
Technische Universität Berlin

Faculty IV - Electrical
Engineering and Computer

Science

Chair of Sensor and Actuator Systems

Analysis and Spike Detection of Neural Data from a CMOS

MEA System

Bachelor Thesis

Laura Ibáñez Mart́ınez

March 2019 - September 2019

Technische Universität Berlin
Faculty IV - Electrical Engineering and Computer
Science

Chair of Sensor and Actuator Systems
Prof. Dr. Roland Thewes

Analysis and Spike Detection of Neural

Data from a CMOS MEA System

Author: Laura Ibáñez Mart́ınez

Student ID: 408029

Submission date: 05.09.2019

Supervisor: Dr. Norman Dodel

Affidavit

I hereby confirm that this term paper entitled ”Analysis and Spike
Detection of Neural Data from a CMOS MEA System” is the result of
my own work. I did not receive any help or support from commercial
consultants. All sources and / or materials applied are listed specified
in this paper.
Furthermore, I confirm that this paper has not yet been submitted as
part of another examination process neither in identical nor in similar
form.

Berlin, 05.09.2019
Place, Date Signature

Abstract

This thesis is intended to deal with the problem of analysis and spike detection in
neural data acquired from a CMOS Microelectrode Array (MEA) system. In order
for this to be carried out a Graphical User Interface (GUI) application has been
created.
The data to analyze comes from an in-vitro recording and stimulation system which
uses a 65 x 65 CMOS MEA and it is stored in HDF5 files with the .cmcr extension.
The GUI application developed in Python is able to read these files and perform a
number of tasks which facilitate the detection and visualization of neural activity
within the tissue subjected to analysis. This is accomplished by interpreting the
voltage measurements at every coordinate of the array over time for the search of
Action Potentials (APs) or spikes. Once the spikes are detected the information is
stored to be presented in different ways and a comparison is carried out to detect
when and where most activity has taken place.
The GUI application created enables the visualization of both raw and filtered data
at a particular coordinate over time and showing the spikes that have been detected.
Moreover, a second type of plot makes it possible to view the whole array filtered
data for an exact time sample, as well as which coordinates present most neural
activity. Finally, a number of tables show useful information about the pixel coor-
dinates, time and height of these spikes.

Keywords: CMOS MEA system, HDF5 file, GUI application, spike detection.

Contents

List of Abbreviations . i

List of Figures . ii

List of Tables . iv

1. Introduction . 1
1.1. Motivation . 1
1.2. Objectives . 1

2. Methodology . 3
2.1. Background . 3

2.1.1. CMOS MEA systems . 3
2.1.2. Spike detection methods . 4
2.1.3. Python programming language 6
2.1.4. GUI applications . 7

2.2. Proposed method . 8
2.3. Structure of work . 10

3. Development . 12
3.1. Environment setup . 12
3.2. Application development . 14

3.2.1. Analysis class . 14
3.2.2. PyQtApp class . 15
3.2.3. TimeplotWidget class . 15
3.2.4. GridplotWidget class . 16
3.2.5. PlotWindow class . 19
3.2.6. TableWindow class . 20

4. Results . 21
4.1. Timeplot analysis results . 21
4.2. Grid plot analysis results . 24
4.3. Table view analysis results . 29

5. Summary . 33

A. Appendix: Code . 35

Literature . 60

List of Abbreviations

List of Abbreviations

AP Action Potential.

BMI Brain-Machine Interface.

CLI Command Line Interface.

CMOS Complementary Metal-Oxide-Semiconductor.

DC Direct Current.

GUI Graphical User Interface.

HCI Human Computer Interface.

HDF Hierarchical Data Format.

HP High-Pass.

ICA Independent Component Analysis.

IDE Integrated Development Environment.

MEA Microelectrode Array.

MVP Model-View-Presenter.

NEO Nonlinear Energy Operator.

OOP Object-Orientated Programming.

OS Operating System.

PCB Printed Circuit Board.

SWTP Stationary-Wavelet-Transform Product.

WIMP Windows-Icons-Menus-Pointer.

i

List of Figures

List of Figures

1. Diagram of an Action Potential and its different stages (Source: https://en.
wikipedia.org/wiki/Action potential). 3

2. a) Block diagram of the entire MEA measurement system, b) CMOS-
based MEA chip on PCB carrier with chamber, c) acquisition and
control board, d) digital interface board (from Bertotti et al., 2014, [1]). 4

3. Diagram of the Model-View-Presenter (MVP) architecture pattern (Source:
https://en.wikipedia.org/wiki/Model-view-presenter). 7

4. Aspect of HDFView when one of the .cmcr acquisition files is opened. . 12

5. Development of the timeplot widget and its different objects in Qt
Designer. 15

6. Development of the grid plot widget and its different objects in Qt
Designer. 17

7. Aspect of the app main window and how to load a .cmcr file. 21

8. Aspect of app once a .cmcr file is loaded. 21

9. Timeplot comparison of raw and filtered data for the selected pixel
coordinate. 22

10. Comparison of computed spikes for two different threshold values. . . . 22

11. Effect of applying zoom for visualizing an individual spike. 23

12. Grid plot of filtered data at two different time samples. 24

13. Effect of selecting 3D plot instead of 2D plot. 24

14. Aspect of peaks plot showing if there are spikes or not for each coordinate. 25

15. Effect of changing the threshold value and selecting second type of
peaks plot showing the number of spikes for each coordinate. 25

16. Effect of clicking on a pixel coordinate and opening its timeplot show-
ing filtered data and spikes. 26

17. Result of selecting a subarea of the whole array in second type of peaks
plot. 26

ii

List of Figures

18. Effect of drawing a rectangle with the mouse over more than one pixel
coordinate in second type of peaks plot. 27

19. Result of selecting a different time range in second type of peaks plot. 27

20. Aspect of peaks time plot at different time samples with spikes. 28

21. Aspect of table view showing pixel coordinates and number of peaks
ordered in two different ways. 29

22. Second table showing all spikes for the selected pixel coordinate and
the effect on the peaks plot. 30

23. Third table showing all coordinates with spikes for the selected time
sample or a near one and the effect on the peaks plot. 31

24. Selection of one of the pixel coordinates on the third table and the
effect on the peaks plot. 32

iii

List of Tables

List of Tables

1. Error rates of different spike detection methods (from Dragas et al.,
2013, [2]) . 8

iv

1. Introduction

1. Introduction

This thesis is the result of the work achieved after spending an exchange semester at
TU Berlin, and more specifically the Chair of Sensor and Actuator Systems, in order
to conclude the Bachelor’s degree in Industrial Electronics and Automatic Control
Engineering coursed at UPC.

1.1. Motivation

As part of the work being developed at the Chair of Sensor and Actuator Systems in
cooperation with the NMI Natural and Medical Sciences Institute at the University
of Tübingen regarding the design of CMOS MEA systems for interfacing purposes
with neural tissue, a topic concerning analysis of the recorded data has been con-
sidered appropriate for the development of this thesis. Moreover, the need for a
faster and more intuitive way of extracting relevant information from the mentioned
data has lead to the idea of developing a GUI application which is able to perform
these tasks. This way of analyzing and visualizing the data offers a large number of
possibilities and provides an interactive experience with the user.
As applications such as Brain-Machine Interfaces (BMIs) for biomedical purposes
within others become more popular the need for neural data analysis and spike
detection methods grows. In cases like the actual one for in-vivo and in-vitro tech-
niques the use of Microelectrode Arrays makes it possible to record extracellular
activity in neural tissue from a number of electrodes at the same time. These nerve
cells communicate by means of Action Potentials (APs) or spikes which can be inter-
preted from fast, short duration transients in voltage. Appropriate spike detection
and spike sorting methods are useful for reducing the amount of relevant informa-
tion that needs to be stored and for detecting where the nerve cells are found within
the neural tissue subjected to analysis. Once the nerve cells are identified different
studies to see how the tissue reacts to certain stimulus can be carried out.

1.2. Objectives

The principal objective of this thesis is to provide an application capable of analyz-
ing and visualizing data acquired from the CMOS MEA system and stored in the
form of HDF5 files. More specifically, the application aims to present the data in
different ways (timeplot for a specific pixel coordinate and grid plot for a specific
time sample) and both raw and filtered. The filter applied is a High-Pass (HP) filter
to remove the DC offset of the signal. Additionally, some spike detection method
must be applied and information such as the number, coordinates and height of the
spikes (also referred to as peaks throughout the document) extracted and stored to
be presented in different ways, including plotted and in a table view.
In respect to the creation of the GUI application, other objectives need to be ac-
complished in the first place in order to satisfy the ones mentioned above. These
include:

1

1. Introduction

• Familiarize with Python programming language and its main libraries such
as NumPy, SciPy and Matplotlib, as well as Object-Orientated Programming
(OOP) to work with classes and objects.

• Make use of PyQt5 and Qt Designer in order to build the GUI interface in a
simple and intuitive way.

• Learn about the Pandas library and its multi-level indexing to find an appro-
priate way of storing the spikes information.

• Learn the basics of code benchmarking to time determined methods when
running the code in order to detect which actions take more time.

A more detailed explanation of each of these terms will be given in the following
sections.

2

2. Methodology

2. Methodology

2.1. Background

To understand the purpose of this work, an outline of what CMOS MEA systems
are, which spike detection methods are most commonly used, which are the basic
features of Python programming language and what GUI applications are is given.

2.1.1. CMOS MEA systems

CMOS MEA systems are designed to offer a greater insight into how neural activity
of single cells or cell tissue takes place. The study of this neural activity is based on
the principle of Action Potentials (APs).
Nerve cells contain ion channels which selectively enable the permeation of certain
ions such as sodium or potassium. APs are the elementary electrical signal in bi-
ological systems and consist of a transient change of the membrane potential in
these cells. In a steady state, this potential has a value determined by the ion with
highest conductance, usually potassium, which is of around -70 mV. After a voltage
drop over a certain threshold caused by either a biological or an artificial stimulus,
the Na-channels open and depolarization is further increased. Approximately 1 ms
later, these Na-channels are closed again and, after a short delay, the K-channels
are opened in turn. These repolarize the membrane and remain open even after
reaching the steady-state potential. After a refractory period the K-channels are
closed again and a similar situation is achieved as before [3]. Figure 1 shows what
one of these transients looks like.

Figure 1: Diagram of an Action Potential and its different stages (Source: https://en.
wikipedia.org/wiki/Action potential).

3

2. Methodology

Most high resolution CMOS MEAs contain between 1000 and 10 k active sites and
they can be divided in two groups: those with highly resolved spatial interfacing
selectability and those with real imaging capability such as the one used. This
means the entire array is read out and the results are images or movies of the
neural tissue activity. The number of channels equals the number of sites or is at
least of the same order of magnitude and the array readout uses multiplexing. A
high bandwidth is also required in the array periphery. The CMOS MEAs used
in this case consist of 65 x 65 sensor sites and 32 x 32 stimulation sites, and the
sampling rate at which the data is captured is of 20 kHz. The bit depth is of
16 bits. The aforementioned structure results in a total of 4225 recording sites

Figure 2: a) Block diagram of the entire
MEA measurement system, b) CMOS-based
MEA chip on PCB carrier with chamber,
c) acquisition and control board, d) digital
interface board (from Bertotti et al., 2014,
[1]).

and 1024 stimulation sites, though op-
eration of a subset of the entire area is
possible as well. Other parts of the sys-
tem include the acquisition and control
board and the digital interface board.
Once the data is acquired from the sys-
tem it is stored in HDF5 files with the
.cmcr extension. This requires large
amounts of space, as for a sampling
rate of 20 kHz the total data stream
is of (16 bit x 4225 x 20 kHz), which
is approximately 1.35 Gbit/s. A dia-
gram and pictures of a similar system
can be seen in Figure 2. Until recently
most attention has been put on record-
ing and little on stimulation, but it is
in fact of equal importance. Stimula-
tion is carried out by feeding currents at
the wanted sites into the neural tissue,
though sometimes voltages are also ap-
plied. In most CMOS and non-CMOS
MEAs sites are used in a bi-directional
manner, but this requires a ”blanking
time” after the stimulation pulse is ap-
plied. In this case, it has been proven
that recording and stimulation can be
carried out simultaneously [1], [4].

2.1.2. Spike detection methods

As said previously, these systems require spike detection methods in order to detect
when and where the neural activity has taken place and to be able to understand
the behaviour of the neural cells or tissue. Aspects to have in mind when choosing
an appropriate method include:

4

2. Methodology

• How fast it is.

• How complex it is.

• How much memory it requires.

• If it is unsupervised or not.

• If it is real-time.

• How successful it is.

• Where in the system it needs to be implemented.

Some of the existing methods are:

1. Absolute Value Thresholding (Abs) ([2], [5]): being one of the most simple and
commonly used, it consists of applying a threshold to the absolute value of the
signal. The threshold is usually obtained the following way:

Th = CAσN , σN = median
{ |x(n)|

0.6745

}
, (1)

where CA is a positive constant which is usually set to around 4 as in [5] and
σN is an estimate of the standard deviation of the noise.

2. Nonlinear Energy Operator (NEO) ([2], [5]): the NEO ψ is defined in discrete
time as:

ψ[x(n)] = x2(n)− x(n+ δ) · x(n− δ), (2)

where δ ∈ [1..10] and is normally set to 1 as in [5]. Thresholding is then per-
formed using an integer multiple of the mean value of ψ[x(n)]. This method
has the advantage of taking into account the frequency and not only the am-
plitude of the signal.

However, the actual system we are talking about counts so far with a software
that uses a different and more complex spike sorting algorithm. As the CMOS
MEA chips count with a higher number of sensor sites than of actual neurons, an
Independent Component Analysis (ICA) can be carried out as an ”unmixing” of the
raw data. The result of this is a set of signals each of which will ideally correspond
to a single neuron. As the algorithm tends to work worse if there are many sensors
to be unmixed at the same time, a different algorithm first divides the sensors
on the chip into smaller regions and computes the ICA for each of these regions.
This algorithm reduces the dimensionality of the data and allows to process several
regions in parallel on one or several computers [6].
Other algorithms such as the Stationary-Wavelet-Transform Product (SWTP) [5]
or one based on a local energy measure (LocEn) [2] are presented in the articles
mentioned. Every one of these has to prioritize some aspects over others and are
more or less appropriate for a determined system depending on the conditions and
purposes of each.

5

2. Methodology

2.1.3. Python programming language

Python was first released in 1991 and is one of the most popular programming lan-
guages nowadays. Its philosophy makes special emphasis on a syntax that makes
code easily readable. Another one of its most characteristic aspects is that it is
developed under an open-source license, making it freely usable and distributable.
A very large number of tutorials can be found online and it can be easy to learn at
a basic level even for first time programmers [7].
Another common Python feature is its multiple programming paradigms, being one
of them Object-Orientated Programming (OOP). This paradigm provides a means
of structuring programs so that properties and behaviours are grouped into indi-
vidual objects. It is an approach for modeling real-life items and relations between
them, being in this case software objects which have certain data associated to them
and can perform determined functions. Next is a brief explanation of the two key
elements of OOP [8]:

• Classes: each object is an instance of some class. Classes are used to create
data structures that contain information about the objects that belong to a
specific class. They offer a structure and determine which properties of an
object belonging to this class should be specified, but do not provide any real
content themselves. Classes can be thought as the skeleton or idea for how an
object should be defined.

• Objects: objects (or instances) are members of a specific class. They have
the properties defined by the class but with actual values specific for them.
Different objects from the same class will have the same properties but with
their own values. These will differentiate one from another but will make them
belong to this class and not to another one. Functions associated to any object
are called methods.

Another key element of Python are its standard and external libraries. Some of the
most commonly used are the following:

• NumPy [9]: being a fundamental package for numerical computation, it con-
tains features such as an N-dimensional array object, complex functions and
useful linear algebra. Arbitrary types of data can be defined and it is very
efficient as a multi-dimensional data container as well as for its scientific pur-
poses.

• SciPy [10]: it provides many useful numerical routines such as those for nu-
merical integration, interpolation, optimization or statistics.

• Matplotlib [11]: being the most popular Python 2D plotting library, it pro-
duces figures in a number of different formats and interactive environments
across platforms. It can generate plots, histograms, scatter plots, etc. with
only a few lines of code.

6

2. Methodology

2.1.4. GUI applications

Graphical User Interface (GUI) applications are Human Computer Interfaces (HCIs)
that use windows, icons and menus and can be manipulated by devices such as a
mouse or by touch. They differ from Command Line Interfaces (CLIs) in that
these use exclusively text and can only be accessed by means of a keyboard. GUIs
make computer operation more intuitive and easier and provide the user with a
clear feedback about the effect of each action. They are also flexible meaning that
they allow a number of different objects or instances to be displayed at the same
time. The most common combination of elements in a GUI is the Windows-Icons-
Menus-Pointer (WIMP) paradigm, though many others have been used after it.
This type of interaction presents information organized in windows and represented
with icons. Commands are compiled together in menus and actions are performed
making gestures with the pointer [12].
A common GUI design pattern is the Model-View-Presenter (MVP) pattern. Here,
the View and the Model are clearly separated and all presentation logic is pushed
to the Presenter. Each of the parts consist of the following [8]:

• Model: it is the interface defining the data to be displayed or acted upon in
the user interface.

• View: it is a passive interface that displays data (the model) and routes user
commands or events to the presenter to act upon the data.

• Presenter: it acts upon the model and the view. It retrieves data from repos-
itories (the model) and formats it for display in the view.

A diagram of this pattern is presented in Figure 3.

Figure 3: Diagram of the Model-View-Presenter (MVP) architecture pattern (Source:
https://en.wikipedia.org/wiki/Model-view-presenter).

Python has a large number of GUI frameworks, being one of these PyQt [13]. PyQt
is a blending of Python programming language and the Qt library [14] and is a
multiplatform toolkit which runs on all major Operating System such as Unix or
Windows. Qt Designer is a Qt tool for designing and building GUIs which allows to
design widgets, dialog boxes and main windows.

7

2. Methodology

2.2. Proposed method

Whereas many recent studies prioritize applying the spike detection method in close
proximity to the recording sites to reduce the transmission data bandwidth, in this
case we are working with already recorded and stored data in order to focus on the
GUI application itself. As shown in Table 1 with experimental results provided in
[2], from the two most common methods the Absolute Value Thresholding (Abs) has
a lower error rate. As it is also more simple than the Nonlinear Energy Operator
(NEO), this one will be preferred over the two. In respect to the LocEn method,
it has been considered too complex to be implemented in the first place and left
for further consideration in the case of continuing to develop the application in the
future.

Table 1: Error rates of different spike detection methods (from Dragas et al., 2013, [2])

Abs NEO LocEn
Error Rate (e) 39.91% 41.62% 31.89%

In what refers to the creation of the GUI application, the mentioned PyQt toolkit,
more specifically PyQt5, and Qt Designer have been chosen for its development in
Python. The Operating System to be used is Linux and the Integrated Development
Environment (IDE) chosen for creating the Python application is PyCharm. This
has certain advantages over other IDEs such as:

• Coding assistance and analysis, including code completion and syntax and
error highlighting among others.

• Project and code navigation with specialized project and file structure views
and quick jumping between files, classes, etc.

• Refactoring including renaming of files, classes, functions, local/global vari-
ables, etc.

However, the preferred way of running the application and certain parts of it in this
case will be IPython. IPython (Interactive Python) [15] is an interactive command-
line terminal for Python. It is easy to use and flexible for trying out specific com-
mands and making quick changes to them, which makes the whole process of creating
the application faster. The project will also be uploaded to GitLab, a web-based
platform for version control and collaborative software development in which devel-
opers can host and review code, manage projects and build software.
For the aspect of the application, a main window created in Qt Designer will ap-
pear when the application is run containing a menu which will make it possible to
open different .cmcr files in different tabs. Once a file is loaded, a timeplot for the
first pixel coordinate will appear along with a widget offering different possibilities.
These will include selecting a different coordinate, filtering the data and computing

8

2. Methodology

the spikes of the signal. From this window there will also be the possibility of open-
ing a new window of a different type. This second window will show the filtered
data of the whole array for the first time sample of the recorded data. A widget will
offer the possibility of presenting the data either as a 2D grid plot or as a 3D plot.
The widget will also incorporate the possibility of selecting a subarea of the whole
array and a it will offer a number of different ways of plotting the spikes. The results
acquired from computing the spikes will also be presented in some tables, which will
show the coordinates with most spikes and the pixels with spikes occurring at the
same or proximate time samples.
All these tasks will have been carried out making use of the main Python libraries
described previously, as well as other specific ones such as Qt and Pandas [16]. This
last one provides complex data structures and hierarchical axis indexing and will be
useful for storing the peaks information which contains multiple indexes such as the
x and y pixel coordinates.

9

2. Methodology

2.3. Structure of work

With the above mentioned, the structure of the work to be done results in the
following:

1. Familiarize with the basic Linux shell commands and with IPython’s main
features, as well as PyCharm’s, and create an empty project. Upload the
project to GitLab.

2. Create the main window in Qt Designer with an appropriate menu. Create a
class associated to this window and make it able to open different .cmcr files
in different tabs.

3. Create the timeplot widget in Qt Designer and its corresponding class and
add the necessary buttons and features. Make it able to interpret the data in
the HDF5 file and plot the raw data for the first pixel coordinate. Add the
necessary methods for it to offer the following:

• Give information about the dataset, meaning coordinates and time range
values.

• Possibility of selecting a specific pixel coordinate to be plotted.

• Show relevant information about the selected coordinate such as mean,
peak to peak, standard deviation and maximum and minimum values of
the signal.

• Possibility of choosing between plotting either raw or filtered data.

• Making it able to compute spikes for a given threshold and for the spec-
ified coordinate and plot them.

• Possibility of changing this threshold value.

• Possibility of opening a new window of the same type and for the same
dataset to be able to compare more than one pixel coordinate at the same
time.

• Possibility of opening a grid plot window.

4. Create the grid plot widget in Qt Designer with the necessary buttons and
features. Create its corresponding class and plot the filtered data of the whole
array for the first time sample. Add the necessary methods for it to offer:

• Possibility of choosing between 2D plot and 3D plot.

• Possibility of selecting a specific time sample for the array data to be
plotted.

• Making it able to compute spikes for a given threshold and for all pixels
in the array and plot the pixels with spikes or the number of spikes in
each pixel.

• Possibility of selecting a subarea of the array and computing spikes for
the specified area.

10

2. Methodology

• Possibility of selecting a specific range from the original time range and
compute spikes for the specified range.

• Possibility of selecting a peaks time plot, which means plotting sepa-
rately each time sample containing spikes somewhere within the array
and making it able to navigate between these time samples.

5. Create a table window to appear once spikes in the previous widget are com-
puted. This table window will show all the coordinates with peaks and the
number of peaks in each of them. It will offer:

• Possibility of ordering the table by any of the coordinates or by the num-
ber of peaks and of navigating from one row to another by the use of the
keyboard arrows.

• Possibility of selecting one of the coordinates with peaks and have it
highlighted on the grid plot, as well as showing a new table with all the
time samples with peaks for the selected coordinate.

• Select one of the time samples in this last table and show a third table
with all the pixel coordinates with spikes at this time sample or a near
one. Have these coordinates highlighted on the grid plot.

11

3. Development

3. Development

This thesis has been developed between March and September of 2019 in the Chair
of Sensor and Actuator Systems at TU Berlin. The following section provides a
description of the work done during this time.

3.1. Environment setup

For the development of this work, access to a laboratory with computers counting
with the necessary software has been provided. As mentioned before, these comput-
ers work with the Linux Operating System. Because of lack of previous knowledge
about this OS, a first research to understand how the Linux shell works and what
are its basic commands had to be done. At the same time, as IPython was going
to be used during the development of the application for making trials and running
small parts of the code, an initialization to this interactive shell was needed as well.
The version to be used was IPython 5.5.0, and the version of Python was 3.6.8.
To know with what type of data we were going to deal, HDFView was used, more
precisely version 2.10.1. This software is suitable for exploring Hierarchical Data
Format (HDF) files and the groups and datasets contained within. Figure 4a shows
the result of opening one of the .cmcr acquisition files in HDFView. The columns in
the table represent the values of one of the two coordinates, and to navigate between
values of the other coordinate the arrows shown by the pointer are used. As it can
be seen here, these values range between 0 and 65. Figure 4b shows the extent of
the time sample range, going from 0 to 112000.

(a) HDFView showing extent of pixel co-
ordinates

(b) HDFView showing extent of time
range

Figure 4: Aspect of HDFView when one of the .cmcr acquisition files is opened.

12

3. Development

HDFView also gives relevant information about how the data in the file has been
captured. In this case, it says the sample period is of 50 µs, which corresponds
to the sampling frequency of 20 kHz mentioned before. It also says the values are
integers with a bit depth of 16 bits.
In respect to the rest of the software used, PyCharm version 2019.2 and Designer
with Qt version 5.9.5 were the most relevant ones for the creation of the application
itself and will be described in detail in the following section. The main Python
libraries used and their versions were NumPy 1.16.3, SciPy 1.2.1 and Matplotlib
3.0.3. The project has also been managed using GitLab version 2.17.1.

13

3. Development

3.2. Application development

As said, a project folder for the application was first created and the project was
imported to GitLab. Next is a brief explanation of how the application has been
developed with this as a starting point and of which parts compose it.

3.2.1. Analysis class

The first .py file (program file written in Python) that was created was meant to
be the one responsible for carrying out the most complex functions on the data,
without having any direct relation with the design of the application. This file was
also made to be able to be run on its own and therefore make it easier to make trials
with the data using the IPython shell. For this an Analysis class was created with
the following being its most relevant methods:

• init : the HDF5 file is read and its data saved as a NumPy ndarray, in this
case a four-dimensional one (x coordinate, y coordinate, time and voltage),
as well as the data path. The coordinate and time minimum and maximum
values are saved as global variables to be used in the rest of the methods.

• filt alldata: a High-Pass Bessel filter is applied to the signal of each pixel in
the array and the filtered data saved in a new NumPy ndarray. The values for
the signals of all pixels in the 57th column are masked because of an incorrect
reading from the system.

• compute allpeaks: a special SciPy function is used for finding peaks in the
signal of each pixel. The equation used for finding the threshold which is
calculated for each pixel signal is the one described in (1). For a transient to
be considered a spike its height has to exceed this threshold and there has to
be a minimum distance of 8 (determined after trial and error) samples between
two neighboring peaks. For each spike, the coordinates, time at which it takes
place and height are saved. After computing all peaks, this information is
stored as a Pandas Series, where the x and y coordinates and the times are
converted to a MultiIndex and the heights are saved as the actual values.

• update peaksbinary: when this method is called, the Pandas Series for the
computed peaks is analyzed and a 65 x 65 array is created showing for each
pixel if there are any peaks (1) or not (0).

• update peaksnumb: similarly as before, when this method is called the Pandas
Series for the computed peaks is analyzed and a 65 x 65 array is created
showing for each pixel the number of peaks.

A timer function is also incorporated to the file outside the Analysis class to be able
to time any method and therefore know how much time it takes for it to be run.
The timer function is incorporated in this file and not in another one because these
methods are the ones that take most time, and because it is useful for when the file
is run on its own.

14

3. Development

3.2.2. PyQtApp class

Additionally to the previous file, another .py file for the main aspects of the app was
created. At the same time, a main window was created in Qt Designer with a File
menu and a tab widget. All main windows and widgets created in Qt Designer are
saved as .ui files. The PyQtApp class was created in the .py file with the following
main methods:

• init : the main window .ui file is loaded and the tabs in the tab widget are
made closable in case the user wants to remove them.

• on actionLoad triggered: made to respond to the Load button in the File menu
of the main window, this method makes a File Dialog appear for the user to
navigate between folders and select a .cmcr file to load in a new tab.

3.2.3. TimeplotWidget class

As the next step for the development of the app, another .py file was created to
manage the timeplot widget. This widget was created simultaneously in Qt Designer
and saved as a .ui file, and its final aspect is shown in Figure 5.

Figure 5: Development of the timeplot widget and its different objects in Qt Designer.

15

3. Development

A TimeplotWidget class was created in the .py file. Some of its main methods
include:

• init : the timeplot widget .ui file is loaded and an Analysis object is created
for the selected .cmcr file. The init method of the Analysis class loads the
data and creates the ndarray. A PlotWindow (a class which will be described
later) object is created and the raw data of the first coordinate sent to one of
its methods for a timeplot to be shown at the side the widget. The mean, peak
to peak, standard deviation, maximum and minimum values for the selected
pixel coordinate signal are calculated and displayed. Other global variables
which will be needed for the following methods are also declared.

• on actionApplyHPFilter toggled: when the Apply HP Filter button in the
timeplot widget is checked, the filtering method from the Analysis class is
called and the filtered data instead of the raw data of the actual coordinate is
sent to the same PlotWindow method for it to be plotted next to the widget.
The mean, peak to peak, standard deviation, maximum and minimum values
are refreshed.

• on xCoord valueChanged: the plot is updated whenever the user changes the
value for the x coordinate, and so are the mean, peak to peak, standard
deviation, maximum and minimum values. An equal method is used for the y
coordinate.

• on actionComputePeaks toggled: when the Compute Peaks button is checked,
the method for computing peaks in the Analysis class is called for it to find
the peaks in the signal of the actual coordinate. These are then shown on the
plot by means of a method in the PlotWindow class.

• on thVal valueChanged: the peaks are computed again for the new threshold
value when it is changed by the user and the new peaks are plotted by the
same method in the PlotWindow class.

• on actionOpenNewWindow clicked: when the Open New Window button is
clicked, a new window of the same class and for the same dataset is opened.

• on actionOpenGridPlot clicked: when the Open Grid Plot button is clicked,
a new type of window which will be explained next is opened. The data used
for creating a GridplotWidget object is the filtered data of the whole array.

3.2.4. GridplotWidget class

After this, a .py file was created to manage the grid plot widget. At the same time,
this widget was created in Qt Designer and saved as a .ui file, and its final aspect
is shown in Figure 6. This widget is meant to appear in a new window when the
previously mentioned Open Grid Plot button in the timeplot widget is clicked.

16

3. Development

Figure 6: Development of the grid plot widget and its different objects in Qt Designer.

A GridplotWidget class was created in the .py file with the following as its main
methods:

• init : the grid plot widget .ui file is loaded and the necessary global variables
are declared. A new PlotWindow object is created and the filtered data of the
whole array for the first time sample is sent to the appropriate PlotWindow
method for it to be plotted next to the widget. An Analysis object is also
created.

• on actionDataPlot clicked: when a different type of plot has been shown last
and the Data Plot button is clicked, the filtered data of the whole array for
the actual time sample is sent again to the PlotWindow method for it to be
plotted.

• on dataBox indexChanged: depending on the selection of the user, the PlotWin-
dow method will perform either a 2D grid plot of the array data or a 3D plot.

• on timeVal valueChanged: if the user selects a different time sample, the
filtered data of the whole array for the selected time sample is sent to the
PlotWindow method for it to be plotted.

17

3. Development

• on actionPeaksPlot clicked: when the Peaks Plot button is clicked, the method
for computing peaks in the Analysis class is called and performed for the signals
of all pixels in the array. Both methods from the Analysis class previously de-
scribed which create 65 x 65 arrays from the peaks information are also called.
As the first type of peaks plot is selected by default, the array containing ei-
ther 0 or 1 for each pixel depending on if there are peaks or not is sent to the
appropriate PlotWindow method for it to be plotted.

• on peaksBox indexChanged: depending on the selection of the user, either the
first or the second of the 65 x 65 arrays will be sent to the PlotWindow class
for them to be plotted. The second array contains the number of peaks for
each pixel.

• on xCoordMin valueChanged: if the user selects a different minimum x coor-
dinate, the plot is updated to show only the pixels with an equal or higher x
coordinate. If the peaks are computed again they will be calculated only for
this region. Equal methods are used for the maximum x coordinate and the
minimum and maximum y coordinates.

• on timeMin valueChanged: if the user selects a different minimum time sam-
ple, the peaks will be computed only for the selected range the next time either
the Peaks Plot or the Peaks Time Plot buttons are clicked. An equal method
is used for the maximum time sample.

• on actionPeaksTimePlot clicked: when the Peaks Time Plot button is clicked,
a different method of the PlotWindow class is called and a plot showing where
in the array there are peaks at the first time sample where there are peaks
somewhere in the array is shown.

• on horizontalSlider valueChanged: when the user navigates through the hori-
zontal slider, the different time samples with peaks are selected to be plotted
in the same way as before by the PlotWindow method.

• on actionPreviousPeakTime clicked: when the Previous button is clicked, the
previous time sample with peaks is selected for the same type of plot as before.
An equal method is used for the Next button.

• on ax changed: if the user uses the zoom function, which is incorporated on
the navigation toolbar at the bottom of the plot, to select a smaller area and
then clicks on one of the plotting buttons on the widget, only the selected
subarea will be shown and the peaks will be calculated only for the pixels
within it.

• open timeplot: if the user clicks on one coordinate or draws a rectangle with
the mouse over more than one coordinate, a new window is opened showing
the timeplot of the clicked pixel or the pixels within the drawn rectangle. This
is done by another PlotWindow method.

18

3. Development

• on tableSel: if a coordinate from the first table of the table window which will
be described later is selected by the user, this method highlights this pixel on
the grid plot. Similar methods are used for the other two tables.

3.2.5. PlotWindow class

The plot window .py file was created during the development of the timeplot widget
and was meant to perform all the plot-related tasks for both this and the grid plot
widget. A main window containing the few necessary elements was created in Qt
Designer and saved as a .ui file. The PlotWindow class was created in the .py file
with the following main methods:

• init : the .ui file is loaded and the appropriate global variables are declared,
including a canvas and a figure object, both of them classes from the Matplotlib
library. A navigation toolbar object is also added at the bottom of the canvas.

• plot: when this method is called from the timeplot widget and the data, either
raw or filtered, of the selected coordinate is given, a timeplot is created on the
canvas.

• plot peaks: this method is called from the timeplot widget when the Compute
Peaks button is checked and the time values where peaks have been found by
the Analysis method are given. These are marked with crosses on top of the
previous plot.

• plotdata 2d: when this method is called from the grid plot widget and the
filtered data of the whole array for a specific time sample is given, this data
is plotted on a 65 x 65 grid. A colorbar object is added next to the canvas to
show the range of different values in a specific color palette. The coordinates
of a certain pixel will be printed below the canvas if the mouse is placed on
top of it.

• plotdata 3d: the same data is plotted than for the previous method but in a
3D surface plot.

• plotpeaks 2d: this method is called when the Plot Peaks button from the grid
plot widget is clicked. The 65 x 65 array to plot is given along with which one
of the two types of plot has to be performed. For the first type the method will
create a grid plot with two different colours, one meaning the pixel contains
peaks and the other one meaning it does not. For the second type it will create
a grid plot with a range of colours determining the number of peaks on each
pixel. The plot performed for the Peaks Time Plot button on the grid plot
widget is the same as this second one. The method will also highlight certain
pixels if some coordinates from the tables on the table window explained next
are selected by the user.

19

3. Development

• plot subplots: if a pixel coordinate from the grid plot is clicked or a rectangle
is drawn over more than one of them, this method is called while opening a
new window and the timeplots of all the selected pixel coordinates are drawn
as subplots. The data to plot is the filtered data and already showing the
peaks.

3.2.6. TableWindow class

After developing the grid plot widget, a .py file for creating a table window, which
is meant to be opened when the Peaks Plot button in the grid plot widget is clicked,
was created, along with a .ui file created in Qt Designer containing a table view. A
TableWindow class was created in the .py file with the following main methods:

• init : the .ui file is loaded and the appropriate global variables are declared.
A MyTableModel class is created separately as a table model which will be
able to present the given data in the form of a table and an object of this class
is created for the first table. The data presented on this table will include the
x and y coordinates of the pixels with peaks and the number of peaks in each
of them. By default it will be ordered showing the coordinates of the pixel
with most peaks first.

• on rowSel: when the user selects a row from the previous table, that is, a
specific pixel coordinate, a new MyTableModel object is defined to create a
second table to be shown next to the existing one. This new table will show
all the time samples at which there are peaks for the selected pixel coordinate
and their height.

• on timeSel: when the user selects a row from the previous table, that is, a
specific time sample, a new MyTableModel object is defined to create a third
table to be shown next to the second one. This third table will show all the
pixel coordinates with peaks at the selected time sample or a similar one, with
a maximum distance of 5 time samples, and their height.

20

4. Results

4. Results

In the following section, figures showing the different features of the application and
the effects of the previously described actions are provided.
Once the application is run, the main window shown in Figure 7a appears, with
a File menu that offers the possibility of loading a file. Once the Load button is
clicked, the file dialog shown in Figure 7b appears. As the app works for files with
the .cmcr extension, the possibility of viewing only these type of files is given.

(a) App main window (b) File dialog for loading a .cmcr file

Figure 7: Aspect of the app main window and how to load a .cmcr file.

4.1. Timeplot analysis results

Figure 8 shows the aspect of the app once a file is loaded. Here we can see the
timeplot of the raw data for the first coordinate in the dataset. Next to the plot we
can see the timeplot widget with the different functions it offers. The widget also
gives information about the dataset, meaning the coordinate and time ranges.

Figure 8: Aspect of app once a .cmcr file is loaded.

21

4. Results

The timeplot widget offers the possibility of selecting and plotting the data of a
specific pixel coordinate, as we can see in Figure 9a, and shows its mean, peak to
peak, standard deviation, maximum and minimum values. It also offers the option of
plotting the filtered data of the selected coordinate by means of a checkable button.
The filter applied is a High-Pass filter, which can easily be seen in Figure 9b, as the
DC offset of the signal is removed.

(a) Raw data timeplot (b) Filtered data timeplot

Figure 9: Timeplot comparison of raw and filtered data for the selected pixel coordi-
nate.

The timeplot widget contains another checkable button for computing and plotting
the peaks of the actual pixel coordinate. This is done by thresholding the absolute
value of the signal, and the threshold uses the formula (1). The value which is
multiplied by the standard deviation of the noise of the signal can be changed and
the difference between using a lower threshold value (Figure 10a) and a higher one
(Figure 10b) is shown below.

(a) Threshold = 4.5·σ (b) Threshold = 6.0·σ

Figure 10: Comparison of computed spikes for two different threshold values.

22

4. Results

Another functionality in every plot of the application is the possibility of applying
a zoom to visualize a smaller area. This is incorporated as part of the navigation
toolbar which appears below the plot. In Figure 11 we can see how this has been
used in order to visualize an individual spike.

Figure 11: Effect of applying zoom for visualizing an individual spike.

Finally, the timeplot widget incorporates an Open New Window button which opens
another window of the same type and for the same dataset in order to compare more
than one pixel coordinate at the same time. It also contains the Open Grid Plot
button for opening a type of window which will be described next.

23

4. Results

4.2. Grid plot analysis results

Figure 12a shows the aspect of the grid plot window once the Open Grid Plot button
in the previous window is clicked. Here we can see the grid plot of the filtered data
for the whole array and for the fist time sample in the dataset. At the right of the
grid plot we can see the grid plot widget with the different functions it incorporates.
One of these is the possibility of selecting a specific time sample, as we can see in
Figure 12b. The Data Plot button is offered to return to this type of plot from
another one at any moment.

(a) Time = 0 (b) Time = 1000

Figure 12: Grid plot of filtered data at two different time samples.

Another possibility that the grid plot widget offers is being able to choose between
visualizing the data as a 2D plot or as a 3D plot. Although most functions will be
carried out using the 2D plot this 3D plot can be seen in Figure 13 for the same data
as in Figure 12a, that is, the filtered data for the first time sample in the dataset.

Figure 13: Effect of selecting 3D plot instead of 2D plot.

24

4. Results

Another and one of the most relevant buttons the grid plot widget incorporates is
the Peaks Plot button. When clicked it computes the peaks for the given threshold
value and using the already mentioned method and creates the plot shown in Figure
14. This plot shows which pixels contain any spikes (in yellow) and which do not
(in black). The Peaks Plot button, similarly to the Data Plot button, can be used
to return to this type of plot at any time.

Figure 14: Aspect of peaks plot showing if there are spikes or not for each coordinate.

Apart from the previous type of peaks plot, the widget offers the possibility to change
to a second type, in which the number of peaks at each coordinate is plotted. The
pixels without peaks are shown in black. The grid plot widget also makes it possible
to change the threshold value, though for computing the peaks after this value has
been changed the Peaks Plot button has to be clicked again. The difference between
using a higher threshold value (Figure 15a) and a lower one (Figure 15b) for this
type of plot is shown below.

(a) Threshold = 6.0·σ (b) Threshold = 4.5·σ

Figure 15: Effect of changing the threshold value and selecting second type of peaks
plot showing the number of spikes for each coordinate.

25

4. Results

The grid plot widget has another functionality that consists of opening a timeplot
window for a certain coordinate pixel when it is clicked. This works for all type of
plots but becomes most useful with the peaks plot, as the coordinates with most
peaks can be clicked for visualizing their timeplot. This is shown in Figure 16a,
where one of the coordinates that show a highest number of peaks is clicked. The
window that appears can be seen in 16b and shows that in fact the selected pixel
coordinate presents a very high number of peaks. The timeplot window which
appears is different to the initial one in that it already plots the filtered data and
showing the peaks. It also differs in that it does not incorporate the timeplot widget.

(a) Clicking on a pixel coordinate (b) Coordinate timeplot opens

Figure 16: Effect of clicking on a pixel coordinate and opening its timeplot showing
filtered data and spikes.

The widget also gives the possibility of selecting a subarea of the whole array in all
type of plots. This is shown in Figure 17 for the second type of peaks plot. Once the
new coordinates are entered the button corresponding to the type of plot to show
has to be clicked. A subarea can also be selected using the zoom.

Figure 17: Result of selecting a subarea of the whole array in second type of peaks
plot.

26

4. Results

Figure 18a shows a rectangle being drawn with the mouse over more than one pixel
coordinate in the peaks plot of the same subarea as before in order to open a timeplot
window for this whole region. Figure 18b shows the effect of this action, which is a
new window appearing showing the timeplots of the pixels contained in the selected
rectangle. As in the previous example, this window already plots the filtered data
and showing the peaks. It is also easy to establish a relation between the two types
of plots, as for this example the pixel in the middle contains the highest number of
spikes and the one on the top left does not contain any.

(a) Selecting more than one pixel coordi-
nate

(b) Selected timeplots open

Figure 18: Effect of drawing a rectangle with the mouse over more than one pixel coor-
dinate in second type of peaks plot.

Another possibility that the grid plot widget offers is the selection of a specific time
range. Figure 19 shows the selection of a maximum time sample of 1000 instead
of 112000 for the second type of peaks plot. The effect of this can be seen in the
reduced number of peaks detected.

Figure 19: Result of selecting a different time range in second type of peaks plot.

27

4. Results

Finally, a Peaks Time Plot button is incorporated for a third type of plot to be
shown. This makes use of the same peaks that have been computed for the previous
peaks plot but presents them in a different way. In this type of plot the different time
samples where there are peaks somewhere within the array are presented starting
from the lowest as shown in Figure 20a. The time sample is shown at the bottom
of the widget and the plot shows in which coordinates there is a peak and of what
height. Coordinates without pixels are shown in black. A slider is incorporated
for navigating between these time samples as shown in Figure 20b, as well as the
Previous and Next buttons.

(a) First time sample with spikes (b) Time sample selected with slider

Figure 20: Aspect of peaks time plot at different time samples with spikes.

28

4. Results

4.3. Table view analysis results

When the Peaks Plot button in the grid plot widget is clicked and the spikes are
computed for a specific threshold value, a new window appears which displays data
in the form of a table view. These tables aim to present information about the peaks
in a more structured way and to make it easier to spot the pixels with most neural
activity which usually indicates where the nerve cells are. It also aims to make it
easier to visualize in which pixels there is activity taking place at the same or similar
times.
The first table that appears is shown below. This includes the coordinates of all
the pixels with peaks and the number of spikes found in each of them. By default
it is ordered by the descending number of peaks as in Figure 21a, but it can be
ordered by the ascending or descending coordinates as shown in Figure 21b. It is
also possible to select an individual row and to navigate between rows by using the
keyboard arrows.

(a) Table ordered by descend-
ing peaks number

(b) Table ordered by ascend-
ing x coordinate

Figure 21: Aspect of table view showing pixel coordinates and number of peaks or-
dered in two different ways.

Figure 22a shows one of the coordinates with peaks in the previous table being
selected either by clicking or by using the keyboard arrows. The result of this is

29

4. Results

a second table appearing on the right. This table contains all the time samples
where there are peaks for the selected pixel coordinate as well as their height. This
table can also be ordered by both peak time or height. Additionally, the selected
coordinate is highlighted on the peaks plot as shown in Figure 22b.

(a) Second table for selected coordinate

(b) Highlighted coordinate on peaks plot

Figure 22: Second table showing all spikes for the selected pixel coordinate and the
effect on the peaks plot.

30

4. Results

Similarly, Figure 23a shows one of the peak times being selected and a third table
appearing. This third table contains the coordinates of the pixels that contain peaks
at this or a similar time sample, as well as their height and distance to the pixel
selected in the first place. This table can also be ordered by any of its columns. The
coordinates are also highlighted in a different colour in the peaks plot as shown in
Figure 23b.

(a) Third table for selected time sample

(b) Highlighted region on peaks plot

Figure 23: Third table showing all coordinates with spikes for the selected time sample
or a near one and the effect on the peaks plot.

Finally, Figure 24a shows one of the pixel coordinates in the third table being
selected. This coordinate is highlighted in the peaks plot as shown in Figure 24b.

31

4. Results

(a) Selection of pixel coordinate on the third table

(b) Highlighted coordinate on the peaks
plot.

Figure 24: Selection of one of the pixel coordinates on the third table and the effect on
the peaks plot.

32

5. Summary

5. Summary

Overall, it can be stated that the principal objectives set prior to the development
of the thesis have been achieved and expectations have been fulfilled. A GUI appli-
cation has been created which is able to analyze neural data recorded from a CMOS
MEA system and which successfully detects neural activity within it, allowing its
visualization in a number of different ways. As previously said, this information
is useful for reducing the amount of information that needs to be stored and for
detecting where the nerve cells are within the tissue subjected to analysis. The GUI
application offers a number of useful features such as:

• Being able to perform a timeplot for any one of the pixel coordinates in the
array and to display either the raw or the filtered data, as well as the peaks
found by the spike detection method.

• Give the user the option of trying out different threshold values and in this
way evaluate the spike detection method by himself, which can be useful when
a dataset with different results from the expected ones needs to be analyzed.

• Being able to perform either a 2D or a 3D grid plot of the whole array data
for any given time sample.

• Being able to show in which pixels there has been spikes detected, as well as
the number of them, and in which pixels there has been no spikes found. Being
able to visualize the different spikes that have been found showing in which
pixels they take place and starting from the lowest time sample.

• Give the user the possibility of selecting only a subarea of the array or a
specific time sample range to make faster trials and to focus the attention
where needed.

• Give the user the possibility to compare the timeplots of more than one pixel
at the same type as well as those of a subarea of pixels selected in the grid
plod.

• Being able to show, in the form of tables, which pixels have most peaks and
localize them in the grid plot. Show correspondence between peaks from dif-
ferent pixels that happen at similar time samples and that probably belong to
the same electrical signal.

Moreover, it can be said that the GUI application created is intuitive and easy to
learn and use, and provides an interactive experience with the user by means of
the WIMP paradigm based on windows, icons, menus and pointer. It also allows
different objects to be displayed at the same time.
In what refers to the aspects learned, the development of the thesis has been an
opportunity to learn about different software environments and to gain an in-depth
knowledge about programming in Python. It has also given the chance to learn the

33

5. Summary

basics about CMOS MEA systems and which parts compose them, as well as what
APs are and how nerve cells communicate between them.
However, a more complex spike detection algorithm could have been used, such as
the LocEn method or one based on ICA, though the method chosen presents a low
error rate and a high efficiency compared to other algorithms that take more time
and effort to be developed and implemented. Another aspect to improve would be
the structure of the application, as more emphasis could have been put on the MVP
pattern and the files could have been organized in a better way. In a similar way,
the filtered data or the peak data calculated for a specific dataset could have been
stored somehow as cache of the application for it to not have to be computed every
time.

34

A. Appendix: Code

A. Appendix: Code

Python file 1: analysis.py

import h5py
import numpy as np
from s c ipy . s i g n a l import f i nd peaks , b e s s e l , f i l t f i l t
import time
import pandas as pd
import numpy .ma as ma

def t imer func (func) :

def f u n c t i o n t i m e r (∗ args , ∗∗kwargs) :
s t a r t = time . time ()
va lue = func (∗ args , ∗∗kwargs)
end = time . time ()
runtime = end − s t a r t
msg = ”The runtime f o r { func} took { time} seconds to

complete ”
print (msg . format (func=func . name ,

time=runtime))
return value

return f u n c t i o n t i m e r

class Analys i s :

def i n i t (s e l f , data path) :
s e l f . data path = data path

with h5py . F i l e (data path) as hdf :
s e l f . data = hdf [’ Acqu i s i t i on / Sensor Data/

SensorData 1 1 ’] [: , : , :]

s e l f . timemin = 0
s e l f . timemax = s e l f . data . shape [0]
s e l f . timemaxaux = s e l f . timemax−s e l f . timemin
s e l f . xmin = 0
s e l f . xmax = s e l f . data . shape [1]
s e l f . xmaxaux = s e l f . xmax−s e l f . xmin
s e l f . ymin = 0
s e l f . ymax = s e l f . data . shape [2]
s e l f . ymaxaux = s e l f . ymax−s e l f . ymin

35

A. Appendix: Code

s e l f . a l l f i l t d a t a = None

s e l f . th = 4 .5
s e l f . peaks = np . array ([])
s e l f . peaksbinary = np . array ([])
s e l f . peaksnumb = np . array ([])

def f i l t e r d a t a (s e l f , x , y) :
b , a = b e s s e l (2 , 0 . 03 , ’ high ’)
s e l f . f i l t d a t a = f i l t f i l t (b , a , s e l f . data [: s e l f .

timemaxaux , (x−s e l f . xmin) , (y−s e l f . ymin)])
return s e l f . f i l t d a t a

@timerfunc
def f i l t a l l d a t a (s e l f) :

s e l f . a l l f i l t d a t a = np . z e r o s ((s e l f . timemaxaux , s e l f .
xmaxaux , s e l f . ymaxaux))

b , a = b e s s e l (2 , 0 . 03 , ’ high ’)
for i in range (0 , s e l f . xmaxaux) :

for j in range (0 , s e l f . ymaxaux) :
s e l f . a l l f i l t d a t a [: s e l f . timemaxaux , i , j] =

f i l t f i l t (b , a , s e l f . data [: s e l f . timemaxaux , i , j])
i f s e l f . ymax >= 57 :

s e l f . a l l f i l t d a t a [: , : , 5 7 − s e l f . ymin] = ma. masked
print (” F i l t data ready ”)
return s e l f . a l l f i l t d a t a

@timerfunc
def compute a l lpeaks (s e l f , data , xmin , xmax , ymin , ymax ,
timemin , timemax) :

s e l f . acc x = []
s e l f . acc y = []
s e l f . a c c t imes = []
s e l f . a c c h e i g h t s = []
s e l f . acc numbs = []

s e l f . timemin = timemin
s e l f . timemax = timemax

for i in range (xmin , xmax) :
for j in range (ymin , ymax) :

s e l f . compute peaks (data [: , i , j])
i f s e l f . so r tedpeaks . s i z e :

36

A. Appendix: Code

s e l f . a c c i f p e a k s (i , j)

s e l f . array = np . array ([s e l f . acc x , s e l f . acc y , s e l f .
a c c t imes])

i f s e l f . array . s i z e :
t u p l e s = l i s t (zip (∗ s e l f . array))
index=pd . MultiIndex . f r om tup l e s (t u p l e s)
s e l f . peaks = pd . S e r i e s (s e l f . a c c he i gh t s , index=

index)
s e l f . so r tedpeakt imes = np . unique (np . s o r t (s e l f .

acc t imes , a x i s =0))
s e l f . peakshe ight s = s e l f . peaks . d r o p l e v e l (l e v e l

=2)

index2=(index . d r o p l e v e l (l e v e l =2)) .
d r o p d u p l i c a t e s ()

for i , j in index2 :
i f isinstance (s e l f . peakshe ight s . l o c [i , j] , np

. f l o a t 6 4) i s True :
s e l f . acc numbs = np . concatenate ((s e l f .

acc numbs , np . array ([1])) , a x i s =0)
else :

s e l f . acc numbs = np . concatenate ((s e l f .
acc numbs , np . array ([len (s e l f . peakshe ight s . l o c [i , j] .
va lue s)])) , a x i s =0)

s e l f . peaknumbs = (pd . S e r i e s (s e l f . acc numbs ,
index=index2)) . s o r t v a l u e s (ascending=False)

print (s e l f . peaks)
print (s e l f . peaknumbs)
print (”Peak data ready ”)

else :
print (”No peak data ”)

return s e l f . peaks

def compute peaks (s e l f , data) :
dataaux = data [s e l f . timemin : s e l f . timemax]
s e l f . thaux = s e l f . th ∗(data . std ())
s e l f . peaktimes , p r o p e r t i e s = f i nd peak s (abs (dataaux)

, he ight=s e l f . thaux , d i s t ance =8)
i f s e l f . timemin != 0 :

37

A. Appendix: Code

s e l f . peaktimes = np . asar ray ([s e l f . peaktimes [i]+
s e l f . timemin for i in np . arange (len (s e l f . peaktimes))])

s e l f . h e i gh t s = p r o p e r t i e s [” peak he ight s ”]
s e l f . so r tedpeaks = np . asar ray ([[s e l f . peaktimes [i] ,

s e l f . h e i gh t s [i]] for i in np . arange (len (s e l f . peaktimes))
])

return s e l f . peaktimes

def a c c i f p e a k s (s e l f , x , y) :
for i in range (len (s e l f . so r tedpeaks)) :

s e l f . acc x = np . concatenate ((s e l f . acc x , np .
array ([x])) , a x i s =0)

s e l f . acc y = np . concatenate ((s e l f . acc y , np .
array ([y])) , a x i s =0)

s e l f . a c c t imes = np . concatenate ((s e l f . acc t imes ,
np . array ([s e l f . so r tedpeaks [i , 0]])) , a x i s =0)

s e l f . a c c h e i g h t s = np . concatenate ((s e l f .
a c c he i ght s , np . array ([s e l f . so r tedpeaks [i , 1]])) , a x i s =0)

def update peaksbinary (s e l f) :
s e l f . peaksbinary = np . z e r o s (((s e l f . xmax−s e l f . xmin) , (

s e l f . ymax−s e l f . ymin)))
for i , j in s e l f . peakshe ight s . index :

s e l f . peaksbinary [int (i) , int (j)] = 1

def update peaksnumb (s e l f) :
s e l f . peaksnumb = np . z e r o s (((s e l f . xmax−s e l f . xmin) , (

s e l f . ymax−s e l f . ymin)))
for i , j in s e l f . peakshe ight s . index :

i f isinstance (s e l f . peakshe ight s . l o c [i , j] , np .
f l o a t 6 4) i s True :

s e l f . peaksnumb [int (i) , int (j)] = 1
else :

s e l f . peaksnumb [int (i) , int (j)] = len (s e l f .
peakshe ight s . l o c [i , j] . va lue s)

def update sortedpeakt imes (s e l f , xmin , xmax , ymin , ymax)
:

s e l f . peaks = s e l f . peaks . l o c [xmin : xmax , ymin : ymax]
print (s e l f . peaks)
s e l f . so r tedpeakt imes = np . unique (np . s o r t ((s e l f . peaks

. d r o p l e v e l (l e v e l = [0 , 1])) . index . va lue s))
s e l f . peakshe ight s = s e l f . peaks . d r o p l e v e l (l e v e l =2)
print (s e l f . so r tedpeakt imes)

38

A. Appendix: Code

def update peakt imeplot (s e l f , time) :
s e l f . peaktime = time
s e l f . peaksaux = s e l f . peaks [: , : , s e l f . so r tedpeakt imes [

s e l f . peaktime]]
s e l f . peaksarray = np . z e r o s (((s e l f . xmax−s e l f . xmin) , (

s e l f . ymax−s e l f . ymin)))
for i , j in s e l f . peaksaux . index :

s e l f . peaksarray [int (i) , int (j)] = s e l f . peaksaux [i
, j]

return s e l f . peaksarray

i f name == ” main ” :

ana = Analys i s (” . . / . . / . . / . . / data /2017.12.07−11.55.30−
Spont . cmcr”)

peaks = ana . compute a l lpeaks (ana . f i l t a l l d a t a () , ana .
xmin , ana . xmax , ana . ymin , ana . ymax , ana . timemin , ana .
timemax)

Python file 2: app.py

import sys
from PyQt5 . QtCore import pyqtS lot
from PyQt5 . QtWidgets import QFileDialog , QApplication ,

QMainWindow
from PyQt5 . u i c import loadUi

from tabs . t imep lo t w idge t import TimeplotWidget

class PyQtApp(QMainWindow) :
def i n i t (s e l f) :

super (PyQtApp , s e l f) . i n i t ()
loadUi (’ . . / r e s / u i /mainwindow . u i ’ , s e l f)
s e l f . p r epare tab widge t ()

def prepare tab widge t (s e l f) :
tb= s e l f . tabWidget
tb . setTabsClosab le (True)
for tab in range (tb . count ()−1, −1, −1) :

s e l f . tabWidget . removeTab (tab)
tb . tabCloseRequested . connect (s e l f . c l o s e t a b)

39

A. Appendix: Code

def c l o s e t a b (s e l f , index) :
s e l f . tabWidget . removeTab (index)

@pyqtSlot ()
def on ac t i onLoad t r i gg e r ed (s e l f) :

opt i ons = QFileDia log . Options ()
opt ions |= QFileDia log . DontUseNativeDialog
f i l ename , = QFileDia log . getOpenFileName (s e l f , ”

S e l e c t Data F i l e ” , ’ . . / . . / . . / . . / data ’ , ” Al l F i l e s (∗) ; ;
Acqu i s i t i on Data F i l e s (∗ . cmcr) ” , opt ions=opt ions)

i f f i l ename :
s e l f . tabWidget . addTab(TimeplotWidget (parent=s e l f

. tabWidget , f i l ename=f i l ename) , f i l ename)

i f name == ’ ma in ’ :
app = QApplication (sys . argv)
win = PyQtApp()
win . show ()
sys . e x i t (app . exec ())

Python file 3: timeplot widget.py

import sys
sys . path . i n s e r t (0 , ’ . . / ’)
from PyQt5 . QtCore import pyqtS lot
from PyQt5 . QtWidgets import QWidget
from PyQt5 . u i c import loadUi

from a n a l y s i s . a n a l y s i s import Analys i s
from viewer . p l o t t i n g . plot window import PlotWindow
from viewer . tabs . peaks widget import GridplotWidget

class TimeplotWidget (QWidget) :
def i n i t (s e l f , f i l ename=None , path=None , parent=

None , ∗ args , ∗∗kwargs) :
super () . i n i t (parent)
loadUi (’ . . / r e s / u i / neuro widget . u i ’ , s e l f)
s e l f . f i l ename = f i l ename
s e l f . a n a l y s i s = Analys i s (s e l f . f i l ename)
layout = s e l f . hor i zonta lLayout . layout ()

40

A. Appendix: Code

i f parent i s None :
s e l f . setGeometry (10 , 10 , 790 , 510)

s e l f . xval = s e l f . a n a l y s i s . xmin
s e l f . yval = s e l f . a n a l y s i s . ymin
s e l f . data = s e l f . a n a l y s i s . data [: , s e l f . xval−s e l f .

a n a l y s i s . xmin , s e l f . yval−s e l f . a n a l y s i s . ymin]
s e l f . f i l t e r c h e c k e d = False
s e l f . peakschecked = False
s e l f . p l o t w idge t = PlotWindow (data=s e l f . data ,

f i l ename=s e l f . f i l ename)
s e l f . xCoord . setValue (s e l f . xval)
s e l f . yCoord . setValue (s e l f . yval)
layout . insertWidget (0 , s e l f . p l o t w idge t)
s e l f . p l o t w idge t . se tParent (s e l f)
s e l f . p l o t w idge t . show ()
s e l f . actionApplyHPFilt . togg l ed . connect (s e l f .

on act ionApplyHPFi l t togg led)
s e l f . actionComputePeaks . togg l ed . connect (s e l f .

on act ionComputePeaks toggled)
s e l f . r e f r e s h v a l u e s (s e l f . data)
s e l f . thVal . setValue (s e l f . a n a l y s i s . th)
s e l f . open windows = []
s e l f . x In fo . setText (str (s e l f . a n a l y s i s . xmin)+” to ”+

str (s e l f . a n a l y s i s . xmax))
s e l f . y In fo . setText (str (s e l f . a n a l y s i s . ymin)+” to ”+

str (s e l f . a n a l y s i s . ymax))
s e l f . t imeIn fo . setText (str (s e l f . a n a l y s i s . timemin)+”

to ”+str (s e l f . a n a l y s i s . timemax))

def r e f r e s h v a l u e s (s e l f , data) :
mean = str (round(data . mean () , 2))
s e l f . meanVal . setText (mean)
ptp = str (round(data . ptp () , 2))
s e l f . ptpVal . setText (ptp)
std = str (round(data . std () , 2))
s e l f . stdVal . setText (std)
max = str (round(data .max() , 2))
s e l f . maxVal . setText (max)
min = str (round(data .min() , 2))
s e l f . minVal . setText (min)

@pyqtSlot (bool)
def on act ionApplyHPFi l t togg led (s e l f , checked) :

i f checked :

41

A. Appendix: Code

s e l f . f i l t e r c h e c k e d = True
e l i f not checked :

s e l f . f i l t e r c h e c k e d = False
s e l f . update p lo t ()

def f i l t d a t a (s e l f) :
s e l f . a n a l y s i s . f i l t a l l d a t a ()

@pyqtSlot (int)
def on xCoord valueChanged (s e l f , va lue) :

s e l f . xval = value
s e l f . update p lo t ()

@pyqtSlot (int)
def on yCoord valueChanged (s e l f , va lue) :

s e l f . yval = value
s e l f . update p lo t ()

@pyqtSlot (f loat)
def on thVal valueChanged (s e l f , va lue) :

s e l f . a n a l y s i s . th = value
s e l f . update p lo t ()

@pyqtSlot (bool)
def on act ionComputePeaks toggled (s e l f , checked) :

i f checked :
s e l f . peakschecked = True
s e l f . update p lo t ()

e l i f not checked :
s e l f . peakschecked = False
s e l f . update p lo t ()

def update p lo t (s e l f) :
i f s e l f . f i l t e r c h e c k e d i s True :

i f s e l f . a n a l y s i s . a l l f i l t d a t a i s None :
s e l f . data = s e l f . a n a l y s i s . f i l t e r d a t a (s e l f .

xval , s e l f . yval)
else :

s e l f . data = s e l f . a n a l y s i s . a l l f i l t d a t a [: , s e l f
. xval−s e l f . a n a l y s i s . xmin , s e l f . yval−s e l f . a n a l y s i s . ymin]

e l i f s e l f . f i l t e r c h e c k e d i s False :
s e l f . data = s e l f . a n a l y s i s . data [: , s e l f . xval−s e l f .

a n a l y s i s . xmin , s e l f . yval−s e l f . a n a l y s i s . ymin]
s e l f . p l o t w idge t . p l o t (s e l f . data , s e l f . xval , s e l f .

42

A. Appendix: Code

yval , s e l f . a n a l y s i s . timemin , s e l f . a n a l y s i s . timemax)
s e l f . r e f r e s h v a l u e s (s e l f . data)
i f s e l f . peakschecked i s True :

s e l f . p l o t w idge t . p l o t peak s (s e l f . a n a l y s i s .
compute peaks (s e l f . data))

@pyqtSlot ()
def on actionOpenNewWindow clicked (s e l f) :

win = Timeplotwidget (f i l ename=s e l f . f i l ename , new=
True)

win . show ()
s e l f . open windows . append (win)

@pyqtSlot ()
def o n a c t i o n S u r f a c e P l o t c l i c k e d (s e l f) :

i f s e l f . a n a l y s i s . a l l f i l t d a t a i s None :
s e l f . f i l t d a t a ()

win = GridplotWidget (f i l ename=s e l f . f i l ename , data=
s e l f . a n a l y s i s . a l l f i l t d a t a)

win . show ()
s e l f . open windows . append (win)

Python file 4: gridplot widget.py

import sys
sys . path . i n s e r t (0 , ’ . . / ’)
import numpy as np
import math
from PyQt5 . QtCore import pyqtS lot
from PyQt5 . QtWidgets import QWidget
from PyQt5 . u i c import loadUi

from a n a l y s i s . a n a l y s i s import Analys i s
from viewer . p l o t t i n g . plot window import PlotWindow
from viewer . tabs . table window import TableWindow

class GridplotWidget (QWidget) :
def i n i t (s e l f , f i l ename=None , path=None , parent=

None , data = None , ∗ args , ∗∗kwargs) :
super () . i n i t (parent)
loadUi (’ . . / r e s / u i / peaks widget . u i ’ , s e l f)
s e l f . f i l ename = f i l ename

43

A. Appendix: Code

s e l f . data = data
s e l f . a n a l y s i s = Analys i s (s e l f . f i l ename)
layout = s e l f . hor i zonta lLayout . layout ()
s e l f . setGeometry (10 , 10 , 850 , 550)
s e l f . timemin = s e l f . a n a l y s i s . timemin
s e l f . timemax = s e l f . a n a l y s i s . timemax
s e l f . time = s e l f . timemin
s e l f . timeaux = s e l f . time−s e l f . timemin
s e l f . xmin = s e l f . a n a l y s i s . xmin
s e l f . xCoordMin . setValue (s e l f . xmin)
s e l f . xmax = s e l f . a n a l y s i s . xmax
s e l f . xCoordMax . setValue (s e l f . xmax)
s e l f . ymin = s e l f . a n a l y s i s . ymin
s e l f . yCoordMin . setValue (s e l f . ymin)
s e l f . ymax = s e l f . a n a l y s i s . ymax
s e l f . yCoordMax . setValue (s e l f . ymax)
s e l f . p l o t w idge t = PlotWindow (f i l ename=s e l f . f i l ename

, data=s e l f . data)
s e l f . p l o t w idge t . p lo tdata 2d (s e l f . data [s e l f . timeaux

, : , :] , s e l f . xmin , s e l f . xmax , s e l f . ymin , s e l f . ymax)
layout . insertWidget (0 , s e l f . p l o t w idge t)
s e l f . p l o t w idge t . se tParent (s e l f)
s e l f . p l o t w idge t . show ()
s e l f . thVal . setValue (s e l f . a n a l y s i s . th)
s e l f . peaktime = 0
s e l f . th changed = False
s e l f . p eaksp lo t type = 0
s e l f . peaksBox . currentIndexChanged . connect (s e l f .

on peaksBox indexChanged)
s e l f . dataBox . currentIndexChanged . connect (s e l f .

on dataBox indexChanged)
s e l f . timeBox . currentIndexChanged . connect (s e l f .

on timeBox indexChanged)
s e l f . h o r i z o n t a l S l i d e r . valueChanged . connect (s e l f .

on hor i zonta lS l i d e r va lueChanged)
s e l f . p l o t w idge t . canvas . mpl connect (’

bu t ton pr e s s even t ’ , s e l f . o n c l i c k)
s e l f . p l o t w idge t . canvas . mpl connect (’

b u t t o n r e l e a s e e v e n t ’ , s e l f . o n r e l e a s e)
s e l f . open windows = []
s e l f . ax changed = False
s e l f . t ime changed = False
s e l f . da tap lo t type = 0
s e l f . t imep lo t type = 0

44

A. Appendix: Code

s e l f . timeVal . setValue (s e l f . time)
s e l f . timeVal . setRange (s e l f . timemin , s e l f . timemax)
s e l f . timeMin . setValue (s e l f . timemin)
s e l f . timeMin . setRange (s e l f . timemin , s e l f . timemax)
s e l f . timeMax . setValue (s e l f . timemax)
s e l f . timeMax . setRange (s e l f . timemin , s e l f . timemax)
s e l f . marker = False

def update axes (s e l f) :
s e l f . p l o t w idge t . ax . c a l l b a c k s . connect (’ xl im changed ’

, s e l f . on ax changed)
s e l f . p l o t w idge t . ax . c a l l b a c k s . connect (’ yl im changed ’

, s e l f . on ax changed)

@pyqtSlot ()
def on ac t i onDataP lo t c l i c k ed (s e l f) :

s e l f . update datap lot ()

@pyqtSlot (int)
def on dataBox indexChanged (s e l f , va lue) :

i f value == 0 :
s e l f . da tap lo t type = 0

e l i f value == 1 :
s e l f . da tap lo t type = 1

s e l f . update datap lot ()

def update datap lot (s e l f) :
s e l f . timeaux = s e l f . time−s e l f . timemin
i f s e l f . da tap lo t type == 0 :

s e l f . p l o t w idge t . p lo tdata 2d (s e l f . data [s e l f .
timeaux , : , :] , s e l f . xmin , s e l f . xmax , s e l f . ymin , s e l f . ymax)

e l i f s e l f . da tap lo t type == 1 :
s e l f . p l o t w idge t . p lo tdata 3d (s e l f . timeaux , s e l f .

data , s e l f . xmin , s e l f . xmax , s e l f . ymin , s e l f . ymax)
s e l f . update axes ()

@pyqtSlot (int)
def on timeVal valueChanged (s e l f , va lue) :

s e l f . time = value
s e l f . update datap lot ()

@pyqtSlot (f loat)
def on thVal valueChanged (s e l f , va lue) :

s e l f . a n a l y s i s . th = value

45

A. Appendix: Code

s e l f . th changed = True

@pyqtSlot ()
def o n a c t i o n P e a k s P l o t c l i c k e d (s e l f) :

i f not s e l f . a n a l y s i s . peaks . s i z e or s e l f . th changed
i s True or s e l f . ax changed i s True or s e l f . t ime changed
i s True :

s e l f . a n a l y s i s . compute a l lpeaks (s e l f . data , s e l f .
xmin , s e l f . xmax , s e l f . ymin , s e l f . ymax , s e l f . timemin , s e l f .
timemax)

s e l f . open tablewindow ()
s e l f . a n a l y s i s . update peaksbinary ()
s e l f . a n a l y s i s . update peaksnumb ()
s e l f . th changed = False
s e l f . ax changed = False

i f not s e l f . a n a l y s i s . peaksbinary . s i z e :
s e l f . a n a l y s i s . update peaksbinary ()
s e l f . a n a l y s i s . update peaksnumb ()

s e l f . update peaksp lot ()

def update peaksp lot (s e l f) :
i f s e l f . p eaksp lo t type == 0 :

s e l f . d i s c r e t e d a t a = s e l f . a n a l y s i s . peaksbinary
e l i f s e l f . p eaksp lo t type == 1 :

s e l f . d i s c r e t e d a t a = s e l f . a n a l y s i s . peaksnumb
s e l f . markerdata = np . array (s e l f . d i s c r e t e d a t a)
i f s e l f . marker i s True :

i f s e l f . table window . tablemodel3 i s not None :
for i in range (len (s e l f . table window .

tablemodel3 . data)) :
s e l f . markerdata [int (l i s t (s e l f .

table window . tablemodel3 . data [i] . va lue s ()) [0]) , int (l i s t (
s e l f . table window . tablemodel3 . data [i] . va lue s ()) [1])] = −3

i f s e l f . table window . pixrow i s not None :
s e l f . markerdata [s e l f . table window . pix x ,

s e l f . table window . p ix y] = −2
s e l f . markerdata [int (s e l f . table window . x) , int (

s e l f . table window . y)] = −1
s e l f . p l o t w idge t . p lo tpeaks 2d (s e l f . markerdata , s e l f .

xmin , s e l f . xmax , s e l f . ymin , s e l f . ymax , s e l f . marker , s e l f .
p eaksp lo t type)

s e l f . update axes ()

@pyqtSlot (int)

46

A. Appendix: Code

def on peaksBox indexChanged (s e l f , va lue) :
i f value == 0 :

s e l f . p eaksp lo t type = 0
e l i f value == 1 :

s e l f . p eaksp lo t type = 1
i f not s e l f . a n a l y s i s . peaks . s i z e :

s e l f . a n a l y s i s . compute a l lpeaks (s e l f . data , s e l f .
xmin , s e l f . xmax , s e l f . ymin , s e l f . ymax , s e l f . timemin , s e l f .
timemax)

s e l f . a n a l y s i s . update peaksbinary ()
s e l f . a n a l y s i s . update peaksnumb ()

i f not s e l f . a n a l y s i s . peaksbinary . s i z e :
s e l f . a n a l y s i s . update peaksbinary ()
s e l f . a n a l y s i s . update peaksnumb ()

s e l f . update peaksp lot ()

@pyqtSlot ()
def on act ionPeaksTimePlot c l i cked (s e l f) :

i f not s e l f . a n a l y s i s . peaks . s i z e or s e l f . th changed
i s True or s e l f . ax changed i s True or s e l f . t ime changed
i s True :

s e l f . a n a l y s i s . compute a l lpeaks (s e l f . data , s e l f .
xmin , s e l f . xmax , s e l f . ymin , s e l f . ymax , s e l f . timemin , s e l f .
timemax)

s e l f . peaktime = 0
s e l f . th changed = False
s e l f . ax changed = False

s e l f . a n a l y s i s . update sortedpeakt imes (s e l f . xmin , s e l f .
xmax , s e l f . ymin , s e l f . ymax)

s e l f . h o r i z o n t a l S l i d e r . setMaximum(len (s e l f . a n a l y s i s .
sor tedpeakt imes)−1)

s e l f . update t imep lot ()

@pyqtSlot (int)
def on hor i zonta lS l i d e r va lueChanged (s e l f , va lue) :

i f not s e l f . a n a l y s i s . peaks . s i z e :
s e l f . a n a l y s i s . compute a l lpeaks (s e l f . data , s e l f .

xmin , s e l f . xmax , s e l f . ymin , s e l f . ymax , s e l f . timemin , s e l f .
timemax)

s e l f . h o r i z o n t a l S l i d e r . setMaximum(len (s e l f .
a n a l y s i s . sor tedpeakt imes)−1)

s e l f . peaktime = value
s e l f . update t imep lot ()

47

A. Appendix: Code

def update t imep lot (s e l f) :
i f s e l f . t imep lo t type == 0 :

s e l f . p l o t w idge t . p lo tpeaks 2d (s e l f . a n a l y s i s .
update peakt imeplot (s e l f . peaktime) , s e l f . xmin , s e l f . xmax ,
s e l f . ymin , s e l f . ymax , s e l f . marker , 1)

e l i f s e l f . t imep lo t type == 1 :
s e l f . p l o t w idge t . p lo tdata 3d (int (s e l f . a n a l y s i s .

sor tedpeakt imes [s e l f . peaktime]) , s e l f . data , s e l f . xmin , s e l f .
xmax , s e l f . ymin , s e l f . ymax)

s e l f . peakTime . setText (str (s e l f . a n a l y s i s .
sor tedpeakt imes [s e l f . peaktime]))

s e l f . update axes ()

@pyqtSlot ()
def on act ionPrev iousPeakTime c l i cked (s e l f) :

i f not s e l f . a n a l y s i s . peaks . s i z e :
s e l f . a n a l y s i s . compute a l lpeaks (s e l f . data , s e l f .

xmin , s e l f . xmax , s e l f . ymin , s e l f . ymax , s e l f . timemin , s e l f .
timemax)

s e l f . peaktime = 0
s e l f . h o r i z o n t a l S l i d e r . setMaximum(len (s e l f .

a n a l y s i s . sor tedpeakt imes)−1)
e l i f s e l f . peaktime > 0 :

s e l f . peaktime = s e l f . peaktime − 1
s e l f . h o r i z o n t a l S l i d e r . setValue (s e l f . peaktime)

s e l f . update t imep lot ()

@pyqtSlot ()
def on act ionNextPeakTime cl icked (s e l f) :

i f not s e l f . a n a l y s i s . peaks . s i z e :
s e l f . a n a l y s i s . compute a l lpeaks (s e l f . data , s e l f .

xmin , s e l f . xmax , s e l f . ymin , s e l f . ymax , s e l f . timemin , s e l f .
timemax)

s e l f . peaktime = 0
s e l f . h o r i z o n t a l S l i d e r . setMaximum(len (s e l f .

a n a l y s i s . sor tedpeakt imes)−1)
e l i f s e l f . peaktime < (len (s e l f . a n a l y s i s .

sor tedpeakt imes)−1) :
s e l f . peaktime = s e l f . peaktime + 1
s e l f . h o r i z o n t a l S l i d e r . setValue (s e l f . peaktime)

s e l f . update t imep lot ()

@pyqtSlot (int)
def on xCoordMin valueChanged (s e l f , va lue) :

48

A. Appendix: Code

s e l f . xmin = value
s e l f . ax changed = True

@pyqtSlot (int)
def on xCoordMax valueChanged (s e l f , va lue) :

s e l f . xmax = value+1
s e l f . ax changed = True

@pyqtSlot (int)
def on yCoordMin valueChanged (s e l f , va lue) :

s e l f . ymin = value
s e l f . ax changed = True

@pyqtSlot (int)
def on yCoordMax valueChanged (s e l f , va lue) :

s e l f . ymax = value+1
s e l f . ax changed = True

@pyqtSlot (int)
def on timeMin valueChanged (s e l f , va lue) :

s e l f . timemin = value
s e l f . t ime changed = True

@pyqtSlot (int)
def on timeMax valueChanged (s e l f , va lue) :

s e l f . timemax = value
s e l f . t ime changed = True

def on ax changed (s e l f , axes) :
s e l f . ax changed = True
s e l f . x ax = s e l f . p l o t w idge t . ax . g e t y l im ()
s e l f . xmin = math . f l o o r (s e l f . x ax [1])
s e l f . xCoordMin . setValue (s e l f . xmin)
s e l f . xmax = math . c e i l (s e l f . x ax [0])
s e l f . xCoordMax . setValue (s e l f . xmax−1)
s e l f . y ax = s e l f . p l o t w idge t . ax . g e t x l im ()
s e l f . ymin = math . f l o o r (s e l f . y ax [0])
s e l f . yCoordMin . setValue (s e l f . ymin)
s e l f . ymax = math . c e i l (s e l f . y ax [1])
s e l f . yCoordMax . setValue (s e l f . ymax−1)

def o n c l i c k (s e l f , event) :
i f s e l f . p l o t w idge t . t oo lba r . a c t i v e i s None and s e l f

. t imep lo t type != 1 and s e l f . da tap lo t type != 1 :

49

A. Appendix: Code

s e l f . x c l i c k = int (event . ydata)
s e l f . y c l i c k = int (event . xdata)

def o n r e l e a s e (s e l f , event) :
i f s e l f . p l o t w idge t . t oo lba r . a c t i v e i s None and s e l f

. t imep lo t type != 1 and s e l f . da tap lo t type != 1 :
s e l f . x r e l e a s e = int (event . ydata)
s e l f . y r e l e a s e = int (event . xdata)
s e l f . open t imep lot ()

def open t imep lot (s e l f) :
win = PlotWindow (f i l ename=s e l f . f i l ename)
i f s e l f . x c l i c k == s e l f . x r e l e a s e and s e l f . y c l i c k ==

s e l f . y r e l e a s e :
win . setGeometry (10 , 10 , 690 , 510)
win . t i t l e = True
win . p l o t (s e l f . data [: , s e l f . x c l i c k−s e l f . a n a l y s i s .

xmin , s e l f . y c l i c k−s e l f . a n a l y s i s . ymin] , s e l f . x c l i c k , s e l f .
y c l i c k , s e l f . timemin , s e l f . timemax)

win . p l o t peak s (s e l f . a n a l y s i s . compute peaks (s e l f .
data [: , s e l f . x c l i c k−s e l f . a n a l y s i s . xmin , s e l f . y c l i c k−s e l f .
a n a l y s i s . ymin]))

else :
win . setGeometry (10 , 10 , 300+(180∗(s e l f . y r e l e a s e−

s e l f . y c l i c k +1)) , 200+(140∗(s e l f . x r e l e a s e−s e l f . x c l i c k +1)))
win . p l o t s u b p l o t s (s e l f . data , s e l f . x c l i c k , s e l f .

x r e l e a s e +1, s e l f . y c l i c k , s e l f . y r e l e a s e +1, s e l f . a n a l y s i s . th)
win . show ()
s e l f . open windows . append (win)

@pyqtSlot (int)
def on timeBox indexChanged (s e l f , va lue) :

i f value == 0 :
s e l f . t imep lo t type = 0

e l i f value == 1 :
s e l f . t imep lo t type = 1

s e l f . update t imep lot ()

def open tablewindow (s e l f) :
s e l f . table window = TableWindow (f i l ename=s e l f .

f i l ename , data=s e l f . a n a l y s i s . peaknumbs , t imedata=s e l f .
a n a l y s i s . peaks)

s e l f . table window . show ()
s e l f . open windows . append (s e l f . table window)

50

A. Appendix: Code

s e l f . table window . se lmode l . se l ect ionChanged . connect (
s e l f . o n t a b l e S e l)

def o n t a b l e S e l (s e l f , s e l , d e s e l) :
s e l f . marker = True
s e l f . update peaksp lot ()
s e l f . marker = False
s e l f . table window . se lmode l 2 . se l ect ionChanged .

connect (s e l f . o n t a b l e 2 S e l)

def o n t a b l e 2 S e l (s e l f , s e l , d e s e l) :
s e l f . marker = True
s e l f . update peaksp lot ()
s e l f . marker = False
s e l f . table window . se lmode l 3 . se l ect ionChanged .

connect (s e l f . o n t a b l e 3 S e l)

def o n t a b l e 3 S e l (s e l f , s e l , d e s e l) :
s e l f . marker = True
s e l f . update peaksp lot ()
s e l f . marker = False

Python file 5: plot window.py

import sys
sys . path . i n s e r t (0 , ’ . . / ’)
import matp lo t l i b as mpl
from PyQt5 . QtWidgets import QMainWindow , QWidget ,

QVBoxLayout , QSizePol icy
from PyQt5 . u i c import loadUi
from matp lo t l i b import cm
from matp lo t l i b . backends . backend qt5agg import

FigureCanvasQTAgg as FigureCanvas
mpl . rcParams [’ t oo lba r ’] = ’ toolmanager ’
from matp lo t l i b . backends . backend qt5agg import

NavigationToolbar2QT as Navigat ionToolbar
from matp lo t l i b . f i g u r e import Figure
import matp lo t l i b . c o l o r s as c o l o r s
from a n a l y s i s . a n a l y s i s import Analys i s
import numpy as np
from m p l t o o l k i t s . mplot3d import Axes3D

51

A. Appendix: Code

class PlotWindow (QMainWindow) :
def i n i t (s e l f , f i l ename=None , parent=None) :

super () . i n i t (parent)
loadUi (’ . . / r e s / u i /plot mainwindow . u i ’ , s e l f)
s e l f . f i l ename = f i l ename
s e l f . a n a l y s i s = Analys i s (s e l f . f i l ename)
s e l f . f i g u r e = Figure ()
s e l f . canvas = FigureCanvas (s e l f . f i g u r e)
layout = QVBoxLayout ()
s e l f . canvas . s e t S i z e P o l i c y (QSizePol icy . Expanding ,

QSizePol icy . Expanding)
s e l f . canvas . updateGeometry ()
layout . insertWidget (0 , s e l f . canvas)
widget = QWidget ()
widget . setLayout (layout)
s e l f . setCentra lWidget (widget)
s e l f . t oo lba r = Navigat ionToolbar (s e l f . canvas , s e l f)
layout . addWidget (s e l f . t oo lba r)
s e l f . ax = None
s e l f . c o l o rba r = None
s e l f . t i t l e = False

def p lo t (s e l f , data , x , y , timemin , timemax) :
s e l f . data = data
i f s e l f . ax i s not None :

s e l f . ax . c l e a r ()
else :

s e l f . ax = s e l f . canvas . f i g u r e . subp lo t s ()
i f s e l f . t i t l e i s True :

s e l f . f i g u r e . s u p t i t l e (” (” + str (x) + ” , ” + str (y)
+ ”) ” , f o n t s i z e =10)

i f timemin != s e l f . a n a l y s i s . timemin or timemax !=
s e l f . a n a l y s i s . timemax :

s e l f . ax . s e t x l i m (l e f t=timemin , r i g h t=timemax)
s e l f . ax . p l o t (s e l f . data)
s e l f . ax . f i g u r e . canvas . draw ()

def p lo t peak s (s e l f , data) :
s e l f . peaktimes = data
s e l f . ax . p l o t (s e l f . peaktimes , s e l f . data [s e l f .

peaktimes] , ’ x ’)
s e l f . ax . f i g u r e . canvas . draw ()

def p lotdata 2d (s e l f , data , xmin , xmax , ymin , ymax) :

52

A. Appendix: Code

s e l f . data = data [xmin : xmax , ymin : ymax]
i f s e l f . ax i s not None :

s e l f . ax . remove ()
s e l f . ax = s e l f . canvas . f i g u r e . subp lo t s ()
cmap = cm. get cmap (’YlGnBu ’)
img = s e l f . ax . imshow (s e l f . data , cmap=cmap , extent =[

ymin , ymax , xmax , xmin])
i f s e l f . c o l o rba r i s not None :

s e l f . c o l o rba r . remove ()
s e l f . c o l o rba r = s e l f . f i g u r e . c o l o rba r (img , ax=s e l f . ax)
s e l f . ax . format coord = lambda x , y : ’ x = %i , y = %i ’

% (y , x)
s e l f . canvas . d raw id l e ()

def p lotpeaks 2d (s e l f , data , xmin , xmax , ymin , ymax ,
marker , p lo t type) :

s e l f . data = data [xmin : xmax , ymin : ymax]
i f s e l f . ax i s not None :

s e l f . ax . remove ()
s e l f . ax = s e l f . canvas . f i g u r e . subp lo t s ()
i f s e l f . c o l o rba r i s not None :

s e l f . c o l o rba r . remove ()
i f p lo t type i s 0 :

s e l f . data = np .ma. masked where (s e l f . data < 0 ,
s e l f . data)

cmap = cm. get cmap (’ i n f e r n o ’ , 2)
img = s e l f . ax . imshow (s e l f . data , cmap=cmap ,

extent =[ymin , ymax , xmax , xmin])
s e l f . c o l o rba r = s e l f . f i g u r e . c o l o rba r (img , ax=s e l f

. ax)
s e l f . c o l o rba r . s e t t i c k s ([0 . 2 5 , 0 . 7 5])
s e l f . c o l o rba r . s e t t i c k l a b e l s ([’ 0 ’ , ’ 1 ’])

e l i f p lo t type i s 1 :
s e l f . data = np .ma. masked where (s e l f . data <= 0 ,

s e l f . data)
cmap = cm. get cmap (’ summer ’)
cmap . se t bad (c o l o r=’ b lack ’)
img = s e l f . ax . imshow (s e l f . data , cmap=cmap , norm=

c o l o r s . PowerNorm(gamma=0.5) , extent =[ymin , ymax , xmax , xmin
])

s e l f . c o l o rba r = s e l f . f i g u r e . c o l o rba r (img , ax=s e l f
. ax)

i f marker i s True :
s e l f . data = data

53

A. Appendix: Code

s e l f . data = np .ma. masked where (s e l f . data > −2,
s e l f . data)

s e l f . ax . imshow (s e l f . data , cmap=’ Spec t r a l ’ ,
extent =[ymin , ymax , xmax , xmin])

s e l f . data = data
s e l f . data = np .ma. masked where (s e l f . data != −1,

s e l f . data)
s e l f . ax . imshow (s e l f . data , cmap=’ hsv ’ , extent =[

ymin , ymax , xmax , xmin])
s e l f . ax . format coord = lambda x , y : ’ x = %i , y = %i ’

% (y , x)
s e l f . canvas . draw ()

def p l o t s u b p l o t s (s e l f , data , xmin , xmax , ymin , ymax , th
) :

x = xmax−xmin
y = ymax−ymin
s e l f . a n a l y s i s . th = th
s e l f . ax = s e l f . canvas . f i g u r e . subp lo t s (x , y , sharex=

True)
for i in range (xmin , xmax) :

for j in range (ymin , ymax) :
dataaux = data [: , i−s e l f . a n a l y s i s . xmin , j−s e l f

. a n a l y s i s . ymin]
i f xmin==(xmax−1) or ymin==(ymax−1) :

i f xmin==(xmax−1) :
indaux = j−ymin

e l i f ymin==(ymax−1) :
indaux = i−xmin

s e l f . ax [indaux] . p l o t (dataaux)
s e l f . ax [indaux] . s e t t i t l e (” (” + str (i) +

” , ” + str (j) + ”) ” , f o n t s i z e =8)
s e l f . ax [indaux] . t i ck params (l a b e l s i z e =6)
s e l f . a n a l y s i s . compute peaks (dataaux)
s e l f . ax [indaux] . p l o t (s e l f . a n a l y s i s .

peaktimes , dataaux [s e l f . a n a l y s i s . peaktimes] , ’ x ’)
else :

s e l f . ax [i−xmin , j−ymin] . p l o t (dataaux)
s e l f . ax [i−xmin , j−ymin] . s e t t i t l e (” (” +

str (i) + ” , ” + str (j) + ”) ” , f o n t s i z e =8)
s e l f . ax [i−xmin , j−ymin] . t i ck params (

l a b e l s i z e =6)
s e l f . a n a l y s i s . compute peaks (dataaux)
s e l f . ax [i−xmin , j−ymin] . p l o t (s e l f .

54

A. Appendix: Code

a n a l y s i s . peaktimes , dataaux [s e l f . a n a l y s i s . peaktimes] , ’ x ’
)

def p lotdata 3d (s e l f , time , data , xmin , xmax , ymin , ymax
) :

s e l f . time = time
s e l f . data = (data [s e l f . time , xmin : xmax , ymin : ymax]) .T
s e l f . ax . remove ()
i f s e l f . c o l o rba r i s not None :

s e l f . c o l o rba r . remove ()
s e l f . c o l o rba r = None

s e l f . ax = s e l f . canvas . f i g u r e . add subplot (111 ,
p r o j e c t i o n=’ 3d ’)

X = np . arange (ymin , ymax)
Y = np . arange (xmin , xmax)
X, Y = np . meshgrid (X, Y)
s e l f . ax . p l o t s u r f a c e (X, Y, s e l f . data)
s e l f . canvas . draw ()

Python file 6: table window.py

import sys
sys . path . i n s e r t (0 , ’ . . / ’)
from PyQt5 . QtCore import Qt , QAbstractTableModel , QVariant
from PyQt5 . QtWidgets import QMainWindow , QTableView
from PyQt5 . u i c import loadUi
import numpy as np
import math

class MyTableModel (QAbstractTableModel) :

def i n i t (s e l f , data , parent=None , ∗ args) :
QAbstractTableModel . i n i t (s e l f , parent , ∗ args)
s e l f . data = data
s e l f . d a t a l i s t = np . z e r o s ((len (s e l f . data) , len (s e l f .

data [0])))

def f l a g s (s e l f , index) :
return Qt . ItemIsEnabled | Qt . I t e m I s S e l e c t a b l e

def rowCount (s e l f , parent) :
return len (s e l f . data)

55

A. Appendix: Code

def columnCount (s e l f , parent) :
return len (s e l f . data [0])

def data (s e l f , index , r o l e) :
i f not index . i s V a l i d () :

return QVariant ()
e l i f r o l e != Qt . DisplayRole :

return QVariant ()
return QVariant (l i s t (s e l f . data [index . row ()] . va lue s ()

) [index . column ()])

def headerData (s e l f , column , o r i e n t a t i o n , r o l e=None) :
i f r o l e != Qt . DisplayRole :

return QVariant ()
i f o r i e n t a t i o n == Qt . Hor i zonta l :

return QVariant (l i s t (s e l f . data [0] . keys ()) [column
])

def s o r t (s e l f , Ncol , order) :
for i in range (len (s e l f . d a t a l i s t)) :

s e l f . d a t a l i s t [i] = [j for j in l i s t (s e l f . data [i
] . va lue s ())]

s e l f . layoutAboutToBeChanged . emit ()
arg = (np . a r g s o r t (np . a r g s o r t (s e l f . d a t a l i s t [: , Ncol]))

) . t o l i s t ()
z ipped=zip (arg , s e l f . data)
s e l f . data = [x for , x in sorted (z ipped)]
i f order == Qt . AscendingOrder :

s e l f . data . r e v e r s e ()
s e l f . layoutChanged . emit ()

class TableWindow (QMainWindow) :

def i n i t (s e l f , parent=None , data=None , t imedata=None
) :

super () . i n i t (parent)
loadUi (’ . . / r e s / u i / table mainwindow . u i ’ , s e l f)
s e l f . data = data
s e l f . t imedata = timedata
s e l f . model data = []
s e l f . model t imedata = []
s e l f . model t imecoordsdata = []
s e l f . tablemodel3 = None

56

A. Appendix: Code

s e l f . c r e a t e d a t a ()
s e l f . tablemodel = MyTableModel (s e l f . model data , s e l f

)
s e l f . tableView . setModel (s e l f . tablemodel)
s e l f . tableView . sortByColumn (2 ,Qt . AscendingOrder)
s e l f . l ayout = s e l f . hor i zonta lLayout . layout ()
s e l f . s e lmode l = s e l f . tableView . s e l e c t i onMode l ()
s e l f . s e lmode l . se l ect ionChanged . connect (s e l f .

on rowSel)

def c r e a t e d a t a (s e l f) :
for i in range (len (s e l f . data)) :

item = {}
item [’ x ’] = str (int (s e l f . data . index [i] [0]))
item [’ y ’] = str (int (s e l f . data . index [i] [1]))
item [’ peaks number ’] = str (int (s e l f . data . va lue s [

i]))
s e l f . model data . append (item)

def on rowSel (s e l f , s e l) :
i f s e l f . model t imedata :

i f s e l f . model t imecoordsdata :
s e l f . tab leView 3 . d e l e t e L a t e r ()
s e l f . tab leView 3 = None
s e l f . model t imecoordsdata = []

s e l f . tab leView 2 . d e l e t e L a t e r ()
s e l f . tab leView 2 = None
s e l f . model t imedata = []

s e l f . row = (s e l . indexes ()) [0] . row ()
s e l f . c r ea t e t imedata ()
s e l f . tablemodel2 = MyTableModel (s e l f . model timedata ,

s e l f)
s e l f . tab leView 2 = QTableView ()
s e l f . tab leView 2 . setModel (s e l f . tablemodel2)
s e l f . s e lmode l 2 = s e l f . tab leView 2 . s e l e c t i onMode l ()
s e l f . s e lmode l 2 . se l ect ionChanged . connect (s e l f .

on t imeSe l)
s e l f . l ayout . addWidget (s e l f . tableView 2)
s e l f . tab leView 2 . s e t S e l e c t i o n B e h a v i o r (QTableView .

SelectRows)
s e l f . tab leView 2 . s e t V e r t i c a l S c r o l l B a r P o l i c y (Qt .

ScrollBarAlwaysOn)
s e l f . tab leView 2 . setMinimumWidth (220)
s e l f . tab leView 2 . setMaximumWidth (220)

57

A. Appendix: Code

s e l f . tab leView 2 . se tSor t ingEnab led (True)
s e l f . setMaximumWidth (525)
s e l f . tablemodel3 = None

def c r ea t e t imedata (s e l f) :
s e l f . x = int (l i s t ((s e l f . tablemodel . data [s e l f . row]) .

va lue s ()) [0])
s e l f . y = int (l i s t ((s e l f . tablemodel . data [s e l f . row]) .

va lue s ()) [1])
for i in range (len (s e l f . t imedata [s e l f . x] [s e l f . y])) :

item2 = {}
item2 [’ peak time ’] = str (int (s e l f . t imedata [s e l f .

x] [s e l f . y] . index [i]))
item2 [’ peak he ight ’] = str (int (round(s e l f .

t imedata [s e l f . x] [s e l f . y] . va lue s [i])))
s e l f . model t imedata . append (item2)

def on t imeSe l (s e l f , s e l) :
i f s e l f . model t imecoordsdata :

s e l f . model t imecoordsdata = []
s e l f . l ayout . removeWidget (s e l f . tab leView 3)

t imeind = (s e l . indexes ()) [0] . row ()
s e l f . time = int (l i s t ((s e l f . tablemodel2 . data [t imeind

]) . va lue s ()) [0])
s e l f . c r e a t e t i m e p i x e l s d a t a ()
s e l f . tablemodel3 = MyTableModel (s e l f .

model t imecoordsdata , s e l f)
s e l f . tab leView 3 = QTableView ()
s e l f . tab leView 3 . setModel (s e l f . tablemodel3)
s e l f . l ayout . addWidget (s e l f . tableView 3)
s e l f . tab leView 3 . setMinimumWidth (605)
s e l f . tab leView 3 . setMaximumWidth (605)
s e l f . tab leView 3 . se tSor t ingEnab led (True)
s e l f . tab leView 3 . sortByColumn (4 ,Qt . DescendingOrder)
s e l f . tab leView 3 . s e t S e l e c t i o n B e h a v i o r (QTableView .

SelectRows)
s e l f . s e lmode l 3 = s e l f . tab leView 3 . s e l e c t i onMode l ()
s e l f . s e lmode l 3 . se l ect ionChanged . connect (s e l f .

on p ixSe l)
s e l f . pixrow = None

def c r e a t e t i m e p i x e l s d a t a (s e l f) :
s e l f . range = range ((int (s e l f . time)−5) , (int (s e l f .

time)+5))

58

A. Appendix: Code

a c c d i s t = []
for i in range (len (s e l f . t imedata)) :

i f s e l f . t imedata . index [i] [2] in s e l f . range :
item3 = {}
item3 [’ x ’] = str (int (s e l f . t imedata . index [i

] [0]))
item3 [’ y ’] = str (int (s e l f . t imedata . index [i

] [1]))
item3 [’ peak time ’] = str (int (s e l f . t imedata .

index [i] [2]))
item3 [’ peak he ight ’] = str (int (round(s e l f .

t imedata . va lue s [i])))
d i s t = round(math . s q r t (((s e l f . t imedata . index

[i] [0] − s e l f . x) ∗∗2)+(s e l f . t imedata . index [i] [1] − s e l f . y) ∗∗2)
,1)

item3 [’ p i x e l d i s t ance ’] = str (d i s t)
item3 [’ time d i s t anc e ’] = abs (int (s e l f .

t imedata . index [i] [2])−int (s e l f . time))
s e l f . model t imecoordsdata . append (item3)
a c c d i s t = np . concatenate ((a c c d i s t , np .

array ([d i s t])) , a x i s =0)

def on p ixSe l (s e l f , s e l) :
s e l f . pixrow = (s e l . indexes ()) [0] . row ()
s e l f . p ix x = int (l i s t ((s e l f . tablemodel3 . data [s e l f .

pixrow]) . va lue s ()) [0])
s e l f . p ix y = int (l i s t ((s e l f . tablemodel3 . data [s e l f .

pixrow]) . va lue s ()) [1])

59

Literature

Literature

[1] G. Bertotti, D. Velychko, N. Dodel, S. Keil, D. Wolansky, B. Tillak, M. Schre-
iter, A. Grall, P. Jesinger, S. Rohler, M. Eickenscheidt, A. Stett, A. Moller,
K. H. Boven, G. Zeck, and R. Thewes, “A CMOS-based sensor array for in-
vitro neural tissue interfacing with 4225 recording sites and 1024 stimulation
sites,” IEEE 2014 Biomedical Circuits and Systems Conference, BioCAS 2014
- Proceedings, pp. 304–307, 2014.

[2] J. Dragas, D. Jackel, F. Franke, and A. Hierlemann, “An unsupervised method
for on-chip neural spike detection in multi-electrode recording systems,” Pro-
ceedings of the Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, EMBS, pp. 2535–2538, 2013.

[3] M. Jenkner, M. Tartagni, A. Hierlemann, and R. Thewes, “Cell-based CMOS
sensor and actuator arrays,” IEEE Journal of Solid-State Circuits, vol. 39,
no. 12, pp. 2431–2437, 2004.

[4] G. Bertotti, F. Jetter, N. Dodel, S. Keil, C. Boucsein, A. Moller, K. H. Boven,
G. Zeck, and R. Thewes, “Artifact-compensated time-continuous recording
from neural tissue during stimulation using a capacitively coupled in-vitro
CMOS-MEA with 4k recording and 1k stimulation sites,” Proceedings - 2016
IEEE Biomedical Circuits and Systems Conference, BioCAS 2016, pp. 256–259,
2016.

[5] S. Gibson, J. W. Judy, and D. Marković, “Technology-aware algorithm design
for neural spike detection, feature extraction, and dimensionality reduction,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18,
no. 5, pp. 469–478, 2010.

[6] C. Leibig, T. Wachtler, and G. Zeck, “Unsupervised neural spike sorting for
high-density microelectrode arrays with convolutive independent component
analysis,” Journal of Neuroscience Methods, vol. 271, pp. 1–13, 2016. [Online].
Available: http://dx.doi.org/10.1016/j.jneumeth.2016.06.006

[7] Python Software Foundation, “About Python™ — Python.org,” 2019. [Online].
Available: https://www.python.org/about/

[8] Real Python, “Object-Oriented Programming (OOP) in
Python 3,” 2019. [Online]. Available: https://realpython.com/
python3-object-oriented-programming/

[9] T. Oliphant, “NumPy: A guide to NumPy,” USA: Trelgol Publishing, 2006–.
[Online]. Available: http://www.numpy.org/

[10] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific tools
for Python,” 2001–. [Online]. Available: http://www.scipy.org/

60

http://dx.doi.org/10.1016/j.jneumeth.2016.06.006
https://www.python.org/about/
https://realpython.com/python3-object-oriented-programming/
https://realpython.com/python3-object-oriented-programming/
http://www.numpy.org/
http://www.scipy.org/

Literature

[11] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing In Science
& Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[12] The Linux Information Project, “GUI Definition,” 2004. [Online]. Available:
http://www.linfo.org/gui.html

[13] PyQT, “Pyqt5 reference guide,” 2015. [Online]. Available: https://www.
riverbankcomputing.com/static/Docs/PyQt5/

[14] The Qt Company, “Qt: Cross-platform software development for embedded
desktop,” 2019. [Online]. Available: https://www.qt.io

[15] F. Pérez and B. E. Granger, “IPython: a system for interactive scientific
computing,” Computing in Science and Engineering, vol. 9, no. 3, pp. 21–29,
May 2007. [Online]. Available: https://ipython.org

[16] W. McKinney, “Data structures for statistical computing in python,” in Pro-
ceedings of the 9th Python in Science Conference, S. van der Walt and J. Mill-
man, Eds., 2010, pp. 51 – 56.

61

http://www.linfo.org/gui.html
https://www.riverbankcomputing.com/static/Docs/PyQt5/
https://www.riverbankcomputing.com/static/Docs/PyQt5/
https://www.qt.io
https://ipython.org

	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives

	Methodology
	Background
	cmos mea systems
	Spike detection methods
	Python programming language
	gui applications

	Proposed method
	Structure of work

	Development
	Environment setup
	Application development
	Analysis class
	PyQtApp class
	TimeplotWidget class
	GridplotWidget class
	PlotWindow class
	TableWindow class

	Results
	Timeplot analysis results
	Grid plot analysis results
	Table view analysis results

	Summary
	Appendix: Code
	Literature

