TECHNISCHE UNIVERSITAT BERLIN

FacurLTty IV - ELECTRICAL
ENGINEERING AND COMPUTER
SCIENCE

Chair of Sensor and Actuator Systems

Analysis and Spike Detection of Neural Data from a CMOS
MEA System

Bachelor Thesis

Laura Ibanez Martinez

March 2019 - September 2019

TECHNISCHE UNIVERSITAT BERLIN
Facurty IV - ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

Chair of Sensor and Actuator Systems
Prof. Dr. Roland Thewes

Analysis and Spike Detection of Neural
Data from a CMOS MEA System

Author: Laura Ibanez Martinez
Student ID: 408029
Submission date: 05.09.2019

Supervisor: Dr. Norman Dodel

AFFIDAVIT

I hereby confirm that this term paper entitled ” Analysis and Spike
Detection of Neural Data from a CMOS MEA System” is the result of
my own work. I did not receive any help or support from commercial
consultants. All sources and / or materials applied are listed specified
in this paper.

Furthermore, I confirm that this paper has not yet been submitted as
part of another examination process neither in identical nor in similar
form.

Berlin, 05.09.2019 L

Place, Date Signature

Abstract

This thesis is intended to deal with the problem of analysis and spike detection in
neural data acquired from a [CMOS|[Microelectrode Array|] (MEA)) system. In order
for this to be carried out a [Graphical User Interface| (GUI) application has been
created.

The data to analyze comes from an in-vitro recording and stimulation system which
uses a 65 x 65 and it is stored in [HDFb files with the .cmcr extension.
The [GUT] application developed in Python is able to read these files and perform a
number of tasks which facilitate the detection and visualization of neural activity
within the tissue subjected to analysis. This is accomplished by interpreting the
voltage measurements at every coordinate of the array over time for the search of
IAction Potentials (APg) or spikes. Once the spikes are detected the information is
stored to be presented in different ways and a comparison is carried out to detect
when and where most activity has taken place.

The [GUI| application created enables the visualization of both raw and filtered data
at a particular coordinate over time and showing the spikes that have been detected.
Moreover, a second type of plot makes it possible to view the whole array filtered
data for an exact time sample, as well as which coordinates present most neural
activity. Finally, a number of tables show useful information about the pixel coor-
dinates, time and height of these spikes.

Keywords: [CMOS[ME4] system, [HDF file, [GU] application, spike detection.

Contents

[List of Abbreviationsl i
[Cist of Figures| i
Listof Tables iv
I._Introductionl 1
LI Motivationl 1
[1.2. Objectives| 1

[2. Methodology| 3
Backg dl .. 3

systems| 3

2 1 2 opike detection methods|.o 0000 4

[2.1.3. Python programming language] 6

[2.1.4. [GUTapplications] 7

2.2. Proposed method]o o 8

structure of workl Lo 10

[3. Development|. 12
B.I. Environment setup| 12
[B-2. Application development] L 14
3.2.1. Anal sisclass|. o 14

........................... 15
[3:2.3. | 1mep|otW1aget class) 15

[3.2.4. GridplotWidget class 16

B.25. PlotWindow clasd 19

(3.2.6. TableWindow classl. 20

4. Results 21
4.1. Timeplot analysis results| 21
4.2. Grid plot analysisresults|o 000000 24
4.3. Table view analysisresults| 29

b. Summary| 33
[A. Appendix: Code| 35

List of Abbreviations

List of Abbreviations

AP Action Potential.
BMI Brain-Machine Interface.

CLI Command Line Interface.

CMOS Complementary Metal-Oxide-Semiconductor.
DC Direct Current.
GUI Graphical User Interface.

HCI Human Computer Interface.
HDF Hierarchical Data Format.

HP High-Pass.

ICA Independent Component Analysis.

IDE Integrated Development Environment.

MEA Microelectrode Array.

MVP Model-View-Presenter.
NEO Nonlinear Energy Operator.

OOP Object-Orientated Programming.

OS Operating System.
PCB Printed Circuit Board.
SWTP Stationary-Wavelet-Transform Product.

WIMP Windows-Icons-Menus-Pointer.

List of Figures

List of Figures

[L. Diagram of an|Action Potentialland its different stages (Source: https://en. |
| wikipedia.org/wiki/Action_potential).| 0oL 3

[2. a) Block diagram of the entire MEA[measurement system, b) [CMOSt
based [MEA[chip on [PCBJ carrier with chamber, ¢) acquisition and
control board, d) digital interface board (from Bertotti et al., 2014, [1])| 4

[3. Diagram of the|Model-View-Presenter| (MVP)) architecture pattern (Source: |
| https://en.wikipedia.org/wiki/Model-view-presenter).|. 7

4. Aspect of [HDFView when one of the .cmcr acquisition files is opened.. 12

(5. Development of the timeplot widget and its different objects in Qt |

| Designer.|o 15
[6. Development of the grid plot widget and its different objects in Qt |
[Designer.| 17
[7. Aspect of the app main window and how to load a .cmcr file| 21
[8. Aspect of app once a .cmcr file 1s loaded.|.o 21

[9. Timeplot comparison of raw and filtered data for the selected pixel |

[coordinatel 22
[10. Comparison of computed spikes for two different threshold values.. . . 22
(11. Effect of applying zoom for visualizing an individual spike.|. 23
[12. Grid plot of filtered data at two difterent time samples.|. 24
[13. Effect of selecting 3D plot instead of 2D plot.| 24

[14. Aspect of peaks plot showing if there are spikes or not for each coordinate.| 25

[15. Effect of changing the threshold value and selecting second type of |
| peaks plot showing the number of spikes for each coordinate.| 25

(16. Effect of clicking on a pixel coordinate and opening its timeplot show- |
| ing filtered data and spikes.| 26

[17. Result of selecting a subarea of the whole array in second type of peaks |

..................................... 26

ii

List of Figures

[18. Eftect of drawing a rectangle with the mouse over more than one pixel |
coordinate in second type of peaks plot.| 27
[19. Result of selecting a different time range in second type of peaks plot.| 27
[20. Aspect of peaks time plot at different time samples with spikes.| 28
[21. Aspect of table view showing pixel coordinates and number of peaks |
ordered in two different ways.| L. 29
[22. Second table showing all spikes tor the selected pixel coordinate and |
the effect on the peaksplot.|. 30
[23. Third table showing all coordinates with spikes for the selected time |
sample or a near one and the effect on the peaks plot.| 31
[24. Selection of one of the pixel coordinates on the third table and the |
effect on the peaksplot.| 32

il

List of Tables

List of Tables

[I. Error rates of different spike detection methods (from Dragas et al.,

2013, 2] . -

v

1. Introduction

1. Introduction

This thesis is the result of the work achieved after spending an exchange semester at
TU Berlin, and more specifically the Chair of Sensor and Actuator Systems, in order
to conclude the Bachelor’s degree in Industrial Electronics and Automatic Control
Engineering coursed at UPC.

1.1. Motivation

As part of the work being developed at the Chair of Sensor and Actuator Systems in
cooperation with the NMI Natural and Medical Sciences Institute at the University
of Tiibingen regarding the design of [CMOS|[MEA] systems for interfacing purposes
with neural tissue, a topic concerning analysis of the recorded data has been con-
sidered appropriate for the development of this thesis. Moreover, the need for a
faster and more intuitive way of extracting relevant information from the mentioned
data has lead to the idea of developing a [GU]| application which is able to perform
these tasks. This way of analyzing and visualizing the data offers a large number of
possibilities and provides an interactive experience with the user.

As applications such as [Brain-Machine Interfaces (BMIs) for biomedical purposes
within others become more popular the need for neural data analysis and spike
detection methods grows. In cases like the actual one for in-vivo and in-vitro tech-
niques the use of [Microelectrode Arrays makes it possible to record extracellular
activity in neural tissue from a number of electrodes at the same time. These nerve
cells communicate by means of [Action Potentials (APg) or spikes which can be inter-
preted from fast, short duration transients in voltage. Appropriate spike detection
and spike sorting methods are useful for reducing the amount of relevant informa-
tion that needs to be stored and for detecting where the nerve cells are found within
the neural tissue subjected to analysis. Once the nerve cells are identified different
studies to see how the tissue reacts to certain stimulus can be carried out.

1.2. Objectives

The principal objective of this thesis is to provide an application capable of analyz-
ing and visualizing data acquired from the system and stored in the
form of [HDFP files. More specifically, the application aims to present the data in
different ways (timeplot for a specific pixel coordinate and grid plot for a specific
time sample) and both raw and filtered. The filter applied is a [High-Pass| (HP) filter
to remove the [DC| offset of the signal. Additionally, some spike detection method
must be applied and information such as the number, coordinates and height of the
spikes (also referred to as peaks throughout the document) extracted and stored to
be presented in different ways, including plotted and in a table view.

In respect to the creation of the [GUI| application, other objectives need to be ac-
complished in the first place in order to satisfy the ones mentioned above. These
include:

1. Introduction

e Familiarize with Python programming language and its main libraries such
as NumPy, SciPy and Matplotlib, as well as [Object-Orientated Programming]
(OOP]) to work with classes and objects.

e Make use of PyQt5 and Qt Designer in order to build the [GU]| interface in a
simple and intuitive way.

e Learn about the Pandas library and its multi-level indexing to find an appro-
priate way of storing the spikes information.

e Learn the basics of code benchmarking to time determined methods when
running the code in order to detect which actions take more time.

A more detailed explanation of each of these terms will be given in the following
sections.

2. Methodology

2. Methodology

2.1. Background

To understand the purpose of this work, an outline of what [CMOS|[MEA] systems

are, which spike detection methods are most commonly used, which are the basic
features of Python programming language and what [GU]| applications are is given.

2.1.1. systems

[CMOS|MEA|systems are designed to offer a greater insight into how neural activity
of single cells or cell tissue takes place. The study of this neural activity is based on
the principle of [Action Potentials (APE).

Nerve cells contain ion channels which selectively enable the permeation of certain
ions such as sodium or potassium. [APk are the elementary electrical signal in bi-
ological systems and consist of a transient change of the membrane potential in
these cells. In a steady state, this potential has a value determined by the ion with
highest conductance, usually potassium, which is of around -70 mV. After a voltage
drop over a certain threshold caused by either a biological or an artificial stimulus,
the Na-channels open and depolarization is further increased. Approximately 1 ms
later, these Na-channels are closed again and, after a short delay, the K-channels
are opened in turn. These repolarize the membrane and remain open even after
reaching the steady-state potential. After a refractory period the K-channels are

closed again and a similar situation is achieved as before [3]. Figure || shows what
one of these transients looks like.

Action

potential
+40

Voltage (mV)
[==]

Iy
9
T
o

&

8

(1]

)

u cn)(le‘.f.’'I.Jg'l‘:’d?d

Threshold _ Failed
-55 initiations

=70 Resting state

0 1 2 3 4 5
Time (ms)

Figure 1: Diagram of an |[Action Potentiall and its different stages (Source: https://en.
wikipedia.org/wiki/Action_potential).

2. Methodology

Most high resolution [CMOS|[MEAE contain between 1000 and 10 k active sites and
they can be divided in two groups: those with highly resolved spatial interfacing
selectability and those with real imaging capability such as the one used. This
means the entire array is read out and the results are images or movies of the
neural tissue activity. The number of channels equals the number of sites or is at
least of the same order of magnitude and the array readout uses multiplexing. A
high bandwidth is also required in the array periphery. The [CMOS|[MEAk used
in this case consist of 65 x 65 sensor sites and 32 x 32 stimulation sites, and the
sampling rate at which the data is captured is of 20 kHz. The bit depth is of
16 bits. The aforementioned structure results in a total of 4225 recording sites
and 1024 stimulation sites, though op-

eration of a subset of the entire area is a) REFERENCE
possible as well. Other parts of the sys-

tem include the acquisition and control ™
board and the digital interface board. 2
Once the data is acquired from the sys-
tem it is stored in [HDED files with the ||
.cmcr extension. This requires large
amounts of space, as for a sampling
rate of 20 kHz the total data stream ||p
is of (16 bit x 4225 x 20 kHz), which
is approximately 1.35 Gbit/s. A dia-
gram and pictures of a similar system
can be seen in Figure 2] Until recently
most attention has been put on record- d)
ing and little on stimulation, but it is
in fact of equal importance. Stimula-
tion is carried out by feeding currents at
the wanted sites into the neural tissue,
though sometimes voltages are also ap- b)

m
jul
m
g
=
[e]
=]
m

DIG. INTERFACE

USB 3.0
CONNECTION

-

CHANNEL #6422

ACQUISITION by
HANNEL #63

DIGITAL INTERFACE AND 1/O

plied. In most [CMOS| and non{CMOS|

MEAE sites are used in a bi-directional Figure 2: a) Block diagram of the entire
manner, but this requires a "blanking [MEA] measurement system, b) [CMOS}based
time” after the stimulation pulse is ap- [MEA|chip on [PCB] carrier with chamber,
plied. In this case, it has been proven ¢) acquisition and control board, d) digital
that recording and stimulation can be interface board (from Bertotti et al., 2014,

carried out simultaneously [1], [4]. D).

2.1.2. Spike detection methods

As said previously, these systems require spike detection methods in order to detect
when and where the neural activity has taken place and to be able to understand
the behaviour of the neural cells or tissue. Aspects to have in mind when choosing
an appropriate method include:

2. Methodology

e How fast it is.

e How complex it is.

e How much memory it requires.
e If it is unsupervised or not.

e [f it is real-time.

e How successful it is.

e Where in the system it needs to be implemented.
Some of the existing methods are:

1. Absolute Value Thresholding (Abs) ([2], [5]): being one of the most simple and
commonly used, it consists of applying a threshold to the absolute value of the
signal. The threshold is usually obtained the following way:

Th=Cyon, on= median{(‘)xé:ig}, (1)

where Cy is a positive constant which is usually set to around 4 as in [5] and
oy Is an estimate of the standard deviation of the noise.

2. [Nonlinear Energy Operator] (NEO) ([2], [5]): the 1 is defined in discrete

time as:

Ylz(n)] = 2%(n) — z(n +0) - 2(n - 9), (2)

where § € [1..10] and is normally set to 1 as in [5]. Thresholding is then per-
formed using an integer multiple of the mean value of ¥[z(n)]. This method
has the advantage of taking into account the frequency and not only the am-
plitude of the signal.

However, the actual system we are talking about counts so far with a software
that uses a different and more complex spike sorting algorithm. As the [CMOS|
IMEA] chips count with a higher number of sensor sites than of actual neurons, an
|Independent Component Analysid ([CA]) can be carried out as an ”unmixing” of the
raw data. The result of this is a set of signals each of which will ideally correspond
to a single neuron. As the algorithm tends to work worse if there are many sensors
to be unmixed at the same time, a different algorithm first divides the sensors
on the chip into smaller regions and computes the [CA] for each of these regions.
This algorithm reduces the dimensionality of the data and allows to process several
regions in parallel on one or several computers [6].

Other algorithms such as the [Stationary-Wavelet- Transform Producl (SWTH) [5]
or one based on a local energy measure (LocEn) [2] are presented in the articles
mentioned. Every one of these has to prioritize some aspects over others and are
more or less appropriate for a determined system depending on the conditions and
purposes of each.

2. Methodology

2.1.3. Python programming language

Python was first released in 1991 and is one of the most popular programming lan-
guages nowadays. Its philosophy makes special emphasis on a syntax that makes
code easily readable. Another one of its most characteristic aspects is that it is
developed under an open-source license, making it freely usable and distributable.
A very large number of tutorials can be found online and it can be easy to learn at
a basic level even for first time programmers [7].

Another common Python feature is its multiple programming paradigms, being one
of them |[Object-Orientated Programming| (OOP)). This paradigm provides a means
of structuring programs so that properties and behaviours are grouped into indi-
vidual objects. It is an approach for modeling real-life items and relations between
them, being in this case software objects which have certain data associated to them
and can perform determined functions. Next is a brief explanation of the two key

elements of [8]:

e Classes: each object is an instance of some class. Classes are used to create
data structures that contain information about the objects that belong to a
specific class. They offer a structure and determine which properties of an
object belonging to this class should be specified, but do not provide any real
content themselves. Classes can be thought as the skeleton or idea for how an
object should be defined.

e Objects: objects (or instances) are members of a specific class. They have
the properties defined by the class but with actual values specific for them.
Different objects from the same class will have the same properties but with
their own values. These will differentiate one from another but will make them
belong to this class and not to another one. Functions associated to any object
are called methods.

Another key element of Python are its standard and external libraries. Some of the
most commonly used are the following:

e NumPy [9]: being a fundamental package for numerical computation, it con-
tains features such as an N-dimensional array object, complex functions and
useful linear algebra. Arbitrary types of data can be defined and it is very
efficient as a multi-dimensional data container as well as for its scientific pur-
poses.

e SciPy [10]: it provides many useful numerical routines such as those for nu-
merical integration, interpolation, optimization or statistics.

e Matplotlib [I1]: being the most popular Python 2D plotting library, it pro-
duces figures in a number of different formats and interactive environments
across platforms. It can generate plots, histograms, scatter plots, etc. with
only a few lines of code.

2. Methodology

2.1.4. [GUI| applications

[Graphical User Interface (GUI) applications are[Human Computer Interfaces (HCIk)
that use windows, icons and menus and can be manipulated by devices such as a
mouse or by touch. They differ from [Command Line Interfaces (CLIk) in that
these use exclusively text and can only be accessed by means of a keyboard. [GUIk
make computer operation more intuitive and easier and provide the user with a
clear feedback about the effect of each action. They are also flexible meaning that
they allow a number of different objects or instances to be displayed at the same
time. The most common combination of elements in a | is the [Windows-Icons-|
Menus-Pointer] (WIMP)) paradigm, though many others have been used after it.
This type of interaction presents information organized in windows and represented
with icons. Commands are compiled together in menus and actions are performed
making gestures with the pointer [12].

A common design pattern is the [Model-View-Presenter| (MVP)]) pattern. Here,
the View and the Model are clearly separated and all presentation logic is pushed
to the Presenter. Each of the parts consist of the following [8]:

e Model: it is the interface defining the data to be displayed or acted upon in
the user interface.

e View: it is a passive interface that displays data (the model) and routes user
commands or events to the presenter to act upon the data.

e Presenter: it acts upon the model and the view. It retrieves data from repos-
itories (the model) and formats it for display in the view.

A diagram of this pattern is presented in Figure 3]

[Paszive View J

user events v updates view
Presenter
(Supervising Controller)
updates model ¥ state-change events

(=]

Figure 3: Diagram of the [Model-View-Presenter| (MVP)]) architecture pattern (Source:
https://en.wikipedia.org/wiki/Model-view-presenter).

Python has a large number of frameworks, being one of these PyQt [13]. PyQt
is a blending of Python programming language and the Qt library [14] and is a
multiplatform toolkit which runs on all major [Operating System| such as Unix or
Windows. Qt Designer is a Qt tool for designing and building [GUIk which allows to
design widgets, dialog boxes and main windows.

2. Methodology

2.2. Proposed method

Whereas many recent studies prioritize applying the spike detection method in close
proximity to the recording sites to reduce the transmission data bandwidth, in this
case we are working with already recorded and stored data in order to focus on the
[GU]| application itself. As shown in Table [I] with experimental results provided in
[2], from the two most common methods the Absolute Value Thresholding (Abs) has
a lower error rate. As it is also more simple than the Nonlinear Energy Operator
(NEQO), this one will be preferred over the two. In respect to the LocEn method,
it has been considered too complex to be implemented in the first place and left
for further consideration in the case of continuing to develop the application in the
future.

Table 1: Error rates of different spike detection methods (from Dragas et al., 2013, [2])

‘ Abs NEO ‘ LocEn
Error Rate (e) | 39.91% | 41.62% | 31.89%

In what refers to the creation of the [GU]| application, the mentioned PyQt toolkit,
more specifically PyQt5, and Qt Designer have been chosen for its development in
Python. The|Operating System|to be used is Linux and the [[ntegrated Development|
[Environment| (IDE) chosen for creating the Python application is PyCharm. This
has certain advantages over other such as:

e Coding assistance and analysis, including code completion and syntax and
error highlighting among others.

e Project and code navigation with specialized project and file structure views
and quick jumping between files, classes, etc.

e Refactoring including renaming of files, classes, functions, local/global vari-
ables, etc.

However, the preferred way of running the application and certain parts of it in this
case will be IPython. IPython (Interactive Python) [I5] is an interactive command-
line terminal for Python. It is easy to use and flexible for trying out specific com-
mands and making quick changes to them, which makes the whole process of creating
the application faster. The project will also be uploaded to GitLab, a web-based
platform for version control and collaborative software development in which devel-
opers can host and review code, manage projects and build software.

For the aspect of the application, a main window created in Qt Designer will ap-
pear when the application is run containing a menu which will make it possible to
open different .cmcr files in different tabs. Once a file is loaded, a timeplot for the
first pixel coordinate will appear along with a widget offering different possibilities.
These will include selecting a different coordinate, filtering the data and computing

2. Methodology

the spikes of the signal. From this window there will also be the possibility of open-
ing a new window of a different type. This second window will show the filtered
data of the whole array for the first time sample of the recorded data. A widget will
offer the possibility of presenting the data either as a 2D grid plot or as a 3D plot.
The widget will also incorporate the possibility of selecting a subarea of the whole
array and a it will offer a number of different ways of plotting the spikes. The results
acquired from computing the spikes will also be presented in some tables, which will
show the coordinates with most spikes and the pixels with spikes occurring at the
same or proximate time samples.

All these tasks will have been carried out making use of the main Python libraries
described previously, as well as other specific ones such as Qt and Pandas [16]. This
last one provides complex data structures and hierarchical axis indexing and will be
useful for storing the peaks information which contains multiple indexes such as the
x and y pixel coordinates.

2. Methodology

2.3. Structure of work

With the above mentioned, the structure of the work to be done results in the

following;:

1. Familiarize with the basic Linux shell commands and with IPython’s main
features, as well as PyCharm’s, and create an empty project. Upload the
project to GitLab.

2. Create the main window in Qt Designer with an appropriate menu. Create a
class associated to this window and make it able to open different .cmcr files
in different tabs.

3. Create the timeplot widget in Qt Designer and its corresponding class and
add the necessary buttons and features. Make it able to interpret the data in
the file and plot the raw data for the first pixel coordinate. Add the
necessary methods for it to offer the following:

Give information about the dataset, meaning coordinates and time range
values.

Possibility of selecting a specific pixel coordinate to be plotted.

Show relevant information about the selected coordinate such as mean,
peak to peak, standard deviation and maximum and minimum values of
the signal.

Possibility of choosing between plotting either raw or filtered data.

Making it able to compute spikes for a given threshold and for the spec-
ified coordinate and plot them.

Possibility of changing this threshold value.

Possibility of opening a new window of the same type and for the same
dataset to be able to compare more than one pixel coordinate at the same
time.

Possibility of opening a grid plot window.

4. Create the grid plot widget in Qt Designer with the necessary buttons and
features. Create its corresponding class and plot the filtered data of the whole
array for the first time sample. Add the necessary methods for it to offer:

Possibility of choosing between 2D plot and 3D plot.

Possibility of selecting a specific time sample for the array data to be
plotted.

Making it able to compute spikes for a given threshold and for all pixels
in the array and plot the pixels with spikes or the number of spikes in
each pixel.

Possibility of selecting a subarea of the array and computing spikes for
the specified area.

10

2. Methodology

e Possibility of selecting a specific range from the original time range and
compute spikes for the specified range.

e Possibility of selecting a peaks time plot, which means plotting sepa-
rately each time sample containing spikes somewhere within the array
and making it able to navigate between these time samples.

5. Create a table window to appear once spikes in the previous widget are com-
puted. This table window will show all the coordinates with peaks and the
number of peaks in each of them. It will offer:

e Possibility of ordering the table by any of the coordinates or by the num-
ber of peaks and of navigating from one row to another by the use of the
keyboard arrows.

e Possibility of selecting one of the coordinates with peaks and have it
highlighted on the grid plot, as well as showing a new table with all the
time samples with peaks for the selected coordinate.

e Select one of the time samples in this last table and show a third table
with all the pixel coordinates with spikes at this time sample or a near
one. Have these coordinates highlighted on the grid plot.

11

3. Development

3. Development

This thesis has been developed between March and September of 2019 in the Chair
of Sensor and Actuator Systems at TU Berlin. The following section provides a
description of the work done during this time.

3.1. Environment setup

For the development of this work, access to a laboratory with computers counting
with the necessary software has been provided. As mentioned before, these comput-
ers work with the Linux [Operating System| Because of lack of previous knowledge
about this [OS] a first research to understand how the Linux shell works and what
are its basic commands had to be done. At the same time, as [Python was going
to be used during the development of the application for making trials and running
small parts of the code, an initialization to this interactive shell was needed as well.
The version to be used was [Python 5.5.0, and the version of Python was 3.6.8.
To know with what type of data we were going to deal, [HDF|View was used, more
precisely version 2.10.1. This software is suitable for exploring [Hierarchical Datal
[Format| (HDF)) files and the groups and datasets contained within. Figure [4a] shows
the result of opening one of the .cmer acquisition files in [HDFView. The columns in
the table represent the values of one of the two coordinates, and to navigate between
values of the other coordinate the arrows shown by the pointer are used. As it can
be seen here, these values range between 0 and 65. Figure [Ab] shows the extent of
the time sample range, going from 0 to 112000.

Ele Window Tools Help File Window Tools Help

Recent Files |[fhome/sestuds/sestud21/data/2017.12.07-11.55.30-Spont.cmer ‘v Clear Text Recent Files |/home/sestuds/sestud21/data/2017.12.07-11.55.30-Spont.cmer ‘v Clear Text
(512017.12.07-11.55.30-Spont. |) sensorbata 1 1 at /Acquisition/Sensor Data/ [2017.12.07-11,55.30-Spont.. & B (512017.12.07-11.55.30-Spont| | sensorData 1 1 at /Acquisition/Sensor Data/ [2017.12.07-11.55.30-Spont... @ B4
© @ Acquisition Table Kl - @ & @ Acquisition Table Kol &[o 65
¢ @ sensor Data 0-based ¢ @ sensor Data Obased
R SensorDatal 1 ‘ ‘ =] [SensorData 1 1 ‘ 2.0 = ‘,4719]
Bl sensorteta Bl sensorvieta
o 1 2 T o
(ST 4085 7ai 1 |L211968 |47
EE 4094 76] |“111865 |-47
72 4054 76! - |111866 |27
74 a0 77 B [C111867 |-47
74 11 73 |-111968 |-47
50 14 71 |-111969 |-47
51 2 72 70 |76 7
79 22 741 4801 |7
8 61 43 79 asle
s a7 4089 78 as0l |
0|52 57 77 761
Bz 72 75 4775
52 1 75 4751
73 7 75 476 5
77 771 a0l |
3 7a4 1 asla |7
Bz 78 111980 [4773 |
503 78 [C111981 [4511 |
761 77. |[C111982 |-4791 B
709 76 [C111983 |-4748
817 1177 [C111884 |-4721
534 2 117 |“111985 |47
509 10 117 |“111986 |-47
778 02 117 [C111887 |47
702 48 117 |"111088 |47
70 4099|117 |“111989 |-47
7 4069|117 [C111880 |-47
5 4056|117 [C111801 |47
4101 [1181 [C11182 |-4699
4134 11801 [C111993 [4773
4105 [11781 [C111884 [4774
4089 [11761 [C111885 |-4759
4103 [11769 [C111896 |-4721
4120 [11736 [C111967 [4768 |
4|74 4132 [11724 EN| [T111968 |4826 |
5 |74 -a140 11720 |- 5 5 =] |"111909 | 4853 5
KT | D < -
Ell I D < I v
SensorData 11 (54612, 2) B SensorData 1 1 (54912, 2) B
16-bit integer, 112000 x 65 x 65 i’ 16-bit integer, 112000 x 65 x 65 i’
|(Loginfo | Metadata |Ctog info | Metadata

Figure 4: Aspect of iew when one of the .cmcr acquisition files is opened.

12

3. Development

[HDFView also gives relevant information about how the data in the file has been
captured. In this case, it says the sample period is of 50 ps, which corresponds
to the sampling frequency of 20 kHz mentioned before. It also says the values are
integers with a bit depth of 16 bits.

In respect to the rest of the software used, PyCharm version 2019.2 and Designer
with Qt version 5.9.5 were the most relevant ones for the creation of the application
itself and will be described in detail in the following section. The main Python
libraries used and their versions were NumPy 1.16.3, SciPy 1.2.1 and Matplotlib
3.0.3. The project has also been managed using GitLab version 2.17.1.

13

3. Development

3.2. Application development

As said, a project folder for the application was first created and the project was
imported to GitLab. Next is a brief explanation of how the application has been
developed with this as a starting point and of which parts compose it.

3.2.1. Analysis class

The first .py file (program file written in Python) that was created was meant to
be the one responsible for carrying out the most complex functions on the data,
without having any direct relation with the design of the application. This file was
also made to be able to be run on its own and therefore make it easier to make trials
with the data using the IPython shell. For this an Analysis class was created with
the following being its most relevant methods:

e _init__: the [HDEP file is read and its data saved as a NumPy ndarray, in this
case a four-dimensional one (z coordinate, y coordinate, time and voltage),
as well as the data path. The coordinate and time minimum and maximum
values are saved as global variables to be used in the rest of the methods.

e filt_alldata: a Bessel filter is applied to the signal of each pixel in
the array and the filtered data saved in a new NumPy ndarray. The values for
the signals of all pixels in the 57th column are masked because of an incorrect
reading from the system.

e compute_allpeaks: a special SciPy function is used for finding peaks in the
signal of each pixel. The equation used for finding the threshold which is
calculated for each pixel signal is the one described in . For a transient to
be considered a spike its height has to exceed this threshold and there has to
be a minimum distance of 8 (determined after trial and error) samples between
two neighboring peaks. For each spike, the coordinates, time at which it takes
place and height are saved. After computing all peaks, this information is
stored as a Pandas Series, where the z and y coordinates and the times are
converted to a Multilndex and the heights are saved as the actual values.

e update_peaksbinary: when this method is called, the Pandas Series for the
computed peaks is analyzed and a 65 x 65 array is created showing for each
pixel if there are any peaks (1) or not (0).

e update_peaksnumb: similarly as before, when this method is called the Pandas
Series for the computed peaks is analyzed and a 65 x 65 array is created
showing for each pixel the number of peaks.

A timer function is also incorporated to the file outside the Analysis class to be able
to time any method and therefore know how much time it takes for it to be run.
The timer function is incorporated in this file and not in another one because these
methods are the ones that take most time, and because it is useful for when the file
is run on its own.

14

3. Development

3.2.2. PyQtApp class

Additionally to the previous file, another .py file for the main aspects of the app was
created. At the same time, a main window was created in Qt Designer with a File
menu and a tab widget. All main windows and widgets created in Qt Designer are
saved as .ui files. The PyQtApp class was created in the .py file with the following
main methods:

e _init_: the main window .ui file is loaded and the tabs in the tab widget are
made closable in case the user wants to remove them.

e on_actionLoad_triggered: made to respond to the Load button in the File menu
of the main window, this method makes a File Dialog appear for the user to
navigate between folders and select a .cmcr file to load in a new tab.

3.2.3. TimeplotWidget class

As the next step for the development of the app, another .py file was created to
manage the timeplot widget. This widget was created simultaneously in Qt Designer
and saved as a .ui file, and its final aspect is shown in Figure

Qt Designer

File Edit Form View Settings Window Help

DB 0l HERE N=SwEZ@E:eN

Widget Box =

Obiject Inspector [ElES]

[Filter ‘ Object Class [=]
‘ Dataset Info
= - Laouts 1 - e ~ [l horizontalLayout [l QHBoxLayout
= Vertical Layout [= = verticalLayout = QuBoxLayout
Horizontal Layout | ~ i groupBox ZJ QGroupBox
R — ¥ # formLayout # QFormLayout
£4 crid Layout
a33 G Layod Time | actionApplyHPFilt [=) QPushButton
i Form Layout actionComputePeaks =) QPushButton
> Spacers [General label © qLabel
[pad] Horizontal Spacer " label 2 T OLabel
) Open New Window label 3 QLabel
! Vertical Spacer
= ST Open Grid Plot label 4 © oLabel
— — label_5 © QLabel
Push Button b label_6 S QLabel
Tool Button label 7 © QLabel
@ Radio Button Coordinates . . 11 label 8 QLabel
@ check Box = maxval = QLineEdit
@ command Link Button SRl BRE meanval &) Quinedit
. — L — 1. minval &= QLineEdit
Dialog Button Box
Mean [1 ptpval & QLineEdit
- - \tel"n Views (Model-Based) Pt ‘7 stdVal = QLineEdit
List View : =l thval | QDoubleSpinBox
%3 Tree View std. | [] xCoord i3 QspinBox
‘ B d (23 QspinBox
Table View Max YE0OE
H) = ‘7 ~ i groupBox_2 =] QGroupBox
Column View Min [|- ~ 3 formLayout 2 # QFormLayout
v Item Widgets (Item-Based) e actionGridPlot (] QPushButton
List widget | APPly HF Filter | action0y i [ore
P . Th=0% 0.0] - groupBox_3 ZJ QGroupBox
Tree Widget >
§ Tree widge! - Il v # formLayout 3 # QFormLayout
B Table widget Compute Peaks \abel 10 QLabel
- Containers label_11 QLabel
(=] Group Box label 12 T QLabel
Seroll Area timelnfo QL,neEd!t
xInfo QLineEdit
B ool gox yinfo QLineEdit
I Teb Widget 5
Bl stacked widget Property Editor a®
Frame "
[Filter | L—-‘ii = /"
Widget : - -
[Moi Area 'Form : QWidget
3 Dock widget
- Input Widgets
= combo Box ~|

Figure 5: Development of the timeplot widget and its different objects in Qt Designer.

15

3. Development

A TimeplotWidget class was created in the .py file. Some of its main methods
include:

e _init__: the timeplot widget .ui file is loaded and an Analysis object is created
for the selected .cmcr file. The __init__ method of the Analysis class loads the
data and creates the ndarray. A PlotWindow (a class which will be described
later) object is created and the raw data of the first coordinate sent to one of
its methods for a timeplot to be shown at the side the widget. The mean, peak
to peak, standard deviation, maximum and minimum values for the selected
pixel coordinate signal are calculated and displayed. Other global variables
which will be needed for the following methods are also declared.

e on_actionApplyHPFilter_toggled: when the Apply Filter button in the
timeplot widget is checked, the filtering method from the Analysis class is
called and the filtered data instead of the raw data of the actual coordinate is
sent to the same PlotWindow method for it to be plotted next to the widget.
The mean, peak to peak, standard deviation, maximum and minimum values
are refreshed.

e on_xCoord_valueChanged: the plot is updated whenever the user changes the
value for the z coordinate, and so are the mean, peak to peak, standard
deviation, maximum and minimum values. An equal method is used for the y
coordinate.

e on_actionComputePeaks_toggled: when the Compute Peaks button is checked,
the method for computing peaks in the Analysis class is called for it to find
the peaks in the signal of the actual coordinate. These are then shown on the
plot by means of a method in the PlotWindow class.

e on_thVal valueChanged: the peaks are computed again for the new threshold
value when it is changed by the user and the new peaks are plotted by the
same method in the PlotWindow class.

e on_actionOpenNewWindow _clicked: when the Open New Window button is
clicked, a new window of the same class and for the same dataset is opened.

e on_actionOpenGridPlot_clicked: when the Open Grid Plot button is clicked,
a new type of window which will be explained next is opened. The data used
for creating a GridplotWidget object is the filtered data of the whole array.

3.2.4. GridplotWidget class

After this, a .py file was created to manage the grid plot widget. At the same time,
this widget was created in Qt Designer and saved as a .ui file, and its final aspect
is shown in Figure [6] This widget is meant to appear in a new window when the
previously mentioned Open Grid Plot button in the timeplot widget is clicked.

16

3. Development

Qt Designer

File Edit Form View Settings Window Help

Dph 00 ERRE MEMZEZHE

widget Box Object Inspector
‘F\Iter ‘ Object Class 2]
General
= Layouts) [«] ~ [IJ} horizontalLayout QHBoxLayout
=5 vertical Layout Data Plot g ~ = verticalLayout = qQVBoxLayout
[I1] Herizontal Layout Time |0 = ~ i groupBox ZJ qGroupBex
923 .. . - formLayout_3 QFormLayout
§44 Grid Layout i
o v 2D Plot >~ actionNextPeakTime = QPushButten
% Form Layout = actionPeaksPlot == QPushButten
- Spacers Peaks. actionPeaksTimePlot =] QPushButten
Jad) Horizontal Spacer actionPreviousPeakTime (2] QPushButton
I Vertical Spacer mh=o*: (00 [3[]: horizontalSlider 4= Qslider
P e Iabel < QLabel
d Butions eaks Plol label_19 % qLabel
Push Button Peaks YesiNo ~ [|- label 2 ® gLabel
Tool Button L S [label 3 S oLabel
Select Area \abel D bel
@ Radio Button N s abel 4 Qabel
Xmin |0 - label 5 O QLabel
B check Box R label_6 © QLabel
@ command Link Button — label_7 > QLabel
Dialog Button Box N min [o B label 8 © ouabel
_ o ; [1. peakTime &) QLineEdit
hd Item Views (Model-Based) (max | 0 = | |- peaksBox QComboBox
List View Select Time Interval thval % QDoublespinBox
i i timeMax *J QspinBox
5 Table view s 1 }
Time max |0 B xCoordMax (2] QspinBox
Column View xCoordMin (3 QSpinBox
= Item Widgets (Item-Based) Peaks Time Plot | |- yCoordMax (3 QSpinBox
List Widget e |] yCoordMin i3 QSpinBox
I . ~ i groupBox_2 =] QGroupBox
3 Tree Widget i =
8 % Previous || Next ~ # formLayout_2 # QFormLayout
E5 Table widget actionDataPlot = QPushButton
- Containers. dataBox QComboBox
D Group Box label_10 % QLabel
Scroll Area timeval 11J QSpinBox
. Tool Box
=1 Tab Widget =
a Stacked Widget Property Editor
7 F 3
rame [riter = /
| widget S =
[H MDI Area 'Form : QWidget | :
. Property Value e |
m Dock Widget ‘ Qobject
b Input Widgets i objectName Form
== combo Box b OWidoat b

Figure 6: Development of the grid plot widget and its different objects in Qt Designer.

A GridplotWidget class was created in the .py file with the following as its main
methods:

e _init__: the grid plot widget .ui file is loaded and the necessary global variables
are declared. A new PlotWindow object is created and the filtered data of the
whole array for the first time sample is sent to the appropriate PlotWindow
method for it to be plotted next to the widget. An Analysis object is also
created.

e on_actionDataPlot_clicked: when a different type of plot has been shown last
and the Data Plot button is clicked, the filtered data of the whole array for
the actual time sample is sent again to the PlotWindow method for it to be
plotted.

e on_dataBox_indexChanged: depending on the selection of the user, the PlotWin-
dow method will perform either a 2D grid plot of the array data or a 3D plot.

e on_timeVal valueChanged: if the user selects a different time sample, the
filtered data of the whole array for the selected time sample is sent to the
PlotWindow method for it to be plotted.

17

3. Development

on_actionPeaksPlot _clicked: when the Peaks Plot button is clicked, the method
for computing peaks in the Analysis class is called and performed for the signals
of all pixels in the array. Both methods from the Analysis class previously de-
scribed which create 65 x 65 arrays from the peaks information are also called.
As the first type of peaks plot is selected by default, the array containing ei-
ther 0 or 1 for each pixel depending on if there are peaks or not is sent to the
appropriate PlotWindow method for it to be plotted.

on_peaksBox_indexChanged: depending on the selection of the user, either the
first or the second of the 65 x 65 arrays will be sent to the PlotWindow class
for them to be plotted. The second array contains the number of peaks for
each pixel.

on_xCoordMin_valueChanged: if the user selects a different minimum x coor-
dinate, the plot is updated to show only the pixels with an equal or higher z
coordinate. If the peaks are computed again they will be calculated only for
this region. Equal methods are used for the maximum z coordinate and the
minimum and maximum y coordinates.

on_timeMin_valueChanged: if the user selects a different minimum time sam-
ple, the peaks will be computed only for the selected range the next time either
the Peaks Plot or the Peaks Time Plot buttons are clicked. An equal method
is used for the maximum time sample.

on_actionPeaksTimePlot_clicked: when the Peaks Time Plot button is clicked,
a different method of the PlotWindow class is called and a plot showing where
in the array there are peaks at the first time sample where there are peaks
somewhere in the array is shown.

on_horizontalSlider_valueChanged: when the user navigates through the hori-
zontal slider, the different time samples with peaks are selected to be plotted
in the same way as before by the PlotWindow method.

on_actionPreviousPeakTime_clicked: when the Previous button is clicked, the
previous time sample with peaks is selected for the same type of plot as before.
An equal method is used for the Next button.

on_ax_changed: if the user uses the zoom function, which is incorporated on
the navigation toolbar at the bottom of the plot, to select a smaller area and
then clicks on one of the plotting buttons on the widget, only the selected
subarea will be shown and the peaks will be calculated only for the pixels
within it.

open_timeplot: if the user clicks on one coordinate or draws a rectangle with
the mouse over more than one coordinate, a new window is opened showing
the timeplot of the clicked pixel or the pixels within the drawn rectangle. This
is done by another PlotWindow method.

18

3. Development

on_tableSel: if a coordinate from the first table of the table window which will
be described later is selected by the user, this method highlights this pixel on
the grid plot. Similar methods are used for the other two tables.

3.2.5. PlotWindow class

The plot window .py file was created during the development of the timeplot widget
and was meant to perform all the plot-related tasks for both this and the grid plot
widget. A main window containing the few necessary elements was created in Qt
Designer and saved as a .ui file. The PlotWindow class was created in the .py file
with the following main methods:

__init__: the .ui file is loaded and the appropriate global variables are declared,
including a canvas and a figure object, both of them classes from the Matplotlib
library. A navigation toolbar object is also added at the bottom of the canvas.

plot: when this method is called from the timeplot widget and the data, either
raw or filtered, of the selected coordinate is given, a timeplot is created on the
canvas.

plot_peaks: this method is called from the timeplot widget when the Compute
Peaks button is checked and the time values where peaks have been found by
the Analysis method are given. These are marked with crosses on top of the
previous plot.

plotdata_2d: when this method is called from the grid plot widget and the
filtered data of the whole array for a specific time sample is given, this data
is plotted on a 65 x 65 grid. A colorbar object is added next to the canvas to
show the range of different values in a specific color palette. The coordinates
of a certain pixel will be printed below the canvas if the mouse is placed on
top of it.

plotdata_3d: the same data is plotted than for the previous method but in a
3D surface plot.

plotpeaks_2d: this method is called when the Plot Peaks button from the grid
plot widget is clicked. The 65 x 65 array to plot is given along with which one
of the two types of plot has to be performed. For the first type the method will
create a grid plot with two different colours, one meaning the pixel contains
peaks and the other one meaning it does not. For the second type it will create
a grid plot with a range of colours determining the number of peaks on each
pixel. The plot performed for the Peaks Time Plot button on the grid plot
widget is the same as this second one. The method will also highlight certain
pixels if some coordinates from the tables on the table window explained next
are selected by the user.

19

3. Development

plot_subplots: if a pixel coordinate from the grid plot is clicked or a rectangle
is drawn over more than one of them, this method is called while opening a
new window and the timeplots of all the selected pixel coordinates are drawn
as subplots. The data to plot is the filtered data and already showing the
peaks.

3.2.6. TableWindow class

After developing the grid plot widget, a .py file for creating a table window, which
is meant to be opened when the Peaks Plot button in the grid plot widget is clicked,
was created, along with a .ui file created in Qt Designer containing a table view. A
TableWindow class was created in the .py file with the following main methods:

__init__: the .ui file is loaded and the appropriate global variables are declared.
A MyTableModel class is created separately as a table model which will be
able to present the given data in the form of a table and an object of this class
is created for the first table. The data presented on this table will include the
x and y coordinates of the pixels with peaks and the number of peaks in each
of them. By default it will be ordered showing the coordinates of the pixel
with most peaks first.

on_rowSel: when the user selects a row from the previous table, that is, a
specific pixel coordinate, a new MyTableModel object is defined to create a
second table to be shown next to the existing one. This new table will show
all the time samples at which there are peaks for the selected pixel coordinate
and their height.

on_timeSel: when the user selects a row from the previous table, that is, a
specific time sample, a new MyTableModel object is defined to create a third
table to be shown next to the second one. This third table will show all the
pixel coordinates with peaks at the selected time sample or a similar one, with
a maximum distance of 5 time samples, and their height.

20

4. Results

4. Results

In the following section, figures showing the different features of the application and
the effects of the previously described actions are provided.
Once the application is run, the main window shown in Figure [7a] appears, with
a File menu that offers the possibility of loading a file. Once the Load button is
clicked, the file dialog shown in Figure [7b| appears. As the app works for files with
the .cmer extension, the possibility of viewing only these type of files is given.

o PyQt App
File
Load
I

(a) App main window

@ Select Data File

00 0@EE
Date Modified
902.7 MB cmer File 27 Aug...:25:13

Look in: [thome/sestuds/sestud21/data

[computer| _ Name - Size Type
B 2017.12.07-11.55.30-Spont.cmcr

7 sestud21]

4 »
File name: |2017.12.07-11.55.30-Spont.cmer [open |

Files of type: | Acquisition Data Files (*.cmcr) = || Xcancel

(b) File dialog for loading a .cmcr file

Figure 7: Aspect of the app main window and how to load a .cmcr file.

4.1. Timeplot analysis results

Figure [8| shows the aspect of the app once a file is loaded. Here we can see the
timeplot of the raw data for the first coordinate in the dataset. Next to the plot we
can see the timeplot widget with the different functions it offers. The widget also
gives information about the dataset, meaning the coordinate and time ranges.

PYQE App

Dataset Info

x [oto6s

-4500

-4600

-4700

~4800

~4900

Y [oto6s
Time |0 to 112000
General
Open New Window

Open Grid Plot

Pixel
Coordinates
x [
Y [
Mean [-474313
Pip 430
sd [sLo1

Max [-4514

0 20000

A € > +Q

60000 80000

100000 Min [-4944
Apply HP Filter
Th=o*[a5 |3

Compute Peaks

Figure 8: Aspect of app once a .cmcr file is loaded.

21

4. Results

The timeplot widget offers the possibility of selecting and plotting the data of a
specific pixel coordinate, as we can see in Figure Qa) and shows its mean, peak to
peak, standard deviation, maximum and minimum values. It also offers the option of
plotting the filtered data of the selected coordinate by means of a checkable button.

The filter applied is a [High-Pasg filter, which can easily be seen in Figure 9D} as the
DC offset of the signal is removed.

0 PyQt App o PyQt App
File File
/homejsestuds/sestud21/data/2017.12.07-11.55.30-Spont.cmer X 1/data/2017.12.07-11.55. P X
Dataset Info Dataset Info
x [oto6s x [oto6s
Y [otoes 300 Y [otoes
Time [0 to 112000 Time [0 to 112000
200
General General
—7400
Open New Window 100 Open New Window
Open Grid Plot o Open Grid Plot
~7600 pixel Pixel
-100
Coordinates. Coordinates.
X 7 g —200 X 7 <
—7800
Y [ENNE Y 8 3
=300
Mean [-7569.34 Mean (0.0
Ptp 860 —-400 Ptp 805.26
-8000
std 38.43 std 25.58
-500
Max 726 Max 27637
4 20000 40000 60000 80000 100000 Min |-8106 0 20000 40000 60000 80000 100000 R 52228
Apply HP Filter

A € P+ Q=W

(a) Raw data timeplot

Th=o+[a5 |2

Compute Peaks

A €

Apply HP Filter N
The=o+[45 |5

> Q= »

Compute Peaks

(b) Filtered data timeplot

Figure 9: Timeplot comparison of raw and filtered data for the selected pixel coordi-
nate.

The timeplot widget contains another checkable button for computing and plotting
the peaks of the actual pixel coordinate. This is done by thresholding the absolute
value of the signal, and the threshold uses the formula . The value which is
multiplied by the standard deviation of the noise of the signal can be changed and
the difference between using a lower threshold value (Figure and a higher one

(Figure [10b]) is shown below.

PyQt App > PyQt App
File
1/data/2017.12.07-11.55.30-Spont.cmer X Jhome/sestuds/sestud21/data/2017.12.07-11.55.30-Spont.cmcr X
Dataset Info Dataset Info
x [otes x [otwes
300 Y [otwes 300 Y lowes
Time [0 to 112000 Time [0 to 112000
200 200
General General
100 Open New Window 100 Open New Window
0 Open Grid Plot 0 Open Grid Plot
pixel pixel
-100 -100
Coordinates Coordinates
-200 X 7 g8 -200 X 7 S
Y 8 B ¥ 8 9
-300 -300
Mean (00 Mean (0.0
—400 Ptp (80526 —400 Pp (80526
s 2558 s (2558
-500 -500
Max (27637 Max (27637
o 20000 40000 60000 80000 100000 o 52888 o 20000 40000 60000 80000 100000 CIo 52888
Apply HP Filter Apply HP Filter
Th-ox[es |2 Th-o*

4 € > Q=¥

(a) Threshold = 4.5-0

Compute Peaks

A € > P Q=

Compute Peaks

(b) Threshold = 6.0-0

Figure 10: Comparison of computed spikes for two different threshold values.

22

4. Results

Another functionality in every plot of the application is the possibility of applying
a zoom to visualize a smaller area. This is incorporated as part of the navigation

toolbar which appears below the plot. In Figure [L1| we can see how this has been
used in order to visualize an individual spike.

L PyQt App
File

Jhome/sestuds/sestud21/data/2017.12.07-11.55.30-Spont.cmcr X

Dataset Info

x [oto6s

Y [otoes
200 Time 00 112000
General

Open New Window

Open Grid Plot

~100 pixel
Coordinates
-200 x 7

Y B

o [

-300
Mean (0.0

—400 Ptp 805.26
std (2558
-500

Max (27637

64250 64300 64350 64400 64450 Min [-528.88
Apply HP Filter

A €99 Q=¥ soomrect | Th=o+[60 T3]

Compute Peaks

Figure 11: Effect of applying zoom for visualizing an individual spike.

Finally, the timeplot widget incorporates an Open New Window button which opens
another window of the same type and for the same dataset in order to compare more
than one pixel coordinate at the same time. It also contains the Open Grid Plot
button for opening a type of window which will be described next.

23

4. Results

4.2. Grid plot analysis results

Figure[12a]shows the aspect of the grid plot window once the Open Grid Plot button
in the previous window is clicked. Here we can see the grid plot of the filtered data
for the whole array and for the fist time sample in the dataset. At the right of the
grid plot we can see the grid plot widget with the different functions it incorporates.
One of these is the possibility of selecting a specific time sample, as we can see in
Figure The Data Plot button is offered to return to this type of plot from
another one at any moment.

General General

| DpataPlot | | DpataPlot |

ime [E

2D Plot -

previous| | Next |

(a) Time =0 (b) Time = 1000

Figure 12: Grid plot of filtered data at two different time samples.

Another possibility that the grid plot widget offers is being able to choose between
visualizing the data as a 2D plot or as a 3D plot. Although most functions will be
carried out using the 2D plot this 3D plot can be seen in Figure[13]for the same data
as in Figure that is, the filtered data for the first time sample in the dataset.

°

z
%

Time min o 1[4
Time max | 11200 5 |

| Peaks Time Plot |

previous| | Next |

A €5 4 Q

fit
R
iC]

Figure 13: Effect of selecting 3D plot instead of 2D plot.

24

4. Results

Another and one of the most relevant buttons the grid plot widget incorporates is
the Peaks Plot button. When clicked it computes the peaks for the given threshold
value and using the already mentioned method and creates the plot shown in Figure
This plot shows which pixels contain any spikes (in yellow) and which do not
(in black). The Peaks Plot button, similarly to the Data Plot button, can be used
to return to this type of plot at any time.

[] -
.

Lot

Figure 14: Aspect of peaks plot showing if there are spikes or not for each coordinate.

Apart from the previous type of peaks plot, the widget offers the possibility to change
to a second type, in which the number of peaks at each coordinate is plotted. The
pixels without peaks are shown in black. The grid plot widget also makes it possible
to change the threshold value, though for computing the peaks after this value has
been changed the Peaks Plot button has to be clicked again. The difference between
using a higher threshold value (Figure and a lower one (Figure for this
type of plot is shown below.

0 10 20 30 40 50 60

A€ P Q=K

(a) Threshold = 6.0-c (b) Threshold = 4.5-¢

Figure 15: Effect of changing the threshold value and selecting second type of peaks
plot showing the number of spikes for each coordinate.

25

4. Results

The grid plot widget has another functionality that consists of opening a timeplot
window for a certain coordinate pixel when it is clicked. This works for all type of
plots but becomes most useful with the peaks plot, as the coordinates with most
peaks can be clicked for visualizing their timeplot. This is shown in Figure [16a]
where one of the coordinates that show a highest number of peaks is clicked. The
window that appears can be seen in and shows that in fact the selected pixel
coordinate presents a very high number of peaks. The timeplot window which
appears is different to the initial one in that it already plots the filtered data and
showing the peaks. It also differs in that it does not incorporate the timeplot widget.

o MainWindow
eeeeee |
(34,40)
Data Plot
.

250

0 20000 40000 60000 80000 100000

x =34,y = 40(251]

A €3> $Q

fit
R
iL]

€ > Q= »
(a) Clicking on a pixel coordinate (b) Coordinate timeplot opens

Figure 16: Effect of clicking on a pixel coordinate and opening its timeplot showing
filtered data and spikes.

The widget also gives the possibility of selecting a subarea of the whole array in all
type of plots. This is shown in Figure [L7] for the second type of peaks plot. Once the
new coordinates are entered the button corresponding to the type of plot to show
has to be clicked. A subarea can also be selected using the zoom.

0 2 a 6 8 10

4 € Q=¥

Figure 17: Result of selecting a subarea of the whole array in second type of peaks
plot.

26

4. Results

Figure [18al shows a rectangle being drawn with the mouse over more than one pixel
coordinate in the peaks plot of the same subarea as before in order to open a timeplot
window for this whole region. Figure shows the effect of this action, which is a
new window appearing showing the timeplots of the pixels contained in the selected
rectangle. As in the previous example, this window already plots the filtered data
and showing the peaks. It is also easy to establish a relation between the two types
of plots, as for this example the pixel in the middle contains the highest number of
spikes and the one on the top left does not contain any.

[} Mainwindow
General
Data Plot
100 51 .2 3
Time [0 P)
1w
%
o
™
™

130

40 Peaks Plot. (6.1) (6:2) (6.3)
Peaks Number
Select Area

= 0 § it s SR
Xmax (10 % o d . .

20 Plot - 04

60 peaks 0

Th=0* (60 |2 RUR!

20 Xmin [0

Ymin o |2 .1 7.2) 7.3)

10 10
0

o 0
10 -0
0

) X 50

0 20000 20000 £000 &0 100000 0 20000 20000 £000 EX000 109000 0 20000 40000 £0500 EX000 109000

ymax (10 [2

Select Time Interval

Time min |0

Time max | 11200]5

Peaks Time Plot

Previous| | Next
x=7.y=3024]

A € > $Q

tit
R
ic]

A € > P QFE

(a) Selecting more than one pixel coordi- (b) Selected timeplots open
nate

Figure 18: Effect of drawing a rectangle with the mouse over more than one pixel coor-
dinate in second type of peaks plot.

Another possibility that the grid plot widget offers is the selection of a specific time
range. Figure [19 shows the selection of a maximum time sample of 1000 instead
of 112000 for the second type of peaks plot. The effect of this can be seen in the
reduced number of peaks detected.

General
Data Plot

.00 Time |0

2.75
2D Plot -

2.50

225 Peaks

2.00 Th=o0* (60 |3
Peaks Plot.

Peaks Number ~

150 Select Area
xmin [0
xmax (64 |2
Ymin o
Ymax (64 |o
Select Time Interval
Time min |0

Time max |HE, 3]

100 Peaks Time Plot

Previous| | Next

4 €3 b Q=

Figure 19: Result of selecting a different time range in second type of peaks plot.

27

4. Results

Finally, a Peaks Time Plot button is incorporated for a third type of plot to be
shown. This makes use of the same peaks that have been computed for the previous
peaks plot but presents them in a different way. In this type of plot the different time
samples where there are peaks somewhere within the array are presented starting
from the lowest as shown in Figure 20al The time sample is shown at the bottom
of the widget and the plot shows in which coordinates there is a peak and of what
height. Coordinates without pixels are shown in black. A slider is incorporated
for navigating between these time samples as shown in Figure [20b], as well as the
Previous and Next buttons.

General General

Data Plot Data Plot

Time |0 280 Time |0 P

20 Plot 260 20 Plot -

165 peaks peaks

Th=0* (60 |2 Th=o* (60 |2

Peaks Plot 200 Peaks Plot

Peaks Number ~ Peaks Number ~

Select Area 180 Select Area

Xxmin [0 xmin [0 [*

150 Xmax |64 Xmax [6a [

Ymin 0 Ymin o

Ymax 64 Ymax (64 |C

Select Time Interval Select Time Interval

Time min |0 Time min |0

Time max (12000 |- Time max (12000 |2

| Peaks Time Plot. | Peaks Time Plot
i —

Previous| | Next Previous| | Next

4 €9 Q=B 4 € +Q=k B
(a) First time sample with spikes (b) Time sample selected with slider

Figure 20: Aspect of peaks time plot at different time samples with spikes.

28

4. Results

4.3. Table view analysis results

When the Peaks Plot button in the grid plot widget is clicked and the spikes are
computed for a specific threshold value, a new window appears which displays data
in the form of a table view. These tables aim to present information about the peaks
in a more structured way and to make it easier to spot the pixels with most neural
activity which usually indicates where the nerve cells are. It also aims to make it
easier to visualize in which pixels there is activity taking place at the same or similar
times.

The first table that appears is shown below. This includes the coordinates of all
the pixels with peaks and the number of spikes found in each of them. By default
it is ordered by the descending number of peaks as in Figure 21a] but it can be
ordered by the ascending or descending coordinates as shown in Figure 1B It is
also possible to select an individual row and to navigate between rows by using the
keyboard arrows.

MainWindow [MainWindow
X ¥ peaks number > = x = y peaks number |=
lE’o-ﬂ- 40 251 .0 b 36 2
55 44 222 v] 21 24
0 44 195 o] 18 2
1 44 195 v] 15 33
5 53 194 V] 22 51
31 45 190 [v] 14 5
41 5 186 v] 32 5
3 41 186 "] 17 4
26 64 179 v] 8 3
6 46 172 V] 43 55
5 52 161 [v] 31 3]
6 45 152 v] 35 8
25 64 143 "] 16 4
64 20 133 v} 23 1
58 19 130 V] 44 195
29 18 128 [v] 7 7
4 20 126 1 53 1
1 35 121 1 35 121
11 58 120 1 26 2
20 48 115 1 39 1
25 63 115 1 43 2
28 61 106 = 1 38 3 =
(a) Table ordered by descend- (b) Table ordered by ascend-
ing peaks number ing x coordinate

Figure 21: Aspect of table view showing pixel coordinates and number of peaks or-
dered in two different ways.

Figure shows one of the coordinates with peaks in the previous table being
selected either by clicking or by using the keyboard arrows. The result of this is

29

4. Results

a second table appearing on the right. This table contains all the time samples
where there are peaks for the selected pixel coordinate as well as their height. This
table can also be ordered by both peak time or height. Additionally, the selected
coordinate is highlighted on the peaks plot as shown in Figure [22b]

MainWindow
X y weaks numbe~ peak time + peak height =
I 34 40 251 68 155
55 44 222 944 173
0 44 145 2500 151
1 44 195 2668 125
31 45 190 3520 147
41 5 186 4441 145
3 41 186 4911 142
26 64 179 5066 152
6 46 172 5529 124
5 52 161 5849 149
6 45 152 7431 144
25 64 143 7569 135
64 20 133 8059 153
58 19 130 8337 144
29 18 128 9472 141
4 20 126 9769 126
1 35 121 9849 135
11 58 120 11301 152
20 48 115 11581 169
25 63 115 12964 140
28 61 106 13716 147

- -

(a) Second table for selected coordinate

General

Data Plot
250 Time |0 B

20 Plot S

150 peaks

Th=o* (60 |3

100 [Peskspot |
Peaks Number
Select Area

50 X min 0 -
xmax (e |
¥ min 0 =
vmax [ea
Select Time Interval
Time min | 0 =
Time max (12000 -
Peaks Time Plot
Previous| | Next

4 € > Q=W 240

(b) Highlighted coordinate on peaks plot

Figure 22: Second table showing all spikes for the selected pixel coordinate and the
effect on the peaks plot.

30

4. Results

Similarly, Figure shows one of the peak times being selected and a third table
appearing. This third table contains the coordinates of the pixels that contain peaks
at this or a similar time sample, as well as their height and distance to the pixel
selected in the first place. This table can also be ordered by any of its columns. The
coordinates are also highlighted in a different colour in the peaks plot as shown in

Figure

MainWindow
x y eaks numbe~ */ | peak time =~ peakheight = x y peak time peak height pixel distance~ time distance
L 34 40 251 14651 154 5 53 16475 161 0.0 o]
55 44 222 14788 163 4 53 16475 134 10 o]
4] 44 195 15249 142 5 52 16475 146 10 4]

1 44 195 m 161 5 54 16475 161 10 0
194 16671 140 4 52 16475 129 1.4]

31 45 190 17220 144
41 5 186 17284 139
3 41 186 17855 144
26 64 179 18272 133
6 46 172 18619 141
5 52 161 19946 125
6 45 152 20062 146
25 64 143 20975 162
64 20 133 21288 144
58 19 130 21368 155
29 18 128 22046 142
4 20 126 22469 125
1 35 121 23960 144
11 58 120 24284 150
20 48 115 24817 141
25 63 115 25852 153
28 61 106 26060 166

(a) Third table for selected time sample

General

Data Plot
250 Time 0 =

2D Plot -

150 Peaks
Th=0* 60 ¢

100 [Peaks piot
Peaks Number +
Select Area

50 X min 0 2
Xmax (64 |2
Y min 0 &

Ymax (64 2
Select Time Interval

Time min [0

Time max (12000 |2

Peaks Time Plot

Previous| | Next

24.0

A € > P+ Q

it
R
ic]

(b) Highlighted region on peaks plot

Figure 23: Third table showing all coordinates with spikes for the selected time sample
or a near one and the effect on the peaks plot.

Finally, Figure shows one of the pixel coordinates in the third table being
selected. This coordinate is highlighted in the peaks plot as shown in Figure

31

4. Results

MainWindow
X ¥y eaks numbe~ “| | peak time ~ peakheight * X ¥y peak time peak height)ixel distanci~ time distance

i 34 40 251 14651 154 5 53 16475 161 0.0 o]
] 44 195 15249 5 52 16475 146 1.0]
1 44 164 5 54 16475 161 1.0]
- 53 16671 4 52 16475 129 14 o]
31 45 17220 144

41 5 186 17284 139

3 4l 186 17855 144

26 64 179 18272 133

6 46 172 18619 141

5 52 161 19946 125

6 45 152 20062 146

25 64 143 20975 162

64 20 133 21288 144

58 19 130 21368 155

29 18 128 22046 142

4 20 126 22469 125

1 35 121 23960 144

11 58 120 24284 150

20 48 115 24817 141

25 63 115 25852 153

28 61 106 26060 166

(a) Selection of pixel coordinate on the third table

General
Data Plot
Time |0

20 Plot ~

150 Peaks

Th=0* (60 |3
100 [Peskspot |

Peaks Number ~

Select Area
50 X min 0 0
xmax (e |
Y min 0 i
vmax [ea
Select Time Interval

Time min |0

Time max (12000 |~

Peaks Time Plot

Previous| | Next

4 €> Q= B

(b) Highlighted coordinate on the peaks
plot.

Figure 24: Selection of one of the pixel coordinates on the third table and the effect on
the peaks plot.

32

5. Summary

5. Summary

Overall, it can be stated that the principal objectives set prior to the development
of the thesis have been achieved and expectations have been fulfilled. A [GUI| appli-
cation has been created which is able to analyze neural data recorded from a[CMOS|
system and which successfully detects neural activity within it, allowing its
visualization in a number of different ways. As previously said, this information
is useful for reducing the amount of information that needs to be stored and for
detecting where the nerve cells are within the tissue subjected to analysis. The GUI
application offers a number of useful features such as:

e Being able to perform a timeplot for any one of the pixel coordinates in the
array and to display either the raw or the filtered data, as well as the peaks
found by the spike detection method.

e Give the user the option of trying out different threshold values and in this
way evaluate the spike detection method by himself, which can be useful when
a dataset with different results from the expected ones needs to be analyzed.

e Being able to perform either a 2D or a 3D grid plot of the whole array data
for any given time sample.

e Being able to show in which pixels there has been spikes detected, as well as
the number of them, and in which pixels there has been no spikes found. Being
able to visualize the different spikes that have been found showing in which
pixels they take place and starting from the lowest time sample.

e Give the user the possibility of selecting only a subarea of the array or a
specific time sample range to make faster trials and to focus the attention
where needed.

e Give the user the possibility to compare the timeplots of more than one pixel
at the same type as well as those of a subarea of pixels selected in the grid
plod.

e Being able to show, in the form of tables, which pixels have most peaks and
localize them in the grid plot. Show correspondence between peaks from dif-
ferent pixels that happen at similar time samples and that probably belong to
the same electrical signal.

Moreover, it can be said that the GUI application created is intuitive and easy to
learn and use, and provides an interactive experience with the user by means of
the [WIMP] paradigm based on windows, icons, menus and pointer. It also allows
different objects to be displayed at the same time.

In what refers to the aspects learned, the development of the thesis has been an
opportunity to learn about different software environments and to gain an in-depth
knowledge about programming in Python. It has also given the chance to learn the

33

5. Summary

basics about [CMOS|[MEA] systems and which parts compose them, as well as what
[APk are and how nerve cells communicate between them.

However, a more complex spike detection algorithm could have been used, such as
the LocEn method or one based on [[CA] though the method chosen presents a low
error rate and a high efficiency compared to other algorithms that take more time
and effort to be developed and implemented. Another aspect to improve would be
the structure of the application, as more emphasis could have been put on the MVP]
pattern and the files could have been organized in a better way. In a similar way,
the filtered data or the peak data calculated for a specific dataset could have been
stored somehow as cache of the application for it to not have to be computed every
time.

34

A. Appendix: Code

A. Appendix: Code

Python file 1: analysis.py
import hb5py
import numpy as np
from scipy.signal import find_peaks, bessel, filtfilt
import time
import pandas as pd
import numpy.ma as ma

def timerfunc (func):

def function_timer (xargs, sxkwargs):

start = time.time ()

value = func(xargs, *xkwargs)

end = time.time ()

runtime = end — start

msg = ”"The runtime for {func} took {time} seconds to
complete”

print (msg. format (func=func.__name__,
time=runtime))
return value
return function_timer

class Analysis:

def __init__(self, data_path):
self.data_path = data_path

with hbpy. File(data_path) as hdf:
self .data = hdf[’Acquisition/Sensor Data/
SensorData 1 17][:,:,:]

self.timemin = 0

self .timemax = self.data.shape]0]

self .timemaxaux = self.timemax—self.timemin
self .xmin = 0

self .xmax = self.data.shape[1]

self .xmaxaux = self.xmax—self.xmin

self .ymin = 0
self .ymax = self.data.shape|[2]
self .ymaxaux = self.ymax—self.ymin

35

A. Appendix: Code

self.allfiltdata = None

self .th = 4.5

self.peaks = np.array ([])
self.peaksbinary = np.array ([])
self.peaksnumb = np.array ([])

def filter_data(self, x, y):

b, a = bessel(2, 0.03, ’high’)

self . filtdata = filtfilt (b, a, self.data[:self.
timemaxaux , (x—self .xmin) ,(y—self.ymin)|)

return self.filtdata

@timerfunc
def filt_alldata(self):
self.allfiltdata = np.zeros ((self.timemaxaux, self.

xmaxaux , self . ymaxaux))
b, a = bessel (2, 0.03, ’high’)
for i in range(0, self.xmaxaux):
for j in range(0, self.ymaxaux):
self.allfiltdata [: self.timemaxaux,i,j] =
filtfilt (b, a, self.data[:self.timemaxaux,i,j])
if self.ymax >= 57:
self . allfiltdata[:,:,57 —self.ymin] = ma.masked
print (” Filt data ready”)
return self.allfiltdata

@timerfunc
def compute_allpeaks(self , data, xmin, xmax, ymin, ymax,
timemin , timemax) :
self .acc.x = []
self.acc_y = []
self.acc_times = []
self.acc_heights = []
self.acc_numbs = []

self .timemin = timemin
self .timemax = timemax

for i in range(xmin, xmax):
for j in range(ymin, ymax):
self.compute_peaks(data[:,i,j])
if self.sortedpeaks.size:

36

A. Appendix: Code

self.acc_ifpeaks(i,j)

self.array = np.array ([self.acc_x,self.acc_y,self.
acc_times|)

if self.array.size:

tuples = list (zip(xself.array))

index=pd.Multilndex . from_tuples(tuples)

self .peaks = pd.Series(self.acc_heights, index=
index)

self .sortedpeaktimes = np.unique(np.sort(self.
acc_times , axis=0))

self.peaksheights = self.peaks.droplevel(level
:2)

index2=(index.droplevel (level=2)).
drop_duplicates ()
for i,j in index2:

if isinstance(self.peaksheights.loc[i,j], np
.float64) is True:
self.acc.numbs = np.concatenate ((self.
acc_numbs, np.array ([1])), axis=0)
else:

self.acc_numbs = np.concatenate ((self.
acc_numbs, np.array ([len(self.peaksheights.loc[i,]].
values)])), axis=0)
self .peaknumbs = (pd. Series(self.acc_numbs,
index=index2)).sort_values (ascending=False)

print (self.peaks)
print (self .peaknumbs)
print (" Peak data ready”)

else:
print ("No peak data”)

return self.peaks

def compute_peaks(self , data):

dataaux = data[self.timemin: self .timemax]

self .thaux = self.thx(data.std())

self . peaktimes, properties = find_peaks(abs(dataaux)
, height=self.thaux, distance=8)

if self.timemin != 0:

37

A. Appendix: Code

self.peaktimes = np.asarray ([self.peaktimes[i]+
self .timemin for i in np.arange(len(self.peaktimes))])
self.heights = properties[”peak_heights”]
self.sortedpeaks = np.asarray ([[self.peaktimes[i],
self.heights[i]] for i in np.arange(len(self.peaktimes))

D)

return self.peaktimes

def acc_ifpeaks(self | x, y):
for i in range(len(self.sortedpeaks)):

self.acc_x = np.concatenate ((self.acc_x, np.
array ([x])), axis=0)

self.acc_.y = np.concatenate ((self.acc_y, np.
array ([y])), axis=0)

self . acc_times = np.concatenate ((self.acc_times,
np.array ([self.sortedpeaks|[i,0]])), axis=0)

self.acc_heights = np.concatenate ((self.

acc_heights , np.array ([self.sortedpeaks[i,1]])), axis=0)

def update_peaksbinary (self):
self.peaksbinary = np.zeros (((self.xmax—self.xmin) ,(
self .ymax—self.ymin)))
for i,j in self.peaksheights.index:
self.peaksbinary [int (1) ,int(j)] =1

def update_peaksnumb (self):
self.peaksnumb = np.zeros (((self.xmax—self.xmin) ,(
self .ymax—self.ymin)))
for i,j in self.peaksheights.index:
if isinstance(self.peaksheights.loc[i,j], np.
float64) is True:
self .peaksnumb [int (i) ,int(j)] =1
else:
self.peaksnumb [int (i) ,int(j)]| = len(self.
peaksheights.loc[i,]j]. values)

def update_sortedpeaktimes(self | xmin, xmax, ymin, ymax)

self.peaks = self.peaks.loc[xmin:xmax,ymin:ymax|
print (self.peaks)
self.sortedpeaktimes = np.unique (np.sort ((self.peaks

.droplevel(level =[0,1])).index.values))
self.peaksheights = self.peaks.droplevel(level=2)
print (self.sortedpeaktimes)

38

A. Appendix: Code

def update_peaktimeplot(self , time):

self .peaktime = time

self.peaksaux = self.peaks|[:,:, self.sortedpeaktimes|
self.peaktime]]

self.peaksarray = np.zeros (((self.xmax—self.xmin) ,(

self .ymax—self.ymin)))
for i,j in self.peaksaux.index:

self.peaksarray[int (1) ,int(j)] = self.peaksaux]|i
]
return self.peaksarray
if __name_.. = 7 __main__":

ana = Analysis(”../../../../data/2017.12.07—-11.55.30 —
Spont . cmer”)

peaks = ana.compute_allpeaks(ana. filt_alldata (), ana.
Xmin, ana.Xmax, ana.ymin, ana.ymax, ana.timemin, ana.
timemax)

Python file 2: app.py
import sys
from PyQt5.QtCore import pyqtSlot
from PyQt5.QtWidgets import QFileDialog, QApplication ,
QMainWindow
from PyQt5.uic import loadUi

from tabs.timeplot_widget import TimeplotWidget

class PyQtApp(QMainWindow) :
def __init__(self):
super (PyQtApp, self). __init__ ()
loadUi(’../ _res/ui/mainwindow.ui’,self)
self.prepare_tab_widget ()

def prepare_tab_widget(self):
tb= self.tabWidget
tb.setTabsClosable (True)
for tab in range(tb.count()—1, —1, —1):
self.tabWidget.removeTab(tab)
tb.tabCloseRequested . connect (self.close_tab)

39

A. Appendix: Code

def close_tab (self, index):
self . tabWidget .removeTab (index)

Q@pyqtSlot ()
def on_actionLoad_triggered (self):
options = QFileDialog.Options ()

options |= QFileDialog.DontUseNativeDialog
filename , - = QFileDialog.getOpenFileName (self ,”
Select Data File”,”../../../../data’,” All Files (x);;

Acquisition Data Files (*.cmcr)” joptions=options)

if filename:
self . tabWidget.addTab(TimeplotWidget (parent=self
.tabWidget , filename=filename) ,filename)

if __name__ = ’__main__":
app = QApplication(sys.argv)
win = PyQtApp ()
win . show ()
sys.exit (app.exec_())

Python file 3: timeplot_widget.py
import sys
sys.path.insert (0, ’../ ")
from PyQt5.QtCore import pyqtSlot
from PyQt5.QtWidgets import QWidget
from PyQt5.uic import loadUi

from analysis.analysis import Analysis
from viewer.plotting.plot_window import PlotWindow
from viewer.tabs.peaks_ widget import GridplotWidget

class TimeplotWidget (QWidget) :
def __init__(self, filename=None, path=None , parent=
None, sargs, xxkwargs):

super (). __init__(parent)

loadUi(’../ _res/ui/neuro_widget.ui’,self)

self . filename = filename

self.analysis = Analysis(self.filename)

layout = self.horizontalLayout.layout ()

40

A. Appendix: Code

if parent is None:
self.setGeometry (10, 10, 790, 510)

self .xval = self.analysis.xmin
self .yval = self.analysis.ymin
self.data = self.analysis.data[:, self.xval—self.

analysis.xmin, self.yval—self.analysis.ymin]|

self.filterchecked = False

self . peakschecked = False

self.plot_widget = PlotWindow (data=self.data,
filename=self . filename)

self .xCoord.setValue(self.xval)

self .yCoord.setValue(self.yval)

layout .insert Widget (0, self.plot_widget)

self.plot_widget.setParent (self)

self.plot_widget .show ()

self . actionApplyHPFilt.toggled.connect (self.
on_actionApplyHPFilt_toggled)

self.actionComputePeaks. toggled .connect (self.
on_actionComputePeaks_toggled)

self . refresh_values(self.data)

self .thVal.setValue(self.analysis.th)

self.open_windows = []

self . xInfo.setText (str(self.analysis.xmin)+” to "+
str(self.analysis.xmax))

self . yInfo.setText (str(self.analysis.ymin)+” to "+
str(self.analysis.ymax))

self.timelnfo.setText (str(self.analysis.timemin)+’
to "+str(self.analysis.timemax))

def refresh_values(self, data):
mean = str(round(data.mean(), 2))
self .meanVal.setText (mean)
ptp = str(round(data.ptp(), 2))
self .ptpVal.setText (ptp)
std = str(round(data.std (), 2))
self.stdVal.setText (std)
max = str(round(data.max(), 2))
self .maxVal.setText (max)
min = str (round(data.min(), 2))
self . minVal.setText (min)

@pyqtSlot (bool)
def on_actionApplyHPFilt_toggled (self , checked):
if checked:

41

A. Appendix: Code

self . filterchecked = True
elif not checked:

self.filterchecked = False
self . update_plot ()

def filt_data(self):
self.analysis. filt_alldata ()

@pyqtSlot (int)

def on_xCoord_valueChanged (self , value):
self .xval = value
self.update_plot ()

@pyqtSlot (int)

def on_yCoord_valueChanged (self , value):
self .yval = value
self.update_plot ()

@QpyqtSlot (float)

def on_thVal_valueChanged (self , value):
self.analysis.th = value
self . update_plot ()

@QpyqtSlot (bool)
def on_actionComputePeaks_toggled (self , checked):
if checked:
self . peakschecked = True
self .update_plot ()
elif not checked:
self.peakschecked = False
self . update_plot ()

def update_plot(self):
if self.filterchecked is True:
if self.analysis.allfiltdata is None:
self.data = self.analysis. filter_data (self.
xval , self.yval)
else:
self.data = self.analysis.allfiltdata [:, self
.xval—self.analysis.xmin, self.yval—self.analysis.ymin]
elif self.filterchecked is False:
self.data = self.analysis.data|[:,self.xval—self.
analysis.xmin, self.yval—self.analysis.ymin]|
self.plot_widget.plot(self.data, self.xval, self.

42

A. Appendix: Code

yval , self.analysis.timemin, self.analysis.timemax)

self . refresh_values(self.data)
if self.peakschecked is True:
self.plot_widget.plot_peaks(self.analysis.

compute_peaks(self.data))

@pyqtSlot ()
def on_actionOpenNewWindow_clicked (self):

win = Timeplotwidget (filename=self.filename , new=

True)

win . show ()
self .open_windows.append (win)

@pyqtSlot ()
def on_actionSurfacePlot_clicked (self):

if self.analysis.allfiltdata is None:
self . filt_data ()
win = GridplotWidget (filename=self.filename , data=

self.analysis. allfiltdata)

win . show ()
self.open_windows.append (win)

Python file 4: gridplot_widget.py

import sys
sys.path.insert (0, *../ ")
import numpy as np

import math

from
from
from

from
from
from

PyQt5.QtCore import pyqtSlot
PyQt5. QtWidgets import QWidget
PyQt5. uic import loadUi

analysis.analysis import Analysis
viewer . plotting . plot_window import PlotWindow
viewer.tabs.table_window import TableWindow

class GridplotWidget (QWidget) :

def __init__(self, filename=None, path=None , parent=

None, data = None, xargs, sxkwargs):

super (). __init__(parent)
loadUi(’../ _res/ui/peaks_widget.ui’, self)
self . filename = filename

43

A. Appendix: Code

self.data = data

self.analysis = Analysis(self.filename)

layout = self.horizontalLayout.layout ()

self.setGeometry (10, 10, 850, 550)

self . timemin = self.analysis.timemin

self .timemax = self.analysis.timemax

self.time = self.timemin

self.timeaux = self.time—self.timemin

self .xmin = self.analysis.xmin

self .xCoordMin.setValue(self.xmin)

self .xmax = self.analysis.xmax

self .xCoordMax.setValue (self .xmax)

self .ymin = self.analysis.ymin

self.yCoordMin.setValue(self.ymin)

self .ymax = self.analysis.ymax

self .yCoordMax.setValue(self.ymax)

self .plot_widget = PlotWindow (filename=self . filename
, data=self.data)

self.plot_widget.plotdata_2d(self.data|self.timeaux
,iyi], self .xmin, self .xmax, self.ymin, self .ymax)

layout .insertWidget (0, self . plot_widget)

self.plot_widget.setParent(self)

self.plot_widget .show ()

self.thVal.setValue(self.analysis.th)

self . peaktime = 0

self . th_changed = False

self . peaksplot_type = 0

self.peaksBox.currentIndexChanged.connect (self.
on_peaksBox_indexChanged)

self.dataBox.currentIndexChanged.connect (self.
on_dataBox_indexChanged)

self.timeBox.currentIndexChanged .connect (self.
on_timeBox_indexChanged)

self.horizontalSlider.valueChanged. connect (self.
on_horizontalSlider_valueChanged)

self .plot_widget.canvas.mpl_connect (’
button_press_event’, self.on_click)

self.plot_widget.canvas.mpl_connect (’
button_release_event ', self.on_release)

self.open_windows = []

self.ax_changed = False

self . time_changed = False

self . dataplot_type = 0

self.timeplot_type = 0

44

A. Appendix: Code

self.timeVal.setValue(self.time)
self.timeVal.setRange(self.timemin, self.timemax)
self.timeMin.setValue (self.timemin)

self . timeMin.setRange(self.timemin, self.timemax)
self.timeMax.setValue(self.timemax)

self . timeMax.setRange(self.timemin, self.timemax)
self . marker = False

def update_axes(self):
self . plot_widget.ax.callbacks.connect(’xlim_changed’
, self.on_ax_changed)
self.plot_widget.ax.callbacks.connect(’ylim_changed’
, self.on_ax_changed)

@pyqtSlot ()
def on_actionDataPlot_clicked (self):
self . update_dataplot ()

@pyqtSlot (int)
def on_dataBox_indexChanged (self , value):

if value = 0:
self . dataplot_type = 0
elif value = 1:

self .dataplot_type = 1
self . update_dataplot ()

def update_dataplot(self):

self .timeaux = self.time—self.timemin
if self.dataplot_type = 0:
self.plot_widget.plotdata_2d (self.data[self.
timeaux ,: ,:] , self .xmin, self .xmax, self.ymin, self .ymax)
elif self.dataplot_type =— 1:

self.plot_widget.plotdata_3d(self.timeaux, self.
data , self .xmin, self .xmax, self .ymin, self.ymax)
self . update_axes ()

@pyqtSlot (int)

def on_timeVal valueChanged (self , value):
self .time = value
self .update_dataplot ()

@pyqtSlot (float)
def on_thVal valueChanged (self , value):
self.analysis.th = value

45

A. Appendix: Code

self.th_changed = True

@QpyqtSlot ()
def on_actionPeaksPlot_clicked (self):
if not self.analysis.peaks.size or self.th_changed
is True or self.ax_changed is True or self.time_changed
is True:
self . analysis.compute_allpeaks(self.data, self.
xmin, self .xmax, self.ymin, self .ymax, self.timemin, self.
timemax)
self.open_tablewindow ()
self.analysis.update_peaksbinary ()
self.analysis.update_peaksnumb ()
self . th_changed = False
self.ax_changed = False
if not self.analysis.peaksbinary.size:
self.analysis.update_peaksbinary ()
self.analysis.update_peaksnumb ()
self . update_peaksplot ()

def update_peaksplot(self):
if self.peaksplot_type = 0:
self.discretedata = self.analysis.peaksbinary
elif self.peaksplot_type = 1:
self.discretedata = self.analysis.peaksnumb
self . markerdata = np.array(self.discretedata)
if self.marker is True:
if self.table_.window.tablemodel3 is not None:
for i in range(len(self.table_window.
tablemodel3.data)):
self .markerdata [int (list (self.
table_window . tablemodel3.data[i].values())[0]) ,int(list (
self .table_window.tablemodel3.data[i].values())[1])] = -3
if self.table_window.pixrow is not None:
self .markerdata[self.table_window.pix_x

self.table_window . pix_y] = —2
self . markerdata[int (self.table_window.x) ,int(
self . table_window.y)] = —1

self.plot_widget.plotpeaks_2d (self.markerdata, self.
xmin, self .xmax, self .ymin, self .ymax, self . marker h self.
peaksplot_type)

self . update_axes ()

@QpyqtSlot (int)

46

A. Appendix: Code

def on_peaksBox_indexChanged (self , value):

if value = 0:
self . peaksplot_type = 0
elif value = 1:

self . peaksplot_type =1
if not self.analysis.peaks.size:
self . analysis.compute_allpeaks(self.data, self.
xmin , self .xmax, self .ymin, self.ymax, self.timemin 6 self.
timemax)
self.analysis.update_peaksbinary ()
self.analysis.update_peaksnumb ()
if not self.analysis.peaksbinary.size:
self.analysis.update_peaksbinary ()
self.analysis.update_peaksnumb ()
self . update_peaksplot ()

Q@pyqtSlot ()
def on_actionPeaksTimePlot_clicked (self):
if not self.analysis.peaks.size or self.th_changed
is True or self.ax_changed is True or self.time_changed
is True:
self . analysis.compute_allpeaks(self.data, self.
xmin , self .xmax, self .ymin, self.ymax, self.timemin, self.
timemax)
self.peaktime = 0
self . th_changed = False
self .ax_changed = False
self.analysis.update_sortedpeaktimes(self.xmin, self.
xmax, self . ymin, self .ymax)
self.horizontalSlider .setMaximum (len(self.analysis.
sortedpeaktimes)—1)
self . update_timeplot ()

@pyqtSlot (int)
def on_horizontalSlider_valueChanged (self , value):
if not self.analysis.peaks.size:
self.analysis.compute_allpeaks(self.data, self.
xmin , self .xmax, self.ymin, self.ymax, self.timemin, self.
timemax)
self.horizontalSlider .setMaximum (len(self .
analysis.sortedpeaktimes)—1)
self . peaktime = value
self.update_timeplot ()

47

A. Appendix: Code

def update_timeplot(self):
if self.timeplot_type = 0:
self .plot_widget.plotpeaks_2d (self.analysis.
update_peaktimeplot (self.peaktime) ,self.xmin, self.xmax,
self .ymin, self.ymax, self.marker 1)
elif self.timeplot_type = 1:
self.plot_widget.plotdata_3d (int(self.analysis.
sortedpeaktimes|[self.peaktime]|) ,self.data,self.xmin, self.
xmax, self . ymin, self .ymax)
self .peakTime.setText (str(self.analysis.
sortedpeaktimes | self.peaktime]))
self . update_axes ()

@pyqtSlot ()
def on_actionPreviousPeakTime_clicked (self):
if not self.analysis.peaks.size:
self . analysis.compute_allpeaks(self.data, self.
xmin , self .xmax, self .ymin, self.ymax, self.timemin, self.
timemax)
self.peaktime = 0
self.horizontalSlider .setMaximum (len(self.
analysis.sortedpeaktimes)—1)
elif self.peaktime > 0:
self .peaktime = self.peaktime — 1
self . horizontalSlider.setValue(self.peaktime)
self . update_timeplot ()

@pyqtSlot ()
def on_actionNextPeakTime_clicked (self):
if not self.analysis.peaks.size:
self.analysis.compute_allpeaks(self.data, self.
xmin, self .xmax, self .ymin, self .ymax, self.timemin, self.
timemax)
self . peaktime = 0
self.horizontalSlider .setMaximum (len(self .
analysis.sortedpeaktimes)—1)
elif self.peaktime < (len(self.analysis.
sortedpeaktimes)—1):
self .peaktime = self.peaktime + 1
self . horizontalSlider.setValue(self.peaktime)
self . update_timeplot ()

@pyqtSlot (int)
def on_xCoordMin_valueChanged (self , value):

48

A. Appendix: Code

self .xmin = value
self.ax_changed = True

@pyqtSlot (int)

def on_xCoordMax_valueChanged (self , value):
self .xmax = value+1
self.ax_changed = True

@pyqtSlot (int)

def on_yCoordMin_valueChanged (self , value):
self .ymin = value
self.ax_changed = True

@pyqtSlot (int)

def on_yCoordMax_valueChanged (self , value):
self .ymax = value+1
self .ax_changed = True

@pyqtSlot (int)

def on_timeMin_valueChanged (self , value):
self.timemin = value
self.time_changed = True

@QpyqtSlot (int)

def on_timeMax_valueChanged (self , value):
self .timemax = value
self . time_changed = True

def on_ax_changed(self , axes):
self.ax_changed = True
self .x_ax = self.plot_widget.ax.get_ylim ()
self .xmin = math. floor (self.x_ax[1])
self .xCoordMin.setValue (self.xmin)
self .xmax = math. ceil (self.x_ax[0])
self .xCoordMax.setValue (self.xmax—1)
self .y_ax = self.plot_widget.ax.get_xlim ()
self .ymin = math. floor (self.y_ax[0])
self .yCoordMin. setValue (self.ymin)
self .ymax = math. ceil (self.y_ax[1])
self .yCoordMax.setValue (self.ymax—1)

def on_click (self, event):
if self.plot_widget.toolbar. _active is None and self
.timeplot_type != 1 and self.dataplot_type != 1:

49

A. Appendix: Code

self . xclick = int(event.ydata)
self . yclick = int(event.xdata)

def on_release(self , event):
if self.plot_widget.toolbar. _active is None and self

.timeplot_type != 1 and self.dataplot_type != 1:
self.xrelease = int(event.ydata)
self.yrelease = int(event.xdata)

self.open_timeplot ()

def open_timeplot(self):
win = PlotWindow (filename=self . filename)
if self.xclick = self.xrelease and self.yclick =
self.yrelease:
win . setGeometry (10, 10, 690, 510)
win. title = True
win. plot (self.data[:,self.xclick—self.analysis.
xmin, self . yclick—self.analysis.ymin], self.xclick ,self.
yclick , self . timemin , self .timemax)
win. plot_peaks (self.analysis.compute_peaks(self.
data[:, self.xclick—self.analysis.xmin, self.yclick—self.
analysis.ymin]))
else:
win.setGeometry (10, 10, 300+ (180x%(self.yrelease—
self.yclick+1)), 200+(140%(self.xrelease—self.xclick+1)))
win. plot _subplots(self.data,self.xclick ,self.

xrelease+1,self . yclick ,self.yrelease+1,self.analysis.th)
win . show ()

self.open_windows.append (win)

@pyqtSlot (int)
def on_timeBox_indexChanged (self , value):

if value = 0:
self.timeplot_type = 0
elif value — 1:

self . timeplot_type =1
self . update_timeplot ()

def open_tablewindow (self):
self . table_window = TableWindow (filename=self .

filename , data=self.analysis.peaknumbs, timedata=self.
analysis.peaks)

self.table_window .show ()
self.open_windows.append(self.table_window)

20

A. Appendix: Code

self.table_window .selmodel.selectionChanged . connect (
self .on_tableSel)

def on_tableSel(self, sel, desel):

self . marker = True
self . update_peaksplot ()
self .marker = False

self .table_window .selmodel_2.selectionChanged .
connect (self.on_table2Sel)

def on_table2Sel(self, sel, desel):

self . marker = True
self . update_peaksplot ()
self . marker = False

self .table_window .selmodel_3 .selectionChanged .
connect(self.on_table3Sel)

def on_table3Sel(self, sel, desel):

self .marker = True
self . update_peaksplot ()
self . marker = False

Python file 5: plot_window.py

import sys

sys.path.insert (0, ’../ ")

import matplotlib as mpl

from PyQt5.QtWidgets import QMainWindow, QWidget ,
QVBoxLayout, QSizePolicy

from PyQt5.uic import loadUi

from matplotlib import cm

from matplotlib.backends.backend_qtbagg import
FigureCanvasQTAgg as FigureCanvas

mpl.rcParams|’toolbar’] = ’toolmanager’

from matplotlib.backends. backend_qtHagg import
NavigationToolbar2QT as NavigationToolbar

from matplotlib.figure import Figure

import matplotlib.colors as colors

from analysis.analysis import Analysis

import numpy as np

from mpl_toolkits.mplot3d import Axes3D

o1

A. Appendix: Code

class PlotWindow (QMainWindow) :
def __init__(self, filename=None, parent=None):

super (). __init__(parent)

loadUi(’../ -res/ui/plot_mainwindow . ui’,self)
self.filename = filename

self.analysis = Analysis(self.filename)
self . figure = Figure()

self.canvas = FigureCanvas(self.figure)

layout = QVBoxLayout ()

self.canvas.setSizePolicy (QSizePolicy.Expanding,

QSizePolicy . Expanding)

def

self.canvas.updateGeometry ()

layout .insert Widget (0, self.canvas)

widget = QWidget ()

widget .setLayout (layout)

self .setCentralWidget (widget)

self . toolbar = NavigationToolbar(self.canvas, self)
layout .addWidget (self . toolbar)

self.ax = None

self.colorbar = None

self . title = False

plot (self , data, x, y, timemin, timemax):
self .data = data
if self.ax is not None:

self . ax.clear ()

else:
self .ax = self.canvas.figure.subplots()
if self.title is True:
self . figure.suptitle (" (” + str(x) + 7,7 + str(y)

+ 7)”, fontsize=10)

if timemin != self.analysis.timemin or timemax !=

self.analysis.timemax:

self .ax.set_xlim (left=timemin , right=timemax)
self .ax.plot(self.data)
self.ax.figure.canvas.draw ()

def plot_peaks(self, data):

self .peaktimes = data
self .ax.plot(self.peaktimes, self.data[self.

peaktimes|, ’'x7)

self .ax.figure.canvas.draw()

def plotdata_2d(self , data, xmin, xmax, ymin, ymax):

92

A. Appendix: Code

self.data = data[xmin:xmax,ymin:ymax|
if self.ax is not None:
self.ax.remove ()

self.ax = self.canvas.figure.subplots()
cmap = cm.get_cmap ('YIGnBu”)
img = self.ax.imshow(self.data, cmap=cmap, extent=|

ymin , ymax ,Xxmax , xmin |)
if self.colorbar is not None:

self.colorbar.remove()
self.colorbar = self.figure.colorbar (img,ax=self.ax)

self .ax.format_coord = lambda x,y: 'x = %i, y = %i’

% (v, x)

self.canvas.draw_idle ()

def plotpeaks_2d(self, data, xmin, xmax, ymin, ymax,

marker , plottype):
self.data = data[xmin:xmax,ymin:ymax|

if self.ax is not None:

self.ax.remove ()
self .ax = self.canvas.figure.subplots|()

if self.colorbar is not None:
self.colorbar.remove()

if plottype is O:
self.data = np.ma.masked_where(self.data < 0,

self.data)

cmap = cm.get_cmap(inferno’, 2)

img = self.ax.imshow(self.data, cmap=cmap,
extent=[ymin ,ymax,xmax,xmin])

self.colorbar = self.figure.colorbar (img,ax=self
.ax)

self.colorbar.set_ticks ([0.25, 0.75])
self . colorbar.set_ticklabels (['07, "1

elif plottype is 1:
self.data = np.ma.masked_where(self.data <= 0,

self.data)
cmap = cm.get_cmap (’summer)

cmap . set_bad (color="black ")
img = self.ax.imshow(self.data, cmap=cmap, norm=

colors .PowerNorm (gamma=0.5) , extent=[ymin,ymax,xmax,xmin

)

1)
self.colorbar = self.figure.colorbar (img,ax=self

.ax)
if marker is True:

self .data = data

93

A. Appendix: Code

self .data = np.ma.masked_where(self.data > —2,
self.data)

self.ax.imshow(self.data, cmap="Spectral’,
extent=[ymin ,ymax,xmax,xmin])

self.data = data

self.data = np.ma.masked _where(self.data != —1,
self.data)
self .ax.imshow(self.data, cmap="hsv’, extent=|
ymin , ymax , Xxmax , xmin |)
self .ax.format_coord = lambda x,y: 'x = %i, y = %i’

% (v, x)

self.canvas.draw ()

def plot_subplots(self , data, xmin, xmax, ymin, ymax, th
): |
X = Xmax—xmin
y = ymax—ymin
self.analysis.th = th
self .ax = self.canvas.figure.subplots(x, y, sharex=
True)
for i in range (xmin, xmax):
for j in range(ymin, ymax):
dataaux = data[:,i—self.analysis.xmin,j—self
.analysis.ymin]
if xmin==(xmax—1) or ymin==(ymax—1):
if xmin==(xmax—1):

indaux = j—ymin
elif ymin==(ymax—1):
indaux = i—xmin

self.ax[indaux]. plot (dataaux)

self . ax[indaux].set_title (”(” + str(i) +
77+ str(j) +7)7, fontsize=8)

self .ax[indaux |. tick_params(labelsize=6)

self.analysis.compute_peaks(dataaux)

self .ax[indaux]. plot (self.analysis.
peaktimes, dataaux[self.analysis.peaktimes], ’'x’)

else:

self . ax[i—xmin, j—ymin].

self .ax[i—xmin, j—ymin].
str(i) + 7,7 + str(j) +7)”, fontsize=8)

self . ax[i—xmin, j—ymin].

plot (dataaux)
set_title (" ("7 +

tick_params (
labelsize=6)
self . analysis.compute_peaks(dataaux)
self . ax[i—xmin, j—ymin]|.plot(self.

o4

A. Appendix: Code

)

analysis.peaktimes, dataaux|[self.analysis.peaktimes],

)

)

self.time = time

self.data = (data[self.time,xmin:xmax,ymin:ymax]|).T

self.ax.remove ()

if self.colorbar is not None:
self.colorbar.remove ()
self.colorbar = None

self.ax = self.canvas.figure.add_subplot (111,

projection="3d")

X = np.arange (ymin,ymax)

Y = np.arange (xmin ,xmax)

X, Y = np.meshgrid (X, Y)

self . ax.plot_surface (X, Y, self.data)

self.canvas.draw ()

Python file 6: table_window.py
import sys
sys.path.insert (0, ’../ ")
from PyQt5.QtCore import Qt, QAbstractTableModel, QVariant
from PyQt5.QtWidgets import QMainWindow, QTableView
from PyQt5.uic import loadUi
import numpy as np
import math

class MyTableModel (QAbstractTableModel) :

def __init__(self, data, parent=None, xargs):
QAbstractTableModel. - _init__(self , parent, xargs)
self.data = data
self . datalist = np.zeros((len(self.data), len(self.
data[0])))

def flags (self, index):
return Qt.ItemIsEnabled | Qt.ItemIsSelectable

def rowCount(self , parent):
return len(self.data)

X

)

def plotdata_3d(self, time, data, xmin, xmax, ymin, ymax

95

A. Appendix: Code

def columnCount(self , parent):
return len(self.data[0])

def data(self, index, role):
if not index.isValid():
return QVariant ()
elif role != Qt.DisplayRole:
return QVariant ()
return QVariant (list (self.data[index.row ()].values()
) [index . column () |)

def headerData(self , column, orientation, role=None):
if role != Qt.DisplayRole:
return QVariant ()
if orientation = Qt.Horizontal:
return QVariant (list (self.data[0].keys())[column

1

def sort(self, Ncol, order):
for i in range(len(self.datalist)):
self . datalist[i] = [j for j in list(self.data|i
|. values ())]
self .layoutAboutToBeChanged . emit ()
arg = (np.argsort (np.argsort(self.datalist [:,Ncol]))
). tolist ()
zipped=zip (arg, self.data)
self.data = [x for _, x in sorted(zipped)]
if order = Qt. AscendingOrder:
self.data.reverse ()
self.layoutChanged . emit ()

class TableWindow (QMainWindow) :

def __init__(self, parent=None, data=None, timedata=None
):
super (). __init__(parent)

loadUi(’../ _res/ui/table_mainwindow.ui’, self)
self .data = data

self.timedata = timedata
self.model_data = []
self . model timedata = []

self . model_timecoordsdata = []
self.tablemodel3 = None

26

A. Appendix: Code

self.create_data ()
self.tablemodel = MyTableModel(self.model_data, self

self . tableView.setModel (self.tablemodel)

self . tableView .sortByColumn (2,Qt. AscendingOrder)

self .layout = self.horizontalLayout.layout ()

self .selmodel = self.tableView.selectionModel ()

self .selmodel.selectionChanged . connect (self.
on_rowSel)

def create_data(self):
for i in range(len(self.data)):

item = {}

item|['x’] = str(int(self.data.index[1][0]))
item[’y’] = str(int(self.data.index[i][1]))
item ['peaks number’] = str(int(self.data.values]|

i]))

self.model_data.append(item)

def on_rowSel(self, sel):
if self.model_timedata:
if self.model_timecoordsdata:
self . tableView_3.deleteLater ()
self . tableView_3 = None
self . model_timecoordsdata = []
self.tableView_2.deleteLater ()
self.tableView_2 = None
self . model_timedata = []
self.row = (sel.indexes())[0].row()
self.create_timedata ()
self . tablemodel2 = MyTableModel(self.model timedata ,
self)
self.tableView_2 = QTableView ()
self.tableView_2.setModel(self.tablemodel2)
self.selmodel 2 = self.tableView_2.selectionModel ()
self.selmodel_2.selectionChanged .connect (self.
on_timeSel)
self.layout.addWidget(self.tableView_2)
self.tableView_2.setSelectionBehavior (QTableView.
SelectRows)
self.tableView_2.setVerticalScrollBarPolicy (Qt.
ScrollBarAlwaysOn)
self . tableView_2.setMinimumWidth (220)
self . tableView_2.setMaximumWidth (220)

57

A. Appendix: Code

self.tableView_2.setSortingEnabled (True)
self .setMaximumWidth (525)
self . tablemodel3 = None

def create_timedata(self):
self .x = int(list ((self.tablemodel.data[self.row]).
values ()) [0])
self .y = int(list ((self.tablemodel.data[self.row]).
values ())[1])
for i in range (len(self.timedata|[self.x]|[self.y])):
item2 = {}
item2 ['peak time’] = str(int(self.timedata[self.
x][self.y].index[i]))
item2 ['peak height’] = str(int(round(self .
timedata[self .x]|[self.y].values[i])))
self . model_timedata.append (item?2)

def on_timeSel(self, sel):
if self.model_timecoordsdata:
self.model_timecoordsdata = []
self.layout.removeWidget(self.tableView_3)
timeind = (sel.indexes())[0].row()
self .time = int(list ((self.tablemodel2.data[timeind
]) . values ())[0])
self.create_timepixelsdata ()
self.tablemodel3 = MyTableModel(self.
model_timecoordsdata, self)
self.tableView_3 = QTableView ()
self . tableView_3.setModel (self.tablemodel3)
self.layout.addWidget(self.tableView_3)
self.tableView_3.setMinimumWidth (605)
self.tableView_3.setMaximumWidth (605)
self.tableView_3.setSortingEnabled (True)
self.tableView_3.sortByColumn (4 ,Qt. DescendingOrder)
self.tableView_3.setSelectionBehavior (QTableView.
SelectRows)
self.selmodel_3 = self.tableView_3.selectionModel ()
self .selmodel_3.selectionChanged . connect(self.
on_pixSel)
self . pixrow = None

def create_timepixelsdata(self):
self .range = range((int(self.time)—5), (int(self.
time)+5))

o8

A. Appendix: Code

acc_dist = []
for i in range (len(self.timedata)):
if self.timedata.index[i][2] in self.range:
item3 = {}
item3|[’'x’] = str(int(self.timedata.index][1i

item3[’y’| = str(int(self.timedata.index]|[1i

item3 ['peak time’] = str(int(self.timedata.
index[i1][2]))

item3 ['peak height’] = str(int(round(self.
timedata.values[i])))

dist = round(math.sqrt (((self.timedata.index
[1][0] —self.x)*%2)+(self.timedata.index[i][1] —self.y)xx2)
1)

item3 [’ 'pixel distance’] = str(dist)

item3 ['time distance’] = abs(int(self.
timedata.index[i][2])—int (self.time))

self . model_timecoordsdata .append(item3)

acc_dist = np.concatenate ((acc_dist , np.
array ([dist])), axis=0)

def on_pixSel(self, sel):

self . pixrow = (sel.indexes())[0].row()

self .pix_x = int(list ((self.tablemodel3.data|[self.
pixrow]) . values())[0])

self.pix_y = int(list ((self.tablemodel3.data[self.
pixrow|) .values())[1])

29

Literature

Literature

[1]

[10]

G. Bertotti, D. Velychko, N. Dodel, S. Keil, D. Wolansky, B. Tillak, M. Schre-
iter, A. Grall, P. Jesinger, S. Rohler, M. Eickenscheidt, A. Stett, A. Moller,
K. H. Boven, G. Zeck, and R. Thewes, “A CMOS-based sensor array for in-
vitro neural tissue interfacing with 4225 recording sites and 1024 stimulation
sites,” IEEFE 2014 Biomedical Circuits and Systems Conference, BioCAS 2014
- Proceedings, pp. 304-307, 2014.

J. Dragas, D. Jackel, F. Franke, and A. Hierlemann, “An unsupervised method
for on-chip neural spike detection in multi-electrode recording systems,” Pro-
ceedings of the Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, EMBS, pp. 2535-2538, 2013.

M. Jenkner, M. Tartagni, A. Hierlemann, and R. Thewes, “Cell-based CMOS
sensor and actuator arrays,” IEEFE Journal of Solid-State Circuits, vol. 39,
no. 12, pp. 2431-2437, 2004.

G. Bertotti, F. Jetter, N. Dodel, S. Keil, C. Boucsein, A. Moller, K. H. Boven,
G. Zeck, and R. Thewes, “Artifact-compensated time-continuous recording
from neural tissue during stimulation using a capacitively coupled in-vitro
CMOS-MEA with 4k recording and 1k stimulation sites,” Proceedings - 2016
IEEFE Biomedical Circuits and Systems Conference, BioCAS 2016, pp. 256-259,
2016.

S. Gibson, J. W. Judy, and D. Markovi¢, “Technology-aware algorithm design
for neural spike detection, feature extraction, and dimensionality reduction,”
IEEFE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18,
no. 5, pp. 469-478, 2010.

C. Leibig, T. Wachtler, and G. Zeck, “Unsupervised neural spike sorting for
high-density microelectrode arrays with convolutive independent component
analysis,” Journal of Neuroscience Methods, vol. 271, pp. 1-13, 2016. [Online].
Available: http://dx.doi.org/10.1016/j.jneumeth.2016.06.006

Python Software Foundation, “About Python™ — Python.org,” 2019. [Online].
Available: https://www.python.org/about/

Real Python, “Object-Oriented Programming (OOP) in
Python 3,7 2019. [Online]. Available: https://realpython.com/
python3-object-oriented-programming/

T. Oliphant, “NumPy: A guide to NumPy,” USA: Trelgol Publishing, 2006—.
[Online|. Available: http://www.numpy.org/

E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific tools
for Python,” 2001-. [Online|. Available: http://www.scipy.org/

60

http://dx.doi.org/10.1016/j.jneumeth.2016.06.006
https://www.python.org/about/
https://realpython.com/python3-object-oriented-programming/
https://realpython.com/python3-object-oriented-programming/
http://www.numpy.org/
http://www.scipy.org/

Literature

[11]

[12]

[13]

[14]

[15]

[16]

J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing In Science
& Engineering, vol. 9, no. 3, pp. 90-95, 2007.

The Linux Information Project, “GUI Definition,” 2004. [Online]. Available:
http://www.linfo.org/gui.html

PyQT, “Pyqth reference guide,” 2015. [Online|. Available: |https://www.
riverbankcomputing.com /static/Docs/PyQt5/

The Qt Company, “Qt: Cross-platform software development for embedded
desktop,” 2019. [Online]. Available: https://www.qt.io

F. Pérez and B. E. Granger, “IPython: a system for interactive scientific
computing,” Computing in Science and Engineering, vol. 9, no. 3, pp. 21-29,
May 2007. [Online]. Available: https://ipython.org

W. McKinney, “Data structures for statistical computing in python,” in Pro-
ceedings of the 9th Python in Science Conference, S. van der Walt and J. Mill-
man, Eds., 2010, pp. 51 — 56.

61

http://www.linfo.org/gui.html
https://www.riverbankcomputing.com/static/Docs/PyQt5/
https://www.riverbankcomputing.com/static/Docs/PyQt5/
https://www.qt.io
https://ipython.org

	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives

	Methodology
	Background
	cmos mea systems
	Spike detection methods
	Python programming language
	gui applications

	Proposed method
	Structure of work

	Development
	Environment setup
	Application development
	Analysis class
	PyQtApp class
	TimeplotWidget class
	GridplotWidget class
	PlotWindow class
	TableWindow class

	Results
	Timeplot analysis results
	Grid plot analysis results
	Table view analysis results

	Summary
	Appendix: Code
	Literature

