
ELK stack Big Data visualization using D3
library

In collaboration with Addiliate (Clicktron Media S.L)

Bachelor’s Degree in Informatics Engineering
Software Engineering

Author: Nicolás Ernesto Francisquelo Tacca

Director: Jordi Bayo Singla

Tutor: Alberto Abelló Gamazo

Autumn 2019

Facultat d’Informàtica de Barcelona (FIB)

Abstract

This document explains the development of the data visualization tools created with the
D3 library for an existing AngularJs web application.

These visuals aim to represent the Big data from an Elastic stack in an understandable
way. All the processes involved, from fetching the data to the front-end display in suitable
representations and passing through the post-processing, are described in this memory.

Resum

Aquest document explica el desenvolupament de les eines de visualització de dades creades
amb la llibreria D3 per a una aplicació web AngularJs existent.

Aquestes visualitzacions tenen com a objectiu representar informació de Big data procedent
de l’entorn Elastic de manera fàcilment comprensible. Tots els processos involucrats, des de
l’obtenció de les dades fins a la visualització front-end en representacions adients y passant pel
post processament, es troben descrites en aquesta memòria.

Resumen

Este documento explica el desarrollo de las herramientas de visualiación de datos creadas
con la libreria D3 para una aplicación web AngularJs existente.

Estas visualizaciones tienen como objetivo representar información de Big data procedente
de un entorno Elastic de manera facilmente comprensible. Todos los procesos involucrados,
desde la obtención de los datos hasta la visualización front-end mediante las representaciones
adecuadas y pasando por el post-procesado, se encuentran descritos en esta memória.

ii

Contents

1 Introduction 1
1.1 Stakeholders . 1

1.1.1 Developer . 1
1.1.2 Director and tutor . 2
1.1.3 Users . 2

2 State-of-the-art 3
2.1 Elastic stack . 3

2.1.1 Elasticsearch . 3
2.1.2 Logstash . 4
2.1.3 Kibana . 5
2.1.4 Beats . 5

2.2 AngularJS . 6
2.2.1 Definition . 6
2.2.2 Components . 6

2.3 D3.js . 7

3 Project scope 8
3.1 Motivation . 8
3.2 Solution . 8
3.3 Objectives . 9
3.4 Requirements . 10
3.5 Risks and possible solutions . 10

3.5.1 Failure of the development hardware . 10
3.5.2 Failure of the development software tools 10
3.5.3 Wrong temporal planning . 11
3.5.4 Cloud services failure . 11

4 Project implementation 12
4.1 Implementation phases . 12

4.1.1 Data search . 12
4.1.2 Data processing . 14
4.1.3 Front-end visualization . 15

4.2 Table visualizations . 16
4.3 Chart visualizations . 16

4.3.1 Columns and line chart . 17
4.3.2 Grouped columns chart . 19
4.3.3 Stacked columns . 21
4.3.4 Marimekko chart . 22
4.3.5 Scatter plot . 23
4.3.6 Tag cloud . 24
4.3.7 World map chart . 25
4.3.8 Pie chart . 25
4.3.9 Donut chart . 26
4.3.10 Sunburst chart . 27
4.3.11 Line chart . 28
4.3.12 Performance component . 29

5 Project Management 30

iii

5.1 Methodology . 30
5.2 Tracking tools . 30

6 Temporal planning 31
6.1 Project stages . 31
6.2 Tasks Description . 32

6.2.1 Project brief . 32
6.2.2 Project planning . 32
6.2.3 Study of the company business . 33
6.2.4 Study of the tech stack . 33
6.2.5 Set up of development environment . 33
6.2.6 Implementation of data visualizations . 33
6.2.7 Testing and evaluation . 34
6.2.8 Final memory . 34

6.3 Tasks dependency . 35
6.4 Temporal estimation per task . 35
6.5 Resources . 36

6.5.1 Software resources . 36
6.5.2 Hardware resources . 36
6.5.3 Human resources . 36

6.6 Analysis of project deviations . 37
6.7 Temporal planning final retrospective . 37

7 Economic analysis 39
7.1 Budget estimation . 39

7.1.1 Direct costs . 39
7.1.2 Indirect costs . 41
7.1.3 Total costs . 41

7.2 Possible budget deviations . 42
7.3 Budget final retrospective . 42

8 Sustainability 43
8.1 Economic dimension . 43
8.2 Environmental dimension . 44
8.3 Social dimension . 44

9 Requirements evaluation 45
9.1 Usability . 45
9.2 Extensibility . 46
9.3 Maintainability . 46
9.4 Efficiency . 46
9.5 Value . 46

10 Conclusions 47

References 48

Appendices 49

A Elasticsearch document example 49

iv

List of Figures

1 Elastic stack architecture . 3
2 Elasticsearch cluster with 3 Nodes and 5 shards 4
3 AngularJS two-way data binding . 6
4 Columns and line chart example . 18
5 Grouped columns chart example . 20
6 Stacked columns chart example . 21
7 Stacked columns with opacity chart example . 21
8 Marimekko chart example . 23
9 Scatter plot example . 24
10 Tag cloud example . 25
11 World map chart example . 25
12 Pie chart example . 26
13 Donut charts example . 27
14 Sunburst chart example . 27
15 Line chart with multiple lines . 28
16 Performance component . 29
17 Gantt’s diagram of the project . 35

List of Tables

1 Temporal estimation per task . 35
2 Temporal deviations per task . 38
3 Direct costs estimation . 40
4 Indirect costs estimation . 41
5 Total costs estimation . 41
6 Sustainability matrix results . 43
7 Requirements evaluation scores . 45

Listings

1 D3 fading out transition example . 7
2 SQL query example . 12
3 DSL query example . 13
4 DSLQueryBuilder example . 13
5 Elasticsearch JSON response example . 14
6 Columns and line chart code . 17
7 Grouped columns chart code . 19
8 Marimekko chart extract . 22

v

1 Introduction

Nowadays more than half of the world’s population has access to the Internet and the average
time spent online nearly hits 7 hours per day according to the latest reports from international
organization such as ITU [1] and We Are Social [2]. This means huge amounts of data being
created, transmitted and consumed every second.

The information contained in all this data is very important, not only for private companies
and their specific business purposes but also for other fields like politics and science.

Analyzing the data consists basically in extracting and cleaning the information from the
raw data, and then transforming and visualizing it in order to be able to understand it.

In this project we will mainly focus in transforming the data into valuable information
and present it mostly in chart-based visualizations. The data we will be dealing with is a
representation of internet traffic and we will face the challenge of creating visualizations that
need to be readable and understandable for non-technical users.

The project is the final thesis of the Bachelor’s Degree in Informatics Engineering, more
specifically for the major in Software Engineering of the Facultat d’Informàtica de Barcelona
(Universitat Politècnica de Catalunya). It has been developed for Addiliate (Clicktron Media
S.L.), an affiliate marketing and media buying company based in Barcelona, under the direction
of Jordi Bayo Singla.

1.1 Stakeholders

In this section we will describe the stakeholders of the project.

We accepted the stakeholder definition of the book Strategic Management: A Stakeholder
Approach[3]: any group or individual who can affect or is affected by the achievement of the
organization’s objectives.

The different stakeholders of this project are listed as follows.

1.1.1 Developer

As the name suggests, is the person in charge of the project’s development process. The
role of the developer consist in making most of the decisions regarding the project in order to
meet the objectives. To do this, the developer also has to perform the research in the field of
study, to gather the requirements and then, implement the solutions following the planning that
he or she has previously done.

1

1.1.2 Director and tutor

They are responsible of following the project’s progress providing with help and advice to
the developer whenever it’s needed. Both roles are very similar, the main difference is that the
director belongs to the company while the tutor represents the academic side of the project.

The director of the project is Jordi Bayo Singla, Head of IT department in Addiliate and
the tutor is Alberto Abelló Gamazo, researcher and professor at the Universitat Politècnica de
Catalunya.

1.1.3 Users

They are the ones that will be using the tools resulting of this project, this means that
their feedback and interests should be carefully taken into account. The users of this project can
be easily divided in smaller groups to better understand their needs according to their specific
interests and use cases. These user types are listed as follows.

• Advertisers: An advertising company or individual that has a product and relies on
others to advertise it for them. They need to see information about the traffic that they
are paying for.

• Publishers: An individual or a company in charge of connecting the advert to the final
user. They want to see if the traffic they are sending is converting or not, and why. There
are a lot of variables they want to visualize to learn about the traffic they are dealing with.

• Account Managers: An employee from the company that can be either a publisher
account manager or a advertiser account manager.They work directly with their clients
in order to help them to configure all the settings properly to create a campaign in the
case of advertisers, or to apply for these campaigns if they are publishers. They need to
visualize a lot of metrics to provide useful tips and analysis to the clients.

• Administrators: Special users from the company that will be using the tools without
restrictions. For example the owners or some members in the IT team.

2

2 State-of-the-art

In this section we will discuss the state-of-the-art and we will explain the three core concepts
of the project: the Elastic stack, the AngularJS framework and the D3 library.

2.1 Elastic stack

The Elastic stack, initially also known as ELK stack due to the acronym of the first three
components Elasticsearch, Logstash, and Kibana. Later on, however, a component called Beats
was included and the company started calling it Elastic stack.

A common simplified architecture of the Elastic stack consist in Beats, a data shipper
that reads and forwards the log files to a data processing component called Logstash. This
component filters and normalizes the input logs before sending them to Elasticsearch, the storage
component.Elasticsearch indexes and stores the data for further analysis and searches. The
Kibana component provides visualization options of the Elasticsearch data. [4]

Figure 1: Elastic stack architecture

2.1.1 Elasticsearch

Elasticsearch, now known as Elastic, is an open source, distributed, RESTful, JSON-based
search engine. Elasticsearch uses documents to handle the data and it has been designed to deal
with huge amounts of data keeping a very low fetching latency to meet the demands of real-time
use cases, such as log analysis, full-text search and many others.[5]

Elasticsearch offers high reliability, easy management and simple deployment. It also pro-
vides horizontal and vertical scalability.

In order to better understand Elasticsearch we need to deep dive in the most important
terminology and core concepts [6]:

• Document: is the basic unit of information which can be indexed, expressed in JSON
format. A document contains fields comprised of keys and values. The key is a string with
the name of the field and the value is the data, which type can be string, number, date,
or list. Every single document is associated with a type and a unique id. In appendix A
there’s an example of the documents used in this projects

• Index: is a collection of documents representing similar concepts. An index is identified
by a name, and it can contain as many documents as desired. Elasticsearch allows you to
define as many indexes in one single cluster. Every index can be split into several shards
to be able to distribute data.

3

• Cluster: a collection of one or more nodes that together hold the entire data. It’s identified
by a unique name. Usually different clusters are defined for the development environments.

• Nodes: a single server that stores and indexes the data and belongs to a unique cluster.
It is created when an Elasticsearch instance begins.

• Shards: subdivision of the indices. A shard is a fully functional and independent piece of
index that can be stored in any node in the cluster.

Figure 2: Elasticsearch cluster with 3 Nodes and 5 shards

2.1.2 Logstash

Logstash is a data collection and processing engine that ingests data from a multitude of
sources simultaneously. It transforms and normalizes the data and makes it available for further
use.

Logstash can unify data from disparate sources and then send it to one or more destinations,
typically used for feeding Elasticsearch.[7]

The Logstash pipeline consists of three components:

• Input: is responsible of specifying and accessing the data input source.

• Filters: filters are a set of conditions checked against the actions or events of the input
data.

• Output: the output contains parsed input data and some extra fields like timestamp, host
or the input source path.

4

2.1.3 Kibana

Kibana is an open source data visualization and exploration tool used for visualizing the
data stored in Elasticsearch. It’s a powerful tool to perform advanced data analysis in charts,
maps or tables visualizations.

The Kibana component provides a lot of features apart from the data exploration and visual-
ization ones. It also allows the users to share almost everything and to collaborate in the research
by easily exporting CSV files and with PNG or PDF reports or even shared dashboards.

Security, management and monitoring are also covered by Kibana, with customization of
alerts and all kind of notifications. With the help of machine learning and data modeling,
advanced features like forecasting and predictive analysis are also available.[8]

Even though it’s the default visualization method for most of the Elastic projects, it doesn’t
fit our specific needs. Further explanations can be found in section 3.1

2.1.4 Beats

Beats is an ecosystem of lightweight, purpose-built agents that acquire data to then feed
it to the desired destination, usually Elasticsearch or Logstash in case some parsing or filtering
needs to be done before shipping it to Elasticsearch. [9]

The potential of Beats resides in the libbeat framework. With Libbeat creating customized
agents for ingesting any type of data is very straightforward. Thanks to this flexibility, the
number of Beats available and the capabilities of the Beats ecosystem is growing rapidly.

Some examples of Beats data shippers are:

• Filebeat: built for logs files, is very useful to forward and centralize events from multiple
servers, virtual machines and containers. Filebeat is the data shipper used in our specific
Elastic pipeline because the data we store in Elasticsearch comes from the the traffic we
handle in our servers in addition of some other business data.

• Winlogbeat: it reads data from any channel of the Windows Event Log. Winlogbeat is
very useful to track everything that happens in a Windows environment, such as system
updates, USB attachments, software usage, etc.

• Packetbeat: used for network data, it helps tracking the traffic flowing through the
network, it supports many protocols and, since it’s a library, new ones can be also added
if needed.

• Metricbeat: it allows tracking system-level metrics such as CPU usage, memory, file
system, disk I/O or even running process statistics in all Linux, Windows and Mac hosts.
It also comes with a variety of modules that can be easily enabled in the configuration file
to collect metrics from services like Apache, NGINX, MongoDB, MySQL, etc.

• Heartbeat: very useful for monitoring the uptime and availability of services by actively
probing them.

5

2.2 AngularJS

2.2.1 Definition

AngularJS is a JavaScript framework which allows users to build well-structured, dynamic
web applications. It’s known as a MVW (Model View Whatever) framework although it provides
functionality to be a typical MVC (Model View Controller) framework too.[10]

AngularJS extends HTML functionality by providing directives to the HTML tags. Di-
rectives are attributes or markers that can attach a specified behavior to the container DOM1

element or even transform it and its children allowing you to create powerful and dynamic front-
end applications. AngularJS has a lot of useful built-in directives, but you can also create your
own directives to perform any type of DOM manipulation.

This framework is based in the concept of two-way data binding, this allows the easy binding
of the JavaScript objects (models) to the HTML (view). This means that any change in the
view is propagated to the model, and also the other way around; changes in the model update
the view.

Figure 3: AngularJS two-way data binding

2.2.2 Components

Components are special kind of directives that were introduced to AngularJS in the 1.5
version. They deserve a deeper explanation since a big part of the project relies on the structure
and characteristics of components.

Using components in an AngularJS projects is not just about being a step closer to a possible
migration to the Angular2 framework, but it also improves good practices, isolation, readability
and most importantly for us, reusability.

Components consist basically in three parts:

• Template: it’s the view part of the component, a projection of the models through the
enriched HTML. Templates are the way of displaying the information to the user.

1DOM: Document Object Model is the standard for accessing, modifying, adding and deleting elements of a
document.

2Angular: is a complete re-write in TypeScript of its ancestor AngularJS.

6

• Controller: it’s a JavaScript object that contains the attributes, properties and functions
used to handle the events, fetch data, and all the component’s behaviour.

• Module: it’s the component’s definition, a container that links the controller to the
template.

2.3 D3.js

D3 (Data-Driven Documents) is a JavaScript library that makes it easier to create data
visualizations using the web standards SVG, Canvas and HTML.[11]

The library provides interaction techniques and powerful visualizations relying in dynamic
DOM manipulation to take advantage of the full capabilities of browsers to create the desired
interface for the data.

D3 provides the necessary tools and building blocks to construct a very own visualization
instead of pretending to fulfill all the necessities with ready made charts like most of the charting
libraries. This approach is much lower level and it requires more coding and time, yet it gives
full control to create bespoke charts.

Some of the library’s most important functionality are:

• Selections: functions that allow easy DOM elements manipulation. There are only two
selection functions, and they both take a single parameter which is selector string (W3C
selectors API). These functions are:

– d3.select: selects the first matching element.

– d3.selectAll: selects all the matching elements.

• Dynamic properties: styles,attributes and other properties can be defined as functions
that depend on the data, instead of simple constants. D3 has many built-in functions and
factories that help for example with line or pie-chart generation.

• Transitions: with only one function, yet very modular and flexible, D3 can gradually
interpolate styles and change attributes over time.

The following line of code is a simple example of the three characteristics mentioned above:

d3.select("rect").transition().duration(100).style("opacity", "0");

Listing 1: D3 fading out transition example

It fades out all the rect elements of the DOM where it’s applied. We first select all the
elements, and then we apply the opacity dynamically with a transition of 100 miliseconds.

7

3 Project scope

In this section we will talk about the project scope and the motivations that lead us to do
it, including the objectives we want to accomplish and the requirements. We will also evaluate
the possible risks and provide solutions.

3.1 Motivation

The company started storing data about the internet traffic received from their publishers
into Elasticsearch to be able to analyse it and extract useful business information in real time
or near real time.

The data stored in Elasticsearch documents contains information like the type of device
used to send the request, the country of origin, the internet browser used, the operative system
of the device, the payout for the publisher,the cost for the advertiser, and many others (example
of a document in Appendix A).

In affiliate marketing this data is used by the advertisers to decide if they pay or not for
the traffic, and it can be also used to detect fraudulent traffic. After 9 months of storing this
data, the company decided it was time to make this data available to their clients through their
existing website.

In short,the motivation of this project is the need of visualizing business information from
the raw data stored in Elasticsearch.

3.2 Solution

The first solution we studied for visualizing the information was using the Kibana component
from the Elastic stack. As Kibana was already set up and working with the elastic documents
we wanted to analyze and visualize, we thought it could be a good idea to just try to export
Kibana’s visuals to the web application.

After some research we found out that this solution didn’t work for us because even though
Kibana has some features and options to share dashboards or embed them using iframes, it
didn’t allow us to have the full control we needed. Other major downsides we found to this
solution were the authentication security and the user roles definition which could end in data
leaks. Also, relying on a third party technology which is still being developed and suffers frequent
changes, was a risk we didn’t want to take.

The solution chosen was to create bespoke charts using the D3 library which we briefly
introduced in section 2.3. This library allowed us to implement data pagination to control
the volume of data returned by Elasticsearch, to be able to post-process the data in order to
populate it with extra information when needed and to adapt the visuals to the look and feel of
the existing website by applying CSS styles.

8

We also evaluated other free open-source charting libraries like Chart.js, Dygraphs or
Chartist.js but even though they were easier to use and the pre-built charts provided would
have considerably reduced the implementation time, they didn’t provided us the control we
needed over the visualization rendering and the user interaction.

The charts we implemented aim to provide insights to users that wouldn’t necessarily posses
the expertise to analyze the information presented without help. We focused on providing a user-
friendly interface to display the information using clear and intuitive designs which makes it easy
to analyze and understand.

These charts show business information obtained from processing the data of the internet
traffic tracked by the company. By making this information available to the clients, we intend
to help them understand their traffic and find the trends that maximize their performance so
they can make business decisions that lead them to increase their income.

Most of the charts we implemented were chosen because they are well known charts that have
been fully studied and proved to be very useful when used to display suitable data. Other visuals
have been chosen just for being a quick and attractive way to show qualitative information, for
example the tag cloud (figure 10).

There were also charts we initially considered to implement but, after some research, we
decided not to because of different reasons such as interpretation complexity, high biasing of the
data or spatial problems. Examples of discarded charts can be tree map charts, bullet charts or
calendar heat-maps.

3.3 Objectives

The company has a web application where the publishers can log in to see new campaigns
they can apply to, manage their placements and settings and contact their account managers. On
the other side, advertisers can see their own campaigns and also contact their managers.

This web application has been developed in AngularJS, a framework we already introduced
in section 2.2. Prior to this project, the only information the users could find about their perfor-
mance or their traffic was usually outdated and non interactive, in best cases the rudimentary
KPI3 were daily updated using scheduled jobs, in other they were just calculated using heuristics
and estimations.

We aimed to provide accurate information with highly interactive and intuitive visualiza-
tions by using real data to bring the users the tools they needed in the platform they are already
using.

In short, the main objective is developing and integrating data visualization tools in an
existing AngularJS web application using the D3 library to represent information extracted
from Elasticsearch.

3KPI: Key Performance Indicators are a type of performance measurement to evaluate the success of an
activity.

9

3.4 Requirements

• Usability: visualizations and user-interaction must be intuitive and self-explanatory as
we are not targeting end users with a very technical background.

• Extensibility: the implementation of the charts shouldn’t strictly depend on the data
to display. In the future the company may want to reuse or extend the visualization
components with other data and use cases.

• Maintainability: the code has to be simple, well documented and maintainable as it will
be integrated in an existing web application that the company will continue developing.
Good practices and using design patterns to create simple and clean code in both front
and back end is a must.

• Efficiency: as we mentioned before, we will be feeding the front-end visualizations with
big data, this means we need to be very careful with the loading times in order to provide
a good user experience.

• Value: this is a private’s company project ergo it has to add value to the existing platform,
otherwise it can’t be considered successful.

3.5 Risks and possible solutions

Some problems and inconveniences may happen during the development process, being
aware of these possible obstacles and their solutions can help us to react more rapidly.

3.5.1 Failure of the development hardware

When the equipment being used for developing purposes or some peripherals stop work-
ing.

The solution is to have backups in the cloud of the latest of the source code and try to get
another equipment as soon as possible.

3.5.2 Failure of the development software tools

When the software being used in the development environment stops working, for example
local servers, containers, or even the IDE.

The solutions can be restarting the services or shutting down the computer because it may
be caused by too many processes running on the CPU, check the software license and renovate
them if necessary or try to re-install or update to a newer version.

10

3.5.3 Wrong temporal planning

When the planning of the tasks are not accurate enough or the programmer gets stuck in a
task that was more complicated than expected.

The solution is to make a serious and sensible planning, with some margins to prevent
possible delays that may occur during the developing process.

3.5.4 Cloud services failure

When the services we have in the cloud stop working. For example the instances in AWS,
the repository of the project, communication programs like Slack,etc.

The solution is to use the services that provide the highest up-time to reduce this risk to
the minimum.

11

4 Project implementation

In this section we will explain all the work done on project implementation.

4.1 Implementation phases

It’s important to emphasize that even though visualizations require a lot of front-end related
development, we are not just focusing on that area as we also need to retrieve and process the
data before being able to display it in the suitable visualizations.

The implementation is divided in three phases.

4.1.1 Data search

This is the first phase and it comprises all the process for obtaining the raw data stored in
Elasticsearch.

The Elasticsearch data is exposed through a RESTful API reliying in the usage of DSL
queries. This API allows you to interact with data using the standard HTTP verbs in addition
of parameters and extra data using the URI components. Elasticsearch provides a full Query
DSL (Domain Specific Language) based on JSON to define all kind of queries which ensure
complete access to all the Elasticsearch features.

Due to our specific use case, we needed to create these DSL queries dynamically but since
there isn’t any helper library, we decided to implement a bespoke php builder library, from now
on called DSLQueryBuilder.

The DSLQueryBuilder is an interface to create the DSL queries to help us avoiding dupli-
cated code, hardcoded queries and providing the project with better reusability and maintain-
ability.

This library follows an incremental development approach which means that it only contains
a mapping of the subset of features that have been needed from the Search API of Elasticsearch.
Other features and options are added to the DSLQueryBuilder whenever new DSL queries require
it.

For example, to get the monthly traffic and income generated by a user with a SQL query
we would do something like this:

SELECT month,COUNT(clicks),SUM(income) FROM TrafficUsers WHERE id=’1’ GROUP BY month.

Listing 2: SQL query example

12

The equivalent DSL query in JSON format would be:

{
"query": {
"bool": {
"filter": [
{ "term": { "userid": "1" }},

]
}
}
"aggs" : {

"monthly_results" : {
"date_histogram" : {

"field" : "date",
"interval" : "month"

},
"aggs": {

"monthly_income": {
"sum": {

"field": "income"
}

}
}

}
}

}

Listing 3: DSL query example

Using our DSLQueryBuilder library to construct the same DSL query we would write:

composeQueryContext(){
$bool = new Bool();
$termFilter = new Term("userid",1);
$bool->addFilter($termFilter);

}

composeAggregations($aggregations){
$aggregations->setName("monthly_results");
$dateHistogram = new DateHistogram();
$dateHistogram->setField("date");
$dateHistogram->setInterval("month");

$aggregations->setAggregationType($dateHistogram);

$trafficAggregation = new Aggregations();
$sumAggregation = new Sum();
$sumAggregation->setField("income");

$trafficAggregation->setName("monthly_income");
$trafficAggregation->setAggregationType($sumAggregation);

$aggregations->addAggregation($trafficAggregation);
}

Listing 4: DSLQueryBuilder example

13

As we can see in the example above, there are two methods, composeQueryContext to apply
filters to the documents we want to find, and composeAggregations to create the aggregations
or groups on the previously filtered documents.

We implemented the DSLQueryBuilder library in a way that for every new DSL query
we only need to inherit from a class called DslQuery and implement these two methods. The
DslQuery class contains all the logic needed to parse the objects to create the query in JSON
format and to connect to the Elasticsearch instance to send the request.

The different filtering and aggregation options of the API are implemented as php objects,
with the same properties as in the official documentation plus their corresponding getters, setters
and parsing methods.

4.1.2 Data processing

The second phase consists in processing the data from the Elasticsearch response obtained
in the data search phase.

Elasticsearch responses are in JSON format and they have a common core structure and
default fields like took which is the query execution time in milliseconds , _shards with informa-
tion about the shards involved in the searching, hits containing the results or aggregations which
holds the information of the buckets if any aggregation was defined in the DSL query.

An example of an Elasticsearch response for the DSL query of the previous examples(Listing
3) would be:

{
"took": 11,
"timed_out": false,
"_shards" : {
"total" : 3,
"successful" : 3,
"skipped" : 0,
"failed" : 0

},
"hits" : {
"total" : 10,
"max_score" : null,
"hits" : [{
"_index" : "traffic_user",
"_id" : "0",
"sort": [0],
"_score" : null,
"_source" : {"user_id":1,

"income":10,
...
}

},
{...}

],{
"aggregations": {
"monthly_results": {

"buckets": [
{

"key_as_string": "2019/01/01 00:00:00",

14

"key": 1546297200,
"doc_count": 8,
"monthly_income": {

"value": 123.0
}

},
{

"key_as_string": "2019/02/01 00:00:00",
"key": 1546383600,
"doc_count": 6,
"monthly_income": {

"value": 48.0
}

},
{...}

]
}

}
}

Listing 5: Elasticsearch JSON response example

As we can see in this example, the most relevant information, or at least the business
information we will use to feed the visualizations is in the aggregations property, distributed
in the so called buckets. All buckets have a property called key containing the value used to
aggregate the documents and a doc_count property that is the total documents that fell in the
bucket.

In order to filter and parse the results from this format into a more front-end oriented
format, we iterate through the buckets of the response, to get the valuable information and
compute some extra calculations if needed. Sometimes we also needed to populate the resulting
data structure with extra information that wasn’t persisted in the elastic documents but in a
MySQL database by matching the ids. Although it may seem that this can increase the latency
and become a bottleneck making useless the use of Elasticsearch, it’s not the case as even though
we get data from millions of elastic documents we query few rows in MySQL.

4.1.3 Front-end visualization

The last phase of implementing a visualization is the actual implementation of the vi-
sual component that will be fed with the already processed information from the previous
phases.

One of the main challenges of these components is the data abstraction required to create
reusable components that can represent almost any type of data, with the only limitation of
the coherency between the visualization type and the nature of the data. For example, we
shouldn’t try to visualize data that changes over time in donuts or pie charts because they serve
as snapshots of the data not to represent different periods of time.

This last phase is only performed once for each new type of visual component thanks to the
data abstraction mentioned above. For example, to represent two distributions of the internet
traffic, one by countries and the other by type of devices used, we could use the same visual
component, a pie chart, therefore we will only implement it the first time and then reuse it
whenever we need it again.

15

4.2 Table visualizations

The first visualizations we implemented weren’t D3 charts but tabular representations of
the information. We used these tables as our first approximation to start working on the DSL-
QueryBuilder and retrieving information from Elasticsearch.

Despite being our first approach,we knew that tabular visualizations are very useful for deep
analysis of the data, so we decided to implement advanced tables using the DataTables plugin
for the jQuery4 library. This plugin helped us implementing the tables and, even though it has
many options to provide advanced features, we decided to create our own AngularJS components
for handling table pagination,sorting and changing columns visibility.

The decision of implementing these features with our very own components came because we
wanted to have most of the HTML directly written in the template instead of binding the HTML
generated by rendering functions in the controller. After some research we found out that this
could only be achieved by creating our own components instead of using the DataTables built-in
options. This way we could clearly separate the logic of the controller from the template’s view
resulting in a cleaner and more maintainable code.

Our tables consist in four components:

• Custom table: this is the actual table where the columns,rows and cells are defined. It
also contains functions for requesting the table’s data and all the callback methods needed
to efficiently react to the changes done in the other three components.

• Pagination: this component is responsible for providing the table with a pagination
behaviour. It consists in buttons that allows the user to go to the first, last, previous and
next page in case the number of rows is bigger than the table’s length.

• Length: this component allows the user to change the table’s length or size (the maximum
number of rows to display). When used together with the pagination component this length
is the number of rows per page.

• Column visibility: this component allows the user to change some columns visibility.
We can also define groups of columns for example to hide all the odd columns.

4.3 Chart visualizations

As we mentioned in previous sections, we used the D3 library to implement all the chart
visualizations as reusable AngularJS components. The bindings are different for each compo-
nent and so it’s the data structure expected, mostly depending on the way of constructing the
chart.

All the charts implemented in this project have tool-tips which can be used to show addi-
tional information when the mouse is over a column or section, except from the scatter, where
we decided not to add tool-tips because hundreds of dots are usually displayed, which makes
tool-tips difficult to read and therefore useless.

We also implemented other features depending on the complexity of the visualization to
make them easier to read and use, for example, toggling columns visibility or zooming.

4jQuery: a JavaScript helper library for HTML DOM manipulation and event handling

16

4.3.1 Columns and line chart

This is a dual axis chart that helps spotting the relationship between two variables that are
in different scales or belong to different magnitudes.

Columns-line charts can be very useful if there is a strong and meaningful correlation be-
tween the two variables so we can extract valuable information by comparing them, otherwise
we will end with a confusing and misleading chart that doesn’t provide any helpful informa-
tion.

Some of the most relevant parts of the code are:

// We need to define two types of scales for the X axis: a band scale for the columns
and a point scale for drawing the lines

let xBarsScale = d3.scaleBand().range([0,width]).domain(this.xNames).paddingInner(0.5)
.paddingOuter(0.25)

let xLinesScale = d3.scalePoint().range([0,width]).domain(this.xNames).padding(0.5);

// Even though both scales are linear, we still need to define two because their
domain is different

let yBarsScale = d3.scaleLinear().rangeRound([height, 0]).domain([0, d3.max(barsData)
]).nice();

let yLinesScale = d3.scaleLinear().rangeRound([height, 0]).domain([0, d3.max(lineData)
]).nice();

// Defining the X axis, we can use any of the two scales, in this case we used the

point scale.
gChart.append("g")

.attr("class", "x-axis-"+columnLineChartId)

.attr("transform", "translate(0," + height + ")")

.call(d3.axisBottom(xLinesScale)); //method that draws the bottom axis

// Left Y axis - Columns
gChart.append("g")

.attr("class", "blue-axis y-left-axis-"+columnLineChartId)

.call(d3.axisLeft(yBarsScale).ticks(null, "s")) //method that draws the left axis

.append("text")

.attr("dy", "0.32em")

.attr("fill", "#000")

.attr("text-anchor", "start")

.text(yBarsAxisText) //left y-axis labels

.attr("font-size", 12)

.attr("text-anchor", "middle")

.attr("transform", "rotate(-90)")

.attr("x", 0 - (height / 2))

.attr("y", 10 - margin.left);

// Right Y axis - Lines
gChart.append("g")

.attr("class", "orange-axis y-right-axis-"+columnLineChartId)

.attr("transform", "translate(" + (width) + ",0)")

.call(d3.axisRight(yLinesScale).ticks(null, "s"))//method that draws the right axis

.append("text")

.attr("dy", "0.32em")

17

.attr("fill", "#000")

.attr("text-anchor", "start")

.text(yLinesAxisText) //right y-axis labels

.attr("font-size", 12)

.attr("text-anchor", "middle")

.attr("transform", "rotate(-90)")

.attr("x", 0 - (height / 2))

.attr("y", margin.right - 10);

Listing 6: Columns and line chart code

The figure 4 is an example of one of the many columns-line charts we created. It displays
information about the countries that are generating more revenue to the company in comparison
of the number of campaigns they have.

We can easily spot the countries where the campaigns are performing well and which coun-
tries are not. With this information we can decide, for example, to increase the efforts in finding
more campaigns for the countries with a high performance or trying to increase the performance
of the countries that already have a lot of campaigns but a low revenue.

This type of chart is mainly used in the Account Manager’s dashboard because it provides
a good overview of the whole companies’ performance.

Every time they log in they see four of these charts, each of them illustrating the correlation
of the campaigns alive with the market verticals, the payment methods, the conversion point or
as in the example, with the countries, all of them in a fixed 4 months time frame.

The same four charts are also included in the Data Analysis page but in a more dynamic
and interactive way. This page allows users to explore the data by choosing the desired time
frame and applying filters.

Figure 4: Columns and line chart example

18

4.3.2 Grouped columns chart

A grouped columns chart, also known as clustered column chart is used to compare different
categories of two or more groups.

When populated with relevant information, this chart helps spotting differences between the
categories inside a group and also to compare the same category across the different groups.

Visualizing the individual category distribution of a group and evaluate it in a global context
using the information of the other groups makes this chart a very powerful graphical tool.

In order to help understanding and analyzing the data displayed on this chart we included
an interactive legend, this means that the legend doesn’t just tell us what the colors of the
categories are, but also allows us to toggle the categories visibility so we can focus in the ones
we want.

All the interactive legends implemented have a similar implementation, consisting in dy-
namic changes of the elements’ style when a click event is received in the legend.

this.legend = gChart
.append("g")
.attr("font-family", "sans-serif")
.attr("font-size", 10)
.attr("text-anchor", "end")
.attr("class", "legend"+this.groupedBarsChartId) // we need classes to be unique

for each chart
.selectAll("g")
.data(this.groupNames.slice()) //the names of the categories of the groups
.enter()
.append("g")
.attr("transform", (d, i) => "translate(60," + i * 20 + ")");

const vm = this; //We need this hack for the onClick function as we want to use the ’
this’ DOM variable but we also need a reference to the controller context ’this’

this.legend
.append("rect")
.attr("x", this.width - 19)
.attr("width", 19)
.attr("height", 19)
.attr("style", "cursor:pointer") //helps the user to understand it’s clickable
.attr("fill", this.colorScale) //same scale used to paint the columns used to paint

the rectangles of the legend
.on("click", function (d){

let key = ".data-"+vm.groupedBarsChartId+"-"+ d.replace(/ /g, "");
// determine if current column is visible
let active = !legendKeys.get(key);
let newOpacity;
if(active){
//maxValues allows us to resize the chart very efficiently

vm.maxValues = vm.maxValues.filter(value => value!== vm.maxTotalValues[d]);
newOpacity = 0;

}
else {

newOpacity = 1;
vm.maxValues.push(vm.maxTotalValues[d]);

19

}
// hide or show the elements
d3.selectAll(key).style("opacity", newOpacity);
// update whether or not the elements are active
legendKeys.set(key, active);
// Here ’this’ is a variable referencing a DOM element, not the controller
this.style.opacity = active ? 0.5 : 1;
vm.updateAndResize(vm.gChart);

});

this.legend
.append("text")
.attr("x", this.width - 24)
.attr("y", 9.5)
.attr("dy", "0.32em")
.text(d => d);

Listing 7: Grouped columns chart code

The figure 5 is an example of a grouped columns chart that shows the revenue and the
margin by advertisers. We changed the x-axis labels to hide the real name of the clients.

With this example we can see how easy is to compare the revenue with the profit margin
(categories) of an advertiser but also to compare these two categories across the rest of advertisers
(groups). As we mentioned before, we can hide the margin or the revenue categories so we can
focus just in one category.

This type of chart is part of the Performance Component (figure 16) showing the same
information as in our example. It’s also included in the Conversions page where the categories
are the conversions’ disapproval types and in the Data Analysis page showing the revenue of the
conversion points by market verticals.

Figure 5: Grouped columns chart example

20

4.3.3 Stacked columns

The stacked columns chart we implemented is actually a 100% stacked column chart,
which illustrates the relative percentage of the data in stacked columns that always add up
to 100%.

This chart is used for part-to-whole comparisons across categories and helps spotting pro-
portions differences and changes.

The figure 6 shows the conversion status percentage of each vertical. When most of the
conversions are disapproved it can be an indicator that a vertical is receiving a lot of fraudulent
traffic. Verticals with mostly pending, can show us that advertisers owing campaigns with this
vertical are taking too long to approve them.

This chart can only be found in the Conversions page.

Figure 6: Stacked columns chart example

After finishing this chart, we obtained some feedback saying that, even though it was very
useful, they also wanted a chart to easily spot the market verticals that are receiving more
traffic as they deserve more attention than the rest, therefore we came up with the one shown
in the figure 7 but we finally discarded this option for being counter-intuitive and we decided
to implement a Marimekko chart (section 4.3.4) instead.

Figure 7: Stacked columns with opacity chart example

21

4.3.4 Marimekko chart

A Marimekko chart can be defined as a stacked columns chart with variable column’s width.
This type of chart illustrates two dimensions which allows to focus on large segments(most
relevant categories) and identify white spaces(categories missing).

These charts show the proportion composition of each category and its relevance in the data
set.

Typical use cases of Marimekko charts illustrate data sets where the value used to calculate
the widths of the stacked columns can be scaled with a linear scale. With a wider range, where
categories can go from small values to very big ones it becomes difficult to represent the data
properly as most of the columns won’t even appear.

For our specific use cases, we wanted the column widths to represent the amount of traffic
so we decided to use a logarithmic scale. The problem of this implementation is that it’s not
possible to apply the logarithms directly to the data set because percentages wouldn’t make any
sense, therefore it wasn’t possible to use the D3 stack generator as we did in the stacked columns
to calculate the positions of the stacks.

We had to implement our very own solution from scratch as shown in the extract of the
code below.

let totalLog = 0;

// creating the data structure to construct logarithmic variable width columns
this.data.forEach((element,index) =>{

let cumulativeStack = 0;
element.stacks.forEach(stack =>{

cumulativeStack += stack.value;
stack.stackStart = cumulativeStack;
stack.dataIndex = index;

});
element.columnStart = totalLog;
totalLog += Math.log1p(element.total)

});
//the x-axis labels
let label = node.append("g")

.attr("class", "label")

.attr("transform", d => { //we calculate the position of the columns
let columnStart = ((d.columnStart)/totalLog)*100;
let columnWidth = (Math.log1p(d.total)/totalLog)*100;
let x = this.xScale(columnStart) + (this.xScale(columnWidth)/2);
return "translate(" + x + "," + this.height + ")";

});

node.selectAll("rect")
.data(d => d.stacks)//for every column we draw the stack rectangles
.enter()
.append("rect")
.attr("class",’cell’)
.attr("fill", d => this.colorsScale(d.key))
.attr("x", (d) => {

let percentageAcumulated = ((this.data[d.dataIndex].columnStart)/totalLog)*100;
return this.xScale(percentageAcumulated);

22

})
.attr("y", d => {

let percentageAcumulated = ((d.stackStart/this.data[d.dataIndex].total))*100;
return this.yScale(percentageAcumulated);

})
.attr("height", d => {

let percentage = (1-(d.value/this.data[d.dataIndex].total))*100;
return this.yScale(percentage);

})
.attr("width", d => {

let percentage = (Math.log1p(this.data[d.dataIndex].total)/totalLog)*100;
return this.xScale(percentage)-1;

})
}

Listing 8: Marimekko chart extract

The Figure 8 is an example of a Marimekko chart that represents the conversions’ status
of the top 5 publishers. This type of chart is also part of the Performance Component, and it’s
also included in the Conversions page.

Figure 8: Marimekko chart example

4.3.5 Scatter plot

The scatter plot, also known as correlation plot, is a two-dimensional data visualization that
uses dots to illustrate the values of two different variables using Cartesian coordinates.

Scatter plots are very useful tools for conveying the relationship between two variables. It
helps spotting the trend when the variables are very correlated or to visually find if there isn’t
a discernible relationship between them.

In order to deep dive in the data set, we implemented a zooming feature, and also an ad-
vanced clickable legend that allows hiding the dots according to their origin and category.

23

The Figure 9 is an example of a scatter plot. It shows the amount of time to convert and
the conversion time. We also added two more dimensions by using different symbols instead of
just dots, to represent the campaign of the conversion (origin) and the color of the symbols to
see the conversion status (category).

Figure 9: Scatter plot example

The main problem of scatter charts are the data outliers which can affect all the visualization
if not treated properly. In order to minimize these outliers we implemented a method to remove
the data points having values that differ from the trend in more than a certain percentage
given.

4.3.6 Tag cloud

The tag cloud, also known as word cloud, is a visual representation of text data where the
importance of the tags is shown with the font size.

It can’t be really considered a data analysis tool but it’s a simple and attractive way of
visualizing the top tags of a list.

For creating this visualization we used the d3-cloud which is basically a layout algorithm
that calculates the tags positions very efficiently.

24

The Figure 10 is an example of a tag cloud that shows the publisher names that have
been sending more traffic during the last three days. Tag clouds are found for example in the
publisher dashboard, showing the top verticals converting.

Figure 10: Tag cloud example

4.3.7 World map chart

This chart is a heat map of the world’s political map where all the countries are represented.
It can only be used to represent geographical-related data sets.

The Figure 11 is an example of the world’s map chart showing the countries the internet
traffic comes from. We used a logarithmic scale instead of a linear scale to paint the countries
because the range of the traffic of each countries is very wide and otherwise we would have ended
with a map where huge traffic countries would have completely hidden the information of the
rest of countries with less traffic.

Figure 11: World map chart example

4.3.8 Pie chart

A pie chart is a circular graphic divided in proportional segments to show numerical pro-
portions and percentages between different categories.

In a pie chart you can compare the categories by looking at the ratio of the angles, the ratio
of the areas of each segment or slice or the length of the outer circumference.

This type of chart are useful to give the user a quick vision of the proportional distribution
of the data set, but it’s not as efficient as the 100% stacked column charts because comparing
element’s size by looking at the areas is less intuitive than it is with the lengths.

25

Other downsides of pie charts are the spatial efficiency and the low data-ink ratio, which
Edward Tufte pointed out to be a problem that clutter and slows data comprehension in his
book The Visual Display of Quantitative Information[12]

D3 has built-in arc and pie generators. The d3.arc method creates a circular or annular
sector while d3.pie computes the necessary angles to represent the array of data, usually called
to prepare the data for the arc generator. Both generators have many options but we need
to be careful on what to modify as for example increasing the padding between sectors using
the arc generator increases the bias of the resulting representation because applying the same
padding affects smaller sectors, but if we add the padding using the pie generator, it computes
the corresponding angles to avoid introducing these bias.

The Figure 12 is an example of a pie chart used in the Conversions page that illustrates
the proportion of the countries generating the campaign’s conversions.

Figure 12: Pie chart example

4.3.9 Donut chart

Donut charts are basically pie charts with a blank central area. Although at first sight the
blank space does not seem enough reason to consider that these two graphs are different, there
are many features that change and make donut charts a better data visualization option.

Donut charts emphasize focusing on the arcs lengths to compare proportions instead of
the sections’ area. It also improves spatial efficiency and provides a useful empty area in the
center of the chart that can be used to display important information as it draws the eyes of the
users.

26

The Figure 13 shows two advanced donut charts. We say these are advanced because we
used the blank space to add a smaller donut chart inside. Outer donuts represent the traffic
distribution while the inner donut represent conversions. The left chart’s sections represent the
operative systems and the right one the device types.

Figure 13: Donut charts example

4.3.10 Sunburst chart

Sunburst charts are circular visualizations that allow representing hierarchical data in a
series of rings where the sections of the outer ones are the decomposition of the inner ring’s
sections. If the data set is not hierarchical, the sunburst chart looks like a donut chart, as it will
contain only one ring.

This type of chart is mainly used to illustrate how one ring is divided into its contributing
pieces, breaking the data into smaller and more specific subcategories.

During the implementation of the sunburst chart we found out that adding labels to each
section wasn’t a good approach as it made the chart unreadable, therefore we decided to create
a dynamic legend that shows the paths of the sections until the selected one at the top of the
chart.

The Figure 14 is an example of a sunburst chart representing the profit margin generated
where the smaller granularity, the innermost ring, shows the device type distribution, the second
ring the operative system, and in the outermost we have the operative system version.

Figure 14: Sunburst chart example

27

4.3.11 Line chart

Line charts are two-dimensional visualizations used to represent information as series of
data points connected by straight line segments.

This type of charts are used to analyze data that changes over a continuous interval or
period of time, typically used to display performance measurements and depict trends and
behaviours.

When more than one line is drawn in the same chart, it turns to be a perfect tool for
comparing information and measures, but too many lines can clutter the chart, increasing it’s
complexity and making it unreadable.

This type of visual is part of the Performance component and it’s also included in the Data
analysis page and in the account manager’s dashboards.

The Figure 15 is an example of a line chart with multiple lines extracted from the Data
Analysis page.

Even though we are aware that many lines increases chart’s readability, we decided to draw
them in the same chart instead of creating more due to the limited space. We also knew that
this specific chart will only be used by highly experienced users (administrators, finance and
head of sales team). However, lines can be hidden by clicking the check-boxes located at the
bottom of the chart.

Figure 15: Line chart with multiple lines

28

4.3.12 Performance component

The performance component consists in four different types of charts that combined become
a very useful data visualization tool for measuring performance. This tool is used for analyzing
the performance of campaigns, advertisers and publishers.

The Figure 16 is an example of the performance component of a campaign from an account
manager or admin’s login. Publisher and advertisers users can’t see some of the information
shown here, like for example the profit margin.

In this component the Marimekko and the grouped column charts have clickable labels on
the x-axis that redirect to the corresponding user. As the space is reduced and names can be
very long we decided to display the user id’s instead.

Figure 16: Performance component

29

5 Project Management

In this section we will explain the working methodologies and the tracking tools used for a
proper project management.

5.1 Methodology

The working methodology chosen for this project is based in the agile framework named
SCRUM. This methodology consists in an incremental development of small deliverable parts of
the project that have to be done in a short interval of time, usually two weeks.

We chose SCRUM because we work side by side with most of our stakeholders and we know
that the requirements they gave us the first day will have nothing to do with their expectations
at the end of the project. Working in an agile environment improves project’s flexibility letting
us react to changes before it’s too late, that way we can not only avoid big deviations in the
temporal planning, but also deliver a final product that fulfills the real requirements.

Even though this is an individual project it has implications in other projects being devel-
oped in the company but as the IT team already worked with an agile methodology we didn’t
have any problem.

5.2 Tracking tools

The main tools used to assure an efficient communication during the whole project were
the email or Skype ,to contact the stakeholders that work in the company and the tutor of the
project.

For a better communication inside the IT team we used Slack, a cloud-based set of propri-
etary team collaboration tools.

We also used Git as the version control system, and an online repository named Bitbucket
which besides from tracking the commits or creating pull requests, it allowed us to define issues,
assign them to the members of the IT team and change their status.

The combination of Slack and Bitbucket helped us a lot with the monitoring of changes
in the source code. We defined some triggers in Bitbucket to receive notifications in the Slack
chat.

30

6 Temporal planning

This section describes the tasks that have to be done and the resources needed to execute
them. Each task will be given a certain amount of time according to the complexity and based on
the personal experience in order to be able to successfully finish the project in the desired time
frame. The temporal planning also comprises the tasks dependencies with a Gantt’s diagram
and the possible deviations that may happen and how they can affect the project.

6.1 Project stages

The whole project is divided in three stages. Each stage consists in a group of tasks that
will contribute to the achievement of a specific milestone:

• Project conception and planning: is the first stage and it consists in understanding
the reason behind the project, usually a problem or a business goal, it’s feasibility and
expected outcome. This phase also defines the route map of the project.

We can divide it in two tasks:

– Project brief

– Project planning

• Project execution: the project execution phase comprises all the actual work that has
to be done and it’s formed by 5 tasks:

– Study of the tech stack

– Study of the company business

– Set up of development environment

– Implementation of data visualizations

– Testing and evaluation

• Project closure: the closure of the project is the last phase. Even though the project is
finished and running, a final documentation wrapping up all the work has to be done. This
serves as a retrospective that may help us to find improvement opportunities for future
projects.

– Final memory

31

6.2 Tasks Description

The tasks mentioned before and the resources needed for each one are described as fol-
lows.

6.2.1 Project brief

This task will result in the first document of the project.It’s an overview of the project, a
brief description of its needs and general purpose. It’s the first step to understand what the
project entails.

In order to do this task we will need to meet the director of the project.

After finishing this project brief, we can successfully explain what are we going to do
despite we don’t necessary know how yet. Registering the thesis can only be done after this first
task.

Resources: We only need a computer with a word processor, in our case we preferred the
web-based software named Google Docs because of it’s simplicity and the possibility to access
the documents from the internet.

6.2.2 Project planning

This task consists in creating a document defining the detailed plan we will follow from
beginning to end.

It’s important to note that even well-panned projects can fail, but an unplanned project
will never succeed. Therefore a good project planning it’s crucial for maximizing the success
probabilities.

This task is done in the GEP subject, and it’s also divided in three smaller parts, each one
with representing a deliverable:

• Project scope and contextualization

• Temporal planning

• Budget and sustainability

At the end of GEP all these deliverables are wrapped up and will be used again to create the
final documentation in the project closure phase.

Resources: For this task we need a computer with internet connection, Google Docs and
the planning software Gantter5.

5Gantter: A cloud-based project management software that allows you to create and edit project schedules
and gantt charts

32

6.2.3 Study of the company business

This task consists in understanding the affiliate marketing business. The knowledge we
need to create valuable solutions comprises not only technical concepts and terminologies, but
also the market contextualization to detect the gaps and opportunities.

Resources: For this tasks we need a computer with internet access.

6.2.4 Study of the tech stack

This task is about acquiring the level of knowledge necessary for successfully implementing
the solutions needed. The project’s main stack has been also mentioned before, and it consists
in the Elastic stack, the AngularJS framework and the D3 library. However we also need to
have a minimum understanding of Docker containers and the Webpack module bundler as they
are part of the development environment.

Other technologies and languages needed like Git, HTML or PHP aren’t contemplated in
this task as we already had the knowledge necessary before starting this project.

Resources: For this task completion we need a computer with access to the internet.

6.2.5 Set up of development environment

This may seem trivial but setting up all the software and tools needed for the developing
process also takes time. Based in previous experiences in smaller projects we can figure out that
the setting up for this particular project will be long enough to consider it a task and add it to
the schedule.

We will install and set up the Docker containers, the PhpStorm IDE with the Xdebug
debugger, the Postman ADE, the Slack client, the Sequel Pro database manager and all the
dependencies required for these programs.

We need to download the latest version of the source code from Bitbucket and install all
the NPM modules required because we will be extending an existing web application. A local
copy of the live MySQL database from the Google Cloud instance will be the last thing needed
for our development environment.

Resources: For this task we need a computer with internet access that fulfills all the
requirements of the software we will use.

6.2.6 Implementation of data visualizations

This is the biggest task of the project and encompasses all the work of the actual imple-
mentation of the visualizations.

For each chart visualization created we can differentiate three main phases. We decided not
to divide this task in a smaller granularity (one task per phase) due to our agile approach which
consisted in the incremental implementation of each visualization to release functional charts on

33

each iteration. This way we received feedback much faster than if we first finished all the first
phase, before starting the second one and so on.

The three phases are:

• Data search: create the queries DSL to retrieve the data from Elasticsearch. Due to our
needs of creating reusable dynamic queries, we implemented a custom PHP library for this
purpose.

• Data processing: post-processing the raw data coming from Elasticsearch and map it to
the desired format for the front-end.

• Data visualization: the actual front-end visualization components which display the
processed data.

For a deep dive into these phases go to section 4.1 Implementation phases.

Resources:For this task we need a computer with all the tools from the previous task, and
access to the instances running Elasticsearch.

6.2.7 Testing and evaluation

This task consists in testing the visualizations previously implemented. This testing doesn’t
consist in debugging the code (that should be done during the implementation task), these
tests are for measuring the user acceptance (UAT6) and evaluating that they fulfill all the
requirements.

Resources: For this task we need the development environment previously configured and
users that have never used our visualizations before.

6.2.8 Final memory

In this task we are going to prepare the final deliverable of the project. It’s in this last task
where we will write the final documentation of the project and also prepare the defence of the
thesis.

Resources: For this task we need a LaTeX7 editor for writing a proper memory and a
presentation software for creating the thesis presentation. We chose the online editor named
Overleaf and LibreOffice but any others could work as well.

6UAT:User Acceptance Test are the ultimate phase of software testing process. During UAT, real end-users
test the software to make sure it fulfills the requirements by executing tasks in real-world scenarios

7LaTeX: a high-quality typesetting system that enables professional preparation of various types of texts.
Texting in LaTeX is most similar to programming.

34

6.3 Tasks dependency

Figure 17: Gantt’s diagram of the project

6.4 Temporal estimation per task

The table below shows the amount of hours we estimated for each task to be completed.

Task Estimated hours

Project brief 4

Project planning 70

Study of the tech stack 40

Study of the company business 30

Set up of development environment 16

Implementation of data visualizations 210

Testing and evaluation 105

Final memory 65

Total 540

Table 1: Temporal estimation per task

35

6.5 Resources

We can divided the resources needed in three groups: software, hardware and human re-
sources.

6.5.1 Software resources

• Operative system: the operative system used is MacOS version 10.14, also known as
Mojave (Liberty).

• Development software: we used the IntelliJ PhpStorm as our IDE and the PHP debug-
ger named Xdebug. Other software required for the development are Postman used with
the Elasticsearch API, and Docker containers.

• Communication: the communication tools used were Slack, Skype and Apple Mail.

• Planning: we used Gantter for task planning.

• Version control: we used Git as our version control system with a Bitbucket online
repository.

• Other: the Overleaf online text editor and the Google Docs online word processor.

6.5.2 Hardware resources

• Laptop: MacBook Pro 13

• Extra screen: BenQ GL2580H 24.5

• Keyboard: Magic Keyboard

• Mouse: Magic Mouse 2

• Cloud hardware: servers and virtual machines from Google Cloud.

6.5.3 Human resources

• Developer: The responsible of doing the project.

• Project director and academic tutor: They help and guide the developer during the
whole project.

• Support developers: other members of the IT team that may give some advise and help
to the main developer.

36

6.6 Analysis of project deviations

Despite the planning of the project and the temporal prevision for each tasks are done
very carefully, some deviations may occur. It’s difficult to prevent all the possible problems and
obstacles that a project can face, but we will try to minimize their impact by adding some extra
time to the real estimation in the temporal planning in order to have some margin in case of
deviations.

The implementation task is more likely to suffer delays than any other because of it’s
complexity, that’s also why we increased the margin in this tasks more than in any other.

If these prevention measures aren’t enough and the tasks need more time than the expected
we will have to change the scope and reduce it in order to be able to deliver a smaller but still
decent project.

On the other hand, if a task is finished before the expected time, we will start with the next
one and, if we still have a big margin of time in the final tasks we can consider to change our
scope and include new tasks.

6.7 Temporal planning final retrospective

After the project closure, the comparison between the initial temporal planning and the
real time spent show us that the overall estimation was quite accurate thanks to the margins we
added to prevent possible deviations.

Despite we consider the initial planning a success, some deviations occurred.

The differences of the expected amount of hours necessary for each tasks and the real ones
are shown in the table below.

37

Task Estimated hours Real hours Observations

Project brief 4 4 Successfully
completed on
time

Project planning 70 70 Successfully
completed on
time

Study of the tech stack 40 40 Successfully
completed on
time

Study of the company business 30 30 Successfully
completed on
time

Set up of development environment 16 20 Complications
mostly setting
up docker and
Xdebug

Implementation of D3 visualizations 210 220 Complications
with a require-
ment change,
implementation
of Marimekko
chart

Testing and evaluation 105 135 User testing done
in production
environment
instead of locally
(had to wait for
deployment day)

Final memory 65 75 Restructuring
documentation
and using LaTeX

Total 540 584 Delayed a bit
more than one
week

Table 2: Temporal deviations per task

38

7 Economic analysis

In this section we will study the budget estimation for the project and the possible deviations
we should be aware of.

7.1 Budget estimation

The budget estimate can be divided into two sections according to the nature of the planned
costs.

7.1.1 Direct costs

Direct costs are the expenses that we can relate to a specific object, in our case this
project.

Amortization = (Price - Residual value)/ 7 months

*Cloud Services: There are three instances in Google Cloud directly related to this project,
two of them cost 380AC/month each one and the other one 53AC/month. As our project lasts 7
month the price is calculated as: (380x2+53)x7=5691AC

**Intern Developer: The price is calculated as the total hours estimated for this project
multiplied by the price per hour indicated by the university agreement: 540 hours * 8AC/hour
= 4320AC

39

Concept Units
or
Hours

Useful
life
(years)

Price Resi-
dual
value

Amorti-
zation
per
month

Hardware costs

MacBook Pro 13 1 5 1.500AC 1.000AC 72AC

BenQ GL2580H 24.5 1 8 130AC 90AC 6AC

Magic Keyboard 1 4 100AC 60AC 6AC

Magic Mouse 2 1 4 85AC 45AC 6AC

Cloud services* - - 5.691AC - 813AC

Software costs

PhpStorm 1 1 0AC - -

Postman 24.5 1 - 0AC - -

Docker 1 - 0AC - -

Slack 1 - 0AC - -

Bitbucket 1 - 0AC - -

Elastic stack 1 - 0AC - -

Human costs
Intern Developer** 540 - 4.320AC - -

University taxes 1 - 1.216AC - -

Total - - - 13.042AC - 1.077AC

Table 3: Direct costs estimation

40

7.1.2 Indirect costs

The indirect costs go beyond a particular object or product, in our case the indirect costs
are the costs of the company that are not strictly related with our project. We are not going
to list all the expenses of the company as it’s out of the scope and it’s private information that
the company won’t provide us, but we will list some costs that they did give us and which are
somehow related to the project.

Concept Price/Month Total price

Cloud Architecture support* 200AC 1.400AC

Total 200AC 1.400AC

Table 4: Indirect costs estimation

7.1.3 Total costs

Concept Price

Direct costs 13.042AC

Indirect costs 1.400AC

Total 14442AC

Total with 5% contingency 15.164,10AC

Table 5: Total costs estimation

41

7.2 Possible budget deviations

The possible errors or deviations that our budget estimation may suffer can only happen in
the human costs section of the direct costs because all the other concepts are real values as all
the hardware has been purchased before the start of the project and the software licenses are
either open-source or free when using a student license.

In order to cover unexpected costs we increased our budget estimation a 5%. Usually the
contingency budget is calculated as the 15-20% of the total budget but in our case we have
very low possibilities of deviations, therefore we decided that a 5% for contingencies should be
enough.

7.3 Budget final retrospective

After finishing the project we can confirm that our initial budget was very accurate. We
had a 5% margin for unexpected costs and the final costs ended up being less than a 2,5% higher
than our initial estimation without adding the contingency budget. Therefore we covered this
deviation using only half of the the contingency budget.

The increase in the final costs can be explained because of the delay suffered on the com-
pletion of some tasks, mostly during the testing and evaluation task, which increased the total
amount of hours of the developer from 540 to 584 which resulted in 352AC more.

42

8 Sustainability

In this section we will study the sustainability of the project by addressing to economic,
environmental and social dimensions.

The following table shows the final scores of each dimension. We believe the overall results
are good because even though this project it’s not intended to improve the user’s life quality, it
has a high economical feasibility yet keeping it’s environmental footprint very low.

Economic Environmental Social

8 8 6

Table 6: Sustainability matrix results

8.1 Economic dimension

The estimated costs seem to be really high for this project but we need to emphasize that
more than half of these costs, almost a 64%, are indirect costs mostly coming from the office
rent which is used by the whole company.

Regarding the direct costs, all the hardware specified it’s already owned by the company so
despite they are still direct costs, they can’t be considered an extra investment for the project,
being cloud services the only exception. On the other hand, most of the software used are
free-open-source projects excepting the PhpStorm IDE but we managed to get a one-year-free
license applying for the JetBrain Student Pack.

Considering all these statements, we can conclude that the real investment of the company
in this project is reduced to two main costs, the cloud services mentioned before and the human
costs which altogether sum a total of 11.227AC.

The company preferred not to make their finances public therefore we can’t estimate the
ROI8, however we should emphasize that the return of this project it’s not strictly related with
the company’s income but with their customer’s satisfaction.

8ROI: Return of investment, a performance measure used to evaluate the efficiency of an investment.

43

8.2 Environmental dimension

It’s very difficult to estimate the environmental impact of the project as it’s not related to
any industrial process or has a physical application.

The main impact comes from the local hardware that will be used during the development
and also all the hardware provided by the cloud services that will be running it.

All the local hardware can be reused for other projects and purposes. Furthermore,the only
peripheral that requires the use of batteries is the Magic Mouse 2 but the company provided us
with rechargeable AA batteries.

Regarding our cloud services provider, we use Google Cloud, the most sustainable provider
and winner of an A grade in the latest ClickingClean[13] report. Google Cloud is the world’s
largest corporate buyer of renewable power, and they already reached the 100% of renewable
energy consumption in 2017, which means that the net emissions directly associated with our
cloud computing and data storage is zero.

8.3 Social dimension

The social impact of this project can’t be directly related with an improvement of the
user’s life quality. Yet, providing them with tools to analyze their data, we can help them to
understand their traffic better, which should lead them to an income increase.

In addition, even though the publication of the source codes of the chart visualization
components and the custom DSL-query library are not planned for the immediate future, the
company confirmed that they are considering it as a very feasible option.

44

9 Requirements evaluation

In this section we will discuss the results of evaluating the quality and success on our goal
of accomplishing the project’s requirements.

The table below is the breakdown of the total score that we obtained by adding the scores
of each requirement weighted by the priority we gave them during the project.

Requirement Score Weight Weighted score

Usability 8 0.3 2.4

Extensibility 8 0.1 0.8

Maintainability 7 0.1 0.7

Efficiency 8 0.2 1.6

Value 8 0.3 2.4

Total - - 7.9

Table 7: Requirements evaluation scores

The total score sums 7.9 out of 10 which despite not being a perfect score we still think is a
big success considering that we didn’t have previous experience in almost any of the technologies
used to develop this project.

All the individual scores of the requirements are justified as it follows.

9.1 Usability

Usability was one of the most important requirements during all the project development
because we knew that otherwise the users wouldn’t use the tools and none of the other require-
ments would matter.

We put a lot of effort in choosing the visuals wisely, not only looking for the ones that suited
the data best or that provided more information but also considering that, as no explanation
would be provided to the users, they had to be very intuitive.

After receiving the feedback from the UAT we found out that the overall tools were easy
to use and understand, except from one specific visualization which most of them agreed it was
too complicated and therefore they wouldn’t use it. This visual was the scatter plot (figure 9),
so we decided to exclude it from the next releases.

45

9.2 Extensibility

We evaluated the extensibility requirement as the level of data abstraction achieved, in
other words, the capability to represent different types of data on the same visual component
without changing its implementation.

We gave this section an 8 out of 10 because even though we used the same components to rep-
resent many different data without changing anything, in some cases the bindings and the data
structure expected from the component were a bit more complex than what we wanted.

9.3 Maintainability

This requirement ended up having the lowest score in comparison to the others. Despite
our focus in writing simple code, in some cases the complexity of the methods didn’t allow us
to, for example in the implementation of the Marimekko chart.

We also evaluated the quality of the documentation written by asking other developers
from the IT team to use some of the components without looking at the implementation, only
by reading the documentation. Although we received good feedback, we think it would have
been better to use documentation tools instead of just writing markdown files.

9.4 Efficiency

The efficiency requirement score has been chosen by looking both the response time of the
data requests and the actual Elasticsearch execution of the DSL queries.

We focused on creating data visualizations with acceptable loading times by applying as
many filters as possible to the Elasticsearch query, and in some cases we restricted the time
frame filters allowed.

The post-processing of the data is also important as sometimes extra data needs to be
retrieved from relational databases to complete the information needed.

With all these in mind we concluded that the components are efficient enough to deserve a
score of 8 out of 10.

9.5 Value

As we mentioned before, this project belongs to a private company, therefore it makes sense
that this requirement is the most important together with usability. It’s true that creating
valuable tools is strictly dependent of the other requirements, but it’s important to note that
all the other requirements can be fulfilled and still not be valuable for the company, for example
because the data is wrong or meaningless.

We gave this requirement a score of 8 out of 10 because we consider that all the final
visualizations released will increase the value of the platform but we still prefer to be skeptical
as this will be better evaluated in a longer term.

46

10 Conclusions

The representation of information is a topic more complex than what I initially thought, it
comprises not only interface and design concepts but also the representations characteristics and
constraints, for example if they introduce bias to the data set, in which cases and how to avoid
or minimize them, which visualization to choose depending on what we want to compare,etc.
During the project I learned a lot about this topic also because it’s something we’ve never seen
in the university despite the increasing importance of data analysis.

On the other hand, prior to representations, we have all the work of obtaining the data
and processing it to convert it in business-valuable information. It’s in this part where I learned
cutting edge technologies. The use of the Elasticsearch search engine and the Elastic stack in
general has given me practical knowledge in the storage and processing of data in a completely
different paradigm to the relational databases we have seen in the degree.

Regarding the project, the objectives have been achieved and the requirements met suc-
cessfully. We have created a php library that allowed us to build requests to Elasticsearch
maximizing good practices and facilitating testing processes and debugging work. We imple-
mented methods for post-processing Elasticsearch results and in some cases combining them
with information stored in MySQL databases. Finally we created the visual components and
decided exactly in which sections of the web application to add them, for what type of users,
etc.

We consider the project planning was very accurate, despite we had a small deviation on
the time required for the completion of the implementation and testing tasks which also led
to an increase on the estimated budget,as we mentioned before in the corresponding section
(7.3).

47

References

[1] ITU.Measuring the Information Society Report 2018. Annual report. Geneva, Switzerland:
International Telecommunication Union, 2018.

[2] Kepios Pte. Ltd., We Are Social Ltd., and Hootsuite Inc. Digital 2019: Global Digital
Overview. Annual report. 2019.

[3] R.E. Freeman. Strategic Management: A Stakeholder Approach. Pitman Publishing Ltd,
1984.

[4] Elastic company. ELK Stack: Elasticsearch, Logstash, Kibana. [Online; accessed April-
2019]. url: https://www.elastic.co/what-is/elk-stack.

[5] Elastic company. Elasticsearch: RESTful, Distributed Search Analytics. [Online; accessed
April-2019]. url: https://www.elastic.co/products/elasticsearch.

[6] Elastic company. Beats: Data Shippers for Elasticsearch. [Online; accessed May-2019]. url:
https://www.elastic.co/guide/en/elasticsearch/reference/6.4/glossary.html.

[7] Elastic company. Beats: Data Shippers for Elasticsearch. [Online; accessed April-2019].
url: https://www.elastic.co/products/beats.

[8] Elastic company. Kibana. [Online; accessed April-2019]. url: https://www.elastic.co/
products/kibana.

[9] Elastic company. ELK Stack: Elasticsearch, Logstash, Kibana. [Online; accessed April-
2019]. url: https://www.elastic.co/what-is/elk-stack.

[10] B. Green and S. Seshadri. AngularJS. O’Reilly Media, Inc., Apr. 2013.

[11] Mike Bostock. D3.js - Data-Driven Documents. [Online; accessed May-2019]. url: https:
//d3js.org/#introduction.

[12] E.R. Tufte. The Visual Display of Quantitative Information. 1983.

[13] Greenpeace. Clicking Clean. Annual report. Washington D.C., United States: Greenpeace
Inc., 2017.

[14] Alex Birkett. How to Deal with Outliers in Your Data. [Online; accessed May-2019]. url:
https://conversionxl.com/blog/outliers/.

[15] Peter Cook. In depth information on D3.js. [Online; accessed May-2019]. url: https:
//www.d3indepth.com/.

48

https://www.elastic.co/what-is/elk-stack
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/guide/en/elasticsearch/reference/6.4/glossary.html
https://www.elastic.co/products/beats
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/what-is/elk-stack
https://d3js.org/#introduction
https://d3js.org/#introduction
https://conversionxl.com/blog/outliers/
https://www.d3indepth.com/
https://www.d3indepth.com/

Appendices

A Elasticsearch document example

{
"_index": "tracking-000005",
"_type": "doc",
"_id": "LGKAhwWRHeaNcBbV6cspIssLrzoykzJ7taeCcGh4",
"_version": 1,
"_score": null,
"_source": {
"os": "Android",
"httpv": "1.1",
"ca": null,
"sid": [],
"ct": 1566369909580,
"apid": "1372481",
"response": "302",
"crid": null,
"pid": "16272",
"host": {
"name": "frontend-tracking-autoscaler-66vt"

},
"lt": "2019-08-21T06:45:09.000Z",
"l": "en-US",
"verb": "GET",
"det": "mobile",
"deb": null,
"chid": "18460",
"osv": "8.1.0",
"ci": "BD",
"co": null,
"aid": "1941",
"input": {
"type": "log"

},
"ip": "103.67.157.XXX",
"pop": false,
"h": 6,
"dem": "CPH1803",
"@timestamp": "2019-08-21T06:45:10.034Z",
"tpp": {
"add1": "06dc7ef7aaf5408c8adfd21bfe4c233a"

},
"r": null,
"cn": "Bangladesh",
"isp": "tobedone",
"cia": "LGKAhwWRHeaNcBbV6cspIssLrzoykzJ7taeCcGh4",
"b": null,
"bv": null,
"@version": "1",
"cid": "17033",
"request": "/go.html?a1=j&ad=224HLEZ3&add2=1046_8551&add1=06

dc7ef7aaf5408c8adfd21bfe4c233a&add_ref="
},
"fields": {

49

"lt": [
"2019-08-21T06:45:09.000Z"

],
"ct": [
"2019-08-21T06:45:09.580Z"

],
"@timestamp": [
"2019-08-21T06:45:10.034Z"

]
},
"sort": [
1566369909580

]
}

50

	Portada
	Index
	List of figures
	Introduction
	Stakeholders
	Developer
	Director and tutor
	Users

	State-of-the-art
	Elastic stack
	Elasticsearch
	Logstash
	Kibana
	Beats

	AngularJS
	Definition
	Components

	D3.js

	Project scope
	Motivation
	Solution
	Objectives
	Requirements
	Risks and possible solutions
	Failure of the development hardware
	Failure of the development software tools
	Wrong temporal planning
	Cloud services failure

	Project implementation
	Implementation phases
	Data search
	Data processing
	Front-end visualization

	Table visualizations
	Chart visualizations
	Columns and line chart
	Grouped columns chart
	Stacked columns
	Marimekko chart
	Scatter plot
	Tag cloud
	World map chart
	Pie chart
	Donut chart
	Sunburst chart
	Line chart
	Performance component

	Project Management
	Methodology
	Tracking tools

	Temporal planning
	Project stages
	Tasks Description
	Project brief
	Project planning
	Study of the company business
	Study of the tech stack
	Set up of development environment
	Implementation of data visualizations
	Testing and evaluation
	Final memory

	Tasks dependency
	Temporal estimation per task
	Resources
	Software resources
	Hardware resources
	Human resources

	Analysis of project deviations
	Temporal planning final retrospective

	Economic analysis
	Budget estimation
	Direct costs
	Indirect costs
	Total costs

	Possible budget deviations
	Budget final retrospective

	Sustainability
	Economic dimension
	Environmental dimension
	Social dimension

	Requirements evaluation
	Usability
	Extensibility
	Maintainability
	Efficiency
	Value

	Conclusions
	References
	Appendices
	Elasticsearch document example

