following form as proved in [37]. 

𝛼𝑘(𝜎𝑘) = ∑ 𝛾𝑘(𝜎𝑘−1, 𝜎𝑘)𝛼𝑘−1(𝜎𝑘−1),

𝜎𝑘−1∈∑

     1 ≤ 𝑘 ≤ 𝐾                                                               (3.20) 

where ∑ denotes the set of all states. This relation means that if the values of 𝛾𝑘(𝜎𝑘−1, 𝜎𝑘) 

are given, it is possible to obtain 𝛼𝑘(𝜎𝑘) from 𝛼𝑘−1(𝜎𝑘−1). Assuming that the trellis starts in 

the all-zero state, then the initial condition for the forward recursion becomes: 

𝛼0(𝜎0) = 𝑃(𝜎0) = {
1        𝜎0 = 0 
0        𝜎0 ≠ 0

                                                                                                        (3.21) 

Equations (3.20) and (3.21) provide a complete set of recursions for computing the values 

of 𝛼. 
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The Backward Recursion for 𝜷𝒌(𝝈𝒌): 𝛽𝑘−1(𝜎𝑘−1) can be obtained by using a backward 

recursion of the following form as proved in [37]. 

𝛽𝑘−1(𝜎𝑘−1) = ∑ 𝛽𝑘(𝜎𝑘)𝛾𝑘(𝜎𝑘−1, 𝜎𝑘),

𝜎𝑘∈∑

     1 ≤ 𝑘 ≤ 𝐾                                                                   (3.22) 

 Assuming that the trellis is terminated in the all-zero state, the boundary condition for the 

backward recursion becomes: 

𝛽𝐾(𝜎𝐾) = {
1        𝜎𝐾 = 0 
0        𝜎𝐾 ≠ 0

                                                                                                                        (3.23) 

These two recursive relations together with their conditions provide the necessary 

equations to determine 𝛼′𝑠 and 𝛽′𝑠 when 𝛾′𝑠 are known.  

Computing 𝜸𝒌(𝝈𝒌−𝟏, 𝝈𝒌): It is possible to rewrite 𝛾𝑘(𝜎𝑘−1, 𝜎𝑘) according to the conclusion 

of the equation (3.13) which mentions that there is a one-to-one mapping between a pair 

of states (𝜎𝑘−1, 𝜎𝑘) and the input 𝑏𝑘  as  

𝛾𝑘(𝜎𝑘−1, 𝜎𝑘) = 𝑃(𝜎𝑘 , 𝒛𝒌
′ |𝜎𝑘−1) = 𝑃(𝜎𝑘|𝜎𝑘−1)𝑃(𝒛𝒌

′ |𝜎𝑘, 𝜎𝑘−1) = 𝑃(𝑏𝑘)𝑃(𝒛𝒌
′ |𝑏𝑘)                                 

                         = 𝑃(𝑏𝑘)𝑃(𝒛𝒌
′ |𝒄𝒌)         1 ≤ 𝑘 ≤ 𝐾                                                                                (3.24) 

It is seen that 𝛾𝑘(𝜎𝑘−1, 𝜎𝑘) depends on 𝑃(𝑏𝑘) which is the prior probability of the information 

sequence at time 𝑘 and 𝑃(𝒛𝒌
′ |𝒄𝒌) which depends on the channel characteristics.  

The equation (3.19) together with the forward equation, the backward equation and the 

equation (3.24) which are for calculating 𝛼, 𝛽 and 𝛾, respectively, are known as the BCJR 

algorithm.  

Note the BCJR algorithm finds the most likely individual bits or symbols. The BCJR 

algorithm also provides the values of 𝑃(𝑏𝑘|𝒛
′). These values provide the level of certainty 

of the decoder about the value of 𝑏𝑘 and are called soft outputs or soft values. Therefore, 

it is possible to find the a posteriori Log-likelihood ratio values (soft outputs) as: 

𝐿𝐿𝑅(𝑏𝑘) = 𝑙𝑛
𝑃(𝑏𝑘 = 1|𝒛′)

𝑃(𝑏𝑘 = 0|𝒛′)
= 𝑙𝑛

𝑃(𝑏𝑘 = 1, 𝒛′)

𝑃(𝑏𝑘 = 0, 𝒛′)
                                                                                             

                 = 𝑙𝑛
∑  𝛼𝑘−1(𝜎𝑘−1)𝛾𝑘(𝜎𝑘−1, 𝜎𝑘)𝛽𝑘(𝜎𝑘)(𝜎𝑘−1,𝜎𝑘)∈𝑆1

∑  𝛼𝑘−1(𝜎𝑘−1)𝛾𝑘(𝜎𝑘−1, 𝜎𝑘)𝛽𝑘(𝜎𝑘)(𝜎𝑘−1,𝜎𝑘)∈𝑆0

                                                        (3.25) 

A decoder such as the BCJR decoder that accepts soft inputs (the vector 𝒛′) and generates 

soft outputs is called soft-input soft-output (SISO) decoder. Note that the decoding rule 

based on 𝐿𝐿𝑅(𝑏𝑘) soft values is given by: 

𝑏̂𝑘 = {
1                𝐿𝐿𝑅(𝑏𝑘) ≥  0  

0                𝐿𝐿𝑅(𝑏𝑘) < 0
                                                                                                             (3.26) 
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According to [37], it is known that this version of the BCJR algorithm is not numerically 

stable, particularly if the trellis length is long. Therefore, an alternative to this algorithm, 

which is known as the Log-APP (logarithm of a posteriori probability) algorithm, is used. 

In the Log-APP algorithm, instead of 𝛼, 𝛽 and 𝛾, their logarithms are defined as:  

𝛼̃𝑘(𝜎𝑘) = ln (𝛼𝑘(𝜎𝑘)) 

𝛽̃𝑘(𝜎𝑘) = ln (𝛽𝑘(𝜎𝑘)) 

𝛾̃𝑘(𝜎𝑘−1, 𝜎𝑘) = ln (𝛾𝑘(𝜎𝑘−1, 𝜎𝑘)) 

Therefore, the forward and the backward recursions have the following forms: 

𝛼̃𝑘(𝜎𝑘) = 𝑙𝑛( ∑ exp (𝛾̃𝑘(𝜎𝑘−1, 𝜎𝑘) + 𝛼̃𝑘−1(𝜎𝑘−1))  

𝜎𝑘−1∈∑

)                                                           (3.27) 

𝛽̃𝑘−1(𝜎𝑘−1) = 𝑙𝑛( ∑ exp (𝛾̃𝑘(𝜎𝑘−1, 𝜎𝑘) + 𝛽̃𝑘(𝜎𝑘))  

𝜎𝑘−1∈∑

)                                                          (3.28)  

with the initial conditions in case of terminated trellis: 

𝛼̃0(𝜎0) = {
0             𝜎0 = 0 
−∞        𝜎0 ≠ 0

                       𝛽̃𝐾(𝜎𝐾) = {
0             𝜎𝐾 = 0 
−∞        𝜎𝐾 ≠ 0

                                         (3.29) 

and the a posteriori 𝐿𝐿𝑅 values are computed as:  

𝐿𝐿𝑅(𝑏𝑘) = 𝑙𝑛 [ ∑ exp (𝛾̃𝑘(𝜎𝑘−1, 𝜎𝑘) + 𝛼̃𝑘−1(𝜎𝑘−1) + 𝛽̃𝑘(𝜎𝑘))
(𝜎𝑘−1,𝜎𝑘)∈𝑆1

]

− 𝑙𝑛 [ ∑ exp (𝛾̃𝑘(𝜎𝑘−1, 𝜎𝑘) + 𝛼̃𝑘−1(𝜎𝑘−1) + 𝛽̃𝑘(𝜎𝑘))
(𝜎𝑘−1,𝜎𝑘)∈𝑆0

]                     (3.30) 

These relations are numerically more stable but are not computationally efficient. To 

improve the computational efficiency, the following notation is introduced: 

𝑚𝑎𝑥∗{𝑥̈, 𝑦̈} ≜ ln(𝑒 𝑥̈ + 𝑒𝑦̈)                                                                                                                     (3.31) 

𝑚𝑎𝑥∗{𝑥̈, 𝑦̈, 𝑧̈} ≜ ln(𝑒 𝑥̈ + 𝑒𝑦̈ + 𝑒 𝑧̈)                                                                                                       (3.32) 

Using these definitions, the recursion formulas are: 

𝛼̃𝑘(𝜎𝑘) = max
𝜎𝑘−1∈∑

∗{𝛾̃𝑘(𝜎𝑘−1, 𝜎𝑘) + 𝛼̃𝑘−1(𝜎𝑘−1)}                                                                               (3.33) 

𝛽̃𝑘−1(𝜎𝑘−1) = max
𝜎𝑘∈∑

∗{𝛾̃𝑘(𝜎𝑘−1, 𝜎𝑘) + 𝛽̃𝑘(𝜎𝑘)}                                                                                   (3.34) 
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where the initial conditions are given by equation (3.29). The a posteriori 𝐿𝐿𝑅 values are 

given by: 

𝐿𝐿𝑅(𝑏𝑘) = max
(𝜎𝑘−1,𝜎𝑘)∈𝑆1

∗{ 𝛾̃𝑘(𝜎𝑘−1, 𝜎𝑘) + 𝛼̃𝑘−1(𝜎𝑘−1) + 𝛽̃𝑘(𝜎𝑘)}

− max
(𝜎𝑘−1,𝜎𝑘)∈𝑆0

∗{𝛾̃𝑘(𝜎𝑘−1, 𝜎𝑘) + 𝛼̃𝑘−1(𝜎𝑘−1) + 𝛽̃𝑘(𝜎𝑘)}                                     (3.35) 

It is shown in the [37] that  

𝑚𝑎𝑥∗{𝑥̈, 𝑦̈} = max{𝑥̈, 𝑦̈} + ln(1 + 𝑒−|𝑥̈−𝑦̈|)                                                                                      (3.36) 

𝑚𝑎𝑥∗{𝑥̈, 𝑦̈, 𝑧̈} = 𝑚𝑎𝑥∗{𝑚𝑎𝑥∗{𝑥̈, 𝑦̈}, 𝑧̈}                                                                                                 (3.37) 

The term ln (1 + 𝑒−|𝑥̈−𝑦̈|) is small when 𝑥̈ and 𝑦̈ are not close. Its maximum occurs when 𝑥̈ =

𝑦̈. If 𝑥̈ and 𝑦̈ are large or when they are not close, we can use the approximation 

𝑚𝑎𝑥∗{𝑥̈, 𝑦̈} ≈ max{𝑥̈, 𝑦̈}                                                                                                                          (3.38) 

𝑚𝑎𝑥∗{𝑥̈, 𝑦̈, 𝑧̈} ≈ max{𝑥̈, 𝑦̈, 𝑧̈}                                                                                                                  (3.39) 

Theses approximations are valid when 𝑥̈, 𝑦̈ and 𝑧̈ are not close and generally would result 

in a small performance degradation. The resulting algorithm is a suboptimal implementation 

of the MAP algorithm and called Max-Log-APP algorithm which has been used in this work. 

The symbol estimator should be scaled according to the amplitude of the received QPSK 

symbols in this algorithm. 

In the summary, the BCJR algorithm can be carried out as outlined next: 

1. Initialize the algorithm with the boundary conditions 𝛼̃0(𝜎0) = 𝛽̃𝐾(𝜎𝐾) considering 

the trellis is circular as in the case of TBCC. 

2. Given prior probabilities 𝑃(𝑏𝑘)(usually, the decoding starts assuming equiprobable 

bit values), the channel characteristics metrics (𝑃(𝒛𝒌
′ |𝒄𝒌)), and the received 

sequence (𝒛′), compute the 𝜸‘s. 

3. Use the forward recursion to compute the 𝜶‘s. 

4. Use the backward recursion to compute the 𝜷’s. 

5. Compute the posterior probabilities (𝑃(𝑏𝑘|𝒛
′)), and make a decision. 

Note that, in the BCJR algorithm, we have to pass through the trellis once in the forward 

direction and another in the backward direction. Therefore, the complexity of this algorithm 

is roughly twice the complexity of the Viterbi algorithm. Also, because in the forward pass 

the values of 𝜶 have to be stored, the storage requirements of the BCJR algorithm are 

more demanding. 

It is also worth mentioning that the algorithm needs to know the distribution of the starting 

and ending trellis states or at least to be assigned a priori probability. For tail-biting 

convolutional codes, the initial/final state is unknown a priori. Therefore, it starts with 

equiprobable initial states which leads to approximately true a priori probabilities after 

recursion [39]. 
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4. Short Packet Transmission 

In modern wireless system, each transmitted packet consists of payload bits (data) and 

control information bits. Usually, the packets are long because of the following two reasons:  

1. According to a fundamental result in information theory, when the packet is long, there 

exists channel codes for which the information payload can be reconstructed with high 

probability. Intuitively, when the packet is long, both thermal noise and the distortions 

introduced by the propagation channel are averaged out because of the law of large 

numbers. 

2. Another reason is the fact that when the packet is long, the payload size contained in a 

packet is much larger than the control information associated with the packet. As a result, 

the existence of the control information does not deteriorate significantly the efficiency of 

the overall transmission. 

On the contrary, 5G needs to support flexible packet size. We know from [1] that URLLC 

refers to communication services like reliable cloud connectivity where data packets are 

exchanged at moderately low throughput but with stringent requirements in terms of 

reliability and latency. mMTC refers to scenarios like industrial control where a massive 

number of devices need to be supported in a given area. In this case, reliability must be 

high to cope with critical events. It is also known that major traffic in mMTC is generated 

by short control messages. Because it is crucial to use the degrees of freedom (DoFs) in 

optimal way to send data and control information, it is essential for a 5G system to also 

support short packet transmission in favour of both mMTC and URLLC as a generic mode 

of the mMTC. Furthermore, short packets will take less time to transfer resulting into less 

collisions in the physical layer. 

The physical layer design rules for short packet transmission are quite different from its 

classic asymptotic counterpart where block lengths are assumed asymptotically long. 

Conventionally, when the packet length is large, the coding and modulation schemes are 

used to adapt the transmission rate with constant control overhead. As a result of the 

coding limitations and the significant role of the control information, there is a rethinking 

necessity for the structure of short packets. The control information part consists of two 

parts: a preamble (pilot) and a header shown in Figure 4.1. The header is responsible to 

route a packet from a source to its intended destination by means of addresses and the 

preamble includes necessary information for packet detection, efficient synchronization (in 

time, phase and frequency), or estimation of channel state information (CSI), which are 

needed by the receiver to compensate for distortion of the transmitted signal introduced by 

the wireless channel. 

 

 

 

 

 

 

The number of connected devices in 5G is expected to be larger because of IoT (mMTC). 

Therefore, the header size is not expected to decrease. As a result, in order to optimize 
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Figure 4. 1. Examples of Short and Long packet with payload and control information 
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the DoFs usage, it is necessary to rethink the preamble part. At first, the researchers 

decided to keep the size of preamble fixed when the data length decreases as shown in 

Figure 4.2.b.  In this case, the preamble is no longer negligible in size compared to the 

payload. This results in a significant effect on the overall efficiency of the transmission. 

Then, they decided to decrease the preamble size proportionally to the data information 

size as shown in Figure 4.2.c. These two methods multiplex in time the detection sequence 

and the information data so that a fraction of the DoFs is used as a preamble for detection 

and the remaining for data transmission. Another idea is to superimpose the preamble word 

to the data symbols instead of embedding in a frame preamble [10], therefore, all DoFs will 

be used for both packet detection and data decoding. Finally, the last idea is to eliminate 

the preamble from the packet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Synchronization Problem 

As it is mentioned before, there are some upcoming applications which are expected to 

transmit critical information with low latency and ultra-high reliability in 5G system. 

Consequently, they should support short packet transmissions. It is also known that in order 

to be able to decode uniquely the codewords, initial synchronization is needed.  

Conventionally, there is a trade-off between improving the performance of frame 

synchronization and improving the performance of information throughput. Meaning that, 

the receiver needs to know the channel to decode the information efficiently. For this 

purpose, the transmitter should insert more preamble symbols into each transmitted 

packet, which incurs significant performance losses.  

If we consider a fixed preamble size, the throughput loss is more noticeable when the 

packet size is small. If the preamble size is shortened for having lower latency and better 

usage of DoFs, it is possible that the DA synchronizer would not be able to work properly 

a) Long data transmission used in current system 

 

 

 

b) Short data transmission when the training period is maintained 

 

 

 

c) Short data transmission when the current ratio of training period to data 

transmission period is maintained. 
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because the preamble size is too short to yield accurate estimates. As a result, we need to 

find a satisfactory synchronizer for this case. 

It is notable to mention that the information theorists have mostly viewed the design of 

preamble as something outside their competence area. As a consequence, the 

transmission of preamble has been left to heuristic approaches. It means in practice, all the 

current protocols are based on an assumption that the preamble is perfectly reliable [1]. 

4.2. Proposed Solution 

It is mentioned before that, if we decrease the preamble size proportionally to the data 

length, such preamble size may not be acceptable for short packets to estimate the 

synchronization errors. As a consequence, it is proposed to reduce or eliminate the 

preamble from the packet and consider turbo synchronization instead of DA 

synchronization in order to improve detection, decoding and also estimation of carrier 

synchronization errors. 

The reason is that the focus of this work is on the physical layer. And in this layer, it is 

possible to control user plane latency. As it is mentioned in the introduction, the user plane 

latency consists of the time-to-transmit latency, the propagation delay, the processing 

latency and retransmission time. We know turbo synchronization works properly at low 

SNR and using preamble leads to rate inefficiency. We also know that turbo 

synchronization allows to work with short or null preambles, required for short packet 

transmission. This will lead to some decrease in the time-to-transmit latency.   

But one question which arises here is that whether this solution leads to overall lower 

latency or not. Does turbo synchronization work properly in short packet transmission? Is 

there any limitation on the packet size reduction? 

4.2.1. Turbo Synchronization   

In contrast to DA synchronizers, which most times offer a simple closed-form expression 

for the ML estimator, CA and NDA synchronizers do not have such simple expression. This 

calls for an alternative solution based on iterative methods. There are two approaches for 

iterative methods: the decision-directed (DD) approach and the soft-decision-directed 

(SDD) approach. In both approaches, synchronization starts from an initial estimate of the 

synchronization parameters, then a decision is made about the transmitted symbols. After 

that, this decision is used to compute a new estimate of the synchronization parameters 

and so forth. The difference between DD and SDD are that SDD uses soft symbol decisions 

for estimation instead of hard decisions. Intuitively, it means that less reliable decisions 

should have less weight in the SDD synchronizer.  

The concept of SDD synchronization is a key ingredient of turbo synchronization because 

it is based on the exchange of soft information, in agreement with the turbo principle. There 

are different methods for the implementation of turbo synchronization such as the EM 

algorithm, gradient method and the sum-product algorithm [34]. In order to implement turbo 

synchronization, in this paper, the well-known iterative expectation maximization algorithm 

(EM) has been used. 
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4.2.1.1. EM Algorithm [33] 

The problem addressed in this section is to find the ML estimate 𝜑̂ of 𝜑, that is to say the 

solution of  

 𝜑̂ = 𝑎𝑟𝑔max
𝜑̃

{ln𝑃(𝒛| 𝜑̃ )}                                                                                                                        (4.1)     

where 𝒛 denote a random vector obtained by expanding the received modulated-signal 𝑧(𝑡) 

onto a suitable basis, 𝜑 indicates the phase error to be estimated from the observation of 

the received vector 𝒛, 𝜑̃ is a trial value of 𝜑 and 𝑃(𝒛|𝜑̃) = ∫ 𝑃(𝒛|𝒂 ,
𝒂 

𝜑̃)𝑃(𝒂 )𝑑𝑎 where we 

have assumed that 𝒛 also depends on a random discrete-valued nuisance parameter 

𝒂 independent of 𝜑 and with a priori probability density function 𝑃(𝒂). 

Unfortunately, there is no analytical solution to such a problem. In this case one has to use 

iterative numerical methods in order to find the solution of (4.1). One of these iterative 

methods is referred to as the EM algorithm. The EM algorithm alleviates the problem by 

breaking down the global maximization problem (4.1) into a sequence of easier problems 

i.e., the M-steps (4.3), according to the choice of the complete data set. The algorithm 

proceeds in two steps: the expectation step (E-step) and the maximization step (M-step). 

At iteration (𝑖), we have: 

E-step:  𝒬(𝜑̃, 𝜑̂(𝑖−1)) = ∫𝑃(𝒛̌|𝒛, 𝜑̂(𝑖−1)) ln 𝑃(𝒛̌| 𝜑̃) 𝑑𝒛̌                                                                  (4.2) 

M-step: 𝜑̂(𝑖) = 𝑎𝑟𝑔max
𝜑̃

{𝒬(𝜑̃, 𝜑̂(𝑖−1)) }                                                                                              (4.3) 

where 𝜑̂(𝑖) is the phase estimate computed at the 𝑖-th iteration and 𝒛̌ is related to 𝒛 by 𝒛 =

𝑓(𝒛̌), with  𝑓(. ) denoting a many-to-one mapping. The actual observation set 𝒛 and the 

extended observation set  𝒛̌ are usually referred to as the incomplete and the complete 

data set, respectively. The so-called complete data set may be chosen in many different 

ways. 𝒛 ̌may often selected as an extended observation vector for which the corresponding 

ML problem is easy to solve. Here, we consider 𝒛̌ ≜ [𝒛, 𝒂 ]. 

This algorithm converges under fairly general conditions [33] towards the ML 

estimate (4.1). By using the Bayes rule and the independence of 𝒂 and 𝜑, we may write: 

𝑃(𝒛̌|𝜑̃) = 𝑃(𝒛, 𝒂|𝜑̃) = 𝑃(𝒛|𝒂, 𝜑̃)𝑃(𝒂|𝜑̃) = 𝑃(𝒛|𝒂, 𝜑̃)𝑃(𝒂)                                                            (4.4) 

After this, the substitution of this result into (4.2) yields  

𝒬(𝜑̃, 𝜑̂(𝑖−1)) = ∫𝑃(𝒂|𝒛, 𝜑̂(𝑖−1)) ln𝑃(𝒛|𝒂, 𝜑̃) 𝑑𝒂 + ∫𝑃(𝒂|𝒛, 𝜑̂(𝑖−1)) ln 𝑃(𝒂) 𝑑𝒂                    (4.5) 

The second term does not depend on 𝜑̃ and does not affect the maximization operation in 

(4.3). Therefore, it can be dropped. As a result, the 𝒬-function has the following structure 

for the particular case of phase estimation in the presence of an independent nuisance 

vector 𝒂. 

𝒬(𝜑̃, 𝜑̂(𝑖−1)) = ∫𝑃(𝒂|𝒛, 𝜑̂(𝑖−1)) ln 𝑃(𝒛|𝒂, 𝜑̃) 𝑑𝒂                                                                               (4.6) 

It is seen that the estimation of synchronization parameter 𝜑 via the EM algorithm only 

requires the knowledge of posterior probabilities 𝑃(𝒂|𝒛, 𝜑̂(𝑖−1)) and the log-likelihood 

function ln 𝑃(𝒛|𝒂, 𝜑̃). 
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Now, we will apply the general aforementioned framework to the particular case of carrier 

phase synchronization from the samples at the output of matched filter (3.9). In this context, 

the nuisance parameter vector 𝒂 contains the values of the 𝐾 unknown transmitted data 

symbols (𝑎0, 𝑎1, . . , 𝑎𝐾−1) ∈ 𝒜𝐾, where 𝒜 is the constellation alphabet.  

If we neglect terms which are independent of 𝜑, the log-likelihood function can be written 

as  

ln 𝑃(𝒛|𝒂, 𝜑̃) = −2𝔑{∑ 𝑎𝑘
∗𝑧𝑘(𝑣, 𝜏)𝑒

−𝑗𝜑̃

𝐾−1

𝑘=0

} + ∑|𝑎𝑘|
2

𝐾−1

𝑘=0

                                                                    (4.7) 

 

where 𝑧𝑘(𝑣, 𝜏) is the matched filter output.  

Let define for each transmitted symbol 𝑎𝑘  

𝜂𝑘(𝒛, 𝜑̂
(𝑖−1)) ≜ ∫𝑎𝑘𝑃(𝒂|𝒛, 𝜑̂

(𝑖−1))𝑑𝒂 = ∑ 𝑎𝑘𝑃(𝑎𝑘 = 𝑎𝑚1
|𝒛, 𝜑̂(𝑖−1))                                (4.8)

𝑎𝑚1∈𝒜

 

𝜌𝑘(𝒛, 𝜑̂
(𝑖−1)) ≜ ∫ |𝑎𝑘|

2 𝑃(𝒂|𝒛, 𝜑̂(𝑖−1))𝑑𝒂 = ∑ |𝑎𝑘|
2 𝑃(𝑎𝑘 = 𝑎𝑚1

|𝒛, 𝜑̂(𝑖−1))                    (4.9)

𝑎𝑚1∈𝒜

 

Using these definitions and replacing (4.7) in (4.6), we get 

𝒬(𝜑̃, 𝜑̂(𝑖−1)) = −2𝔑{∑ 𝜂𝑘
∗(𝒛, 𝜑̂(𝑖−1))𝑧𝑘(𝑣, 𝜏)𝑒

−𝑗𝜑̃

𝐾−1

𝑘=0

} + ∑ 𝜌𝑘(𝒛, 𝜑̂
(𝑖−1))                            (4.10)

𝐾−1

𝑘=0

 

Consequently, the solution of the maximization step is  

𝜑̂(𝑖) = 𝑎𝑟𝑔 {∑ 𝜂𝑘
∗(𝒛, 𝜑̂(𝑖−1))𝑧𝑘(𝑣, 𝜏)

𝐾−1

𝑘=0

}                                                                                             (4.11) 

Note that the a posteriori average values 𝜂𝑘(𝒛, 𝜑̂
(𝑖−1)) can be computed from the marginal 

posterior probabilities 𝑃(𝑎𝑘|𝒛, 𝜑̂
(𝑖−1)). In other words, for this particular case, the 

implementation of an iterative ML estimation algorithm only requires the evaluation of the 

marginal posterior probabilities 𝑃(𝑎𝑘|𝒛, 𝜑̂
(𝑖−1)). This makes synchronization via the EM 

algorithm and BCJR decoders complementary since the marginal probabilities needed by 

the first one can be provided by the second one. This leads to the turbo synchronization 

algorithm described in Algorithm (1) where 𝐼𝑡𝑟 denotes the number of performed EM 

iterations. Step 2 means that the system will perform the BCJR decoding at each EM 

iteration. Step 3 is simply performed by resolving (4.11). 
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It is known that the final convergence point of the EM algorithm depends on its initialization 

like most iterative algorithms. Depending on its initialization, the EM algorithm may 

converge either to a saddle point, or to a local or the global maximum. In practice, the 

optimal performance depends on how close is the initial estimate to the global maximum. 

Therefore, at the first step, it is needed to consider an initial phase estimation close to true 

phase error to start turbo synchronization. This initial step is generally referred to as phase 

acquisition. 

4.2.1.1.1. Initial Phase Estimation (Phase Acquisition) 

Usually, initialization of turbo synchronization is done by means of considering short 

preambles and solving formula (3.10) for computing 𝜑0 (𝜑0 = 𝜑̂𝐷𝐴) . As it is mentioned 

before, since the preamble usage may not be efficient in short packet transmission, we do 

not consider the preamble here. Therefore, another method is considered to do phase 

acquisition. It has the following steps: 

First the NDA phase estimate, 𝜑̂𝑉𝑉 , is calculated by formula (3.11) from previous chapter. 

Then, 𝑛𝑠 initial phases are obtained from the interval [𝜑̂𝑉𝑉, 𝜑̂𝑉𝑉 + 2𝜋] by the following 

formula: 

𝜑0
(𝑙)

= 𝜑̂𝑉𝑉 +
(𝑙 − 1)2𝜋

𝑛𝑠
        𝑙 = 1,2,… , 𝑛𝑠                                                                                        (4.12) 

Then, each of these 𝑛𝑠 phases is considered as an initial phase correction that is applied 

to the output of matched filter. Then, after phase correction and demapping, the sequence 

of numbers goes through the decoder. At this step, the BCJR decoder (SISO decoder) 

computes the (logarithmic) a posteriori probability ratio (LAPPR) of each transmitted 

(encoded) bit 𝑐𝑛, which constitutes a reliability metric on the decision of 𝑐𝑛. Then, LAPPRs 

are converted from bit level a posteriori probabilities to symbol level a posteriori 

probabilities. The LAPPR of 𝑛-th coded bit, 𝑐𝑛, is defined as 

𝐿𝑛 ≜ ln
𝑃(𝑐𝑛 = 1|𝒛)

𝑃(𝑐𝑛 = 0|𝒛)
         𝑛 = 1,2,… ,𝑁 

Since we know that 𝑃(𝑐𝑛 = 0|𝒛) + 𝑃(𝑐𝑛 = 1|𝒛) = 1, it is possible to recover the a posteriori 

probabilities from  𝐿𝑛 as follows: 

Algorithm (1) 

1. 𝜑̂(0) = 𝜑0; 

    for  𝑖 = 1 → 𝑖 = 𝐼𝑡𝑟 do 

2.         Perform BCJR  decoding ; 

3.         Computation 𝜑̂(𝑖) ; 

    end 

Table 4. 1. EM algorithm 
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 {
𝑃(𝑐𝑛 = 0) =

1

1+𝑒𝐿𝑛

𝑃(𝑐𝑛 = 1) =
𝑒𝐿𝑛

1+𝑒𝐿𝑛

 

And, finally, we are able to calculate the symbol level a posteriori probabilities from these 

bit level a posteriori probabilities, as indicated next. 

For a Gray-mapped QPSK constellation, the symbols 𝑎𝑚1,𝑘(𝑚1 = 1,… ,4) can be 

represented as: 

𝑎𝑚1,𝑘
= 𝑐′𝑚1,𝑘

(1)
 + 𝑗𝑐′𝑚1,𝑘

(2)
 

where 𝑐′𝑚1,𝑘

(1)
 and 𝑐′𝑚1,𝑘

(2)
 belong to {−1,1} and are associated to the pair of coded bits, that 

were mapped onto the symbol 𝑎𝑚1,𝑘. For QPSK, the symbol 𝑎𝑚1,𝑘
 can take the following 

four values: 

𝑎1 = −1− 𝑗 

𝑎2 = −1+ 𝑗 

𝑎3 = +1+ 𝑗 

𝑎4 = +1− 𝑗 

Consequently, if we have soft decisions about the coded bits 𝑐′𝑚1,𝑘

(1)
 and 𝑐′𝑚1,𝑘

(2)
, we can find 

the soft decision about 𝑎𝑚1,𝑘
 . Soft decisions about the coded bits can be derived by the 

BCJR decoder. At the output of the decoder, the following LAPPR 𝐿𝐿𝑅𝑚1,𝑘

(1)
and 𝐿𝐿𝑅𝑚1,𝑘

(2)
are 

available: 

𝐿𝐿𝑅𝑚1,𝑘

(𝑖′)
= log(

𝑃(𝑐′𝑚1,𝑘

(𝑖′)
= 1|𝒛, 𝜑̂)

𝑃(𝑐′𝑚1,𝑘
(𝑖′)

= −1|𝒛, 𝜑̂)
)  𝑓𝑜𝑟 𝑖′ = 1,2 

where 𝑃 (𝑐′𝑚1,𝑘

(𝑖′)
= 1|𝒛, 𝜑̂) + 𝑃 (𝑐′𝑚1,𝑘

(𝑖′)
= −1|𝒛, 𝜑̂) = 1. Then, we have  

{
 
 

 
 𝑃(𝑐′𝑚1,𝑘

(𝑖′)
= −1|𝒛, 𝜑̂) =

1

1 + 𝑒
𝐿𝐿𝑅𝑚1,𝑘

(𝑖′)

𝑃(𝑐′𝑚1,𝑘
(𝑖′)

= 1|𝒛, 𝜑̂) =
𝑒
𝐿𝐿𝑅𝑚1,𝑘

(𝑖′)

1 + 𝑒
𝐿𝐿𝑅𝑚1,𝑘

(𝑖′)

 

Then, the symbol a posteriori probabilities will be: 

      𝑃(𝑎1,𝑘) = 𝑃 (𝑐′1,𝑘
(1)

= −1|𝒛, 𝜑̂) ∙ 𝑃(𝑐′1,𝑘
(2)

= −1|𝒛, 𝜑̂) 

   𝑃(𝑎2,𝑘) = 𝑃 (𝑐′2,𝑘
(1)

= −1|𝒛, 𝜑̂) ∙ 𝑃(𝑐′2,𝑘
(2)

= 1|𝒛, 𝜑̂) 

𝑃(𝑎3,𝑘) = 𝑃(𝑐′3,𝑘
(1)

= 1|𝒛, 𝜑̂) ∙ 𝑃(𝑐′3,𝑘
(2)

= 1|𝒛, 𝜑̂) 

   𝑃(𝑎4,𝑘) = 𝑃(𝑐′4,𝑘
(1)

= 1|𝒛, 𝜑̂) ∙ 𝑃(𝑐′4,𝑘
(2)

= −1|𝒛, 𝜑̂) 

From this soft information, the symbol 𝑎𝑘 will be estimated as follows: 
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𝑎̂𝑘 = ∑ 𝑎𝑚1,𝑘
. 𝑃(

𝑀=4

𝑚1=1

𝑎𝑚1,𝑘)      𝑘 = 1,2,… , 𝐾                                                                                     (4.13) 

It is seen that according to the formula, the estimated symbol is the weighted average of 

all the possible symbols values with 𝑃(𝑎𝑚1,𝑘
)s being the weights. In this method, the soft 

detected symbol does not necessarily coincide with a symbol of the constellation. In fact, 

when the reliability is high, it is close to a constellation point whereas it approaches zero 

when the decision is not reliable. 

At the last step, the symbol estimator is used to get the logarithm of likelihood function for 

each initial phase 𝜑0
(𝑙)
 (𝑙 = 1,… , 𝑛𝑠): 

𝐿𝐿𝐹 (𝜑0
(𝑙)) = ℜ(∑ 𝑎̂𝑘

∗

𝐾

𝑘=1

∙ 𝑧𝑘(𝑣, 𝜏)𝑒
−𝑗𝜑0

(𝑙)

 )                                                                                     (4.14) 

in which 𝑎̂𝑘 is obtained as explained before with 𝜑̂ = 𝜑0
(𝑙)

. 

Now, the initial phase estimator 𝜑0 will be the one for which the LLF is maximum. It is clear 

that if the number of points (𝑛𝑠) increases, it is more possible to find a phase near the true 

phase value. In this way, it is more probable to get the zero phase error and to reach the 

global maximum of the likelihood function. 

Now that we have computed 𝜑0, it is time to go through with the recursive structure of 

algorithm (1). Consequently, the maximization step formula (4.11) will be simplified to the 

following form:  

𝜑̂(𝑖) = 𝑎𝑟𝑔(∑ 𝑎̂𝑘
(𝑖−1)∗

𝐾

𝑘=1

∙ 𝑧𝑘(𝑣, 𝜏))                                                                                                   (4.15) 

where 𝑎̂𝑘
(𝑖)

 is the symbol soft-decision computed at the 𝑖-th EM iteration.                                

It is notable that the LAPPR used in the 𝑖-th iteration, depends on the phase estimate 

obtained in the previous iteration by the symbol estimation. 

4.3. Assessment of the Solution 

Ideally, we would like to design communication systems for which 𝑅 (data rate) is as large 

as possible while PER or BER is as small as possible at the same time.  

In addition, when we estimate an unknown parameter, a natural question arising is what 

the ultimate accuracy of the estimator is. Usually, the quality of a signal parameter estimator 

is measured in terms of its bias and its variance. In order to define these terms, suppose 

that there is a sequence of observations 𝒛 = (𝑧1, 𝑧2, 𝑧3, … , 𝑧𝐾) with the probability density 

function (PDF) 𝑃(𝒛|𝜑), from which an estimator of a parameter 𝜑 is extracted. The bias of 

an estimator, say 𝜑̂(𝒛), is defined as 

𝑏𝑖𝑎𝑠 = 𝐸[𝜑̂(𝒛)] − 𝜑                                                                                                                                 (4.16) 

where 𝜑 is the true value of the parameter. The estimator is unbiased when 𝐸[𝜑̂(𝒛)] = 𝜑. 

The variance of the estimator 𝜑̂(𝒛) is defined as  
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𝜎𝜑̂
2 = 𝐸{[𝜑̂(𝒛)]2} − {𝐸[𝜑̂(𝒛)]}2                                                                                                             (4.17) 

Generally, the variance computation may be difficult. Therefore, another alternative called 

Cramer-Rao lower bound (CRLB) is used to assess the best quality that any signal 

parameter unbiased estimator can achieve. 

Based on the aforementioned explanation, we will explain CRLB and BER in more detail 

as two assessment criteria. 

4.3.1. Cramer-Rao Lower Bound  

The Cramer-Rao lower bound is a bound on the variance of any unbiased estimator. At 

best, if an estimator attains the bound for all values of the unknown parameter, the 

estimator is the minimum variance unbiased estimator (MVU) and is said to be efficient in 

the sense that it uses effectively the available data. At worst, it provides a benchmark 

against which we can compare the performance of any unbiased estimator. Furthermore, 

it alerts us to physical impossibility of finding an unbiased estimator whose variance is less 

than the bound. 

Since all the information is embodied in the observed data and the underlying PDF, the 

estimation accuracy depends directly on the PDF. When the PDF is viewed as a function 

of the unknown parameter (𝒛 is fixed), it is termed likelihood function. Intuitively, the 

sharpness of likelihood function determines how accurately we can estimate the unknown 

parameter. The sharpness is effectively measured by the negative of the second derivative 

of the logarithm of likelihood function at its peak. This is the curvature of log-likelihood 

function. Since in general, the second derivative depends on the random observation 

vector 𝒛, it is necessary to compute  

−𝐸 {
𝜕2

𝜕𝜑2
𝑙𝑛𝑃(𝒛|𝜑)}                                                                                                                               (4.18)  

which measures the average curvature of log-likelihood function. The expectation is taken 

with respect to 𝑃(𝒛|𝜑), resulting in a function of 𝜑 only. 𝑃(𝒛|𝜑) is determined by 

 𝑃(𝒛|𝜑) = ∫ 𝑃(𝒛|𝒂, 𝜑)𝑃(𝒂)𝑑𝒂                                                                                                         (4.19)
∞

−∞
  

where 𝒂 is a random vector having a known PDF 𝑃(𝒂) which does not depend on 𝜑 and 

consists of all the other nuisance parameters, including the data.  

To compute CRLB, first it is assumed that the PDF satisfies the “regularity” condition (4.20). 

𝐸 [
𝜕

𝜕𝜑
𝑙𝑛𝑃(𝒛|𝜑)] = 0   𝑓𝑜𝑟 𝑎𝑙𝑙 𝜑                                                                                                           (4.20) 

where the expectation is taken with respect to 𝑃(𝒛|𝜑). Then, the variance of any unbiased 

estimator 𝜑̂ must satisfy  

𝜎𝜑̂
2 ≥

1

−𝐸 {
𝜕2

𝜕𝜑2 𝑙𝑛𝑃(𝒛|𝜑)}   
=

1

𝐸𝒛 {[
𝜕
𝜕𝜑

𝑙𝑛𝑃(𝒛|𝜑)]
2

}

= 𝐶𝑅𝐿𝐵(𝜑)                                               (4.21) 

where the derivative is evaluated at the true value of 𝜑 and the expectation is taken with 

respect to 𝑃(𝒛|𝜑). It is clear that the lager the quantity in (4.18), the smaller the variance 
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of the estimator. Furthermore, an unbiased estimator may be found that attains the bound 

for all 𝜑 if and only if  

𝜕

𝜕𝜑
𝑙𝑛𝑃(𝒛|𝜑) = 𝐼(𝜑)(𝑦(𝒛) − 𝜑)                                                                                                           (4.22) 

for some functions 𝑦 and 𝐼. That estimator, which is the MVU estimator, is 𝜑̂ = 𝑦(𝒛), and 

the minimum variance is 1
𝐼(𝜑)⁄  where 𝐼(𝜑) is called the Fisher information matrix (FIM), 

which is related with CRLB by 

𝐶𝑅𝐿𝐵(𝜑) = 𝐼−1(𝜑)                                                                                                                                  (4.23) 

Intuitively, the more information, the lower the bound. 

4.3.1.1. Data-Aided CRLB and Modified CRLB 

Unfortunately, in most practical cases, the computation of (4.21) is impossible because of 

either the integration in (4.19) is not able to be carried out analytically or the expectation in 

(4.21) poses insuperable obstacles. Therefore, it is recommended to resort to another 

bound which is a lower bound to the variance of any parameter estimator 𝜑̂(𝒛), called the 

Modified CRLB and calculated by (4.24). It is useful when besides the unknown parameter, 

the observed data also depends on other unwanted parameters. 

𝑀𝐶𝑅𝐿𝐵(𝜑)  =
1

𝐸𝒛,𝒂 {[
𝜕
𝜕𝜑

𝑙𝑛𝑃(𝒛|𝒂, 𝜑)]
2

}

                                                                                        (4.24) 

We know from equality (3.9) that the output of matched filter, which has a complex 

envelope, is: 𝑧(𝑡) = ∑ 𝑎𝑘𝑒
𝑖𝜑

𝑘 𝑔(𝑡 − 𝑘𝑇) + 𝑛(𝑡)  

where 𝑇 is the symbol spacing, the data symbols {𝑎𝑘} are zero-mean and independent 

random variables, 𝑔(𝑡) is the real-valued signalling pulse and 𝑛(𝑡) represents complex-

valued additive white Gaussian noise with two-side power spectral density 2𝑁0. The only 

unknown parameter is the carrier phase error 𝜑 which is assumed to be deterministic and 

independent of the data. An exact representation of the observed waveform 𝑧(𝑡) would 

require infinite-dimensional vector spaces but, for the time being, we assume that a finite-

dimensional vector 𝒛 can be found to represent 𝑧(𝑡) with adequate accuracy within the 

observation interval. Therefore, assume that 𝒛 has 𝐾 components so that we have: 𝑧𝑘 =

𝑎𝑘𝑒
𝑖𝜑 + 𝑛𝑘      𝑘 = 1,2, … , 𝐾 

where the {𝑛𝑘} complex samples are independent and equally distributed Gaussian random 

variables with zero-mean and variance 𝜎𝑁
2 for both the real and imaginary components of 

the complex noise 𝑛𝑘. 

Now, we are able to define 𝑃(𝒛|𝒂,𝜑) as the following: 

𝑃(𝒛|𝒂, 𝜑)  =
1

(2𝜋𝜎𝑁
2)

𝐾
2

𝑒𝑥𝑝 {−
1

2𝜎𝑁
2 ∑[𝑧𝑘 − 𝑎𝑘𝑒

𝑖𝜑]
2

𝐾

𝑘=1

}                                                                   (4.25) 
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If the number of dimensions of 𝒛 tends to infinity, to use (4.24), 𝑃(𝒛|𝒂, 𝜑)  is replaced by 

another likelihood function Λ(𝜑, 𝒂) which is defined as: 

Λ(𝜑, 𝒂) = 𝑒𝑥𝑝 [−
1

2𝑁0
∫ |𝑧(𝑡) − 𝑎(𝑡)𝑒𝑖𝜑|

2
𝑑𝑡

𝑇

]                                                                              (4.26) 

 Note that the expectation over 𝒛 in (4.24) can be replaced by the expectation over the 

noise process 𝑛(𝑡). 

𝑀𝐶𝑅𝐿𝐵(𝜑)  =
1

𝐸𝑛,𝒂 {[
𝜕
𝜕𝜑

𝑙𝑛Λ(𝜑, 𝒂)]
2

}

                                                                                               (4.27) 

Then, if we solved this expectation according to [30], we have 

 𝜎𝜑̂
2 ≥ 𝑀𝐶𝑅𝐿𝐵(𝜑) =

1

2𝐾𝜌
                                                                                                                      (4.28) 

where 𝜌 is the energy per transmitted symbol over the noise spectral density 𝑁0 at the 

receiver input, 𝐾 is the number of transmitted symbols. 

Now, assume that 𝒂 is a known deterministic quantity, then,  𝑃(𝒂) can be expressed using 

Dirac’s deltas as follows: 

𝑃(𝒂) = ∏ 𝛿(𝑎𝑘 − 𝑎̌𝑘)                                                                                                                      (4.29)

𝐾𝑝𝑟𝑒−1

𝑘=0

 

where 𝑎̌𝑘 is the value of the preamble symbol at time 𝑘. As a result, 𝑃(𝒛|𝜑) = 𝑃(𝒛|𝒂̌, 𝜑). 

This DA assumption enables the derivation of a closed-form expression for the DA CRLB 

which is: 

𝐶𝑅𝐿𝐵𝐷𝐴(𝜑) =
1

2𝐾𝑝𝑟𝑒𝜌
                                                                                                                            (4.30) 

where 𝐾𝑝𝑟𝑒 is the number of preamble symbols. 

In computing MCRLB, the assumption is that essentially no information is available on the 

unwanted parameters. In this hypothesis, the MCRLB is looser than the DA CRLB in 

general (𝐶𝑅𝐿𝐵𝐷𝐴(𝜑) ≥ 𝑀𝐶𝑅𝐿𝐵(𝜑)) because the other parameters and data are known in 

the DA case. In this way, the calculation of the DA CRLB is simpler. The MCRLB equals to 

the DA CRLB if all the data symbols were known to the receiver, i.e., for large SNR.  

Since usually no estimator can provide a lower variance than that obtained by the exact 

CRLB, it may be asked whether it is possible to attain the MCRLB. According to [30], if 

enough information is provided, the MCRLB can actually be attained. For example, if it is 

assumed that frequency offset, timing and the data are available. As a consequence, the 

estimation process relies on a perfectly known transmitted sequence. 

It is known that computing the CRLB for NDA and CA is more complex than for DA due to 

the summation over 𝒂. Therefore, the modified CRLB and DA CRLB are the first options to 

be used. 
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4.3.1.2. Non-Data-Aided CRLB  

It was mentioned before that, unfortunately, the evaluation of the exact CRLB is 

mathematically quite difficult when the observed signal contains random discrete data and 

random noise in addition to the parameter to be estimated. And also it is stated that the 

first option was to compute MCRLB (or DA CRLB). Another option is to apply a blind 

estimation process that only assumes statistical knowledge on the random transmitted 

symbols. This leads to another bound called non-data-aided (NDA) CRLB. NDA CRLB is 

the exact CRLB if the information symbols are unknown and are viewed as nuisance 

parameters. It is also known that this method has very poor estimation performance, 

especially in the presence of short data record in the low SNR region [31]. 

In this thesis, the observations are the noisy linearly modulated waveforms that are a 

function of deterministic parameters like the carrier phase as well as the data symbol 

sequence. In order to calculate NDA CRLB, the assumption is that there is no a priori 

information about an unknown parameter 𝜑, i.e. 𝑃(𝜑) is uniform and the transmitted 

symbols are usually assumed to be equally likely, i.e. 

Pr[𝑎𝑘 = 𝑎𝑚1
] =

1

|𝒜|
=

1

𝑀
         𝑓𝑜𝑟  𝑘 = 𝑘0, 𝑘0 + 1,… , 𝑘0 + 𝐾 − 1  𝑎𝑛𝑑 𝑚1 = 1,… ,𝑀       (4.31) 

where 𝐾 is the total number of recorded data and 𝑘0 refers to the time instant of the first 

observed sample.  

Since {𝑎𝑘} is a sequence of independent identically distributed (i.i.d) data symbols, we have 

𝑃(𝒂) =
1

|𝒜|𝐾
  ∀𝒂 ∈ 𝒜𝐾                                                                                                                          (4.32) 

We know that the observation vector 𝒛 which is obtained at the output of the matched filter 

is: 

𝑧𝑘 = 𝑎𝑘𝑒
𝑗𝜑 + 𝑛𝑘      𝑓𝑜𝑟 𝑘 = 𝑘0 +⋯+ 𝑘0 + 𝐾 − 1                                                                         (4.33) 

where the unknown parameter 𝜑 is deterministic. The sequence {𝑛𝑘} consists of i.i.d zero-

mean complex Gaussian noise random variables with variance𝜎𝑁
2 ≜ 𝐸|𝑛𝑘|

2. The symbols 

𝑎𝑘 are assumed to be independent from 𝑛𝑘. If the sequence of symbols can be deemed 

independent, 𝑧𝑘s are independently identically distributed according to the following 

mixture of Gaussian distribution. 

𝑃(𝑧𝑘|𝜑) =
1

𝑀2𝜋𝜎𝑁
2 ∑ 𝑒𝑥𝑝(−

|𝑧𝑘 − 𝑎𝑚1
𝑒𝑗𝜑|

2

2𝜎𝑁
2 )                                                                         

𝑀

𝑚1=1

(4.34) 

Using the independence of the random variables 𝑧𝑘, the FIM is given by: 

𝐼(𝜑) = − ∑ 𝐸(
𝜕2𝑙𝑛𝑃(𝑧𝑘|𝜑)

𝜕𝜑2 )

𝑘0+𝐾−1

𝑘=𝑘0

                                                                                                     (4.35) 

Then, according to [31], the CRLB for QPSK modulation is:  

𝐶𝑅𝐿𝐵𝑁𝐷𝐴(𝜑) = 𝑀𝐶𝑅𝐿𝐵(𝜑)(
1

1 − (1 + 𝜌)𝑓1 (
𝜌
2)
)                                                                         (4.36) 
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where 𝑓1 is the following decreasing function of 𝜌: 

𝑓1(𝜌) ≝
2𝑒−𝜌

√2𝜋
∫

𝑒
−𝑢2

2

𝑐𝑜𝑠ℎ(𝑢√2𝜌)
𝑑𝑢

+∞

0

                                                                                                   (4.37) 

Note that the hypothesis of independence of ℜ(𝑎𝑘) and ℑ(𝑎𝑘) is taken into account for 

QPSK. 

4.3.1.3. Code-Aided CRLB 

When there are unknown and random transmitted symbols besides the synchronization 

parameters, another option is CA CRLB. The only needed quantity to evaluate this newly 

CRLB is the extrinsic information outputted by the MAP SISO decoder.  

Note that having the APPs at hand, it is possible to evaluate all the quantities involved in 

the expressions of the CRLB. 

The received samples at the output of the matched filter are modelled like (4.33) where 𝐾 

is the total number of recorded data and 𝑘0 refers to the time instant of the first observed 

sample. The unknown parameter 𝜑 is deterministic. The noise components, {𝑛𝑘}, are 

modeled as zero mean complex Gaussian random variables with independent real and 

imaginary parts, each of variance 𝜎𝑁
2. Without loss of generality, it is also assumed that the 

energy of the transmitted symbols is normalized to one (i.e.𝐸{|𝑎𝑘|
2} = 1). So that the 

average SNR of the system is given by 𝜌 =
𝐸{|𝑎𝑘|

2}

2𝜎𝑁
2 =

1

2𝜎𝑁
2  (the channel gain is considered 

here equal to one).  

Based on the definition of CRLB, the first step is to find an explicit expression for the LLF 

or, equivalently, the PDF 𝑃(𝒛|𝜑). Since the coded bits are assumed to be statistically 

independent (assuming a long interleaver), the transmitted symbols, which are simply 

some real-valued representations for different blocks of these bits, can also be considered 

independent, leading to: 

𝑃(𝒛|𝜑) = ∏ 𝑃(𝑧𝑘|

 𝑘0+𝐾−1

𝑘= 𝑘0

𝜑)                                                                                                                     (4.38) 

Consequently, the LLF is: 

𝑙𝑛 𝑃(𝒛|𝜑) = ∑ 𝑙𝑛

𝑘0+𝐾−1

𝑘= 𝑘0

𝑃(𝑧𝑘|𝜑)                                                                                                            (4.39) 

The PDF of each received sample 𝑧𝑘, which is parameterized by the unknown parameter 

vector 𝜑 , is given by: 

𝑃(𝑧𝑘|𝜑) = ∑ Pr (𝑎𝑘 = 𝑎𝑚1

𝑎𝑚1∈𝒜

)𝑃(𝑧𝑘|𝑎𝑘 = 𝑎𝑚1
, 𝜑)                                                                                   

                 =
1

2𝜋𝜎𝑁
2 ∑ Pr (𝑎𝑘 = 𝑎𝑚1

𝑎𝑚1∈𝒜

)𝑒𝑥𝑝 {−
|𝑧𝑘 − 𝑎𝑚1

𝑒𝑗𝜑|
2

2𝜎𝑁
2 }                                                (4.40)  
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Now, the APPs, Pr (𝑎𝑘 = 𝑎𝑚1
), of the transmitted symbols involved in (4.33) must be found. 

In CA estimation, the APPs of the symbols given by the soft decoder must be used to 

enhance the estimation performance.  

In practice, the information about the LAPPRs of the conveyed bits is acquired from the 

output of the MAP SISO decoder at its convergence (here, at the convergence of the BCJR 

algorithm). 

In case of QPSK or bit-interleaved QAM constellations, the coded bits that are embedded 

in each channel symbol 𝑎𝑘 are statistically independent assuming that the receiver carrier 

phase is synchronized. Therefore, the symbol APPs can be factorized in terms of the APPs 

of the coded bits. 

Pr(𝑎𝑘 = 𝑎𝑚1
) = Pr [𝑏1

𝑘 = 𝑏̅1
𝑚1 , 𝑏2

𝑘 = 𝑏̅2
𝑚1 , … , 𝑏log2𝑀

𝑘 = 𝑏̅log2𝑀
𝑚1 ] = ∏ Pr[𝑏𝑙1

𝑘 = 𝑏̅𝑙1
𝑚1]

log2𝑀

𝑙1=1

     (4.41) 

It is also defined that the LAPPR of the 𝑙1-th coded bit, 𝑏𝑙1
𝑘 , conveyed by the transmission 

of the symbol, 𝑎𝑘 , as follows: 

𝐿𝐿𝑅𝑙1(𝑘) ≜ ln (
Pr[𝑏𝑙1

𝑘 = 1]

Pr[𝑏𝑙1
𝑘 = 0]

)                                                                                                                (4.42) 

Using (4.43)and the fact that Pr[𝑏𝑙1
𝑘 = 1] + Pr[𝑏𝑙1

𝑘 = 0] = 1,  it can be shown that:  

Pr[𝑏𝑙1
𝑘 = 1] =

𝑒
𝐿𝐿𝑅𝑙1

(𝑘)

1+𝑒
𝐿𝐿𝑅𝑙1

(𝑘) and Pr[𝑏𝑙1
𝑘 = 0] =

1

1+𝑒
𝐿𝐿𝑅𝑙1

(𝑘). So for every 𝑎𝑚1
 in 𝒜, if 𝑎𝑘 = 𝑎𝑚1

, 

then, we can write a generic expression: 

Pr[𝑏𝑙1
𝑘 = 𝑏̅𝑙1

𝑚1] =
1

2cosh (𝐿𝐿𝑅𝑙1(𝑘)/2)
𝑒
(𝑏̅𝑙1

𝑚1−1)
𝐿𝐿𝑅𝑙1

(𝑘)

2    

By solving the above equations, the probabilities Pr(𝑎𝑘 = 𝑎𝑚1
) can be computed. Then, if 

the methods in [24] are followed, the code-aided CRLB is calculated by  

𝐶𝑅𝐿𝐵𝐶𝐴(𝜑) = (∑ Ω𝑝,𝑘(𝜌)
𝑘0+𝐾−1

𝑘=𝑘0

)

−1

                                                                                               (4.43) 

where  

𝐸 {
𝜕2𝑙𝑛𝑃(𝑧|𝜑)

𝜕𝜑2 } =∑ Ω𝑝,𝑘(𝜌)
𝑘0+𝐾−1

𝑘=𝑘0

                                                                                                (4.44) 

To know more about it, you can refer to [24]. 

Since the values of all the obtained LAPPRs depend on the underlying noise realization, 

the new analytical CA CRLB are averaged over a small number of noise realization at every 

SNR point in order to smooth the curve. Typically, they were smoothed over 20 realizations.  

Moreover, the obtained CA CRLB does not depend on the true value of the unknown phase 

shift. Hence, it holds the same value for all the possible values of synchronization 

parameter. Thus, in our simulation, we evaluate the CA CRLB for phase error equals to 

zero (perfect synchronization). This provides the most reliable values for LAPPRs.  Note 

that, in the presence of non-zero values for 𝜑, the derotated samples, 𝑧𝑘𝑒
−𝑗𝜑, should be 

fed to the decoder. Anyway, the CRLB is always evaluated at the true value of the unknown 
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parameter so that it predicts the performance of turbo synchronization when, after 

convergence, it is tracking correctly the carrier phase. Like turbo synchronizers, the CA 

CRLB uses the soft outputs computed by the SISO decoder.  

4.3.2. Bit Error Probability  

The bit-error-rate performance of a receiver is a figure of merit that allows different designs 

to be compared in a fair manner. Bit-error-rate performance is usually depicted on a two 

dimensional graph. The abscissa is the normalized signal-to-noise (SNR) which is 

expressed as 𝐸𝑏/𝑁0: the energy-per-bit divided by the one-sided power spectral density of 

the noise, and is expressed in decibels (dB). The ordinate is the bit-error-rate, which is a 

dimensionless quantity and is usually expressed in powers of ten. 

Since the ultimate goal of the receiver is to minimize the bit error rate (or the packet error 

rate), these two metrics should be considered as the criterion for deriving the 

synchronization algorithms. This solution is generally time-consuming, especially for long 

packet transmission, large constraint length (convolutional codes) or, in general, powerful 

codes. 
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5. Simulation Results 

In this section, the simulation results will be illustrated to examine the performance of turbo 

synchronization for short packets without preambles in terms of  

I. The accuracy, i.e., the variance it can achieve. 

II. The acquisition range, i.e., the range of phase error for which it properly recover 

synchronization. 

III. The reliability, i.e., the BER performance and, the PER performance.  

For simplicity, a Gray-mapped QPSK convolutionally coded transmission has been 

considered. The termination method of the convolutional code is tail-biting. Two square-

root-raised-cosine filters with rolloff factor 0.3 have been implemented as baseband filters: 

one at the transmitter side and the other at the receiver side, both satisfying the Nyquist 

criterion. The filter is truncated to 20 symbols and each symbol period contains 4 samples. 

The considered noise is a complex additive white Gaussian noise with random variance 

𝜎𝑁 
2 for both real and imaginary parts. To synchronize the system, the turbo synchronization 

is implemented by means of the EM algorithm. The number of turbo iterations (𝐼𝑡𝑟) is 10.  

The phase error is considered as an unknown random variable. We consider perfect time 

and frequency synchronization. The decoder is the BCJR decoder which is implemented 

by means of Max-Log-MAP algorithm plus a correction term (Eq. 3. 36) (Max* algorithm in 

the Matlab Communications System Toolbox). 
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5.1. Accuracy Evaluation 

In this section, we will assess the ultimate accuracy of carrier phase estimators by 

comparing their variance to the related CRLB.  

To do that, we plot four types of CRLB: MCRB, DA CRLB, NDA CRLB and CA CRLB. In 

addition, the variance for DA, CA and NDA modes are plotted. We consider two different 

packet lengths for the transmitted frames: the short length of 64 QPSK symbols and the 

medium length of 256 QPSK symbols.   

It is mentioned that the error correction capability of the convolutional codes depends on 

its constraint length, code rate and the selected generator polynomials. It is also known 

that the traceback depth of the decoder influences also the decoding reliability and delay.  

In general, the traceback depth must be less than or equal to the number of input symbols. 

Hereinafter, the generally used code rate is 1/2, and, therefore, the traceback should be 

greater than, approximately, 5(𝐿 − 1) information bits (Matlab Communications System 

Toolbox). Because the packet size is 64 symbols, the constraint length should be less than 

13 to decode packets optimally. As a result, we consider short constraint length 3, medium 

one 8, and the largest acceptable one 12 with generator polynomials [5  7]3,

[247 371]8 and [4335  5723]12, respectively. Furthermore, we did simulations for codes 

rates 1/4 and 1/8, with generator polynomials [235 275 313 357]8 

and [275 275 253 371 331 235 313 357]8, respectively. The turbo synchronizer is initialized by 

the initialization method explained in section 4.2.1.1.1 and considering 𝑛𝑠 = 8. The CA 

CRLB curves are averaged over 20 realizations. The estimator variances are obtained from 

1000 independent realizations. 

Simulation are carried out considering that no termination bits are used to return the 

encoder to a known state. (This corresponds to the “truncated mode of the Matlab BCJR 

decoding function in the Communication Toolbox.) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 depicts the variance of carrier phase estimation achieved by different 

synchronizers: DA with the preamble size of 6 symbols (approximately 10% of the packet 

size), NDA synchronizer and CA with different constraint lengths 3, 8 and 12 versus 

 

Figure 5. 2. The Variance of phase offset estimation for NDA, DA and CA scenarios for 𝐿 = 8 and 

the MCRLB, NDA CRLB, DA CRLB  for 𝐾𝑝𝑟𝑒 = 6 symbols and CA CRLB  for different constraint 

lenghts 3,8 and 12. The packet length is 64 symbols. 
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different SNR values. It is seen that the variance of each synchronizer attains its related 

CRLB when the SNR value is high enough.  

The figure shows that the MCRLB is looser than other bounds at low SNR. At high SNR 

values, the NDA and CA bounds attain the MCRLB. This result is compatible with [32]. 

According to the formulas (4.28) and( 4.30), the MCRLB and the DA CRLB are identical 

except for a constant factor equal to 6/64, which is the ratio of observation lengths 

considered in each case. The DA estimator variance attains the DA CRLB at SNR values 

greater than -1dB. 

We consider the conventional NDA Viterbi & Viterbi carrier phase synchronizer for the NDA 

case. As it is shown in the figure, the phase offset variance approaches the related CRLB 

when the value of the signal-to-noise ratio is equal to 4dB and touches the CRLB when the 

signal-to-noise ratio value is equal to 15dB. It is also clear in the figure that the NDA CRLB 

decreases exponentially with increasing SNR values and reaches to MCRLB at the SNR 

value of 9dB. 

The CA CRLB lies between the MCRLB and the NDA CRLB in the low-to-medium SNR 

region. This highlights the performance improvement that can be achieved by a coded 

system over the uncoded one and also shows that the soft information provided by the 

BCJR decoder which is exploited during estimation causes an enhancement in the 

synchronization accuracy. In addition, the CA CRLB decreases rapidly and reach the 

MCRLB, which is the ideal bound that would be obtained if all the transmitted symbols were 

perfectly known to the receiver, beyond a relatively small SNR threshold. Surprisingly, it 

improves at low SNR when the constraint length decreases form 8 to 3 and it is nearly the 

same for constraint lengths 8 and 12 for any SNR. The CA variance is the variance of the 

phase offset error obtained by the EM turbo synchronizer after convergence. It follows the 

same shape as the NDA variance curve. The only difference is that it attains MCRLB and 

CA CRLB at a lower SNR value, which is approximately 4dB. This is a direct consequence 

of the fact that the turbo synchronization is an iterative implementation of ML CA estimator 

and the Viterbi & Viterbi synchronizer is only an approximation at low SNR of the ML NDA 

estimator. 

Therefore, the reason for the gap between the performance achieved by the turbo 

synchronizer and the conventional Viterbi &Viterbi synchronizer is twofold: 𝑖) the latter 

operates in NDA mode and drops important statistical information about the transmitted 

sequences, and 𝑖𝑖)  the latter does not implement the actual ML solution and is based on 

an approximation. 

Finally, it is obvious that the turbo synchronizer variance outperforms the DA synchronizer 

variance for SNR values which are greater than 2.5dB. 

It is known that the ML estimator is asymptotically efficient, i.e., it reaches the CRLB for 

sufficiently long frame lengths. For the turbo synchronizer, if it is properly initialized, it is 

expected to perform in this way. Figure 5.3 illustrates that with an increase in the packet 

length from 64 symbols in figure 5.2 to 250 symbols in figure 5.3, the CA CRLB coincides 

with the MCRLB at SNR values greater than 2dB. In addition, the NDA variance 

approaches its related CRLB and the CA variance attains the CA CRLB at SNR value of 

2dB compared to 4dB in figure 5.2 where the packet length was shorter. 
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Figure 5.4 shows the effect of the coding rate on the turbo synchronization performance 

for different SNR values and compares these different CA CRLBs with the MCRLB and 

NDA CRLB. It has been demonstrated that the CA CRLB improves by decreasing the 

overall coding rate.  

While the curve of the code rate 1/2 approaches NDA CRLB when the SNR value 

decreases, the curve of the code rate 1/8 attains the MCRLB for all the simulated SNR 

values and the one for code rate 1/4 for any SNR greater than -2dB . This is due to the fact 

that more redundancy is provided by the encoder when the code rate is reduced. 

Consequently, the decoder is more likely able to correctly detect the transmitted bits and 

enhance the synchronizer performance. This effect is more apparent in the low SNR regime 

where more redundancy implies more reliable decoding and therefore better 

synchronization. 

Eventually, we conclude that the implementation of the turbo synchronizer is beneficial in 

terms of the phase offset estimation accuracy, especially when the code rate is small 

enough or the packet length is not too short. (We will find the packet length threshold in the 

next section) 

 

Figure 5. 3. The variance of phase offset estimators for NDA and CA scenarios and the MCRLB, 

NDA and  CA CRLB  for 𝐿 = 8 and the packet length of 250 symbols. 

 

Figure 5. 4. The CA CRLB for different code rates: 1/2, 1/4 and 1/8, 𝐿 = 8 and the packet length of 

64 symbols. 
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5.2. Acquisition range  

In this section, the acquisition range, which is the range of phase errors for which the 

receiver is able to properly correct the carrier synchronization error, will be evaluated as 

another important feature of any synchronizer. 

To do that, in the following 4 figures, we plot: 1) the average of the logarithm of likelihood 

function (LLF) versus different phase error values; 2) the ratio of the LLF of the 180° phase 

error to the LLF of the zero-phase error for different constraint lengths; 3) the probability of 

wrong acquisition versus different SNR values; and 4) the BER for different initial phase 

errors. In nearly all simulations, we consider that the packet length is 64 symbols, 𝑛𝑠 is 

equal to 8 and the code rate is equal to 1/2. 

It is known that the QPSK modulation has a phase ambiguity of 𝜋 2⁄  radians, which is 

inherent to any NDA scheme. This ambiguity is insoluble using NDA synchronizers. As a 

result, the maximum acquisition range, which is achievable by a NDA estimator, is ± 𝜋
4⁄ . 

In order to see how the phase acquisition works, it is needed to plot the average of the 

logarithm of likelihood function (LLF) curve.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 illustrates the average of the logarithm of likelihood function for different phase 

errors and different constraint lengths from 3 to 14 with the generator chosen from table 

5.1. It is noticeable that the LLF has a 180𝑜 symmetry for odd constraint lengths larger than 

7. 

To see how great the maximum is at 180𝑜 phase offset, we plot the curve for the ratio of 

the average LLF at 180𝑜 to the average LLF at zero degrees for different constraint lengths. 

Figure 5.6 depicts that the average LLF has a 180𝑜 symmetry for odd constraint lengths 

larger than 7 because the ratio is exactly one at these constraint lengths. This symmetry 

implicitly means that the turbo synchronizer will not be able to distinguish between two 

phase offsets that are 𝜋 apart. Therefore, the EM turbo synchronizer is unable to properly 

synchronize the system and the hill-climbing nature of iterative methods on which the EM 

turbo synchronizer rely will lead to convergence to the wrong maximum when the absolute 

value of the phase offset is larger than 𝜋 2⁄ .  The justification of such behaviour is that the 

turbo synchronizer acquisition range is limited due to the convergence failure. At low SNR, 

 

Figure 5. 5.  The average LLF for different constraint lengths, K=64, code rate 1/2 and EbNo=1dB 
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since the symbol decisions are not reliable, the CA turbo synchronizer acts like a NDA 

synchronizer. Therefore, it can be said that the same as NDA synchronizer, the maximum 

acceptable phase offset intrinsically limited by the constellation symmetry. 

It is noticeable to mention that we have also done the above simulations (which are not 

attached here) for the convolutional encoder with truncated termination. In that case, there 

is a great local maximum at 180𝑜 , especially for constraint lengths 7, but the average LLF 

curves always have a global maximum for all constraint lengths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rate ½ Maximum 

Free Distance Codes 

Constraint Length L Generators in Octal  dfree Upper Bound on 

dfree 

3 5  7 5 5 

4 15 17 6 6 

5 23 35 7 8 

6 53 75 8 8 

7 133 171 10 10 

8 247 371 10 11 

9 561 753 12 12 

10 1167 1545 12 13 

11 2335 3661 14 14 

12 4335 5723 15 15 

13 10533 17661 16 16 

14 21675 27123 16 17 

Sources: Odenwalder (1970) and Larsen (1973). 

 Table 5. 1. Convolutional code polynomial  

 

Figure 5. 6.  The average LLF (𝟏𝟖𝟎°)/ average LLF (𝟎°) for different constraint lengths with the 

generator polynomials according to table 5. 1 and EbNo=1dB 
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In such cases, ambiguity resolution methods should be considered. As a direct 

consequence, the turbo synchronizer is unable to attain synchronization for phase offsets 

greater than ±  𝜋
2⁄   unless the ambiguity is somehow previously solved. 

As an attempt to avoid the 180𝑜 ambiguity, it is tried to substitute the generator polynomials 

in table 5.1 with the ones presented in table 5.2. As it is seen in figures 5.7 and 5.8, the 

ambiguity is solved for odd constraint lengths at the SNR value of 1dB. As a result, there 

is no ambiguity for all the simulated constraint lengths because there is a global maximum 

in the range[0𝑜 , 360𝑜] at the aforementioned SNR value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Surprisingly, when we did the simulations (which are not attached here) for BER and PER, 

there was not a significant improvement with these new generator polynomials respect to 

the generators of table 5.1 at high SNR values. As a direct consequence, we plot another 

curve which shows the impact of the SNR value on the ratio of the average LLF at 180𝑜 to 

the average LLF at zero degree phase error. 

 

 

Figure 5. 7. The average LLF for different constraint lengths with the generator polynomials 

according to table 5. 2 and EbNo=1dB 

 

 

Figure 5. 8. The average LLF (𝟏𝟖𝟎°)/ average LLF (𝟎°) for different constraint lengths with the 

generator polynomials according to table 5. 2 and EbNo=1dB 
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Rate ½ Maximum 

Free Distance Codes 

Constraint Length L  Optimal Generators 

in Octal 

 dfree Upper Bound on 

dfree 

3[1] 5 7 5 5 

4[1] 15 17 6 6 

5[1] 23 35 7 8 

6[1] 53 75 8 8 

7*[3] 133 161 9 - 

8[1] 247 371 10 11 

9*[2] 515 677 12 - 

10[1] 1167 1545 12 13 

11*[4] 2335 3461 - - 

12*[2] 5537 6131 14 - 

13*[4] 10533 15661 - - 

14[1] 21675 27123 16 17 

Sources: [1] Odenwalder (1970) and Larsen (1973)                        [2] Ref. [29] 

               [3] Ref. [40]                                                                        [4] Determined by author 

Note those with asterisk are the ones that have been changed. 

 

 

 

Table 5. 2. Convolutional code polynomials 

 

Figure 5. 9. The absolute value of the ratio of the average LLF at 180 phase error to the average 

LLF at zero phase error for different SNR values, packet length=64, L=7 and 8,ns=8, R=1/2  
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Figure 5.9 shows the absolute value of the ratio of the average LLF at 180 degrees phase 

error to the average LLF at zero degree phase error for different SNR values and constraint 

lengths of 7 and 8 with generator polynomials in table 5.2. It is remarkable that an increase 

in the SNR value leads to an increment in the ratio. Consequently, although the substitution 

of the generator polynomials seems beneficial at low SNR, it is not advantageous at high 

SNR. However this increment is not as dramatic as the ones obtained with the generator 

polynomials in table 5.1 at low SNR. To conclude, the substitution of the generator 

polynomials is unable to eliminate the phase ambiguity. 

Now that the effect of the code on the average LLF was examined it is time to inspect the 

impact of the packet length on the average LLF. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 shows the impact of the packet length on the average LLF for constraint length 

of 8 at the SNR value which is equal to 1dB. It is noticed that the maximum of the average 

LLF increases with increasing of the packet lengths. But it does not affect the phase 

ambiguity at EbNo of 1dB according to the other simulations which are not attached here. 

It means that the phase acquisition is not influenced by the packet size at low SNR values. 

It is apparent that if we partition the phase interval [0, 360°] into more sections, it is more 

probable to find a point near the global maximum of the LLF. Therefore, the more the 

sections the more effective the phase acquisition. Therefore, we present figure 5.11, which 

illustrates this tangible result. 

The figure depicts the impact of the SNR value and the number of the sections in the 

interval [0, 360°] on the probability of wrong acquisition. The probability of wrong acquisition 

counts the number of packets whose phase error is outside of the acquisition range of ±𝜋 4⁄  

over the total number of the simulated packets.  

It is clear that the probability of wrong acquisition decreases as the SNR value increases 

because of higher reliability of likelihood function at high SNR. Also, it proves the 

aforementioned idea about the number of the sections at the phase interval. 

 

 

 

 

Figure 5. 10. The average LLF for different packet lengths with constraint length 8 and EbNo=1dB. 
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Now, it is time to see that how the turbo synchronizer converges. To do that, we calculate 

the BER for different initial phase errors and different number of iterations. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 illustrates the acquisition and the convergence of the implemented turbo 

synchronizer for the packet length of 64 symbols at SNR value of 4dB. The curves show 

the BER at the receiver with no iteration and for 10 turbo iterations of the turbo synchronizer 

(both without phase acquisition). Furthermore, it compare these two cases with a system 

which is perfectly synchronized. 

It is depicted that the acquisition range is 80°degrees, ranges from −40° to 40°. As a result, 

you can see that the acquisition region in the considered system is not greater than the 

maximum acquisition range which is achievable by a NDA estimator, even if the algorithm 

takes the code structure into account. Such feature seems actually to be a function of the 

used mapping. 

Moreover, it is expected that when the initial phase error is at the interval [−40°, 40°], the 

BER converges to the perfectly-synchronized system ML performance after some 

 

Figure 5. 11. The logarithm of probability of wrong acquisition for different SNR values, 𝐾 = 64, 

𝐿 = 8, 𝑅𝑐 = 1/2, 𝑛𝑠 = 4, 8 𝑎𝑛𝑑 16. Here, the number of the simulated packet is 1000. 

 

 

 

Figure 5. 12. BER versus different phase errors for 𝐾 = 64, 𝐿 = 8, 𝑆𝑁𝑅 = 4𝑑𝐵 and 𝑅𝑐 = 1/2 
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iterations, if the turbo synchronizer works effectively. But this has not happened here and 

the turbo synchronizer stopped working. 

Now, it is important to know when the turbo synchronization stops working. To paraphrase, 

what is the ultimate limit of the packet length for which turbo synchronization is functional. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 examines the convergence of the turbo synchronizer for different packet 

lengths. In the phase acquisition part, we consider two different set of initialization points 

(𝑛𝑠 = 4 𝑎𝑛𝑑 8) for the LLF. It is predicted that the receiver will have similar PER for both 

phase acquisitions, if the turbo part works in an effective way. 

 It is seen that the PER is approximately the same for both 𝑛𝑠 when the packet lengths are 

larger than 128 symbols. They are also near the perfectly-synchronized PER. When the 

packet size ranges between 96 symbols to 128 symbol, although the receiver with 𝑛𝑠 = 8 

is able to converge to the ML performance because of proper phase acquisition, the turbo 

synchronizer stops working because PER values for 𝑛𝑠 = 8 and 𝑛𝑠 = 4 do not converge to 

the perfectly-synchronized ones. 

To conclude, the turbo synchronization does not work when the packet length is nearly 

shorter than 128 symbols. 

For comparison, we will plot again figure 5.12 but now for a packet length of 128 symbols 

to study so the convergence for not so short packets. 

Figure 5.14 shows the turbo synchronization convergence. The BER curves without 

iteration, and for 10 turbo iterations are depicted for different initial phase offsets when the 

packet length is 128 symbols, the constraint length is 8, and the SNR value of 4dB.  

It is seen that the turbo synchronizer works at this packet length, and the BER curve 

converges to the perfectly-synchronized curve after 10 turbo iterations when the initial 

phase error is less than ±20°. 

 

 

 

 

 

Figure 5. 13. The packet length limit of turbo synchronizer for 𝑆𝑁𝑅 = 3𝑑𝐵 and 𝐿 = 8 
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5.3. The reliability  

In this section, the impact of EM turbo synchronization algorithm on the reliability of the 

short packet reception without preamble will be analysed. To compare different receivers, 

the bit-error-rate (BER) and the packet-error-rate (PER) are used as metrics. The BER 

graphs have been created for 200 erroneous bits and the graphs of PER has been plotted 

for 100 erroneous packets. 

To do that, we perform some simulations for different packet length, different 𝑛𝑠 values and 

different constraint lengths. 

Before we run our simulations, the necessity of implementing an interleaver is examined. 

Usually, the interleaver is implemented to improve the reliability of the system. It is expected 

from the Bit-Interleaved Coded Modulation (BICM) architecture that the bit-interleaver is 

only needed for high-order modulations but not in the QPSK case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 15. PER versus different EbNo (dB) for 𝐾 = 64, 𝐿 = 8, 𝐼𝑡𝑟 = 10 and 𝑅𝑐 = 1/2  

 

 

 

Figure 5. 14. BER versus different phase errors for 𝐾 = 128, 𝐿 = 8, 𝑆𝑁𝑅 = 4𝑑𝐵 and 𝑅𝑐 = 1/2 
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Figures 5.15 and 5.16 show the impact of the interleaver on the reception reliability. Three 

different scenarios are considered: with the block interleaver, with the random interleaver 

and without the interleaver. Both graphs indicate that it is not essential to use bit 

interleaving between the encoder and the mapper for the QPSK modulation.  These results 

are compatible with the design rules of BICM. 

In order to improve the functionality of the EM turbo synchronizer, it is known that proper 

initial estimation leads to better performance.  Therefore, we plot BER and PER for three 

different partitioning of the interval [0, 2𝜋] which lead to different phase acquisition designs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 16.  BER versus different EbNo (dB) for 𝐾 = 64, 𝐿 = 8, 𝐼𝑡𝑟 = 10 and 𝑅𝑐 = 1/2  

 

 

 

Figure 5. 17. The packet-error-rate versus EbNo (dB) for 𝑛𝑠 = 4, 8 𝑎𝑛𝑑 16, the packet size of 64 

symbols, the constraint length of 8 and the preamble size of 10 symbols (0.16 of the packet size) 
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Figure 5.17 and 5.18 demonstrate the reliability of the system when we consider different 

phase acquisition precisions. In addition, they compare those curves with the ones for DA 

synchronizer with 10-symbols preamble size and the perfect synchronizer. 

It is known from the previous acquisition analysis that the turbo synchronizer does not work 

at this packet size.  Although it is expected that BER and PER have the same results for 

different 𝑛𝑠, it is seen that there is some degradation for 𝑛𝑠 = 4 and the results of the others 

are near to DA synchronizer with the 0.16𝐾 preamble size. It means that, even without 

turbo iterations, PER and BER for 𝑛𝑠 equal to 8 and 16 obtain acceptable results. To 

paraphrase, CA synchronizer performs better than DA synchronizer but is not able to attain 

perfect synchronizer reliability. 

Then, the impact of the constraint length of convolutional code on the reliability 

performance is measured. The expectation is that when the constraint length increases, 

the reliability of the reception increases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 18. The bit-error-rate versus EbNo (dB) for 𝑛𝑠 = 4, 8 𝑎𝑛𝑑 16, the packet size of 64 symbols, 

the constraint length of 8 and preamble size of 10 symbols (0.16 of the packet size)) 

 

 

Figure 5. 19. PER versus different EbNo (dB) for 𝐾 = 64 and different constraint lengths. In case 

of turbo synchronization, the number of iterations is 10 and 𝑛𝑠 = 8. In data-aided case, the size of 

preamble is considered 0.16 times the packet length. 

 



 

 58 

Figure 5.19 depicts the packet error rate for different constraint lengths and different 

degrees of synchronization. We consider 𝑛𝑠 = 8 for CA synchronization and the preamble 

size of  0.16𝐾 for DA synchronization. 

In perfect synchronization, as it is expected an increment in constraint length causes an 

improvement in the packet error rate and the receiver reliability. This result is compatible 

with the one for long packets 

In DA synchronization, although there is an improvement when the constraint length ranges 

from 3 to 8, the reliability of the constraint length of 12 does not surpass the one of the 

constraint length of 8 and they coincide each other. The reason is that larger constraint-

length codes require better phase synchronization to take benefit for this larger coding gain. 

In turbo synchronization, or better to say CA synchronization, there is an improvement 

when the constraint length rises, especially for high SNR values. Anyway, turbo iteration 

does not work and the resulting BER/PER only depends on the phase acquisition precision. 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 5.20 represents the reliability achieved by the receiver in terms of BER for different   

𝐸𝑏 𝑁𝑜⁄ -ratio, constraint lengths and synchronization methods. We consider 𝑛𝑠 = 8 for CA 

synchronization and the preamble size which is equal to 0.16𝐾 for DA synchronization. 

In CA synchronization, the performance improves by increasing the constraint length from 

3 to 8. But the results are the same for constraint lengths 8 and 12. The same behaviour is 

observed for perfect synchronization. This is because the packet length is too short and 

the maximum effective memory of the encoder, about 5 times the constraint length, is 

limited by the codeword length itself. These results are not incompatible with [34] in which 

an increment in the constraint length is shown to deteriorate the BER for packets whose 

size is larger than 25 symbols. Simulations were done for constraint lengths 3, 5, and 7. 

Now we know that they are not suitable selections for proper phase acquisition.  

Note that, in the DA case, the BER increases when we increase the constraint length from 

8 to 12. Again, the reason is that the variance of the adopted DA estimator is not sufficiently 

low for this large constraint length value.  

Finally, the simulations have been run for different frame lengths to demonstrate its effect 

on the reliability performance. 

 

Figure 5. 20. BER for different EbNo (dB) for 𝐾 = 64 and different constraint lengths. In case of 

turbo synchronization, the number of iteration is 10 and 𝑛𝑠 = 8. In data-aided case, the size of 

preamble is considered 0.16 times the packet length. 
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Figure 5.21 shows how the packet length affects the reliability of the receiver. The 

simulation are performed for three different packet lengths: 64, 256 and 1024 symbols with 

preamble sizes of 10, 38 and 154 symbols for DA case, respectively. The number of turbo 

iterations is 10 and the phase acquisition is made with 𝑛𝑠 = 8. The constraint length is set 

to 8.It is clear that the larger the packet size, the worse the PER. It may be justified that 

when the size of packet increases, the time spent for transmitting the packet increases. 

Therefore, it is more probable that the packet is corrupted by the noise. Furthermore, it 

proves that for a fixed convolutional encoder memory, performance does not improve with 

the packet length. 

For packet lengths 256 and1024 symbols, it is seen that the PER curves for the three types 

of synchronization coincide each other. The reason is that the turbo synchronizer 

converges to ML performance at this packet length according to the result of Figure 5.13 

and, in the DA case, the size of the preambles are noticeable at this length. It means that 

the larger the preamble, the more precise the phase estimation. 

For packet length 64 symbols, because the turbo part of the synchronizer does not work 

and the preamble size is too short, DA and CA curves do not touch the curve of the perfectly 

synchronized receiver. 

Figure 5.22 indicates the impact of the packet length on the BER. The curves are formed 

for three different packet lengths: 64, 256 and 1024 symbols with the preamble sizes of 10, 

38 and 154 symbols for DA case, respectively. The number of turbo iterations is 10 and 

the phase acquisition is made with 𝑛𝑠 = 8.The constraint length is considered 8.  

It is noticeable that the BER does not depend on the packet length. It only depends on the 

constraint length. Provided that codeword length larger than approximately 5. 𝐿. Therefore, 

it is logical that PER increases with the packet length if BER does not change for length 

greater than 5. 𝐿. 

For packet lengths of 256 and 1024 symbols, the BER results for the DA synchronizer and 

turbo synchronizer coincide with the perfect synchronization results. But it is seen that a 

significant degradation occurs for the packet length of 64 symbols due to the failure of turbo 

synchronization in the CA case and insufficient preamble size in the DA case.   

 

Figure 5. 21. PER versus EbNo (dB) for different packet lengths and 𝐿 = 8. In case of code-aided 

synchronization, the number of iteration is 10 and 𝑛𝑠 = 8. In data-aided case, the size of preamble 

is considered 0.16 of the packet length. 
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Figure 5. 22. BER versus EbNo (dB) for different packet lengths and 𝐿 = 8. In case of code-aided 

synchronization, the number of iteration is 10 and 𝑛𝑠 = 8. In data-aided case, the size of preamble 

is considered 0.16 of the packet length. 
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6. Conclusions and future development 

After the advent of the fifth generation of cellular system, according to its applications, its 

services are divided into three categories. One of these categories is Ultra reliable Low 

Latency Communications. To make this category a reality, there are three potential 

research directions based on the layered structure. One of them is physical layer schemes 

with reduced latency. The user plane latency consists of the time-to-transmit latency, the 

propagation delay, the processing latency and retransmission time. The focus of this thesis 

is to decrease latency by reducing the time-to-transmit using short packets. 

As a direct consequence of Shannon masterpiece in information theory [28], coding is used 

to enhance the performance of the digital communication system. In order to decode the 

codewords uniquely at the receiver side, it is necessary to do initial synchronization. 

Conventionally, synchronization was done in data-aided and non-data-aided modes. Then, 

code-aided synchronization, which exploits the channel code structure and its properties 

to estimate the synchronization parameters, was introduced. 

When the goal is to minimize the time required to synchronize the receiver with the 

transmitter, usually DA synchronization is used. It synchronizes the system with the help 

of a preamble. In URLLC, short packet transmission is considered as the major traffic. In 

short packet transmission, the size of the preamble is reduced proportionally to the 

information size. When the packet length is too short, the preamble length can be 

insufficient to synchronize satisfactorily the receiver. Therefore, it is proposed to skip or 

directly eliminate the preamble and do the synchronization task by means of turbo 

synchronization. 

Turbo synchronization starts from an initial estimate of the synchronization parameters, 

then a decision is made about the transmitted symbols. After that, this decision is used to 

compute a new estimate of the synchronization parameters and so forth. The proposed 

turbo synchronizer is implemented by means of an EM algorithm whose initial estimate is 

based on the partitioning of the phase interval [0,2𝜋]. Then, the soft information related to 

each of these phase correction points is obtained at the output of the decoder, which is the 

BCJR decoder in this work. This decoder is used as the optimal soft-input soft-output 

decoder algorithm in terms of minimum bit error rate and uses the MAP criterion to estimate 

the a posteriori probability of the received symbols. The phase whose likelihood is 

maximum is the initial phase estimate.    

In order to assess the performance of the turbo synchronization for short packets without 

preambles, some simulations have been run. The assessments are in terms of accuracy, 

acquisition range and reliability. 

In the accuracy section, the phase variance of three types of synchronizers, DA, NDA and 

the turbo synchronizer, are plotted and compared to their related CRLBs. It is seen that the 

turbo synchronizer variance outperforms the DA synchronizer variance for SNR values 

which are greater than 2.5dB for packet length of 64 symbols (preamble length 6 symbols) 

and attains the MCRLB for SNR values higher than 4dB. Furthermore, with such packet 

length, the NDA estimator variance even surpasses the DA estimator variance for SNR 

higher than 3.5dB. The accuracy enhances by reducing constraint length or decreasing the 

TBCC code rate, or increasing the packet length. 

In the acquisition range part, it is shown that phase acquisition precision depends on the 

constraint lengths and their related generator polynomials. For odd constraint lengths which 
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are larger than 7, there is 180𝑜 ambiguity in the average LLF. This symmetry implicitly 

means that the turbo synchronizer will not be able to distinguish between two phase offsets 

that are 𝜋 apart. The substitution of the generator polynomials can solve this ambiguity at 

low SNR values. As a result, the maximum achievable phase acquisition range improves 

from ±𝜋 4⁄  in NDA synchronization to ±𝜋 in CA case. It is expected that, when the phase 

error is in the range of ±𝜋 4⁄ , the turbo synchronization performance converges to the 

perfect synchronization performance. But the turbo synchronizer does not work effectively 

for packet length of 64 symbols. Turbo synchronization works when the packet length is 

larger than 128 symbols and converges to the perfectly-synchronized system when the 

phase error ranges from −20° to 20° after 10 turbo iterations.  It is worth mentioning that 

because the acquisition phase is usually near the true phase, the gain of EM-based turbo 

synchronization is not significant. 

Finally, in the reliability section, we plotted BER and PER curves to evaluate the 

synchronizers performance. For short packet lengths, the BER and PER curves deteriorate 

by decreasing the number of initial phase estimates considered for phase acquisition due 

to the inactivity of the turbo synchronizer, although the original expectation was that they 

would achieve the same results. The BER curves improve when the constraint length 

increases, although they do not attain the perfect synchronization curves.  They remain the 

same for different packet lengths expect for the 64-symbols packet size. The PER curves 

improve by increasing the constraint length, despite their huge distance to the perfectly-

synchronized curves for higher constraint lengths when the packet length is limited to 64 

symbols. And decreasing the packet length leads to an improvement in the PER curves, in 

spite of the huge distance to the perfectly-synchronized curve for the packet length of 64 

symbols.  

In all of these simulations, turbo synchronizer curves outperform or attain the DA curves. It 

means that the idea of eliminating the preamble from the short packet seems practical. 

In future work, it is recommended to choose the code rate according to the packet length 

in such way that the transmitted symbols become higher than 128 symbols. For example, 

code rates lower than 1/4 seem a good choice for the packet length of 64 symbols. Since 

it is known that lower code rates lead to higher latency, it is not recommended to choose 

too low code rates. Also, the 16-QAM modulation seems good candidate to be 

implemented because it would allow to select code rate 1/4 without increasing the 

transmission latency. 
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Glossary and Notations 

Ack                             Acknowledgement 

APP                            A Priori Probability 

AWGN                        Additive White Gaussian Noise 

BCH                            Bose-Chaudhuri-Hocquenghem 

BCJR                          Bahl-Cocke-Jelinek-Raviv 

BER                            Bit Error Rate  

BG                               Base Graph 

BICM                           Bit-Interleaved Coded Modulation 

CA                               Code-Aided 

CAPEX                        Capital Expenditure (Capital Expense) 

CRLB                          Cramer Rao Lower Bound 

CSI                              Channel State Information 

DA                               Data-Aided 

dB                                Decibel 

DD                               Decision decoding 

DoFs                            Degrees of Freedom 

EM                                Expectation Maximization 

eMBB                           enhanced Mobile Broadband 

5G                                the fifth Generation 

HARQ                          Hybrid Automatic Repeat Request  

i.i.d                                Independent and Identically Distributed 

IMT                               International Mobile Telecommunications 

IoT                                Internet of Things 

ISI                                 Inter-Symbol Interference 

ISPB                             Improved Sphere Packing Bound 

IT                                  Information Technology 

ITU                                International Telecommunication Union 

ITU-T                             ITU-Telecommunication Standardization Sector 

LAPPR                          Logarithms of a Posteriori Probability Ratios 

LDPC                            Low-Density Parity Check 

LLF                                Logarithm of Likelihood Function 

LLR                                Logarithm of Likelihood Ratio 

Log-APP                        Logarithm of A Posteriori Probability 
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LTE                                Long Term Evolution 

MAC                               Medium Access Control 

MAP                               Maximum A Posteriori Probability 

Max-Log-APP                 Maximum of Logarithm of A Posteriori Probability 

MCRLB                           Modified Cramer Rao Lower Bound 

ML                                   Maximum Likelihood 

mMTC                             massive Machine Type Communication 

ms                                  Millisecond        

MVU                               Minimum Variance Unbiased  

NDA                               Non-Data-Aided 

NFV                                Network Functions Virtualization 

PDF                                Probability Density Function 

PER                                Packet Error Rate 

PSK                                Phase Shift Keying 

QAM                               Quadrature Amplitude Modulation 

QPSK                             Quadrature Phase Shift Keying 

RCB                                Random Coding Bound 

SDD                                 Soft Decision Decoding 

SDN                                Software Defined Networking 

SINR                               Signal-to-Interference-plus-Noise Ratio  

SISO                               Soft-Input Soft-Output 

SNR                                Signal-to-Noise Ratio 

SPB                                 Sphere Packing Bound 

TBCC                              Tail-biting Convolutional Code 

TTCC                               Tail-terminating Convolutional Code 

3D                                    Three Dimensional 

3GPP                               Third Generation Partnership Project 

UHD                                 Ultra High Definition 

URLLC                             Ultra-Reliable Low-Latency Communication 

VPS                                  Virtual pilots 

VV                                     Viterbi & Viterbi 

WAVA                               Wrap-Around Viterbi Algorithm 
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𝑎𝑟𝑔{. }                               The argument of   

𝑎𝑟𝑔𝑚𝑎𝑥                            The argument that maximize 

𝐸[. ]                                   The expectation of  

𝑓(. )                                   A many-to-one mapping 

 𝐼(. )                                   The Fisher information matrix 

𝐼−1(. )                                The inverse of Fisher information matrix 

ℑ{. }                                   The imaginary part of  

𝐿𝐿𝐹(. )                               The logarithm of likelihood function 

𝐿𝐿𝑅(. )                                 The soft output of decoder (The a posteriori 𝐿𝐿𝑅 values) 

 𝒬(. )                                  The Q-function 

ℜ{. }                                   The real part of  

Λ(. )                                   The likelihood function 

∈                                        Belongs to 

∑ .𝑘                                      The summation over 𝑘 

 

𝑎(𝑡)                   The complex transmitted signal (The complex baseband waveform) 

𝑎∗(𝑡)                  The complex conjugate of 𝑎(𝑡) 

𝑎𝑘                      The 𝑘-th element of the a sequence of complex signals, 𝒂 

𝒂̌                        The training sequence (the preamble) 

𝑎̌𝑘                       The value of the preamble symbol at time 𝑘 

𝒂                         The vector of random discrete-valued nuisance parameter 

𝒜                        The signal constellation  

𝒃                         The information sequence 

𝑏̂                         The decision on the transmitted information bit 𝑏 

𝐵𝑚′                     The actual design bandwidth 

𝒄                          The encoded sequence 

𝑐𝑛
′                         The 𝑛 − 𝑡ℎ element of the twin of the codeword, 𝒄́ 

𝐸𝑏                        Energy per bit 

𝑓𝑐                         The central frequency of passband filter  

𝑓𝑁(. )                    The probability density function of AWGN 

𝑓𝑐𝑜                        The codeword as function of the input and the previous state 

𝑓𝑠                         The new state as function of the input and the previous state 

𝑔(𝑡)                     The convolution of 𝑝(𝑡) and 𝑞(𝑡) 

ℎ𝑆𝑅𝑅𝐶(𝑡)               The impulse response of the square-root-raised-cosine filter 
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𝐻𝑆𝑅𝑅𝐶(𝑓)              The transfer function of the square-root-raised-cosine filter 

𝐻(𝑓)                     The frequency response of the matched filter 

𝐻𝑅𝑋(𝑓)                  The frequency response of the receiver filter    

𝑖                            The counter of turbo iterations      

𝑗                           The imaginary number 𝑗 = √−1 

𝐾                   The total number of Information bits (The number of transmitted symbol)  

𝑘′                     The number of information bits which enter the encoder at each time instance 

𝐾𝑝𝑟𝑒                      The number of preamble symbols 

𝑘0                         The time instant of the first observed sample 

𝐿                           The constraint length of the convolutional code (the trellis depth) 

𝑚                          Memory of Convolutional code 

𝑀 = |𝒜|                The size of signal constellation (the modulation order) 

𝑚′                         The number of segmentation of the bit sequence in the modulator 

𝑛(𝑡)                       The complex noise at the output of the matched filter  

𝑛1(𝑡)                     The in-band noise 

𝑛2(𝑡)                      The lowpass equivalent complex noise at the input of the matched filter 

𝑛′                          The number of binary symbols at the output of the encoder 

𝑛𝑠                          The number of phase obtained at the phase interval [𝜑̂𝑉𝑉 , 𝜑̂𝑉𝑉 + 2𝜋] 

𝑁0                         The power spectral density of noise 

𝑝(𝑡)                      The complex basic waveform satisfying Nyquist criterion (baseband filter) 

𝑃(𝑓)                      The frequency response of 𝑝(𝑡) 

𝑃(𝒃)                      The prior probability of the information sequence 

𝑃(𝒂)                      Priori probability density function of 𝒂          

𝑞(𝑡)                       The baseband filter at the receiver side (the baseband demodulator) 

𝑟(𝑡)                       The lowpass equivalent received signal 

𝑅𝑐 =
𝑘

𝑛
                   The base code rate of convolutional code 

𝑅                           Data rate  

𝑆                           The set of possible coded sequences 

𝑆0                          The subset of all pairs of states which corresponds to 𝑏𝑘 = 0 

𝑆1                          The subset of all pairs of states which corresponds to 𝑏𝑘 = 1 

𝑇                           The symbol period 

𝑤(𝑡)                      The additive random noise process 

𝑊𝑚′                        The nominal baseband bandwidth (the Nyquist bandwidth) 
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𝑥(𝑡)                       The real passband transmitted waveform 

𝑋(𝑓)                      The transmitted signal spectrum 

𝒛                            A random vector obtained by expanding the received modulated-    

signal 𝑧(𝑡) onto suitable basis (The actual observation set or the incomplete data set) 

𝑧(𝑡)                       The output of the matched filter 

𝒛̌                            The extended observation set (the complete data set) 

𝒛′                           The received vector at the output of de-mapper 

ℤ                            Integers 

 

𝛼′                          The rolloff factor 

𝛼                           The forward recursion  

𝛼̃                           The logarithm of 𝛼 

𝛽                           The backward recursion 

𝛽̃                           The logarithm of 𝛽 

𝛾      

𝛾̃                            The logarithm of 𝛾 

𝑣                            The carrier frequency offset 

𝑣                            The estimate of carrier frequency offset 

𝜇                            The mean value of noise  

𝜌                            The energy per transmitted symbol over noise at the receiver input    

𝜎𝑁
2                          The variance of noise 

𝜎𝑘                          The encoder state at time 𝑘 

𝜏                            The timing error 

𝜏̂                             The estimate of timing error  

𝜑                            The carrier phase offset 

𝜑̃                             A trial value of 𝜑 

𝜑̂                            The estimate of carrier phase offset 

𝜑̂(𝑖)                         The phase estimate computed at 𝑖-th iteration 

Σ                             The set of all states 


