

DEVELOPMENT OF AN ACOUSTIC

MODEM USING SYNTHESIZABLE
MICROCONTROLLER

by Muhammad Fahad Hassan-Mobshar

BACHELOR’S THESIS

Bachelor’s Degree in Industrial

Electronics and Automatic Control

Engineering

Barcelona, 4 June 2019

Director: Jordi Cosp Vilella

Electronic Engineering Department

DEVELOPMENT OF AN ACOUSTIC

MODEM USING SYNTHESIZABLE
MICROCONTROLLER

BACHELOR’S THESIS

Bachelor’s degree in Industrial

Electronics and Automatic Control

Engineering

Volume I

Report & Annexes

Author: M. Fahad Hassan-Mobshar

Director: Jordi Cosp Vilella

Call: June 2019

Chapter 0:

I

“He who loves practice without theory is like the sailor who

boards ship without a rudder and compass and never

knows where he may cast.” Leonardo Da Vinci

 Development of an acoustic modem

II

ABSTRACT

In this thesis, an acoustic modem is developed on a digital

programmable device for underwater communications. The system

consists of a synthesize microcontroller as well the different elements

necessaries for the modulation and demodulation of the signals. That

should be developed for the design.

The objective is to develop the system using a high-level hardware

description language and to show the system’s functioning on a flexible

platform (a programable logical device) with the perspective that, in the

future, it can be implemented in a personalized integrated circuit and

thus obtain a compact and energy efficient system.

Chapter 0: Resum

III

RESUM

En aquest treball es desenvolupa un mòdem acústic per a

comunicacions submarines sobre un dispositiu digital programable. El

sistema està compost per un microcontrolador sintetitzable més els

diferents elements necessàries per a la modulació i desmodulació dels

senyals que cal desenvolupar per al disseny.

L’objectiu és desenvolupar el sistema utilitzant un llenguatge d’alt

nivell de descripció hardware i demostrar el funcionament del sistema

sobre una plataforma flexible (un dispositiu lògic programable) amb la

perspectiva que, en un futur, pugui ser implementat en un circuit

integrat a mida i així obtenir un sistema compacte i de baix consum.

 Development of an acoustic modem

IV

RESUMEN

En este trabajo se desarrolla un módem acústico para

comunicaciones submarinas sobre un dispositivo digitar programable. El

sistema consiste en un microcontrolador sintetizable y los diferentes

elementos necesarios para la modulación y demodulación de las señales

a desarrollar para el diseño.

El objetivo es desarrollar el sistema utilizando un lenguaje de

descripción de hardware i demostrar el funcionamiento del sistema

sobre una plataforma flexible (un dispositivo lógico programable) con el

fin de que, en el futuro, pueda implementarse en un circuito integrado

personalizado y así obtener un sistema compacto y de bajo consumo.

Chapter 0: Acknolwledgement

V

ACKNOLWLEDGEMENT

First of all, thanks to my director Jordi Cosp to give me the

opportunity to develop an interesting project, and for their help and

advice which made this thesis possible.

I would like to thanks my family; mom, dad and aunt Misbaha for

their unconditional support. They had always encouraged me to continue

working despite the complications. And without their help, this project

would have never been accomplished.

I also like to thanks to Gerard, Toni and Marina for the good time

we spent in the laboratory helping and encouraging each other.

Last but not least, I would like to thank my friend Andres for their

encouragement and motivating speeches.

 Development of an acoustic modem

VI

GLOSSARY

0xff: Number 255 in hexadecimal format and occupied 8

bits.

ADC: Analogue to Digital Converter.

AUV: Autonomous Underwater Vehicle.

FPGA: Field Programable Gate Array.

GPIO: General Purpose Input Output.

HDL: This acronym stands by Hardware Description

Language.

I/O: Input Output port.

Logic-Low: In computer science logic-Low state of bit or signal is

logic ‘0’.

Logic-High: In computer science logic-High state of bit or signal is

logic ‘1’

Node: Communication point

Verilog: This is an example of Hardware description language.

This language is one of the most used HDL.

Vivado: Program to generate design using HDL, developed by

Xilinx.

Chapter 0: Index

VII

INDEX

ABSTRACT ...II

RESUM... III

RESUMEN ... IV

ACKNOLWLEDGEMENT ..V

GLOSSARY.. VI

INDEX .. VII

1. PREFACE...1

1.1. Background ... 1

1.1.1. Positioning algorithms ...2

1.2. Aim of the thesis.. 3

1.3. Objectives ... 4

1.4. Work planning ... 5

1.4.1. Conversion of the analogue signal to digital5

1.4.2. Adapting the microcontroller and implementing in FPGA

 5

1.4.3. Connecting ADC with microcontroller to detect the signal

 6

1.4.4. Drafting the report ..6

2. BACKGROUND ..9

2.1. Field Programmable Gate Array (FPGA) 9

2.2. C programming language ... 11

 Development of an acoustic modem

VIII

2.2.1. Introduction ..11

2.2.2. Creating a program with C.......................................12

2.3. Verilog .. 15

2.3.1. Hardware description languages15

2.3.2. Introduction to Verilog ..15

2.3.3. Generating a digital block with Verilog16

3. MODEM .. 19

4. ANALOGUE TO DIGITAL CONVERTER (ADC).................. 21

4.1. ADC channels definition.. 22

4.1.1. Dynamic Reconfiguration Port bus (s_drp)................22

4.1.2. Dedicated analogue input (Vp_Vn)23

4.1.3. Auxiliary analogue inputs...23

4.2. ADC registers .. 23

4.2.1. Status registers ..24

4.2.2. Control registers ...26

4.3. Transfer Functions ... 27

4.3.1. Unipolar mode ..27

4.3.2. Bipolar mode ..28

4.3.3. Temperature sensor ..29

4.3.4. Power supply sensor..30

4.4. Operating Modes.. 30

4.4.1. Single channel mode ...31

4.4.2. Automatic channel sequencer31

4.4.3. External multiplexer mode32

Chapter 0: Index

IX

4.5. Timing... 33

4.5.1. Continuous sampling ...33

4.5.2. Event sampling mode ..34

4.5.3. Dynamic reconfiguration Port Timing........................35

5. ARM CORTEX-M3... 37

5.1. Introduction... 37

5.2. FPGA edition .. 38

5.3. Core features... 39

5.3.1. Nested Vectored Interrupt Controller (NVIC)40

5.3.2. The system timer (SysTick)40

5.3.3. Non-maskable Interrupt (NMI).................................41

5.3.4. Serial Wire JTAG Debug Port (SWJ-DP)41

5.3.5. External debug request ...42

5.3.6. External restart request...42

5.3.7. The boundary scan chain ...43

5.3.8. Bit-banding ...43

5.4. Memory map ... 44

5.5. Cortex M3 configuration ... 46

5.5.1. Configuration window ..46

5.5.2. Debug window ..47

5.5.3. Instruction and data memory window47

5.6. Program .. 47

5.6.1. Goertzel Algorithm ..48

6. IP USED IN BLOCK DESIGN.. 51

 Development of an acoustic modem

X

6.1. AXI Interconnect.. 51

6.1.1. Utility ...52

6.2. AXI GPIO ... 53

6.2.1. Utility ...54

6.3. AXI BRAM Controller .. 55

6.3.1. Utility ...56

6.4. Block Memory Generator .. 57

6.4.1. Memory Core configurations57

6.4.2. Utility ...60

6.5. Processor System Reset ... 60

6.5.1. Utility ...61

6.6. Clocking Wizard ... 62

6.6.1. Clocking Options ...62

6.6.2. Utility ...64

6.7. Utility Vector Logic ... 65

6.8. Constant ... 65

6.9. Concat .. 65

6.10. Slice .. 66

6.11. ADC diagram ... 66

6.11.1. AXI GPIO ...66

6.11.2. XADC Wizard ..67

6.11.3. FF_D_T ..68

6.11.4. Square Generator ...68

6.12. Clock and reset diagram... 69

Chapter 0: Index

XI

7. RESULTS.. 73

7.1. Maximum frequency detection 74

7.2. Error Setpoint .. 76

7.3. Power Setpoint .. 77

7.4. Performance .. 79

7.5. Resources.. 81

8. FUTURE WORK .. 83

9. CONCLUSION .. 85

10. REFERENCES .. 89

A. ANNEXE: TABLES .. - 1 -

I. ADC Tables .. - 1 -

II. Cortex M3 Tables ... - 12 -

III. IP Tables ... - 15 -

B. ANNEXE: BUDGET ... - 27 -

I. Devices cost .. - 27 -

II. Licences cost ... - 28 -

III. Engineering work cost .. - 29 -

IV. Total ... - 30 -

C. ANNEXE: USER MANUAL ... - 31 -

I. Configuration ... - 31 -

II. Generating modem .. - 31 -

D. ANNEXE: CODE.. - 37 -

I. Hardware code .. - 37 -

FF_D_T .. - 37 -

 Development of an acoustic modem

XII

Square Generator ... - 39 -

II. Software code.. - 42 -

Main... - 43 -

Gpio C file .. - 44 -

E. ANNEXE: SCHEMATIC ... - 51 -

Chapter 1: Preface

 M. FAHAD HASSAN 1

1. PREFACE

1.1. Background

In the last few decades, the progress of technology has increased in

oceanographic researches. The use of Autonomous Underwater Vehicles (AUV)

and sensors networks are very common in this field to study oceans activities or

use for marine security. Apart from these activities, exist a strong scientific

interest to develop systems to observe, monitor and track the aquatic species.

In the electronic engineering department of this campus, they are studying a

positioned and monitoring system for aquatics species. Two different

environments have been considered to locate the species; localization of the

species in open areas using autonomous underwater vehicles, and localization of

the species in specific areas using underwater observatories. The aim of the thesis

is to locate the species, control and examine with autonomous vehicles.

Two basic methods can be used to monitor the spices: the active and the

passive. In the passive method, a hydrophone is used to hear the sound produced

Figure 1-1: GUANAY II AUV developed by The

Technological Development Centre for Remote

Acquisition System and Information Treatment (SARTI).

Extract from [13]

 Development of an acoustic modem

2 M. FAHAD HASSAN

by some species. Different species can be identified by applying filters algorithms

and pattern recognition. The bioacoustics is the discipline which studies this area.

In the UPC exist an investigation group specialized in this discipline; Laboratori

d’Aplicacións Bioacústiques (LAB).

In the active method, the animal es identified by placing on them an acoustic

transductor. Because of the versatility, size and the features, aquatic TAG is the

common systems used to monetarize the species. This method offers certain

advantages in front of passive systems, such as, identification of individual

species or localization of species which not emits any characteristic sound. The

active method is interesting since the same system can be used to locate and to

monitor de species as well to position autonomous submarines, ships or different

sensors.

1.1.1. Positioning algorithms

The positioning algorithms are used to calculate distances between two

nodes1. There is two way to calculate the distance:

- Time of flight (TOF): TOF is the time lag between a device sends the signal

and receives the answer from another device. And in case the propagation

1 A node is either a redistribution point or a communication endpoint.

Figure 1-2: Underwater active method of communication.

Submarines, ships and satellites communicating with node.

Extract from [21]

Chapter 1: Preface

 M. FAHAD HASSAN 3

speed of the signal is known, the distance between two nodes can be

calculated easily.

- Time Difference of Flight (TDOF): In this case, the distance is calculated

using the differences of time between two received signals. The signal is

generated in one point and is received in different nodes. This method is

really useful when the initial broadcasting time is not known, thus the

localization is determined by receiving two signals. However, all nodes

have to be perfectly synchronized to know the time with precision.

1.2. Aim of the thesis

As it has mentioned, the aim of the university investigation work is to

develop a system to locate and fallow underwater species using the acoustic

positioned system. The active method is used to locate the species in which an

acoustic TAG is incorporated in the aquatic species thus the nodes or

autonomous underwater vehicles could detect them.

The aim of this thesis is to develop a modem which will be incorporated on

the aquatic species. And it is going to study a device which could be compact

and as small as possible. A compact device would not be annoying for the species

and could allow monitoring small aquatic animals.

A microcontroller and ADC are used to create the modem which is going to

implement in Field-Programmable Gate Array (FPGA) thus the modem is going

to develop with Hardware Description Language (HDL). Developing the modem

in FPGA will allow to emulate it, besides to know the dimension and the

maximum clock speed of the device, among other features.

The main part of the thesis is to develop an application using a

microcontroller in FPGA. Some characteristics are going to study to develop

microcontroller in FGPA; such as how it works, how it could program, how it

could connect with other parts, and how much space is required to develop it.

Furthermore, the advantages and disadvantages of using a microcontroller

for this application will be discussed. Because this work is the first stage in which

 Development of an acoustic modem

4 M. FAHAD HASSAN

the functionality of the modem is observed. If the modem works properly, this

could be implemented in an integrated device.

1.3. Objectives

This thesis is a part of a University Project hence the objective are chosen

which are important for this part. These are principals’ objectives on which the

thesis is focused on.

1- The main objective of the thesis is to develop the microcontroller in FPGA

and programme with a little application to know either is function correctly

or not.

2- Study how to connect an Analogue-to-Digital Converter, and examine the

communication between ADC and microcontroller. In case this could not

work properly, the modem would not get the signal correctly.

3- Observe that the modem works properly; it obtains data from ADC, the

microcontroller works correctly, and send the echo for the proper input

signal and not by error.

4- The output signal is going to use to calculate the distance between the

transmitter and receptor. Hence observe that the processing time is

known so, to not create an error by the node or AUV to establish the exact

position of the animal.

5- The animals could change their position; therefore, it is important to

establish the minimum processing time so the AUV could calculate the

distance accurately.

6- Observe the sources that have been used to develop the modem, and

estimate the space. This is important especially for the future case when

the modem is implemented in an integrated circuit.

Chapter 1: Preface

 M. FAHAD HASSAN 5

1.4. Work planning

To achieve the objectives, previous commented, it is going to follow following

planning. In the following sections, the main parts of the thesis are going to

discuss and a resume of their uses.

1.4.1. Conversion of the analogue signal to digital

The ADC is used to convert the input analogic signal into a digital signal. This

device is created in HDL language. Vivado is used to create all the Modem, and

in this program exist an IP named XADC which is used to convert analogue data

to digital.

Three weeks are planned to dedicate to this section and make the ADC

working in the FPGA. In this time the XADC core is going to study; ports

descriptions, XADC configuration, among other concepts.

1.4.2. Adapting the microcontroller and implementing in FPGA

The thesis consists of designing an acoustic modem using a microcontroller.

The modem receives an electric signal which is converted in 16 bits digital signal.

This microcontroller has to be created with HDL though to implement in an

FPGA and observe the functionality. The ARM developers have public available

microcontroller Cortex-M3. This device has peripherals to connect with Vivado

elements and could be synthesised in Vivado and later implement in FPGA thus

to observe the functionality.

The microcontroller detects the signal signature using the Goertzel Algorithm

and obtain the power of the signal. If the power is greater than the set point, the

input signal corresponds to the detection signal. When this occurs, the

microcontroller sends the eco of this signal. The microcontroller is programmed

using C language with Keil 𝜇Vision program.

This way marine animal which has the modem, will be detected. After that,

the distance between the modem and the node will be calculated.

 Development of an acoustic modem

6 M. FAHAD HASSAN

Five weeks are planned to dedicate to this section and make the

microcontroller working in the FPGA.

1.4.3. Connecting ADC with microcontroller to detect the

signal

In this period the modem is going to test; obtaining the analogue signal,

processing with a microcontroller with Goertzel algorithm, and send the echo in

the case is the input signal correspond to the desired signal.

Six weeks are planned to dedicate to this part.

1.4.4. Drafting the report

Some parts of the report are going to write during previous stages, thus not

to have a lot of work in the final weeks. Moreover, the last three weeks are going

to spend to draft the report.

The Figure 1-3 shows the Gantt chart of the planning, which also includes

previous works.

Chapter 1: Preface

 M. FAHAD HASSAN 7

Figure 1-3: Thesis planning that lasted 17 weeks.

 Development of an acoustic modem

8 M. FAHAD HASSAN

This page intentionally left blank

Chapter 2: background

 M. FAHAD HASSAN 9

2. BACKGROUND

In the introduction and through their development there is mentioned some

concepts about different development languages and technologies used to

develop the thesis. It is important to know some basic concepts about that.

Readers who have this knowledge can skip this chapter.

This thesis has an important background based on these three concepts:

- FPGA

- C

- Verilog

The FPGA is the circuit where the modem is developed. And it will be

explained the basic use of this for this application.

C is the programming language which is used to generate program file for

the microcontroller. It will be explained the basic concepts that are used to create

a program.

Verilog is a Hardware Description Language which is used to develop the

modem. It will be explained basic concepts to understand and how to define a

digital block in this language.

2.1. Field Programmable Gate Array (FPGA)

A Field Programmable Gate Array is defined as a matrix of configurable logic

blocks (CLBs) connected to each other with interconnection networks which are

entirely programmable. The blocks could be combinational and/or sequential.

FPGAs belongs to the family of programmable logic components. Exist diverse

configurable technologies in which reprogrammable are of interest, such as:

Flash, EPROM or SRAM. The FPGA is configured using Hardware description

language (HDL). Two HDLs are widely used and these are VHDL and Verilog.

 Development of an acoustic modem

10 M. FAHAD HASSAN

The generic architecture of an FPGA is shown in Figure 2-1. In red is the

Configurable Input/Output Block, in blue the Configurable Logic Block and n black

the Interconnection Network.

The two main FPGA manufacturers are Altera and Xilinx. For this thesis, the

design is implemented in Nexys 4 DDR FPGA board using Verilog HDL developed

by Xilinx. Several built-in peripherals, including an accelerometer, temperature

sensor, MEMs digital microphone, a speaker amplifier, and several I/O devices

allow the Nexys4 DDR to be used for a wide range of designs [1] .

The Nexys 4 DDR board is based on Artix-7 FPGA. The board offers more

than fifteen thousand logic slices, each of them has four 6-inputs Look Up Tables

(LUT) and 8 Flip-Flops; up to 4860 Kbits of fast block RAM, and the internal clock

speed can exceed 450 MHz. The board also includes four digital Pmod ports and

one analogic input port with three channels.

Figure 2-1: Generic architecture of a FPGA

Chapter 2: background

 M. FAHAD HASSAN 11

2.2. C programming language

2.2.1. Introduction

C is a general-purpose programming language, which has been called a

“system programming language”. It is useful for writing compilers and operating

systems. The language provides a variety of data type; the fundamental are

characters (𝑐ℎ𝑎𝑟), integers (𝑖𝑛𝑡) and floating-point (𝑓𝑙𝑜𝑎𝑡) numbers of several

sizes. Moreover, there is a hierarchy of derived data types created with pointers,

arrays, structures, and unions.

It also provides fundamental control-flow constructions: statements

grouping, decision making (𝑖𝑓 − 𝑒𝑙𝑠𝑒), selecting one of a set of possible cases

(𝑠𝑤𝑖𝑡𝑐ℎ), lopping with the termination test at the top (𝑤ℎ𝑖𝑙𝑒, 𝑓𝑜𝑟) or at the bottom

(𝑑𝑜), and early loop exit (𝑏𝑟𝑒𝑎𝑘).

C has no operations to deal directly with composite objects such as character

strings, sets, lists, or arrays. And it itself provides no input/output facilities, and

no built-in file access methods. All of these higher-level mechanisms must be

provided by explicitly-called functions.

C offers only straightforward, single-thread control flow, but no

multiprogramming, parallel operations, synchronization, or coroutines.

Figure 2-2: Nexys 4 DDR FPGA Board developed by

Xilinx. Extract from [1]

 Development of an acoustic modem

12 M. FAHAD HASSAN

The run-time library required to implement the self-contained program

because the data types and control structures provided by C are supported

directly by most computers. Although C matches the capabilities of many

computers, it is independent of any particular machine architecture.

2.2.2. Creating a program with C

This section describes an example of the C program, which includes some of

the constructions using a different type of data. The example given is, calculate

the first ten primer numbers. With this example, some important aspect of the

program will be described.

First of all, libraries have to be included in the program, which includes a

group of functions of the C programming. The libraries have a format of .h

(header file). These libraries can be C standard libraries –such as stdio.h or

math.h– or created by the user. The following connotation is used to include a

library, where the name of the library is indicated in the brackets. For this

example, only one library is needed: the stdio.h.

After that, the symbolic constants could be defined. These are used when a

constant “magic number” convey little information to someone who might have

to read the program later. One way to deal with the “magic number” is to give it

a meaningful name. A #define line defines a symbolic name or symbolic constant

to be a particular string of characters. In this example case, it is going to define

the number ten (number of prime numbers) as a symbolic constant, shown next:

#include <stdio.h>

Code 2-1: Declaration of library for example code

#include <stdio.h>

#define num 10 // number of primer numbers

Code 2-2: Defining a symbolic constant for example code

Chapter 2: background

 M. FAHAD HASSAN 13

As is could see in Code 2-2 after double-slash (//) a single line comment can

be written, which in this case explains briefly what the meaning of the code. It

can also use “/* -comment- */” notation for multi-line comment.

Before the deceleration of libraries and symbolic variables, used variables are

declared with their data type. For this example, four variables are needed: two

variables to do the loops, one for compare if the number is prime and another is

the vector variable which is used to save numbers. The vector variable has range

of prime numbers required. The name of the variable has to begin with a string

data. These variables can be initialized while declaring or after declaration.

After declaration the variables, the code is written. It could use all the

architecture allowed in C language, for example, 𝑖𝑓 − 𝑒𝑙𝑠𝑒 statements, loops 𝑓𝑜𝑟,

𝑤ℎ𝑖𝑙𝑒 and 𝑑𝑜, select one of the possible cases switch, and functions.

For this example, one loop 𝑓𝑜𝑟, one loop 𝑤ℎ𝑖𝑙𝑒 and two 𝑖𝑓 − 𝑒𝑙𝑠𝑒 conditions are

used to obtain prime numbers.

#include <stdio.h>

#define num 10 // number of prime numbers

/* Variables declaration */

int i = 3;

int j, c, prime[num];

Code 2-3: Declaration and initialization of the variables for the example

 Development of an acoustic modem

14 M. FAHAD HASSAN

This simple example shows how a program can be generated in the C

language. For more information about the C programming language visit [2].

#include <stdio.h>

#define num 10 // number of prime numbers

/* Variables declaration */

int c = 3;

int i, j, prime[num];

/* Obtain prime numbers */

prime[0] = 2; //The first prime number is 2

// next are going to calculate with next algorithm

j = 2;

while (j <= num)

{

 for (i = 2; i <= c -1; i++)

 {

 if (c%i == 0) break;

}

 if (i == c)

 {

 prime[j-1]= c;

j++;

 }

 c++;

}

Code 2-4: Complete example code using C language

Chapter 2: background

 M. FAHAD HASSAN 15

2.3. Verilog

2.3.1. Hardware description languages

Hardware Description Language (HDL) is used in design electronics to

describe models which describe logic circuits, for example, truth tables or

integrated circuits. HDL has a lot of advantages. One of these is that design

functionality could be verified before translating in a real hardware circuit.

They are different HDL to describe a logic model, the two most common are

VHDL and Verilog because these are more widely used and well supported HDLs.

VHDL stands by Very High-Speed Integrated Circuit Hardware Description

Language developed in 1980. VHDL is more verbose than Verilog and have less

common with programming language C. On the other hand, the Verilog is more

compact but has a lower level of programming construct.

In this chapter, only Verilog HDL is described because of the used in the

thesis. To know about VHDL visit [3].

2.3.2. Introduction to Verilog

Verilog is a computer-based language to describe the hardware of the

digital systems in a textual form. Functionality is described to implemented in

hardware which can be defined in Boolean logic equations, truth tables and netlist

of block interconnections.

The Verilog language has similarities with the C programming language.

Verilog is case-sensitive and has a basic preprocessor to control flow keywords,

such as 𝑖𝑓/𝑒𝑙𝑠𝑒, 𝑓𝑜𝑟 or 𝑤ℎ𝑖𝑙𝑒. These keywords have to be lowercase. The module

begins with the keyword 𝑚𝑜𝑑𝑢𝑙𝑒 and ends with 𝑒𝑛𝑑𝑚𝑜𝑑𝑢𝑙𝑒. The variables needed

to declare with bit-widths. The Verilog differs from C for control-flow statements

which are initiated with keyword 𝑏𝑒𝑔𝑖𝑛 and close with 𝑒𝑛𝑑 statement, however,

other characteristics are same such as: ending line with a semicolon, comments

begin with double-slash (//) or multi-comment with “/* … */”.

 Development of an acoustic modem

16 M. FAHAD HASSAN

2.3.3. Generating a digital block with Verilog

In this section, a simple digital block is created using Verilog to understand

the functionality of the language. An adder is created as a demonstration example

of a digital block. The block obtains two input signals which are going to save and

will be allowed any time at the output port. It will make an add operation and

save data in D Flip-Flop thus to access any time.

The Verilog design begins with the name 𝑚𝑜𝑑𝑢𝑙𝑒, after which the module

name is given. Next, they are I/O ports declarations which could be input, output

or bidirectional, beginning with 𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡 or 𝑖𝑛𝑜𝑢𝑡 keywords, respectively. In

Verilog when any variable or port are declared, it is also needed the width size of

the port or variable. For the example, the input ports have width two and the

output port has width three –the third MSB is the carryout bit–, and there is not

any port which is declared as bidirectional.

After the port’s declaration, internal variables or 𝑛𝑒𝑡𝑠 are declared. 𝑁𝑒𝑡 data

type represents physical interconnect between structures. And the variable data

type represents elements to store data temporarily. For this example, variables

are used to save data in D Flip-Flop.

module add_2bits (CLK, RST, A, B, ADD);

input CLK, RST;

input [1:0] A, B;

output [2:0] ADD;

...

endmoudle

Code 2-5: Ports declaration of the example module

Chapter 2: background

 M. FAHAD HASSAN 17

After the variable’s declaration, the hardware is described using different type

of structures. The complete Hardware description is shown in Code 2-7.

An 𝑎𝑙𝑤𝑎𝑦𝑠 assignment is used to create a synchronous system and inside the

statement, the process is executed sequentially. The process is executed when

the clock signal has a rising edge (𝑝𝑜𝑠𝑒𝑑𝑔𝑒).

𝐼𝑓 − 𝑒𝑙𝑠𝑒 statements are used to initiate variables with reset. Because the

reset is Active-Low the not operation is made using “!” symbol.

“{ }” symbol is used to concatenate two variables. In the example this is used

to create input signals of width three thus not to have width problems. After

adding, the result is assigned to the output port.

module add_2bits (CLK, RST, A, B, ADD);

input CLK, RST;

input [1:0] A, B;

output [2:0] ADD;

reg [2:0] Add_aux;

endmoudle

Code 2-6: Variables declaration for the example design

 Development of an acoustic modem

18 M. FAHAD HASSAN

module add_2bits (CLK, RST, A, B, ADD);

input CLK, RST;

input [1:0] A, B;

output[2:0] ADD;

reg [2:0] Add_aux;

always @(posedge CLK) begin

 if (!RST) begin

 Add_aux <= 0;

 end

 else begin

 Add_aux <= {A,1'b0} + {B,1'b0};

 end

end

assign ADD = Add_aux;

endmoudle

Code 2-7: Complete hardware description of the adder

Chapter 3: Modem

 M. FAHAD HASSAN 19

3. MODEM

The modem is developed using a microcontroller and an Analogue to Digital

Converter.

The FPGA has an analogic port thus to obtain the analogue signal. The

sinusoidal signal of a specific frequency is generated using a wave generator to

emulate the input signal coming from AUV or node. This signal is converted using

the ADC to obtain digital signal.

This data is read by the microcontroller which is connected to ADC by AXI

Interconnect and GPIO. The microcontroller performs the Goertzel Algorithm to

detect the tone of the signal. When the input signal frequency corresponds to the

selected frequency for the Goertzel Algorithm, a significant value of power from

the Algorithm is received.

This power is compared with a setpoint value and in case this is higher than

the setpoint, an Enable signal is set. This signal allowed to generate a square

signal thus to emulate the Echo.

The modem consists of three parts:

- An ADC

- A Microcontroller

- Other parts for connection

In the following chapters, these parts are described with detail.

 Development of an acoustic modem

20 M. FAHAD HASSAN

This page intentionally left blank

Chapter 4: Analogue to digital converter (ADC)

 M. FAHAD HASSAN 21

4. ANALOGUE TO DIGITAL

CONVERTER (ADC)

This chapter described an Analogue-to-Digital Converter which is used in the

modem. As is mentioned, this part is used to convert external electric, analogue,

signal to digital signal.

The node device sends an acoustic wave to communicate with the animal,

modem. A medium stage consists of an acoustic sensor which converts an

acoustic wave into an electrical signal, known as the acoustic signal. The ADC

receives this analogue signal to convert it to digital.

The ADC block could be modelled in Vivado. The program Vivado has an IP

catalogue in which a lot of components are pre-designed as a block, knowing as

IP. This could be imported in a Diagram when a Block Design is created. All

connections of IP could be made external so to control or interact with the ADC

after creating the wrapper in Vivado in Verilog or VHDL language. Furthermore,

it could import more than one IP and interconnect in these in the same block

diagram.

In the following section, the main features of XADC are described because

the core could be modified from external, it is important to know the

characteristics of the XADC.

Figure 4-1 illustrates the block design of this device.

 Development of an acoustic modem

22 M. FAHAD HASSAN

4.1. ADC channels definition

The ADC has different pins for connection, which are used to configure ADC

or connect with external ports to get the analogue signal or send the digital. The

definition of these is described in this section.

4.1.1. Dynamic Reconfiguration Port bus (s_drp)

The DRP bus consists of: input address bus (daddr_in[6:0]), input enable

signal (den_in), data input bus (di_in[15:0]), output data bus (do_out[15:0]),

data ready signal (drdy_out) and write input enable (dwe_in).

The address bus is an input bus and indicates the address to access up to

128 registers (daddr_in[6:0] = 00h to 7Fh). Data input bus is used to save data

in these registers. Before saving this data, the write enable signal has to be logic-

High. Data ready signal goes logic-High when the data are written successfully in

the register.

The input-enable signal has to be High to set an address or the write-enable

signal. It should also be a logic-High to set data in the output bus. The bus has

16-bit width but only the 12 MSBs are the useful converted data.

Figure 4-1: XADC Wizard IP

Chapter 4: Analogue to digital converter (ADC)

 M. FAHAD HASSAN 23

4.1.2. Dedicated analogue input (Vp_Vn)

This port is used to get analogue signals. It is formed by two channels: 𝑉𝑃

and 𝑉𝑁. 𝑉𝑃 (vp_in) is a positive input terminal of the dedicated differential

analogue channel and 𝑉𝑁 (vn_in) is the negative input terminal of the dedicated

differential analogue channel. These pins should be connected to GND when they

are not using.

4.1.3. Auxiliary analogue inputs

These are multi-function pins that could support an analogue or a digital

input-output (I/O). These pins support sixteen pares of analogue inputs, auxiliary

positive analogue input (𝑉𝐴𝑈𝑋𝑃) and auxiliary negative analogue input (𝑉𝐴𝑈𝑋𝑁). The

analogue input channels support multiple analogue input signal types. These pins

could be used as digital I/O when not being used as analogue inputs.

Other core channels are described in Table A-1.

4.2. ADC registers

 All registers in the register interface are accessible through the dynamic

reconfiguration port (DRP). The DRP allows accessing up to 128 registers with 16

bits width.

The first 64 address locations (𝑑𝑎𝑑𝑑𝑟_𝑖𝑛[6: 0] = 00ℎ 𝑡𝑜 3𝐹ℎ) contain the read-

only status registers, and they are known as status registers. These registers

contain the result of analogue to digital conversion of the channels. The next 64

registers (𝑑𝑎𝑑𝑑𝑟𝑖𝑛[6:0] = 40ℎ 𝑡𝑜 7𝐹ℎ) are control registers and are readable or

writeable through the DRP. In Figure 4-2 are shown these registers.

 Development of an acoustic modem

24 M. FAHAD HASSAN

4.2.1. Status registers

The first 64 address locations contain the result of an Analogue-to-Digital

conversion of on-chip sensors and external analogue channels. All sensors and

external analogue input channels have a unique channel address. The

measurement result from each channel is stored in a status register.

The status registers also store the maximum and minimum measurements

recorded for the on-chip sensors since the device power-up or since the last user

reset of the ADC. Table A-2 defines the status registers.

4.2.1.1. Flag register

The 16-bits flag register is accessed by address 𝐴𝐷𝐷𝑅[6: 0] = 3𝐹ℎ. It is

consisted of:

The bus 𝐴𝐿𝑀[6: 0] reflect the status of the alarm output 𝐴𝐿𝑀[6:0].

Figure 4-2: XADC registers (status and control registers).

Extract from [32].

Figure 4-3: Flag register (Address = 𝟑𝑭𝒉)

Chapter 4: Analogue to digital converter (ADC)

 M. FAHAD HASSAN 25

The OT signal reflects the status of over temperature logic.

The REF signal indicates whether the ADC is using the internal voltage

reference (logic-High) or the external reference (logic-Low).

The signals JTGR and JTGD are not important for this thesis so they are not

described with details. However, when JTGR is logic 1, indicates that JTAG_XADC

bitstream option has been used to restrict JTAG access to read-only. And when

JTGD is logic 1 indicates that the JTAG_XADC bitstream option has been used to

disable all JTAG access.

4.2.1.2. XADC calibration modes

The XADC can digitally calibrate out any offset and gain errors by connecting

known voltages (𝑉𝑅𝐸𝐹𝑃 and 𝑉𝑅𝐸𝐹𝑁). These calibration coefficients are

stored in status registers 08ℎ to 0𝐴ℎ for ADC A and 30ℎ to 32ℎ for

ADC B (see Table A-2). This mode is used by enabling the calibration

bits (𝐶𝐴𝐿0 𝑡𝑜 𝐶𝐿𝐴3) in configuration register 1 (41ℎ) (see Table A-8).

The XADC default operating mode automatically uses calibration by

initialising a conversion on channel 8 (08ℎ). During the calibration mode BUSY

signal transitions High. This calibration sequence is four times longer than a

regular conversion as offset and gain are measure for both ADCs and the power

supply sensor.

4.2.1.3. XADC calibration coefficients definitions

As mentioned previously, the offset and gain calibration coefficients are

stored in the status registers. These are read-only-registers, and it is not possible

to modify the contents through the DRP. See Figure 4-4.

Figure 4-4: Calibration bits in status registers

 Development of an acoustic modem

26 M. FAHAD HASSAN

Note: the unreferenced LSBs can be used to minimize quantization effects or improve resolution

through averaging or filtering.

The offset calibration registers store the offset correction factor. The offset

correction factor is a 12-bit, two’s complements number and is expressed in LSBs.

The ADC gain calibration coefficient stores the correction factor for any gain

error in the ADCs. The correction factor is stored in the seven LSBs (SIG and

MAG[5:0]) of register and these stores both sign and magnitude. If the seventh

bit is a logic-High, the correction factor is positive. If it is logic-Low, the correction

factor is negative. The next six bits indicate the gain correction factor. Each bit is

equivalent to 0.1% so, the calibration can correct errors in the range of ±6.3 %.

4.2.2. Control registers

The XADC has 32 control registers that are located addresses 40ℎ to 5𝐹ℎ.

These registers are used to configure the XADC operation. The XADC can be

configured to start in a predefined mode after FPGA configuration.

Table 4-1: XADC Control registres

Name Address Description

Configuration

registers 0 to 2
40ℎ to 42ℎ

These are XADC configuration registers

(see Configuration registers)

Test registers 0 to

4
43ℎ to 47ℎ

These are test registers. The default

initialization is 0000ℎ. These registers are

used for factory test and should be left at

the default initialization.

Sequence

registers
48ℎ to 4𝐹ℎ

These registers are used to program the

channel sequencer function (see

Operating Modes).

Alarm registers 50ℎ to 5𝐹ℎ
These are the alarm threshold registers

for the XADC alarm function.

Chapter 4: Analogue to digital converter (ADC)

 M. FAHAD HASSAN 27

4.2.2.1. Configuration registers

The first three registers (address 40ℎ to 42ℎ) in the control register block, are

known as XADC configuration registers. The configuration could be modified

through the DRP after the FPGA has been configured, for example using a state

machine.

These configuration registers (40ℎ, 41ℎ and 42ℎ) are defined in Table A-3,

Table A-4 and Table A-5, respectively.

4.3. Transfer Functions

The ADCs have transfer functions which could be operating in unipolar or

bipolar modes. All on-chip sensors use the unipolar mode of operating for the

ADC.

The data received after the conversion is shown in figure… The ADC always

produce a 16-bit conversion result. The 12 MSBs in the 16-bit status registers.

The unreferenced LSBs can be used to minimize quantization effects or improve

resolution through averaging of filtering.

4.3.1. Unipolar mode

In this mode, the nominal analogue input range to the ADCs is 0 V to 1 V.

The ADC produces a zero code (000h) when 0 V is present on the ADC input and

a full-scale code (𝐹𝐹𝐹ℎ) when 1 V is present on the input.

The ADC output coding in unipolar mode is straight binary. The LSB size in

volts is equal to
1𝑉

212
= 244 𝜇𝑉. The analogue input channels are differential in nature

and require both the positive (𝑉𝑝) and negative (𝑉𝑁) inputs of the differential input

to be driven.

Figure 4-5: Status registers DADDR[6:0] = 00h to 07h & 10h to 2Fh

 Development of an acoustic modem

28 M. FAHAD HASSAN

4.3.2. Bipolar mode

It is useful to have both magnitude and sign information about the signal

when dealing with differential signal types. The output coding of the ADC in

bipolar mode is two’s complement and the sign is indicated 𝑉𝑃 relative to 𝑉𝑁. In

the differential analogue input (𝑉𝑃 − 𝑉𝑁) can have a maximum input range of

±0.5 𝑉. The LSB size in volts is equal to 1𝑉/212 = 244 𝜇𝑉.

Figure 4-6: Unipolar transfer function

Figure 4-7: Bipolar transfer function

Chapter 4: Analogue to digital converter (ADC)

 M. FAHAD HASSAN 29

4.3.3. Temperature sensor

The XADC contains a temperature sensor that produces a voltage output

proportional to the die temperature. The output voltage of the temperature

sensor is shown in the next Equation

𝑉 = 10 · ln(10) ·
𝑘 · 𝑇

𝑞

Where:

V = voltage in volts

k = Boltzmann’s constant = 1.38 · 10−23 𝐽/𝐾

T = Temperature in Kelvin (ºC + 273.15)

q = Charge on an electron = 1.6 · 10−19 𝐶

the temperature sensor plus the ADC transfer function is rewritten as shown

in next equation:

𝑇 (℃) =
𝐴𝐷𝐶𝑐𝑜𝑑𝑒 · 503.97

4096
− 273.15

The LSB in degree centigrade is equal to 0.123 ºC.

Figure 4-8: Temperature transfer function

 Development of an acoustic modem

30 M. FAHAD HASSAN

4.3.4. Power supply sensor

The XADC also includes on-chip sensors that allow a user to monitor the FPGA

power-supply voltage using the ADC. The sensor sample and attenuate (by a

factor of three) the power supply voltages 𝑉𝐶𝐶𝐼𝑁𝑇, 𝑉𝐶𝐶𝐴𝑈𝑋 and 𝑉𝐶𝐶𝐵𝑅𝐴𝑀.

The power supply sensor could be used to measure voltages in the range 0

V to 𝑉𝐶𝐶𝐴𝑈𝑋 + 5% with a resolution of approximately 0.73 mV. The transfer

function for the supply sensor is shown in equation… and is visualized in figure…

𝑉 (𝑉) =
𝐴𝐷𝐶𝑐𝑜𝑑𝑒

212 · 3 𝑉

4.4. Operating Modes

The XADC includes several operating modes. The most basic mode of

operation is called default mode, where the XADC monitors all on-chip sensors

and requires no configuration. In the simultaneous sampling mode, the sequencer

is used to operate both ADCs in lock step to sample two external analogue inputs

and store results in the status registers.

Figure 4-9: Ideal power supply transfer

function

Chapter 4: Analogue to digital converter (ADC)

 M. FAHAD HASSAN 31

4.4.1. Single channel mode

In this mode, an analogue-to-digital conversion channel is selected by writing

to bit locations 𝐶𝐻[4: 0] in control register 40h. See Table A-3 so how to select

this mode.

The configuration of analogue input mode (𝐵𝑈) and settling time (ACQ) also

be set by writing to control register 40ℎ.

4.4.2. Automatic channel sequencer

The automatic channel sequencer sets up a range of predefined operating

modes. The sequencer automatically selects the next channel for conversion, sets

the averaging, configures the analogue input channels, sets the required setting

time for acquisition, and stores the results in the status registers. To select

sequencer mode, see Table A-9.

This mode needs several configuration registers to set.

4.4.2.1. ADC channel selection registers

The ADC channel selection registers enable and disable a channel in the

automatic channel sequencer. The bits for these registers are defined in Table

A-12 and Table A-13. A logic 1 enables a channel in the sequence. It consists of

one pair of 16-bit registers (48ℎ and 49ℎ).

4.4.2.2. ADC channel averaging

Averaging could be selected independently for each channel in the sequence.

It consists of one pair of 16-bit registers (4𝐴ℎ and 4𝐵ℎ). These registers also have

the same bit assignments as the channel sequence registers listed in Table A-12

and Table A-13.

When averaging is enables for some of the channels of the sequence, the

EOS is only pulsed after the sequence has completed the amount of averaging

selected by using 𝐴𝑉𝐺[1: 0] bits (see Table A-7). If a channel in the sequence does

not have averaging enabled, its status register is updated for every pass through

 Development of an acoustic modem

32 M. FAHAD HASSAN

the sequencer. When a channel has averaging enabled, its status register is only

updated after the averaging is complete.

4.4.2.3. ADC channel analogue-input mode

These registers are used to configure an ADC channel as either unipolar or

bipolar in the automatic sequence. It consists of one pair of 16-bit registers (4𝐶ℎ

and 4𝐷ℎ). These registers also have the same bit assignments as the channel

sequence registers listed in Table A-12 and Table A-13. However, only external

analogue input channels, such as the dedicated input channels (𝑉𝑃 and 𝑉𝑁) and

the auxiliary analogue input (VAUXP[15:0] and VAUXN[15:0]) could be

configured in this way.

4.4.2.4. ADC channel setting time

The default setting time for an external channel in continuous sampling mode

is four ADCCLK cycles. The settling time is additional acquisition time after the

end of a conversion. However, by setting the corresponding bits (for external

channels) to logic 1 in registers 4𝐸ℎ and 4𝐹ℎ, the associated channel could have

its settling time extended to 10 ADCCLK cycles. The bit definition (which bits

correspond to which external channels) for these registers are the same as the

sequencer channel selection shown in Table A-12 and Table A-13.

4.4.3. External multiplexer mode

The XADC allows an output bus called MUXADDR[4:0] (up to 16 external

signals) to control an external multiplexor. The address on this bus reflects the

channel currently being acquired.

The external multiplexor is useful where FPGA I/O resources are limited, and

auxiliary analogue inputs are not available. The dedicated analogue inputs (𝑉𝑃/𝑉𝑁)

or internal auxiliary inputs (𝑉𝐴𝑈𝑋 [15: 0]) are used to connect the external

multiplexer to the XADC block. Two external multiplexers are used to support

simultaneous sampling.

Chapter 4: Analogue to digital converter (ADC)

 M. FAHAD HASSAN 33

The MUX bit is set to 1 to select this mode. The channel selection bits

(𝐶𝐻[4: 0]) in 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟 0 are used to nominate the channel for

connection to the external multiplexor.

4.5. Timing

All XADC timing is synchronized to the DRP clock (DCLK). The ADCCLK

generated by dividing DCLK by the user selection in the configuration register

(see Table 4-1).

The ADC operates either in continuous sampling mode or event sampling

mode. The operating mode is selected by writing to configuration register 0 (see

Table A-3).

4.5.1. Continuous sampling

In continuous sampling mode, the ADC automatically starts a new conversion

at the end of the current conversion cycle. The analogue-to-digital conversion

process is made up of two parts, the acquisition phase and the conversion phase.

4.5.1.1. Acquisition phase

The acquisition phase involves charging a capacitor in the ADC to the voltage

on the selected channel. The time required to charge this capacitor depends on

the selected input-channel source impedance. A settling period of four ADCCLK

cycles is left between the end of the current conversion and the start of the next

conversion.

Figure 4-10: Continuous sampling mode. Extract from [32].

 Development of an acoustic modem

34 M. FAHAD HASSAN

In single channel mode, the 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 0 has to be written to select

the next channel for conversion.

4.5.1.2. Conversion phase

The conversion phase starts at the end of the 4 or 10 ADCCLK cycles settling

time and it takes 22 ADCCLK. The BUSY signal transitions to an active-High to

indicate the ADC is carrying out a conversion. 16 DCLK cycles after BUSY goes

Low, EOC pulses High for one DCLK cycles.

EOS indicates the end of the sequence, which depends on the automatic

channel sequencer settings and averaging settings.

4.5.2. Event sampling mode

In event sampling mode next conversion is initiated using a trigger input

signal called CONVST. A rising edge on CONVST defines the exact sampling

instant for the selected analogue-input channel. The BUSY signal transition High

just after the sampling instant on the next rising edge of DCLK.

As with the continuous sampling mode, enough time must be allowed

between a channel change and the sampling edge (rising edge of CONVST). A

settling period of four ADCCLK cycles is recommended between the end of the

current conversion (BUSY going logic-Low) and the start of the next conversion.

16 DCLK cycles after Busy goes Low, EOC pulses High for one DCLK.

Chapter 4: Analogue to digital converter (ADC)

 M. FAHAD HASSAN 35

It is not possible to interrupt the conversion or start a new conversion until

BUSY goes Low after a conversion has been initiated by CONVST.

4.5.3. Dynamic reconfiguration Port Timing

The DRP address (DADDR) and write enable (DWE) inputs are captured when

the DRP enables is logic High (DEN).

When DRDY goes High, the data for this read operation is valid on the DO

bus. DWE signal has to be logic Low. For a write operation, the DWE signal is

logic High and the DI bus and DRP address (DADDR) is captured. The DRDY signal

goes logic High when the data has been successfully written to the DRP registers.

A ness read or write operation cannot be initiated until the DRDY signal has gone

logic-Low.

Figure 4-11: Event sampling mode. Extract from [32].

 Development of an acoustic modem

36 M. FAHAD HASSAN

Figure 4-12: DRP timing. Extract from [32].

Chapter 5: ARM Cortex-M3

 M. FAHAD HASSAN 37

5. ARM CORTEX-M3

ARM processors address many different market segments including

enterprise application, automotive systems, home networking and wireless

technologies. The ARM Cortex family of processors provided a standard

architecture to address the board performance.

The ARM Cortex family includes processors based on the three distinct

profiles; the A profile for sophisticated and complex operating systems; the R

profile for real-time systems; and the M profile optimized for cost-sensitive and

microcontroller applications.

The ARM Developer has different Cortex-M microcontrollers without a licence

to develop in FPGA. The most common microcontroller is based on Cortex M0,

known as Cortex M1. This microcontroller supports all FPGA functionalities and

with the facility to edit using Hardware Description Languages.

Nevertheless, for this thesis, a Cortex-M3 microcontroller is used because of

their easy connections with Vivado components through AXI-3 bus. Furthermore,

the Cortex-M3 does not need extra third-party components to function properly

because it is packed as a Vivado IP.

This core is also available by ARM Developer to implement in FPGA however

it is developed for Arty A7 Xilinx board and has an example Hardware and

Software program. Hence a lot of time is dedicated to this part; first to

understand the example and adapt for Nexys 4DDR board, and then to develop

the modem in this board.

5.1. Introduction

The ARM Cortex-M processors are high performance, low cost, low power, 32-

bit RISC processors, designed for microcontroller applications [4]. The Cortex M

processors are based on the ARMv7-M architecture. This architecture includes

 Development of an acoustic modem

38 M. FAHAD HASSAN

efficient 3-stage pipeline instructions and low-latency Interrupt Service Routine

(ISR) entry and exit.

Cortex M3 also includes hardware divide and Multiply-Accumulate (MAC)

operations, a Nested Vectored Interrupt Controller (NVIC), an optional memory

protection Unit (MPU), Timer, Debug Access Port (DAP) and optional Embedded

Trace Macrocell (ETM).

The Cortex M3 processor is used for different applications such as

microcontrollers, industrial control, in mobile phones (as secondary core), in an

FPGA (as softcore), and other applications.

5.2. FPGA edition

The Cortex M3 is adapted to implement in FPGA with similar internal features.

The core includes a Nested Vectored Interrupt Controller which support up to 240

interrupts, the priority of each of them could be changed dynamically.

It supports configurable embedded debug support, ITCM alias support and

Serial Wire (SW), JTAG, or combined SWJ-DP debug port. An AHB to AXI bridge

is integrated to make possible the communication with GPIOs or other external

Vivado components.

The core allows by their pins (see Table A-14) the following optional features:

- Embedded Trace Macrocell (ETM)

- Data Watchpoint and Trace (DWT)

- Instrumentation Trace Macrocell (ITM) coupled with Trace Port Interface

Unit (TPIU)

- Memory Protection Unit (MPU)

- AHB access through Serial-Wire or JTAG Debug Port

- Flash Patch Breakpoint (FPB)

There are two Tightly Coupled Memory (TCM), for code and data, which are

configurable in size. The Instruction Tightly Coupled Memory (ITCM) can be

configured at run time to be aliased to either or both of 0x00000000 and

Chapter 5: ARM Cortex-M3

 M. FAHAD HASSAN 39

0x10000000. The Data Tightly Coupled Memory (DTCM) is at a fixed location of

0x20000000. The size of ITCM and DTCM could be chosen, each of them, from 8

kB to 1 GB with multiple of 8.

The instruction code and data code AHB interfaces from the processor are

combined internally. Any access from either of these buses which does not match

an active ITCM alias is presented on the external instruction AXI interface. The

system AHB interface from the processor is used to access the DTCM. Any access

which is not within the range of the configured DTCM size is presented on the

system AXI interface.

The ITCM and DTCM connection is shown in Figure 5-1.

5.3. Core features

As is mentioned, the core has features which could be accessible by their

ports. It is interesting to know the functionality of these features.

Figure 5-1: Internal memory processing multiplexor.

Extract from [14].

 Development of an acoustic modem

40 M. FAHAD HASSAN

5.3.1. Nested Vectored Interrupt Controller (NVIC)

NVIC can support up to 240 external interrupts with 256 levels of priority

which can be changed dynamically. The ARMv7-M architecture supports level-

sensitive and pulse-sensitive interrupt behaviour.

NVIC can be enabled or disabled by writing to their corresponding Interrupt

Set-Enable or Interrupt Clear-Enable register bit field. A function is used in this

thesis to enable and disable the interrupts. When an interrupt is disabled,

interrupt assertion causes the interrupt to become pending, but it cannot become

active. In this case, it remains active until this is cleared by a reset or an

exception return.

The software can set or remove the pending state of NVIC interrupts using

registers, the Set Pending Register and Clear-Pending Register. Two functions are

used to Set-Pending interrupt and Clear-Pending Register, which accesses to Set

pending Register and Clear-Pending Register to write-one to enable and write-

zero to disable.

5.3.2. The system timer (SysTick)

The core includes a system timer, SysTick which provide a 24-bit clear-on-

write, decrementing counter with the flexible control mechanism. The timer could

be used

- As an RTOS tick timer, that fire at a programmable rate and invokes a

SysTick routine each time is fire.

- As a high-speed alarm timer.

- As a variable rate signal timer.

- As a simple counter. The software can use this to measure time to

completion and time used.

- As an internal clock source control base on missing or meeting duration.

The timer consists of four registers:

Chapter 5: ARM Cortex-M3

 M. FAHAD HASSAN 41

- A control and status register, which is used to configures the SysTick

clock, enable the counter, enable the SysTick interrupt, and indicates the

counter status.

- A counter reloads value register.

- A counter current value register.

- A calibration value register, which indicates the preload value required for

a 10 ms (100 Hz) system clock.

The STCLK input is a reference input for the SysTick counter which has to be

less than half the frequency of HCLK. STCLK is synchronized internally by the

processor to HCLK.

5.3.3. Non-maskable Interrupt (NMI)

The Non-Maskable Interrupt is a hardware interrupt which cannot be ignored

by the system. It is used for signal attention of non-recoverable hardware errors,

system debugging and handling of special cases such as system resets.

Programmers debugging NMIs to diagnose and fix the faulty code.

When an exception occurs, normal program flow is interrupted and execution

is resumed at the corresponding exception vector. The exception vector contains

the first instruction of the interrupt service routine to deal with the exception.

NMI cannot be disabled by NVIC and also the prioritization does not affect

this signal because it has a higher priority than external interrupts.

5.3.4. Serial Wire JTAG Debug Port (SWJ-DP)

The processor contains an Advanced High-performance Bus Access Port

(AHB-AP) interface for debus accesses. The Cortex M3 system supports two

possible Debug Port implementations:

- The JTAG Debug Port (JTAG-DP) which is standard debug port. It is

designed to permit pin sharing of JTAG-TDO and JTAG-TDI when they are

not being used for JTAG debug access.

 Development of an acoustic modem

42 M. FAHAD HASSAN

- The Serial Wire Debug Port (SW-DP) which provide a two-pin (clock and

data) interface to the AHB-AP port.

These two DP implementations provide different mechanisms for debug

access to the processor.

FPGA pins are required for all output, with the exception of the SWDO,

SWDOEN, and SWDITMS, to use package pins efficiently, serial wire shares, or

overlays, the JTAG pings. It also uses an autodetect mechanism which switches

between JTAG-DP and SW-DP based on SWDIOTMS signal. The external

connection of the SWJ-DP is shown in Figure 5-2.

5.3.5. External debug request

When the processor is in the non-Debus state, an external agent can signal

an external debug request, asserting EDBGRQ, which can cause a debug event

(either entry to Debug stat or a debug Monitor Exception).

The processor ignores external debug requests when it is in Debug state.

5.3.6. External restart request

When the processor is in debus stat, an external agent can ask an External

Restart request which causes the processor to exit Debug state. The processor

ignores external restart requests when it is in Non-Debug state.

Figure 5-2: SWJ-DP external connection. Extract from.

Extract from [17]

Chapter 5: ARM Cortex-M3

 M. FAHAD HASSAN 43

When DBGRESTART is asserted, it has to be held High until DBGRESTARTED

is deserted. DBGRESTART is ignored unless HALTED and DBGRESTARTED are

asserted.

In the process of leaving Debug state, the processor sets the HALTED signal

to logic-Low.

5.3.7. The boundary scan chain

A boundary scan chain is made up of serially-connected device which

implements a boundary scan technology using a standard JTAG TAP interface.

The core contains at least one TAP controller containing shift registers which from

chain connected between TDI and TDO.

Test Data Input (TDI) is an input line to allow the test instruction and test

data to be loaded into the instruction register and the various test data registers,

respectively. The Test Data Output (TDO) is an output line used to serially output

the data from the JTAG registers to the equipment controlling the test.

5.3.8. Bit-banding

The processor memory map includes two bit-band regions. These occupy the

lowest 1 MB of the SRAM and Peripheral memory regions respectively. These bit-

band regions map each word in an alias region of memory to a bit in a bit-band

region of memory.

A mapping formula shows how to reference each word in the alias region to

a corresponding bit, or target bit, in the bit-band region. The mapping formula

is:

𝑏𝑖𝑡_𝑤𝑜𝑟𝑑_𝑜𝑓𝑓𝑠𝑒𝑡 – (𝑏𝑦𝑡𝑒_𝑜𝑓𝑓𝑠𝑒𝑡 𝑥 32) + (𝑏𝑖𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 𝑥 4)

𝑏𝑖𝑡_𝑤𝑜𝑟𝑑_𝑎𝑑𝑑𝑟 – 𝑏𝑖𝑡_𝑏𝑎𝑛𝑑_𝑏𝑎𝑠𝑒 + 𝑏𝑖𝑡_𝑤𝑜𝑟𝑑_𝑜𝑓𝑓𝑠𝑒𝑡

where

- Bit_word_offset is the position of the target bit in the bit-band memory

region.

 Development of an acoustic modem

44 M. FAHAD HASSAN

- Bit_word_addr is the address the word in the alias memory region which

maps to the targeted bit.

- Bit_band_base is the starting address of the alias region.

- Byte_offset is the number of the byte in the bit-band region which

contains the targeted bit.

- Bit_number is the bit position (0-7) of the targeted bit.

5.4. Memory map

The Cortex-M3 has up to 4 GB memory access. The memory map is shown

in Figure 5-3.

Figure 5-3: Cortex M3 processor memory map

Chapter 5: ARM Cortex-M3

 M. FAHAD HASSAN 45

In the following table, the processor which are addressed by the different

memory map regions is described.

Table 5-1: Memory Interface

Memory Map Interface

Code
Instruction fetched are performed over the ICode bus. Data

access are performed over DCode bus.

SRAM
Instruction fetches and data accesses are performed over the

system bus.

SRAM_bitband
Alias region. Data accesses are aliases. Instruction accesses

are not aliases.

Peripheral
Instruction fetches and data accesses are performed over the

system bus.

Periph_bitband Alias region.

External RAM
Instruction fetches and data accesses are performed over the

system bus.

External

Device

Instruction fetches and data accesses are performed over the

system bus.

Private

Peripheral Bus

Accesses to:

- System areas of the PPB memory map

- Flashpatch and Breakpoint (FPB)

- Data Watchpoint and Trace (DWT)

- Instrumentation Trace Macrocell (ITM)

- Nested Vectored Interrupt Controller (NVIC)

- Memory Protection Unit (MPU)

- External Private Peripheral Bus

- Embedded Trace Macrocell (ETM)

- TracePoint Interface Unit (TPIU)

 Development of an acoustic modem

46 M. FAHAD HASSAN

System

System segment for vendor system peripherals. This

memory region is Execute Never (XN), and thus instruction

fetches are prohibited.

5.5. Cortex M3 configuration

The Cortex M3 core is a version of Cortex-M3 r2p1 processor with

debugging and two BP136 AHB to AXI Bridges r0p1 pre-integrated. This section

describes the core configuration windows.

5.5.1. Configuration window

This tab includes the basic configuration of the core.

It describes the vector of interrupts the length of this vector is automatically

calculated depending on the input interrupt numbers, IRQ input bus. Hence the

value of this vector cannot be set directly. The block diagram is validated thus to

update the width of the IRQ bus.

The IRQ Priority level width determines the number of IRQ priority level which

is equal to 2Priority level Width. The range is between 3 to 8 bits, with default value 3

which means 8 levels of priority.

When the MPU present is set, the Memory Protection Unit in the core is

enabled.

With WIC present the Wake-up Interrupt Controller is enabled in the Cortex

M3. And WIC Lines determine the number of internal priority lines used for the

WIC, which only be changed if the WIC present is enabled.

Bit-banding present enables bit-banding in the Cortex-M3 core, see 5.3.8.

Bit-banding for more information.

Chapter 5: ARM Cortex-M3

 M. FAHAD HASSAN 47

5.5.2. Debug window

Debug level enables to set the level of debug supported. Different debug

levels can be selected from zero to three; where 0 is no debugging, 1 select two

breakpoints and one watchpoint, 2 is full debug except DWT, and 3 is full debug

including DWT.

Trace level enables to set the level of debug trace which is supported from

no trace to full trace. If the Debug level is set to 0 (no debug), the Trace level is

automatically set to 0. In other cases, the Trace level has to be reset to the

required value.

JTAG present enables Cortex-M3 JTAG-debug pins, by default Serial Wire

(SW) interface is used.

5.5.3. Instruction and data memory window

ITCM or DTCM size select the size of Instruction Tightly Coupled Memory or

Data Tightly Coupled Memory, respectively. These memories can have range 8

KB to 1 MB.

To select instruction memory, Initialize ITCM is enabled and then the filename

is specified. The same procedure is done to select data memory –enable the

Initialize DTCM, and specified the filename– but in data memory window.

The filename cannot have quote marks around it and the filename has to be

added into the design and marked as a memory initialization file.

Caution. Vivado reads the memory file during synthesis. That is to say, any

modification in memory will not be updated after the synthesis has been

completed. Hence it is needed to rerun the synthesis, and generate the bitstream

file again.

5.6. Program

This section describes the microcontroller program file using Keil uVision. Keil

uVision is a program dedicated to generate program files for microcontrollers.

This program is used to generate file .hex to run the Cortex M3.

 Development of an acoustic modem

48 M. FAHAD HASSAN

The example program has included also a software example in Keil uVision

with an example application. These files have been studied because some files

are common files which do not depend on the application, such as core_cm3.

To generate the software file, the next steps are followed:

- After the hardware design is completed, the standalone BSP files are

generated using SDK program, which is included in Vivado. This program

generates from Hardware Description File the BSP files to include in Keil

project. This way the hardware design is included software files to interact

with Hardware design by the program.

- The program is developed in Keil using C language. The main part of this

program is the Goertzel Algorithm to detect the input signal (see 5.6.1.

Goertzel Algorithm).

- When the program is finished, it is compiled to generate .hex files.

- Finally, the synthesis is rerun to include in bitstream the new hex file.

5.6.1. Goertzel Algorithm

The Goertzel Algorithm is used to detect a specific predeterminate frequency.

The algorithm can be used for tone detection and use less CPU than the Fast

Fourier Transform. It gives real and imaginary frequency components as a

Discrete Fourier Transform (DFT) or Fast Fourier Transform (FFT). This algorithm

only can detect the tone when the input signal corresponds to a sinusoidal. For

another sort of signal, this algorithm is not useful.

The number of samples and sampling rate has to know previously to calculate

the algorithm parameters. Furthermore, it needs n number of samples to obtain

the frequency components. This could be a problem because the number of

samples has to be stored in RAM.

However, the algorithm is modified to work real-time thus not to save data

in memory which could take time and power of microcontroller. Hence, when the

sample data is obtained, an output signal goes logic-High thus not to obtain more

Chapter 5: ARM Cortex-M3

 M. FAHAD HASSAN 49

data until the algorithm has finished the calculation. After the calculation has

been done the signal return logic-Low again.

The algorithm is shown in Code D-11 and Code D-12.

 Development of an acoustic modem

50 M. FAHAD HASSAN

This page intentionally left blank

Chapter 6: IP used in block design

 M. FAHAD HASSAN 51

6. IP USED IN BLOCK DESIGN

To develop the design there have been used some other Vivado IPs. These

IPs are necessary thus to interconnect the main blocks.

6.1.1. AXI Interconnect

This IP is used to interconnect one or more AXI memory-mapped master

device to one or more AXI memory-mapped slave device. AXI Interconnect core

can be configured to perform one of the following general connectivity patterns:

- N-to-1 Interconnect: in this configuration mode multiple master devices

access to the single slave device.

- 1-to-N Interconnect: in this configuration mode only one master device

access to multiple slave devices.

- N-to-M interconnect: in this configuration mode multiple master devices

access to multiple slave devices.

A slave device is a target of an AXI transfer which receives in-bound AXI

transactions and a master device is a source of an AXI transfer which generates

out-bound AXI transactions.

The block diagram of AXI Interconnect is shown in Figure 6-1.

The definition of AXI Interconnect are divided into three tables: AXI

Interconnect Slave I/O pins, AXI Interconnect Master I/O pins, and AXI Global

signals; which are shown in Table A-15, Table A-16 and Table A-17, respectively.

 Development of an acoustic modem

52 M. FAHAD HASSAN

6.1.2. Utility

The AXI Interconnect IP is used to connect the Microcontroller to external

GPIOs. The Microcontroller is the only one which performs as master. But there

are four Slave devices which are: GPIO 0, GPIO1, GPIO 2 (see 6.2. AXI GPIO)

and Block RAM Controller (6.3. AXI BRAM Controller).

The AXI Interconnect is shown in Figure 6-2.

Figure 6-1: AXI Interconnect Block diagram. Extract from

[24]

Figure 6-2: AXI Interconnect IP

Chapter 6: IP used in block design

 M. FAHAD HASSAN 53

6.2. AXI GPIO

The General-Purpose Input Output (GPIO) can be configured as either a

single or dual-channel device, each of this could be configured input or output.

Channel one is always present. Channel two is enabled only if the core is

configured for dual channel.

The maximum GPIO width is thirty-two bits. When the channels are

configured as outputs, the default value could be selected.

The AXI GPIO also be configured to generate an interrupt when the Enable

Interrupt option is set. The interrupt is generated when a transition occurs in any

of their input.

The Block diagram of the GPIO is shown in Figure 6-3.

The port description is could observe in Table A-18.

Figure 6-3: AXI GPIO block diagram. Extract from

[23]

 Development of an acoustic modem

54 M. FAHAD HASSAN

6.2.1. Utility

The GPIOs are used to get data from output or send data to output. The AXI

GPIO IP is shown in Figure 6-4: AXI GPIO IPFigure 6-4.

Three GPIOs are used for different purposes which are explained below.

The AXI GPIO 2 is explained in 6.11. ADC diagram.

6.2.1.1. AXI GPIO 0

The GPIO 0 is used to interact with outside sending data coming from the

Microcontroller. This port sends the power of the signal obtained from the

Goertzel Algorithm.

The uses of this GPIO is 16-bits width output port. Therefore, there is no

need for an interrupt signal thus the Enable Interrupt is not selected. Only one

channel of this GPIO is used therefore the Enable Dual Channel also not selected.

The default value of the port is set to zero.

6.2.1.2. AXI GPIO 1

The GPIO 1 is used to get data from the button and send data to LED. These

two components are used to know if the Microcontroller is functioning. The

application consists of; when a button is pulsed, a LED is illuminated. This

Figure 6-4: AXI GPIO IP

Chapter 6: IP used in block design

 M. FAHAD HASSAN 55

application is developed in the Microcontroller thus to know the correct

functioning of Hardware and Software of Microcontroller.

In this version of thesis two push buttons and two RGB LEDs are used to do

this application. However, when this application is will implement in Silicon, the

application is worked using one push button and one LED, or will be removed.

The GPIO 1 uses two channels so Enable Dual Channel is set. The push button

signal is obtained from channel 2 and the signal is sent by channel 1 to illuminate

the LED.

The microcontroller does not pay attention to this GPIO unless it receives the

interrupt, which is generated by GPIO when the button is pushed.

6.3. AXI BRAM Controller

AXI BRAM Controller is designed to communicate the system master device

with local Block RAM. The core could be configured as a single port or both ports

to connect with the BRAM Block.

The AXI BRAM Controller IP could be configured with ECC functionality with

an available external ECC register set via second AXI port. The Error Correction

Codes (ECC) is used to mitigate the effect of BRAM single Event Upsets. ECC bits

are generated when writing to the block RAM and stored together with the written

data. The ECC bits are used to correct any single bit errors and detect any double

bit errors in the data when the block RAM is being read. You could read [6] for

more detail about this function.

Five-channel AXI interface is used to perform all communication with the AXI

master device. The write operation is initiated on the Write Address Channel (AW)

which specifies the type of write transaction and the information address. The

Write Data Channel (W) is used to communicate all write data. The Write

Response Channel (B) is used to respond to the operation.

The Read Address Channel (AR) communicates all address and control signals

on the master device request. The Read Data Channel show the data and status

of the operation when the read data is available to send.

 Development of an acoustic modem

56 M. FAHAD HASSAN

Figure 6-5 shows the Block Diagram of used Bram Controller.

The channels definition of AXI BRAM Controller IP is explained in Table A-19.

6.3.1. Utility

AXI BRAM Controller IP is used to communicate Memory Generator Block with

Microcontroller Cortex M3. This block is connected through AXI Interconnect and

communicate with this as Master device.

32-bits memory data is used which need 13-bits address. The AXI BRAM

Controller is configured as a single port with ECC disabled.

The AXI BRAM Controller is shown in Figure 6-6.

Figure 6-5: AXI BRAM Controller Block

Diagram. Extract from [6].

Figure 6-6: AXI BRAM Controller IP

Chapter 6: IP used in block design

 M. FAHAD HASSAN 57

6.4. Block Memory Generator

The Block Memory Generator core is a memory constructor which generates

optimized memories using block RAM resources in Xilinx FPGA.

The core has two fully independent ports each of them with write and read

interface. These four ports can be configured with individual width.

The Block Memory Generator supports both Native interface and AXI4

interfaces, which has industry-standards bus protocols.

6.4.1. Memory Core configurations

6.4.1.1. Memory types

The core can be configured to generate five types of memories:

- Single-port RAM: allows Read and Write access through a single port.

- Simple Dual-port RAM: Provides two ports, A and B. The port A is used

for Write access and port B used for Read access.

- True Dual-port RAM: provides two ports, A and B, each of them allows

Read and write access to the memory space.

- Single-port ROM: allows Read access to the memory space through a

single port.

- Dual-port ROM: allows Read access to the memory space through two

ports.

6.4.1.2. Connecting algorithms

Three different algorithms are available to connect block RAM primitives to

generate the core:

- Minimum Area Algorithm: The memory is generated using minimum

numbers of block RAM primitives. Figure 6-7 shows an example of this.

 Development of an acoustic modem

58 M. FAHAD HASSAN

- Low Power Algorithm: The memory is generated such that the minimum

number of block RAM primitives are available during a Read or Write

access. Figure 6-8 shows an example of this.

- Fixed Primitive Algorithm: The memory is generated using only one type

of Block RAM primitives. Figure 6-9 shows an example of this.

Figure 6-7: Examples of the Minimum

Area Algorithm. Extract from [25]

Figure 6-8: Examples of the Low

Power Algorithm. Extract from

[25]

Figure 6-9: Examples of the Fixed Primitive Algorithm.

Extract from [25].

Chapter 6: IP used in block design

 M. FAHAD HASSAN 59

6.4.1.3. Operating mode

Each port can be assigned one of the following operating modes:

- Write first: the input data is simultaneously written into memory and

driven on the data output.

- Read first: the previous write address data is stored on the data output,

while input data is being saved.

- No change mode: the output data is not changed during a Write operation.

6.4.1.4. Others configuration enables

- Selectable Port Aspect Ratio: The A port width could differ from port B by

the factor of 2n where n is between 0 to 5. The Read width could differ

from Write by the same factor. The maximum ratio between any two of

the data widths is 32:1.

- Optional Byte-Write Enable: The core provides byte-Write enable for

memory width which is multiple of eight bits or nine with parity. This

enable is used to select the specific byte or bytes from input data to save

in memory. The byte-Write enable bus is N bits width, where N is the

number of bytes in data input. The MSB bit of byte-Write Enable allows

the MSB byte of the input data.

- Core Output Register: the core provides two optional output registering

to increase memory performance, one for each port.

- Optional Enable Pin: the core provides an optional port enable pin (one

for each port) to control the memory operation.

- Optional Set/Reset Pin: the core provides optional set-reset pins (one for

each port).

- Hamming Error Correction Capability (ECC): The memory could

automatically detect single- and double-bit errors when the core type is

simple dual port RAM and the data width is greater than 64 bits.

The ports description is described in Table A-20.

 Development of an acoustic modem

60 M. FAHAD HASSAN

6.4.2. Utility

There is only one Block Memory Generator is used to extend Code part of

internal Microcontroller memory (see 5.4. Memory map). This Block Memory

Generator is used as RAM.

The Single Port RAM type of memory is used to create this core. This used

the Minimum Area algorithm to connect Block memory primitives. The core work

in Write First operating mode.

As is mentioned, Read and Write port have same width of 32-bits. The byte-

Write enable is set and it has 4-bit width because the input data is formed by 4

bytes (8-bit byte size). The port Enable pin also used to control the memory

operation. The Hamming Error Correction Capability single is disabled.

The Memory Core Generator is shown in Figure 6-10.

6.5. Processor System Reset

The Processor System Reset is a core used to handle the reset conditions of

the system. The core handle numerous reset conditions at the input and

generates appropriate reset at the output, which are based on input or internal

conditions.

The core receives some parameters to establish the output signals. The

External Reset Active Width and Aux Reset Active Width signals are used to

Figure 6-10: Block Memory Generator IP

Chapter 6: IP used in block design

 M. FAHAD HASSAN 61

determine the minimum width of the external and auxiliary reset signals with

respect to internal clock. The input reset signal has to be stay active for at least

the number of External Reset Active Width or Aux Reset Active Width before a

reset is initiated. External Reset Logic Level and Auxiliary Reset Active Level

signals are used to set active level of input resets.

External Reset Active Polarity and Auxiliary Reset Active Polarity is used to

set reset when external reset input or auxiliary reset input is active, respectively.

Bus Structure (Active-High) and Interconnect (Active-Low) are used to select

additional numbers of Bus Structure Reset and Interconnects. Peripherals

(Active-High and Active-Low) is used to select additional numbers of Peripherals

resets. The width of this signal complies to the same width requirement as for

External Reset Active Width.

The Ports description is shown in Table A-23.

6.5.1. Utility

There are two Processor System Reset used to create resets for

Microcontroller, Peripherals (GPIOs), AXI Interconnect and AXI BRAM Controller.

See Figure 6-15 Clocks and Resets diagram for more detail.

External Reset Logic Level and Aux Reset Logic Level are established active-

Low (binary 0). Only one width is selected for all external resets (Active Width of

signals).

The Processor System Reset IP is shown in Figure 6-11.

Figure 6-11: Processor System Reset IP

 Development of an acoustic modem

62 M. FAHAD HASSAN

6.6. Clocking Wizard

The Clocking Wizard core generates a clocking network matched to specific

requirements. The core helps to create the clocking circuit for the required output

frequency, phase and duty cycle. The core uses Mixed-Mode Clock Manager

(MMCM)(E2/E3) primitives, which is used to generate several clocks with different

frequencies but with dependency on input clock, or Phase-locked loop

(PLL)(E2/E3) primitives, which generates an output signal which phase is related

to the input signal phase.

The core can be configured to have two input clocks. The core uses input

clocks parameters to configure the output clock. The wizard allows specifying the

input clock jitter2 either in PS (picosecond peak-to-peak) or UI (one-bit time)

units.

The core has maximum output clocks numbers which depend upon the

selected device or primitives. The maximum number of clocks is seven for MMCM

(E2/E3), are six for PLLE2 and two for PLLE3. Seven maximum output clocks can

be configured if the primitives selected is Auto. The clocking wizard set and

configure the clocking primitives and network automatically receiving desired

input timing parameters (frequency, phase and duty cycle).

6.6.1. Clocking Options

In this section, they are described some features and configuration

parameters to create the Clocking Wizard. Some features may consume

additional resources, and some can result in increased power consumption.

Furthermore, certain combinations of features are not allowed.

2 Jitter is the unwanted variations of bits in a digital signal. Most of them are
caused by noise picked up from a phase-locked loop (PLL).

Chapter 6: IP used in block design

 M. FAHAD HASSAN 63

- Enable Clock Monitoring: This feature allowed to monitor the clocks in a

system. The Clock Monitor can detect the change in clock frequency, a

glitch3 in the clock or a stop clock.

- MMCM or PLL: this option is used to select either MMCM primitives or PLL

primitives.

- Frequency synthesis: this feature is enabled when output clocks

frequencies needed to be different active input-output clocks.

- Phase alignment: this feature allows the output clock to be phase locked

to the reference.

- Dynamic reconfiguration: this feature allows to programme the primitive

after the device is configured, through AXI4-Lite interface.

- Safe Clock Startup and Sequencing: this feature allows to generate stable

clock at the output using BUFGCF after Locked is sampled High for 8 input

clocks. The delay between two enabled output clocks in a sequence is 8

cycle of the second clock in the sequence clock.

- Minimize power: This feature minimizes the amount of power needed for

the primitives. This feature is not available when the Spread Spectrum

(SS) option is selected.

- Spread Spectrum (SS): This feature provides modulated output clocks

which reduces the spectral density of the electromagnetic interference

(EMI) generated by electronic devices. this feature is only available for

MMCM (E2/E3) primitives.

- Dynamic phase shift: This feature allows changing the phase relationship

on the output clocks. This feature is not available when the Spread

Spectrum (SS) option is selected.

- Balanced: this feature selects balanced results in the software choosing

the correct Bandwidth for jitter optimization.

3 Glitch is a transition that occurs on signal before the settlement of this to
intended value. In clock signal this can cause an asynchronous behaviour or
unstable data.

 Development of an acoustic modem

64 M. FAHAD HASSAN

- Minimize output Jitter: this feature minimizes the jitter on the output

clocks but consumes more power and may cause possible errors on the

phase. This feature is not available when Maximize input jitter filtering

option is chosen.

- Maximize input jitter filtering: This feature allows to filter larger input jitter

on the input. This feature is not allowed when Minimize output jitter option

is chosen.

The ports description is showed in Table A-24.

6.6.2. Utility

The clocking wizard is used to create the system clock. The input clock of

this Wizard is 100 MHz (Xilinx Nexys 4DDR board used a quartz crystal of 100

MHz) and the system clock has 50 MHz frequency.

In this case, controlling wizard is not relevant therefore Enable Clock

Monitoring is disabled. To create output clock MMCM primitives are used. Since

the output clock frequency is different from input clock frequency the Frequency

Synthesis option is enabled and Phase Assignment also enabled so to lock the

phase. Furthermore, Safe Clock Start-up is enabled.

The Balanced options are used to choose the correct Bandwidth of Jitter

Optimization.

In the Output Clock option, two output clocks are enabled, one as a system

clock and another auxiliary clock which could be used for other purposes. 50 MHz

is chosen as the frequency of both output clocks. Automatic Control On-Chip is

enabled to create source.

The MMCM/PLL option is locked so Wizard would choose automatically

these options; such as Bandwidth, RIVCLK1_PERIOD, REF_JITTER1, etcetera.

The Clocking Wizard is shown in Figure 6-12.

Chapter 6: IP used in block design

 M. FAHAD HASSAN 65

6.7. Utility Vector Logic

The Utility Vector Logic core is used to create logic functions. The core support

bitwise 𝐴𝑁𝐷, 𝑂𝑅, 𝑋𝑂𝑅 and 𝑁𝑂𝑇 functions. The core gets two input ports, except

for NOT operation in which case only one input is needed, and an output port.

The width of these ports has to be the same, and the minimum width has to be

one.

The Utility Vector Logic core is used to make AND, OR and NOT logic

operations. For more detail about the function of this core, see 6.11. ADC diagram

and 6.12. Clock and reset diagram.

6.8. Constant

The constant core used to drive a constant value in the output. The constant

value is could express in Decimal, binary (b at the beginning), octal (O at the

beginning) and hexadecimal (0x or 0X at the beginning). The core only has one

output port, which could have 4096 as maximum port width.

These constant cores are used to set different signals.

6.9. Concat

The Concat core is used a mechanism to combine bus signals of varying width

into a signal bus. The core allowed to select maximum 32 input ports, each of

them could have 4096-bits width. The output width is selected automatically with

inputs width.

Figure 6-12:Clocking Wizard IP

 Development of an acoustic modem

66 M. FAHAD HASSAN

The functionality of the Concat block diagram is shown in Figure 6-13.

6.10. Slice

The slice core is used to select some specific bits from the input bus. The core

allowed to select input width and from which width to which width wants to select

from input data.

6.11. ADC diagram

The function of this diagram is to connect the XADC Wizard with AXI GPIO

and generate the Echo signal when an enable is received. This diagram consists

of XADC Wizard, AXI GPIO, FF_D_T, Square Generator, Concat, Slices and Utility

Vector Logic.

The ADC diagram is shown in Figure 6-14.

6.11.1. AXI GPIO

The GPIO 2 is used to configure the ADC or obtain converted analogic data

from it.

Each channel of the GPIO is could be configured, by Microcontroller, as input

or output, because both ports, input and output, of each channel are connected

to even send data or receive data.

The channel one of GPIO is used to obtain or send control signals. When this

port sends data, the bus consists of; Square Generate signal Enable (𝑆𝐼𝐺𝑁𝐴𝐿𝑆[9])

Figure 6-13: Concat block diagram.

Extract from [27].

Chapter 6: IP used in block design

 M. FAHAD HASSAN 67

(see 6.11.4. Square Generator), the signal GOERTZ_STARTED signal

(SIGNALS[8]) (see 6.11.3. FF_D_T), write enable signal (𝑆𝐼𝐺𝑁𝐴𝐿𝑆[7]) and desired

ADC registers address (𝑆𝐼𝐺𝑁𝐴𝐿𝑆[6: 0]). Four slices are used to separate these

signals and, send to the corresponding block.

When the channel one of GPIO port is configured as input, it obtains different

signals from ADC. In this case, bus SIGNALS[9: 0] is formed by Data Enable signal

(𝑆𝐼𝐺𝑁𝐴𝐿𝑆[7]), BUSY signal (𝑆𝐼𝐺𝑁𝐴𝐿𝑆[6]) and Channel Out bus (𝑆𝐼𝐺𝑁𝐴𝐿𝑆[4: 0]) (see

4.1. ADC channels definition). Other bits are not used but they are necessary to

have the same width as input bus. These bits of SIGNALS are set to zero. One

concat element is used to combine this signal in one port. The connection of this

concat is shown in Figure 6-14.

The channel two of GPIO is used to receive and send data. When the channel

is configured as input, the GPIO receives data from FF_D_T block. In FF_D_T

block the converted data is saved (see 6.11.3. FF_D_T). Otherwise, this port

sends data, which have to be saved in ADC registers (see 4.2. ADC registers).

The width of this channel is 16 bits.

The interruption of the GPIO is enabled to obtain data when an acoustic signal

is received.

6.11.2. XADC Wizard

The XADC Wizard is the element which gets analogic input and is configured

to obtain digital data. (see 4.Analogue to digital converter (ADC)).

The core has enabled two input analogic channels, one of them is configured

to bipolar input. The ADC uses DRP interface and it works in continuous sampling

mode.

Input clock of ADC is same as the system clock (50 MHz) and configured to

obtain 80 kilo-Samples (KSPS). The reset of this core is active-High, but the

system reset is active-Low. Therefore, the Utility Vector Logic core is used to

covert active-Low to active-High. This core is configured to make a NOT logic

operation thus to reset the core properly.

Other ports connection are described in 6.11.1 AXI GPIO.

 Development of an acoustic modem

68 M. FAHAD HASSAN

The connection of this core is shown in Figure 6-14. Alarm outputs ports

(𝑢𝑠𝑒𝑟_𝑡𝑒𝑚𝑝𝑒_𝑎𝑙𝑎𝑟𝑚_𝑜𝑢𝑡, 𝑣𝑐𝑐𝑖𝑛𝑡_𝑎𝑙𝑎𝑟𝑚_𝑜𝑢𝑡, 𝑣𝑐𝑐𝑎𝑢𝑥_𝑎𝑙𝑎𝑟𝑚_𝑜𝑢𝑡, 𝑜𝑡_𝑜𝑢𝑡 and 𝑎𝑙𝑎𝑟𝑚_𝑜𝑢𝑡)

are not connected because this are not useful for the modem. The 𝑒𝑜𝑠_𝑜𝑢𝑡 pin is

also not used because only one input port is used at the time to convert data.

6.11.3. FF_D_T

In Vivado there are no Flip Flop component IP however it can be described

using Hardware Description Language and packed as a block diagram.

The FF_D_T block is generated using Verilog HDL which includes one D Flip

Flop and one T Flip Flop.

The D Flip Flop obtain data from ADC wizard and when the Data Ready

(DRDY) signal is active, save the data in the register. Then the saved data is sent

to the microcontroller through GPIO. The input and output bus have the same

width which could be selected from external however the predefined width is 16

bits.

The T Flip Flop obtain the Data Ready (DRDY) signal and Goertzel Started

(GOERT_STARTED) signal to determine the Data Enable (DATA_ENABLE) signal.

When there is a rising edge of Goertzel Started signal that means the Goertzel

Algorithm has started the calculation and no data is needed. Hence the Data

Enable signal is set to logic-Low. When the Goertzel Started is logic-Low and

there is a Data Ready signal, the Data Enable signal is set to logic-High.

The Data Enable is created because the DRDY only is active one clock and

the microcontroller could not have time to catch the signal and thus the signal is

disabled during the Goertzel calculation so not to make an error with input data.

The core ports description is shown in Table A-21.

6.11.4. Square Generator

The Square Generator block, as is named say, is a block that generate a

square digital signal. The block consists of two counters; one counter is used to

Chapter 6: IP used in block design

 M. FAHAD HASSAN 69

obtain desired output signal frequency, and the second one is used to determine

output signal timing.

When the input Enable signal has a rising edge the two counters start

counting. The frequency counter gives signal every half period of output Signal

thus to set logic-High or logic-Low the output signal (the signal begins with logic-

Low). And when the timing counter has achieved the desired value the output

signal goes permanently logic-Low unless there is another input Enable. If during

the timing counting, Enable signal goes logic-High, this is ignored until the

counter achieved the objective value.

The core pins are described in Table A-22.

6.12. Clock and reset diagram

The function of this diagram is to create appropriate clocks and resets for

different elements of the modem, such as AXI Interconnect, Cortex M3, etcetera.

The design receives the input clock (𝑠𝑦𝑠_𝑐𝑙𝑜𝑐𝑘) and the reset (𝑠𝑦𝑠_𝑟𝑒𝑠𝑒𝑡_𝑛)

signal from Nexys 4 DDR, and auxiliary reset signal (𝑠𝑦𝑠𝑟𝑒𝑠𝑡𝑟𝑒𝑞) from Cortex M3.

The clock signal is received by clocking wizard to generate system clock.

Individual Processor System Reset gets the each of reset signals to generate

output resets. Three resets are generated with these cores: one reset signal is

for peripheral; one reset signal is for interconnect, and the last reset signal is for

system general reset. Furthermore, the core generates a reset for debug port.

The diagram is shown in Figure 6-15.

 Development of an acoustic modem

70 M. FAHAD HASSAN

This page intentionally left blank

Chapter 6: IP used in block design

 M. FAHAD HASSAN 71

Figure 6-14: ADC Diagram with all connection. Note: for better view visit Annex Schematic.

 Development of an acoustic modem

72 M. FAHAD HASSAN

Figure 6-15: Clock and reset diagram with all connection. Note: for better view visit Annex Schematic

Chapter 7: Results

 M. FAHAD HASSAN 73

7. RESULTS

The modem is divided into two main stages to calculate whether the input

signal frequency corresponds to the defined frequency.

In the first stage, the input analogue signal is obtained by the ADC, to convert

the signal in 16-bit digital data. This data is saved in a register when the DRDY

signal is enabled. The Data Enable signal is generated based on DRDY and

Goertzel Started signal. The hardware block diagram is shown in Annexe

Schematic.

In the second stage, the microcontroller obtains data from the register and

the Data Enable through GPIO. When the Data Enable is logic-High, the input

data is compared to Error Setpoint (see 7.2. Error Setpoint), and if the data value

is upper then Error Setpoint, the Goertzel Algorithm is begun. Otherwise, the

microcontroller obtains data and compare with Error Setpoint.

At the starting of the Goertzel Algorithm, the Goertzel Started signal is set to

logic-High. This is to avoid obtaining more data during the calculation of the

Algorithm. After the calculation is done, the Goertzel Started signal is set to logic-

Low. The algorithm needs n number of samples to calculate the power of the

input signal. This means to save data in the memory before the algorithm starts,

which could take more time to the microcontroller to calculate and send the Echo.

Hence, the data is obtained in real time to do the algorithm using a loop. And in

the end, the power of the signal is calculated.

After all, the calculation is finished, the power of the signal is compared with

Power Setpoint (see 7.3. Power Setpoint). In case the value of the power is more

than the Power Setpoint value, the Echo Enable signal is set logic-High if the

Signal Enable was logic-High. If not, the Echo Enable is set logic-Low. The Square

Generator core receives the Echo Enable signal to generate the Echo signal of

 Development of an acoustic modem

74 M. FAHAD HASSAN

input frequency for 5 ms. Although the Echo generated is a square signal, it

could be converted in sinusoidal using filter.

Ten kilohertz processed signal frequency is established because of the

limitation of the microcontroller (see 7.1. Maximum frequency detection).

It has studied set the timer before the Goertzel Algorithm starts. This could

be used to generate the echo in establish time. Thus, the broadcaster device

could know the exact modem calculation time and will calculate the position of

the device with precision. When the timer has achieved the value established

time and the signal corresponds to the 10 kHz frequency, the Echo Enable is could

set logic-Low. It did not archive this functionality because of lack of time.

7.1. Maximum frequency detection

The algorithm is designed to detect 10 kHz input signal frequency. This is

because the microcontroller cannot process in real time a lot of samples.

With experimentation, it was observed that the maximum sampling

acquisition frequency that microcontroller can support with proper function, is 80

kilo-samples. And an additional Enable is generated to get data without mistake.

It was observed that with this sampling rate the maximum accurate frequency

that could obtain is 18 kilohertz. In the Figure 7-2, the power is shown when the

input signal has 18 kHz frequency and this is the frequency which is required to

detect. Figure 7-1 shows the power when the input signal has 20 kHz frequency

and this is the frequency which is required to detect.

Chapter 7: Results

 M. FAHAD HASSAN 75

Figure 7-1: Observing the power of input signal of 20 kHz frequency

when 20 kHz frequency is attempted to detect.

It can observe in Figure 7-1 that with 20 kHz the power is not significant

compared to 18 kHz shown in Figure 7-2. Moreover, the power of 20 kHz

frequency has a big range of values on the other hand the power of 18 kHz has

a small range, from 4350 to 5350.

10

410

810

1210

1610

2010

0 500 1000 1500 2000

P
o
w

e
r

Sampels taken

Power of 20 kHz - detecting 20 kHz

10

1010

2010

3010

4010

5010

6010

0 500 1000 1500 2000

P
o
w

e
r

Sampels taken

Power of 18 kHz - detecting 18 kHz

Figure 7-2: Observing the power of input signal of 18 kHz frequency

when 18 kHz frequency is attempted to detect.

 Development of an acoustic modem

76 M. FAHAD HASSAN

Finally, to detect 69 kHz, the sampling frequency has to be at least two times

the input frequency, that is to say, the sampling frequency at least has to be 138

kHz -Nyquist rate4-. Hence, it is not possible with this system to detect 69 kHz.

However, a microcontroller with better performance could detect higher

frequencies than 18 kHz.

Thus, to observe the functionality of this modem, 10 kHz frequency has been

chosen.

7.2. Error Setpoint

The Error Setpoint is the previous condition which has to be satisfied to start

the Goertzel Algorithm. This control is used to avoid noise and signal which could

not have enough power to be the detected-signal. And if the signal does not

satisfy the condition, the algorithm is not calculated.

To establish the value of the Error Setpoint, it has been observed noise data.

The noise signal is shown in Figure 7-3, the analogue form and in Figure 7-4 the

digital form.

4 A signal of finite bandwidth W Hz may be completely recovered from a

knowledge of its samples taken at the rate of 2W per second [8]. This is known

as Nyquist Rate.

Figure 7-3: Noise in analogue form. Time 5ms/div.

Voltage 10 mV/div.

Chapter 7: Results

 M. FAHAD HASSAN 77

Figure 7-4: Noise converted in digital data.

It could observe that the maximum value of the noise is 26 mV. Therefore,

double of this value is chosen as Error Setpoint.

7.3. Power Setpoint

This parameter is used to establish whether the input signal’s power

corresponds to the 10 kHz sinusoidal frequency or not. To establish the value of

this parameter, power of different frequencies -especially 10 kHz- has been

observed to determine the limits that separate the correct signal and others. The

magnitude of the Algorithm output depends on the input signal amplitude. Hence,

the input amplitude is set to 200 mV.

The Figure 7-5 shows the power of the 10 kHz frequency.

0

5

10

15

20

25

30

0 500 1000 1500 2000

A
m

p
lit

u
d
e

(m

V
)

Sampels taken

Noise converted in digital data

 Development of an acoustic modem

78 M. FAHAD HASSAN

As it could observe the power for this signal is more than 6000. And

establishing this as Power Setpoint the signal of 10 kHz frequency will be

detected. The Echo only will be generated when the power of the signal is higher

than Power Setpoint.

The Figure 7-6 shows the power of input signals with different frequencies.

It can observe that power is not higher than Power Setpoint.

10

1010

2010

3010

4010

5010

6010

7010

8010

9010

10010

0 500 1000 1500 2000

P
o
w

e
r

Smples taken

Power of 10 kHz - detecting 10 kHz

Figure 7-5: Observing the power of input signal of 10 kHz

frequency when 10 kHz frequency is attempted to detect.

10

110

210

310

410

510

610

710

810

910

0 500 1000 1500 2000

P
o
w

e
r

Sampels taken

Amplitude 10 kHz

5 kHz

20 kHZ

40 kHZ

Figure 7-6: 5, 20 and 40 kHz input signal frequencies power.

Chapter 7: Results

 M. FAHAD HASSAN 79

The Power Setpoint limited the detection of the signal. The figure shows the

power of frequencies near 10 kHz. It is chosen 9.8, 9.9, 10, 10.1 and 10.2 kHz

frequencies to observe when the echo will be sent.

It is observed that the limit of activation is from 10 kHz to 10.1 kHz because

with these input signal frequencies the power is upper than Power Setpoint. Other

frequencies do not have enough power to activate the Echo signal.

7.4. Performance

The modem function correctly establishing the input frequency to 10 kHz

with input signal amplitude of the 200 mV. In the following graphics, the

modem performance is shown with different input frequencies.

The figure shows 5 ms of a sinusoidal signal, in the blue, activation every

100 ms and there correspond echo, in red, of square signal with a duration of

5 ms.

10

1010

2010

3010

4010

5010

6010

7010

8010

9010

0 500 1000 1500 2000

P
o
w

e
r

Samples taken

Different frequencies powe - detecting
10 kHz

9.8 kHz 9.9 kHz 10 kHz 10.1 kHz 10.2 kHz Setpoint

Figure 7-7: Power of different frequencies close to 10 kHz.

 Development of an acoustic modem

80 M. FAHAD HASSAN

In the figure… the signal is shown to observe in detail.

As it mentioned, it has studied timer to send echo in established time but this

did not work correctly and it is not included in the modem. Nevertheless, because

Figure 7-8: In blue the input signal of 10 kHz, amplitude of 200

mV and activating the signal every 100 ms. In red the Echo sent

by modem. Time 20 ms/div. Voltage 100 mV/div.

Figure 7-9: In blue, input signal of 10 kHz, amplitude 200 mV,

sinusoidal and duration of 5 ms. In Red the echo send by

modem; square signal of 10 kHz and 5 ms of duration. Time 1.2

ms/div. Voltage 100 mV/div.

Chapter 7: Results

 M. FAHAD HASSAN 81

calculation in real time, the time of calculation is very little, as it could see in the

figure. In this figure, it is shown the delay between the ending of the input signal

and sending the echo. This time depends on the microcontroller instruction

processing time.

It can observe that there are 112 𝜇s of delay between the input signal and

the Echo.

7.5. Resources

As is mentioned in objective, one of the main objectives is to develop a

compact modem using the minim of the resources. A following it is shown the

resources of FPGA that are needed to develop the modem.

Figure 7-10: Observing the delay between input signal and Echo.

In blue, input sinusoidal signal of 10 kHz and amplitude of 200

mV. In Red the echo send by modem square signal of 10 kHz.

Time 50 us/div. Voltage 100 mV/div.

 Development of an acoustic modem

82 M. FAHAD HASSAN

The figure shows the percentage of the FPGA resources used.

It can observe that about 23 per cent of Look Up Tables, and about 5 per

cent of Flip Flop are used to develop the modem. And approximately 14 per cent

of memory is used. Hence, the modem is developed using very few resources.

Figure 7-11: Table of resources used and resources available in Nexys

4DDR board.

Figure 7-12: Graphic showing the percentage of the board resources used.

Chapter 8: Future work

 M. FAHAD HASSAN 83

8. FUTURE WORK

In this thesis, an acoustic modem using a synthesize microcontroller has been

developed. The core has developed in FGPA to observe the functionality of the

modem. And during their developing, it has observed some limitations using this

specific microcontroller.

 It has observed that the microcontroller with Cortex-M3 core has data

acquisition limits, which limits the detection of the higher input signal frequencies.

This could be improved using a microcontroller with better features and

increasing the input Clock frequency.

This investigation work is the previous stage to develop a modem in a silicon

chip. But before generating the chip, the Goertzel Algorithm could be used as

Digital Filter thus the microcontroller could not need to process the information

and detect the tone of the signal. And the microcontroller could be used to do

other jobs. Hence, the next stage of this thesis would be developing the silicon

chip with Digital filter to improve modem functionality and with filter, the modem

could not have the input signal frequency limitations.

 Development of an acoustic modem

84 M. FAHAD HASSAN

This page intentionally left blank

Chapter 9: Conclusion

 M. FAHAD HASSAN 85

9. CONCLUSION

Developing the modem has consisted of the main objectives set from the

beginning. There was a clear idea, develop a modem which will be used to track

underwater species. Use of the microcontroller will allow the detection of the

communication signal. The processor and other parts will be created using

Hardware Description Language and this way the modem will be compact.

Because of being part of a big project, the thesis is limited to create the

modem using a microcontroller and assuming that the input signal is electric and

adapted to be processed. And the output is a signal that emulates the Echo which

will be sent to answer.

The first part was how to get the signal to process with the microcontroller.

The idea was, using an Analogue to Digital converter (ADC) the data can be

converted in digital. Moreover, it was not necessary to buy a separate component

because almost all FPGA boards include an ADC in the board.

The next stage was the connection of these two devices which involves

GPIOs, Verilog modules and others IP. The connection has been improved as the

thesis is developed.

And the final stage was processing the signal and detect whether the signal

corresponds to the specifications or not. Different ideas came out to the surface,

such as, use of bandpass filter, or use of matched filter [7]. But finally, it has

decided to use the Goertzel Algorithm to detect the tone of the signal. This

algorithm is fast and easier to implement in C code.

The design of the system started studying the ADC. It is used XADC

predesigned component which performs analogue to digital conversion and with

other more functionalities. During this part, some complication has been faced

because of the technical problems with the core.

Once the ADC function properly, the next stage was to select the

Microcontroller which was described in HDL and could be implemented on FPGA.

 Development of an acoustic modem

86 M. FAHAD HASSAN

At first, the Cortex-M0 and Cortex-M1 was tried to use for modem but it was

observed that these have problems to implement in FPGA because of not founding

third party parts. Thus, it was decided to implement Cortex-M3, which came as

a compact core. Furthermore, the core has AHB to AXI bridge to connect with

other Vivado parts with AXI protocol.

Subsequently, the core was implemented in FPGA programming a small pilot

program, included with the ARM developer package. To understand how the

microcontroller functions, how it connects, and how it is programmed, took some

days. When the program functioned correctly, the ADC was connected to the

microcontroller.

At this stage, the system was capable to convert the analogue data into

digital and the microcontroller got the data to process. When the Goertzel

Algorithm began to be implemented, another problem arose. It needed a vector

of data to proceed with the calculation. And this could have taken a lot of time

for the tone detection. The solution was, modify the Algorithm to work in real

time.

It was observed that using Microcontroller Cortex-M3 for real-time detection

limits the acquisition frequency of the ADC to 80 kHz. This frequency does not

achieve the Nyquist rate to detect 69 kHz. Thus, the detection of the objective

input signal, which has 69 kHz frequency, is not possible. However, to

demonstrate the correct functionality of the modem, it was proposed the

detection of the signal with 10 kHz frequency.

After processing the signal, it was detected the tone of the signal. And when

the tone corresponds to 10 kHz frequency, an echo signal is generated with

similar characteristics than the input signal.

Completed the modem, it has observed the use of sources to create the

modem. And as it could see in the Chapter 7, these are very few elements which

are used to develop the modem in the FPGA.

Since they are used different programs and there are some procedures to

fallow to configure the programs, generate the Digital blocs and create software,

a user’s manual is provided in the annexes of this document.

Chapter 9: Conclusion

 M. FAHAD HASSAN 87

Finally, one of the issues faced at the end of the thesis was to send the echo

at the established time. It has used a microcontroller internal timer, configured

the timer before the Goertzel Algorithm starts and an interruption occurs when

the selected delay time has passed. Thus, to generate the echo two conditions

needed to be fulfilled: the input signal corresponds to the desired signal and timer

interruption has occurred. It has been studied this functionality nevertheless it

has not been achieved due to lack of time.

 Development of an acoustic modem

88 M. FAHAD HASSAN

This page intentionally left blank

Chapter 10: References

 M. FAHAD HASSAN 89

10.REFERENCES

[

1]

Digilent, “Nexys4 DDR™ FPGA Board Reference Manual,” 11 Abril 2016.

[Online]. Available:

https://reference.digilentinc.com/reference/programmable-logic/nexys-4-

ddr/reference-manual. [Accessed 26 May 2019].

[

2]

B. W. Kernighan and D. M. Ritchie, The C programming language, 2nd

Edition, Englewood Cliffs: Prentice-Hall, 1988.

[

3]

M. Sánchez-Élez, “INTRODUCCIÓN A LA PROGRAMACIÓN EN VHDL,”

2014. [Online]. Available: https://eprints.ucm.es/26200/1/intro_VHDL.pdf.

[Accessed 22 April 2019].

[

4]

ARM, “ARM® Cortex®-M3 Processor - Technical Reference Manual,”

ARM, 24 Febrero 2015. [Online]. Available:

http://infocenter.arm.com/help/topic/com.arm.doc.100165_0201_00_en/a

rm_cortexm3_processor_trm_100165_0201_00_en.pdf. [Accessed 18 May

2019].

[

5]

K. Banks, "The Goertzel Algorithm," Embedded, 28 Agosto 2002.

[Online]. Available: https://www.embedded.com/design/configurable-

systems/4024443/The-Goertzel-Algorithm. [Accessed 2 Mayo 2019].

[

6]

Xilinx, “AXI Block RAM (BRAM) Controller v4.0,” 5 Octuber 2016.

[Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/axi_bra

m_ctrl/v4_0/pg078-axi-bram-ctrl.pdf. [Accessed 10 May 2019].

 Development of an acoustic modem

90 M. FAHAD HASSAN

[

7]

J. C. Bancroft, “Introduction to the matched filters,” 2002. [Online].

Available:

https://crewes.org/ForOurSponsors/ResearchReports/2002/2002-46.pdf.

[Accessed 21 April 2019].

[

8]

H. J. Landau, “Sampling, data transmission, and the Nyquist rate,” IEEE

Journals, pp. 1701-1706, 1967.

[

9]

J. Yiu, The definitive guide to the ARM Cortex-M3, 2nd Edition, Oxfoard:

Elsevier, 2010.

[

10

]

E. Monmasson and M. N. Cirstea, “FPGA Design Methodology for

Industrial Control Systems—A Review,” vol. 54, 2007.

[

11

]

M. M. Mano and M. D. Ciletti, Digital Design, 5th Edition, Upper Saddle

River: Pearson, 2012.

[

12

]

I. M. Rusiñol, "Diseño de sistemas de posicionamiento acústico para la

monitorización de especies marinas," UPC, Barcelona, 2016.

[

13

]

J. G. Agudelo, “Contriution to the model and navigation control of an

autonomous underwater vehicle,” Julio 2015. [Online]. Available:

https://upcommons.upc.edu/bitstream/handle/2117/95737/TJGA1de1.pdf.

[Accessed 18 May 2019].

[

14

]

ARM, “ARM® Cortex®-M3 DesignStart™ FPGA-Xilinx edition,” 29

Octubre 2018. [Online]. Available:

https://static.docs.arm.com/101483/0000/arm_cortex_m3_designstart_fp

ga_xilinx_edition_ug_101483_0000_00_en.pdf?_ga=2.220801629.418501

25.1559121026-2031830401.1549732769. [Accessed 18 May 2019].

Chapter 10: References

 M. FAHAD HASSAN 91

[

15

]

ARM, “ARM®v7-M Architecture - Reference Manual,” ARM, 29 Junio

2018. [Online]. Available:

https://static.docs.arm.com/ddi0403/e/DDI0403E_d_armv7m_arm.pdf?_g

a=2.186121514.2016275911.1559387162-2031830401.1549732769.

[Accessed 15 May 2019].

[

16

]

ARM, “CoreSight™ Components - Technical Reference Manual,” ARM, 10

Julio 2009. [Online]. Available:

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0314h/DDI0314H_c

oresight_components_trm.pdf. [Accessed 18 May 2019].

[

17

]

ARM, “Cortex™-M1 - Technical Reference Manual,” 7 Mayo 2008.

[Online]. Available:

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0413d/DDI0413D_c

ortexm1_r1p0_trm.pdf. [Accessed 22 May 2019].

[

18

]

ARM, "Cortex™-M3 - Technical Reference Manual," ARM, 13 Junio 2007.

[Online]. Available:

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_co

rtex_m3_r1p1_trm.pdf. [Accessed 18 May 2019].

[

19

]

K. Banks, “The Goertzel Algorithm,” 28 Agosto 2002. [Online]. Available:

https://www.embedded.com/design/configurable-systems/4024443/The-

Goertzel-Algorithm. [Accessed 2 May 2019].

[

20

]

C. J. Chen, “Modified Goertzel Algorithm in DTMF detection using the

TMS320C80,” Texas Instrument, Junio 1996. [Online]. Available:

http://www.ti.com/lit/an/spra066/spra066.pdf. [Accessed 25 May 2019].

[

21

]

F. Nacini, “Robohub,” 4 Mayo 2017. [Online]. Available:

https://robohub.org/janus-creates-a-new-era-for-digital-underwater-

communications/. [Accessed 23 May 2019].

 Development of an acoustic modem

92 M. FAHAD HASSAN

[

22

]

A. Vitali, “The Goertzel algorithm to compute individual terms of the

discrete Fourier transform (DFT),” ST microelectronics, Deciembre 2017.

[Online]. Available:

https://www.st.com/content/ccc/resource/technical/document/design_tip/g

roup0/20/06/95/0b/c3/8d/4a/7b/DM00446805/files/DM00446805.pdf/jcr:c

ontent/translations/en.DM00446805.pdf. [Accessed 25 May 2019].

[

23

]

Xilinx, “AXI GPIO v2.0,” 5 Octuber 2016. [Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/axi_gpi

o/v2_0/pg144-axi-gpio.pdf. [Accessed 10 May 2019].

[

24

]

Xilinx, “AXI Interconnect v2.1,” 20 December 2017. [Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/axi_inte

rconnect/v2_1/pg059-axi-interconnect.pdf. [Accessed 10 May 2019].

[

25

]

Xilinx, “Block Memory Generator v8.3,” 5 April 2017. [Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/blk_me

m_gen/v8_3/pg058-blk-mem-gen.pdf. [Accessed 10 May 2019].

[

26

]

Xilinx, “Clocking Wizard v5.3,” 5 Octuber 2016. [Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/clk_wiz/

v5_3/pg065-clk-wiz.pdf. [Accessed 10 May 2019].

[

27

]

Xilinx, “LogiCore Concat v2.1,” 6 April 2016. [Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/xilinx_c

om_ip_xlconcat/v2_1/pb041-xilinx-com-ip-xlconcat.pdf. [Accessed 10 May

2019].

[

28

]

Xilinx, “LogiCORE IP Constant v1.1,” 9 April 2018. [Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/xilinx_c

om_ip_xlconstant/v1_1/pb040-xilinx-com-ip-xlconstant.pdf. [Accessed 10

May 2019].

Chapter 10: References

 M. FAHAD HASSAN 93

[

29

]

Xilinx, “LogiCORE IP Slice v1.0,” 6 April 2016. [Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/xilinx_c

om_ip_xlslice/v1_0/pb042-xilinx-com-ip-xlslice.pdf. [Accessed 10 May

2019].

[

30

]

Xilinx, “Processor System Reset Module v5.0,” 18 November 2015.

[Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/proc_sy

s_reset/v5_0/pg164-proc-sys-reset.pdf. [Accessed 10 May 2019].

[

31

]

Xilinx, “Utility Vector Logic for Vivado (v2.0),” 2 November 2015.

[Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/util_vec

tor_logic/v2_0/ds913.pdf. [Accessed 10 May 2019].

[

32

]

Xilinx, “XADC Wizard v3.0,” 1 April 2015. [Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/xadc_wi

z/v3_0/pg091-xadc-wiz.pdf. [Accessed 2 March 2019].

[

33

]

R. Prew, "Battle Over the FPGA: VHDL vs Verilog! Who is the True

Champ?," Digilent Blog, 11 Abril 2016. [Online]. Available:

https://blog.digilentinc.com/battle-over-the-fpga-vhdl-vs-verilog-who-is-

the-true-champ/. [Accessed 31 May 2019].

 Development of an acoustic modem

94 M. FAHAD HASSAN

This page intentionally left blank

Chapter 10: References

 M. FAHAD HASSAN 73

DEVELOPMENT OF AN ACOUSTIC

MODEM USING SYNTHESIZABLE
MICROCONTROLLER

BACHELOR’S THESIS

Bachelor’s degree in Industrial Electronics and

Automatic Control Engineering

Annexes

Author: M. Fahad Hassan-Mobshar

Director: Jordi Cosp Vilella

Call: June 2019

 Development of an acoustic modem

Chapter A: Annexe: Tables

 M. FAHAD HASSAN - 1 -

A. ANNEXE: TABLES

I. ADC Tables

Table A-1: XADC I/O ports

Name Type Description

s_drp_daddr_in Input

Input address port. This port specified the

address of the XADC registers. The port has

7-bit width ([6:0]).

s_drp_den_in Input

Data enable signal. Signal has to be set

logic-High before data is carry out or carry

in.

s_drp_di_in Input

Data input port. It is used to save data in

XADC registers. The port has 16-bit width

([15:0]).

s_drp_do_out Output

Data output port. It is used to obtain data

from ADC. The port has 16-bit width

([15:0]).

s_drp_drdy_out Output
Data ready port. This signal goes high when

the ADC has carried data in output port.

s_drp_dwe_in Input

Data write enable signal. This signa has to

be logic-High to write data in XADC

registers.

Vp_Vn_vn_in Input Analogic input Vn negative port.

Vp_Vn_vp_in Input Analogic input Vn positive port.

 Development of an acoustic modem

- 2 - M. FAHAD HASSAN

Vaux2_vaxn2 Input Analogic input Vaux2 negative port.

Vaux2_vaxp2 Input Analogic input Vaux2 positive port.

Vaux10_vaxn10 Input Analogic input Vaux10 negative port.

Vaux10_vaxp10 Input Analogic input Vaux10 positive port.

dclk Input
Input XADC clock. The clock has 50 MHz

frequency.

reset_in Input Reset input signal. Active logic-High.

user_temp_

_alarm_out
Output

Temperature alarm. The signal is logic-High

when the measured temperature is upper or

lower than established temperature limits.

vccint_alarm_out Output

𝑉𝐶𝐶𝐼𝑁𝑇 alarm. The signal is logic-High when

measured VCCINT is upper or lower than

established VCCINT limits.

vccaus_alrm_out Output

VCCAUX alarm. This signal is logic-High when

measured VCCAUX is upper or lower than

established VCCAUX limits.

ot_out Output

Over Temperature. This signal turns logic-

High when the temperature exceeds the

over temperature (OT) threshold. The

default OT threshold is 125 ºC.

alarm_out Output

Alarm. This signal could be used to flag the

occurrence of any other alarm. This signal is

active logic-High.

channel_out Output

Channel selection output. The current ADC

channel is placed on these outputs at the

end of an ADC conversion. The port has 5-

Chapter A: Annexe: Tables

 M. FAHAD HASSAN - 3 -

bit width ([4:0]). To know more about input

MUX, see Table A-6.

eoc_out Output
End of conversion. This signal transition to

logic-High at the endo of an ADC conversion.

eos Output

End of sequence. This signal transitions to

logic-High when the measurement data from

the las channel in an automatic channel

sequence is written to the status registers.

busy Output

Busy. This signal transitions to logic-High for

an extended period during and ADC or

sensor calibration.

Table A-2: Status registers

Name Address Description

Temperature 00h

The result of temperature sensor measurement

is stored at this location. The 12 MSBs

correspond to the temperature sensor transfer

function shown in Figure 4-8.

𝑽𝑪𝑪𝑰𝑵𝑻 01h

The result of 𝑉𝐶𝐶𝐼𝑁𝑇 supply monitor

measurement is stored at this location. The 12

MSBs correspond to the supply sensor transfer

function shown in Figure 4-9.

𝑽𝑪𝑪𝑨𝑼𝑿 02h

The result of 𝑉𝐶𝐶𝐴𝑈𝑋 data supply monitor

measurement is stored at this location. The 12

MSBs correspond to the supply sensor transfer

function shown in Figure 4-9.

𝑽𝑷/𝑽𝑵 03h
The result of a conversion the dedicated

analogue input channel is stored in this register.

 Development of an acoustic modem

- 4 - M. FAHAD HASSAN

The 12 MSBs correspond to the transfer function

shown in Figure 4-6 or Figure 4-7 depending on

analogue input mode.

𝑽𝑹𝑬𝑭𝑷 04h

The result of a conversion on the reference input

𝑉𝑅𝐸𝐹𝑃 is stored in this register. The 12 MSBs

correspond to the ADC transfer function shown

in Figure 4-9.

𝑽𝑹𝑬𝑭𝑵 05h

The result of a conversion on the reference input

𝑉𝑅𝐸𝐹𝑁 is stored in this register. The channel is

measured in bipolar mode with a two’s

complement’s output coding as shown in Figure

4-9. The supply sensor is also used to measure

𝑉𝑅𝐸𝐹𝑁, thus 1 LSB = 3 V/4096.

𝑽𝑪𝑪𝑩𝑹𝑨𝑴 06h

The result of the on-chip 𝑉𝐶𝐶𝐵𝑅𝐴𝑀 supply monitor

measurement is stored at this location. The 12

MSBs correspond to the supply sensor transfer

function shown in Figure 4-9.

Undefined 07h This location is unused.

Supply A

offset
08h

The calibration coefficient for the supply sensor

offset using ADC A is stored at this location.

ADC A offset 09h
The calibration coefficient for the ADC A offset

is stored at this location.

ADC A gain 0Ah
The calibration coefficient for the ADC A gain

error is stored at this location.

Undefined
0Bh to

0Fh
These locations are unused.

𝑽𝑨𝑼𝑿𝑷[𝟏𝟓:𝟎]

/𝑽𝑨𝑼𝑿𝑵[𝟏𝟓:𝟎]

10h to

1Fh

The results of the conversions on auxiliary

analogue input channels are stored in this

Chapter A: Annexe: Tables

 M. FAHAD HASSAN - 5 -

register. The 12 MSBs correspond to transfer

function shown in Figure 4-6 or Figure 4-7

depending on analogue input mode.

Max temp 20h
Maximum temperature measurement recorded

since power-up or the last XADC reset.

Max 𝑽𝑪𝑪𝑰𝑵𝑻 21h
Maximum 𝑉𝐶𝐶𝐼𝑁𝑇 measurement recorded since

power-up or the last XADC reset.

Max 𝑽𝑪𝑪𝑨𝑼𝑿 22h
Maximum 𝑉𝐶𝐶𝐴𝑈𝑋 measurement recorded since

power-up or the last XADC reset.

 Max 𝑽𝑪𝑪𝑩𝑹𝑨𝑴 23h
Maximum 𝑉𝐶𝐶𝐵𝑅𝐴𝑀 measurement recorded since

power-up or the last XADC reset.

Min temp 24h
Minimum temperature measurement recorded

since power-up or the last XADC reset.

Min 𝑽𝑪𝑪𝑰𝑵𝑻 25h
Minimum 𝑉𝐶𝐶𝐼𝑁𝑇 measurement recorded since

power-up or the last XADC reset.

Min 𝑽𝑪𝑪𝑨𝑼𝑿 26h
Minimum 𝑉𝐶𝐶𝐴𝑈𝑋 measurement recorded since

power-up or the last XADC reset.

 Min 𝑽𝑪𝑪𝑩𝑹𝑨𝑴 27h
Minimum 𝑉𝐶𝐶𝐵𝑅𝐴𝑀 measurement recorded since

power-up or the last XADC reset.

Undefined
28h to

2Ah
These locations are unused.

Unassigned 2Bh

Undefined
2Ch to

2Eh
These locations are unused.

Unassigned 2Fh

 Development of an acoustic modem

- 6 - M. FAHAD HASSAN

Supply B

offset
30h

The calibration coefficient for the supply sensor

offset using ADC B is stored at this location.

ADC B offset 31h
The calibration coefficient for the ADC B gain

error is stored at this location.

ADC B gain 32h
The calibration coefficient for the ADC B gain

error is stored at this location.

Undefined
33h to

3Eh
These locations are unused.

Flag 3Fh
This register contains general status information

(see Flag register).

Table A-3: Configuration register for 0, address 𝟒𝟎𝒉

Bit Name Description

[4:0] CH[4:0]

When operating in single channel mode or

external multiplexer mode, these bits are used

to select the ADC input channel. See Table A-6.

[7:5] 0 These bits should always set logic Low.

8 ACQ

When using single channel mode, this bit is set

logic 1 to increase the setting time available on

external analogue input in continuous sampling

mode by six ADCCLK cycles.

9 EC̅

This bit is used to select either continuous (logic

0) or event-driven (logic 1) sampling mode for

the ADC.

Chapter A: Annexe: Tables

 M. FAHAD HASSAN - 7 -

10 BU̅

This bit is used in single channel mode to select

either unipolar (logic 0) or bipolar (logic 1)

operating mode for the ADC analogue input.

11 MUX
This bit should be set to a logic 1 to enable

external multiplexer mode.

[13:12] AVG[1:0]

These bits are used to set the amount of sample

averaging on selected channels in both single

channel and sequence modes. See Table A-7.

14 0 This bit should always set as logic Low.

15 CAVG

This bit is used to disable averaging for the

calculation of the calibration coefficients.

Averaging is enabled by default (logic 0) and is

fixed at 16 samples.

Table A-4: Configuration register, address 𝟒𝟏𝒉

Bit Name Description

0 OT
This bit is used to disable the over-temperature

signal by setting this bit to logic 1.

0 to 3, 8 ALM[3:0]

These bits are used to disable individual alarm

outputs (logic 1) for temperature, 𝑉𝐶𝐶𝐼𝑁𝑇, 𝑉𝐶𝐶𝐴𝑈𝑋,

and 𝑉𝐶𝐶𝐵𝑅𝐴𝑀, respectively.

[7:4] CAL0 to CAL3

These bits enable (logic 1) the application of the

calibration coefficients to the ADC and on-chip

supply sensor measurements. See Table A-8.

[11:9] 0 These bits should always set logic Low.

 Development of an acoustic modem

- 8 - M. FAHAD HASSAN

[16:12] SEQ[3:0]
These bits enable the channel-sequencer

function. See Table A-9.

Table A-5: Configuration register 3, address 𝟒𝟐𝒉

Bit Name Description

[3:0] 0 These bits should always set logic Low.

[5:4] PD[1:0]
The XADC could be power-down using these

bits. See Table A-10.

[7:6] 0 These bits should always set logic Low.

[15:8] CD[7:0]

These bits select the division ratio between the

DRP clock (DCLK) and lower frequency ADC

clock (ADCCLK) used for ADC. See Table A-11.

Table A-6: ADC channel selection

ADC

Channel
CH[4:0] Description

0 00h On-chip temperature

1 01h 𝑉𝐶𝐶𝐼𝑁𝑇

2 02h 𝑉𝐶𝐶𝐴𝑈𝑋

3 03h 𝑉𝑃, 𝑉𝑁 − Dedicated analogue input

4 04h 𝑉𝑅𝐸𝐹𝑃 (1.25 𝑉)(1)

5 05h 𝑉𝑅𝐸𝐹𝑁 (0 𝑉)(1)

Chapter A: Annexe: Tables

 M. FAHAD HASSAN - 9 -

6 06h 𝑉𝐶𝐶𝐵𝑅𝐴𝑀

7 07h Invalid channel selection

8 08h Carry out an XADC calibration

9-15 09h to 0Fh Invalid channel selection

16 10h VAUXP[0], VAUXN[0] – Auxiliary channel 0

17-31 11h to 1Fh
VAUXP[15:1], VAUXN[15:1] – Auxiliary channels

[15:1]

1. These channel selection options are used for XADC self-check and calibration operations.

When these channels are selected, the supply sensor is connected to 𝑉𝑅𝐸𝐹𝑃 or 𝑉𝑅𝐸𝐹𝑁.

Table A-7: Averaging filter settings

AVG[1:0] Function

00b No averaging

01b Average 16 samples

10b Average 64 samples

11b Average 256 samples

Table A-8: Calibration enables

Name Description

CAL0 ADCs offset correction enable

CAL1 ADCs offset and gain correction enable

CAL2 Supply sensor offset correction enable

 Development of an acoustic modem

- 10 - M. FAHAD HASSAN

CAL3 Supply sensor offset and gain correction enable

Table A-9: Sequencer operation settings

SEQ[3:2] SEQ[1:0] Function

00b 00b Default mode

00b 01b Single pass sequence

00b 10b Continuous sequence mode

00b 11b Single channel mode (sequencer off)

01b XXb Simultaneous sampling mode

10b XXb Independent ADC mode

11b XXb Default mode

Table A-10: Power down selection

PD[1:0] Description

00b Default. All XADC blocks powered up.

01b Not valid – do not select

10b ADC B powered down

11b XADC powered down

Table A-11: DCLK division selection(1)

CD[7:0] Division

Chapter A: Annexe: Tables

 M. FAHAD HASSAN - 11 -

00h 2

01h 2

02h 2

03h 3

04h 4

- -

FEh 254

FFh 255

1. Minimum division ratio is 2. DCLK division must be selected to keep the ADC clock in its

supported frequency range.

Table A-12: Sequencer on-chip channel selection (for 48h, 4Ah & 4Ch)

Bit ADC Channel Function

0 8 XADC calibration

1 to 7 9 to 15 Invalid channel selection

8 0 On-chip temperature

9 1 𝑉𝐶𝐶𝐼𝑁𝑇

10 2 𝑉𝐶𝐶𝐴𝑈𝑋

11 3 𝑉𝑃, 𝑉𝑁 − Dedicated analogue input

12 4 𝑉𝑅𝐸𝐹𝑃

13 5 𝑉𝑅𝐸𝐹𝑁

14 6 𝑉𝐶𝐶𝐵𝑅𝐴𝑀

 Development of an acoustic modem

- 12 - M. FAHAD HASSAN

15 7 Invalid channel selection

Table A-13: Sequencer auxiliary channel selection (for 49h, 4Bh & 4Dh)

Bit ADC Channel Function

0 16 VAUXP[0], VAUXN[0] – auxiliary channel 0

1 17 VAUXP[1], VAUXN[1] – auxiliary channel 1

- - -

14 30
VAUXP[14], VAUXN[14] – auxiliary

channel 14

15 31
VAUXP[15], VAUXN[15] – auxiliary

channel 15

II. Cortex M3 Tables

Table A-14: Cortex-M3 Core I/O ports description

Name Type Description

HCLK Input Processor Clock

SYSRESETn Input

Processor Reset signal. When this signal is

logic-High the entire processor system is

reset with exception of debug logic in the:

NVIC, FPB, DWT, ITM and AHB-AP.

Chapter A: Annexe: Tables

 M. FAHAD HASSAN - 13 -

IRQ Input

External interrupt signals. This port adjusts

the width automatically depending on the

input signals.

NMI Input Non-maskable Interrupt input.

CFGITCMEN[1:0] Input

Alias input enable. If the CFGITCMEN [1] is

set, then the internal RAM ITCM is mapped

to the upper address alias in the memory

map. And if CFGITCMEN [0] is set, then the

internal RAM ITCM is mapped to the lower

address alias in the memory map.

The value of this signal has to be held

constant for at least two cycles before

SYSRESTn is deserted

DBGRESRTn Input
SW-DP is reset with this signal. This reset

must be synchronized to DBGCLK.

DBGRESTART Input
External input restart request signal to exit

from debug state.

EDBGRQ Input External debug request signal.

STCLK Input System Tick Clock.

SWCLKTCK Input

Serial wire or JTAG clock. This signal is the

clock for the debug interface domain of the

SWJ-DP. In JTAG mode this is equivalent to

TCK, and in SW-DP is the Serial Wire Clock.

It is asynchronous to all other clocks

SWDITMS Input SW Test Mode State (TMS)

nTRST Input SWJ-DP reset input port.

TDI Input Test Data Input port.

 Development of an acoustic modem

- 14 - M. FAHAD HASSAN

CM3_SYS_AXI3 -
Cortex M3 System AHB to System AXI3

master bus (see for bus signals definitions).

CM3_CODE_AXI3 -
Cortex M3 Combined Code AHB to Code AXI3

master bus (see for bus signals definitions).

SYSRESTETREQ Output System reset request output port.

DBGRESTARTED Output

Debug restart auxiliary signal. This signal is

asserted when the SYSRESTREQ bit of the

Application Interrupt and Reset control

register is set. For example, this could be

used as an input to a watchdog timer.

LOCKUP Output

Indicate the core is locked up. This signal

gives immediate indication of seriously

errant kernel software. This is the result of

the core being locked up due to an

unrecoverable exception following the

activation of the processor’s built in system

state protection hardware.

HALTED Output
In halting debug mode. HALTED remains

asserted while the core is in debug.

JTAGNSW Output

This signal identifies whether the SWJ block

is in SW, when this signal is logic-Low, or

JTAG mode, when this signal is logic-High.

JTAGTOP Output
JTAG status output port. This signal indicates

the stat of the JTAG-DP TAP controller.

SWDO Output Serial wire data output port.

SWDOEN Output Serial wire output enable port.

TDO Output Test data output port.

Chapter A: Annexe: Tables

 M. FAHAD HASSAN - 15 -

nTDOEN Output
Test data out enable is unused unless SWO

block is being used.

TRACENA Output

Trace Enable port. If the TRCENA bit of the

Debug Exception and Monitor Control

Register is enabled then the power

consumption of Data Watchpoint and Trace

(DWT) and Instrumentation Trace Macrocell

blocks is minimized.

TRACECLK Output

Is the reference clock for the Trace Poet

Interface Unit (TPIU). It is asynchronous to

the other clocks.

TRCEDATA[3:0] Output
Output data for clocked modes. TRACEDATA

changes on both edges of TRCECLK

III. IP Tables

Table A-15: AXI Interconnect core Slave I/O signals

Signal Name Direction Width Description

Snn_ACLK Input 1
Slave interface clock

input

Snn_ARESETN Input 1
Slave interface reset

input (active-Low)

Snn_AXI_araddr Input 32
Read address channel

address

Snn_AXI_arcache Input 4
Read address channel

cache characteristics

Snn_AXI_arburst Input 2
Read address channel

burst type (0-2)

 Development of an acoustic modem

- 16 - M. FAHAD HASSAN

Snn_AXI_arlen Input 4
Read address channel

burst length code (0-16)

Snn_AXI_arlock Input 2

Read address channel

atomic access type (0,

1)

Snn_AXI_arprot Input 3
Read address channel

protection bits

Snn_AXI_arready Output 1
Read address channel

ready

Snn_AXI_arsize Input 3
Read address channel

transfer size code (0-7)

Snn_AXI_aruser Input 1
User-defined AR channel

signals.

Snn_AXI_arvalid Input 1
Read address channel

valid

Snn_AXI_awaddr Input 32
Write address channel

address

Snn_AXI_awburst Input 2
Write address channel

burst type code (0-2)

Snn_AXI_awcahce Input 4
Write address channel

cache characteristics

Snn_AXI_awlen Input 4
Write address channel

burst length

Snn_AXI_awlock Input 2
Write address channel

atomic access type (0,1)

Chapter A: Annexe: Tables

 M. FAHAD HASSAN - 17 -

Snn_AXI_awprot Input 3
Write address channel

protection bits

Snn_AXI_awready Output 1
Write address channel

ready

Snn_AXI_awsize Input 3
Write address channel

transfer size code (0-7)

Snn_AXI_awuser Input 1
User defined aw channel

signals

Snn_AXI_awvalid Input 1
Write address channel

valid

Snn_AXI_bready Input 1
Write response channel

ready

Snn_AXI_bresp Output 2
Write response channel

response code (0-3)

Snn_AXI_bvalid Output 1
Write response channel

valid

Snn_AXI_rdata Output 32 Read data channel data

Snn_AXI_rlast Output 1
Read data channel last

data beat

Snn_AXI_rready Input 1
Read data channel

ready.

Snn_AXI_rresp Output 2
Read data channel

response code (0-3)

Snn_AXI_rvalid Output 1 Read data channel valid

Snn_AXI_wdata Input 32 Write data channel data

 Development of an acoustic modem

- 18 - M. FAHAD HASSAN

Snn_AXI_wlast Input 1
Write data channel last

data beat

Snn_AXI_wready Output 1
Write data channel

ready

Snn_AXI_wstrb Input 4
Write data channel byte

strobes

Snn_AXI_wvalid input 1 Write data channel valid

Table A-16: AXI Interconnect core Master I/O signals

Signal Name Direction Width Description

Mnn_ACLK Input 1
Master interface clock

input

Mnn_ARESETN Input 1
Master interface reset

input (active-Low)

Mnn_AXI_araddr Output 32
Read address channel

address

Mnn_AXI_arready Input 1
Read address channel

ready

Mnn_AXI_arvalid Output 1
Read address channel

valid

Mnn_AXI_awaddr Output 32
Write address channel

address

Mnn_AXI_awready Intput 1
Write address channel

ready

Chapter A: Annexe: Tables

 M. FAHAD HASSAN - 19 -

Mnn_AXI_awvalid Output 1
Write address channel

valid

Mnn_AXI_bready Output 1
Write response channel

ready

Mnn_AXI_bresp Input 2
Write response channel

response code (0-3)

Mnn_AXI_bvalid Input 1
Write response channel

valid

Mnn_AXI_rdata Input 32 Read data channel data

Mnn_AXI_rready Output 1
Read data channel

ready.

Mnn_AXI_rresp Input 2
Read data channel

response code (0-3)

Mnn_AXI_rvalid Input 1 Read data channel valid

Mnn_AXI_wdata Output 32 Write data channel data

Mnn_AXI_wready Input 1
Write data channel

ready

Mnn_AXI_wstrb Output 4
Write data channel byte

strobes

Mnn_AXI_wvalid Output 1 Write data channel valid

Table A-17: AXI Global port signals

Signal Name Direction Width Description

 Development of an acoustic modem

- 20 - M. FAHAD HASSAN

ACLK Input 1 Clock input

ARESETN Input 1
Global reset input

(active-Low)

Table A-18: AXI GPIO I/O signals

Signal Name Direction Description

S_AXI_aclk Input AXI Clock

S_AXI_arestn Reset AXI Reset, active-Low

S_AXI
Input /

Output

AXI slave signals in Table A-15 these

signals are described

ip2intc_irpt Output
AXI GPIO interrupt. Active-High and level

sensitive signal.

gpio_io_i

gpio2_io_i
Input

Channel 1 and Channel 2 purpose input

pins. Width of this port is configurable,

maximum 32-bits.

gpio_io_o

gpio2_io_o
Output

Channel 1 and Channel 2 general purpose

output. Width of this port is configurable,

maximum 32-bits.

gpio_io_t

gpio2_io_t
Output

Channel 1 and Channel 2 general purpose

3-state pins. Width of this port is

configurable, maximum 32-bits.

Table A-19: AXI BRAM Controller I/O signals

Signal Name Direction Description

Chapter A: Annexe: Tables

 M. FAHAD HASSAN - 21 -

S_AXI_aclk Input AXI Clock

S_AXI_arestn Input AXI Reset, active-Low

S_AXI
Input /

Output

AXI slave signals in Table A-15 are

described

bram_addr_a Output

BRAM Port A (write port) address bus. Bus

is sized according to data width and based

on C_S_AXI_BASEADDR and

C_S_AXI_HIGHADDR.

In this case this width is 13-bits

bram_clk_a Output
Port A BRAM clock. Connected to ACLK

with same frequency, and same phase.

bram_wrdata_a Output

BRAM Port A (write port) address bus. Bus

is sixed according to data width and based

on C_S_AXI_BASEADDR and

C_S_AXI_HIGHADDR.

In this case the pin has 32-bits width.

bram_rdata_a Input

BRAM Port A (read port) read data bus.

Size of BRAM read data width is equal to

size of AXI slave port connection to the

AXI BRAM Controller.

In this case the pin has 32-bits width.

bram_en_a Output
BRAM Port A (write port) enable signal.

Active High.

bram_rst_a Output BRAM Port A reset. Active-High.

bram_we_a 4 bits
BRAM Port A active-High write enable

signal.

 Development of an acoustic modem

- 22 - M. FAHAD HASSAN

Table A-20: Block Memory Generator core I/O pins

Signal Name Direction Description

addra Input
Port A Address, addresses the memory

space for port A Read and Write operation.

clka Input

Port A Clock, port A operations are

synchronous to this clock. For synchronous

operation.

dina Input
Port A Data Input, data input to be written

into the memory through port A.

douta Output
Port A data output, data output from Read

operations through port A.

ena Input
Port A Clock Enable, enables Read, Write,

and reset operations through port A.

rsta Input
Port A set/Reset, reset the Port A memory

output latch or output register.

wea [3:0] Input
Port A Write Enable, enables Write

operations through port A.

Table A-21: FF_D_T block I/O ports description

Signal Name Direction Description

CLK Input
Input Clock signal. Clock frequency 50

MHz.

RST Input Input reset signal. Active logic-Low.

DATA_INPUT Input Input data port. Data to save in register.

Chapter A: Annexe: Tables

 M. FAHAD HASSAN - 23 -

DRDY Input ADC data ready signal.

GOERT_STARTED Input

Goertzel Algorithm started enable. When

this signal is logic-High, indicates that the

Goertzel algorithm is being calculated.

DATA_OUTPUT Output Data output port.

DATA_ENABLE Output Data ready enable signal.

Table A-22: Square Generator block I/O ports description

Signal Name Direction Description

CLK Input
Input Clock signal. Clock frequency 50

MHz.

RST Input Input reset signal. Active logic-Low.

Enable Input Enable to begin the signal generation.

Data_Out Out Data out of generated signal.

Table A-23: Processor Synchronous Reset Module I/O pins

Signal Name Direction Description

slowest_sync_clk Input Slowest Synchronous Clock

ext_reset_in Input

External Reset Input, Active-High or

Low based upon the generic Ext

Reset Active Polarity.

 Development of an acoustic modem

- 24 - M. FAHAD HASSAN

aux_reset_in Input

Auxiliary Reset Input. Active-High or

Low based upon the generic Auxiliary

Reset Active Polarity.

mb_debug_sys_rst Input

MDM reset input. Always active-High,

minimum width defined by

parameter External Reset Active

Window Width.

dcm_locked Input DCM Lock signal.

mb_reset Output MB core reset. Active-High.

bus_struct_reset Output
Bus Structures reset, Active-High. 1-

bit width.

peripheral_reset Output

Peripheral reset is for all peripherals

attached to any bus that is

synchronous with the

slowest_sync_clk. Active-High.

interconnect_aresetn Output

Interconnect_aresetne reset, for

example, interconnects with active-

Low reset inputs.

peripheral_aresetn Output

The signal peripheral_aresetn is for

all peripherals attached to

interconnect that is synchronous with

the slowest_sync_clk. Active-Low.

Table A-24: Clocking Wizard core I/O pins

Signal Name Direction Description

Chapter A: Annexe: Tables

 M. FAHAD HASSAN - 25 -

clk_in1 Input

Clock in1, single-ended primary input

clock port. Available when single-ended

primary clock source is selected.

clk_out1 Output
Clock out1, output clock of the clocking

network. This signal is not optional.

locked Output

When the signal is asserted, indicates that

the output clocks are stable and usable by

downstream circuity.

 Development of an acoustic modem

- 26 - M. FAHAD HASSAN

This page intentionally left blank

Chapter B: Annexe: Budget

 M. FAHAD HASSAN - 27 -

B. ANNEXE: BUDGET

This annexe is about the budget of this project which takes into consideration

the cost of the devices, licenses and engineering time required to design,

implement and verify the results of the modem in the laboratory.

This chapter is divided into three sections:

- Devices

- Licenses

- Engineering work

I. Devices cost

Firstly, it is used a personal computer to develop the modem, synthesize

them, and generate the module files to implement in the FPGA. It is also used to

generate the program of the microcontroller and generate the files. Furthermore,

it is used to generate the schematics and this report file.

The second device used is the Nexys 4 DDR board to implement the design

and observe the functionality of the modem.

It has also used a Rigol DG5101 Function generator to emulate the input

analogue signal which could come from the Node. And a Keysight MOSOX3040T

oscilloscope is used to observe the Goertzel Algorithm result and the echo

generated by the modem.

 Development of an acoustic modem

- 28 - M. FAHAD HASSAN

The cost of these devices is shown in the following table.

Table B-1: Devices cost

Devices Price (€)
Useful life

(yr.)

Time used

(yr.)
Price (€)

Computer 900.00 3 0.5 150.00

Nexys 4 DDR 236.86 4 0.5 29.61

RIGOL DG5101 3,930.57 5 0.5 393.06

KEYSIGHT

MSOX3034T
5,287.00 5 0.5 528.70

Total 10,354.43 - - 1,101.37

II. Licences cost

For this project, it has been used the following programs

- Vivado: to develop the modem

- Keil uVision: to create the program and generate the Hex file

- Microsoft Office: to write the report

The cost related to the licenses are shown in the following table.

Table B-2: Licenses cost

Programs
Price per year

(€/yr.)

Time used

(yr.)
Price (€)

Vivado WebPack 0 0.5 0.00

Keil uVision 0 0.5 0.00

Microsoft Office 69.00 0.5 34.5

Chapter B: Annexe: Budget

 M. FAHAD HASSAN - 29 -

Total 69.00 - 34.5

III. Engineering work cost

To develop this modem, it has been invested a number of hours by an

engineer. The following table shows time dedicated to the different sections and

their cost.

The hours spent developing the project are the ones estimated. The amount

of the hours is larger because of technical difficulties during the modem

development.

The table also includes the price and time dedicated to create different

documents such as the report, annexes, user manual, etc.

Table B-3: Engineering time cost

Sections
Time

dedicated (h)

Price per

hour (€/h)
Price (€)

Developing the ADC in

the FPGA.
80 10.00 800.00

Testing the

microcontroller with

simple application

150 12.00 1,800.00

Connecting the ADC and

the microcontroller
250 12.00 3,000.00

Testing and improving

the modem.
100 12.00 1,200.00

Drafting the report 100 8.00 800.00

Total 680 - 7,600.00

 Development of an acoustic modem

- 30 - M. FAHAD HASSAN

IV. Total

Finally, the total budget of developing the modem is obtained summing the

previous calculated costs. The following table shows the budget of this modem.

Table B-4: Total Budget

 Price (€)

Devices cost 1,101.37

Licences cost 34.50

Engineering work cost 7,600.00

Total 8,735.87

Chapter C: Annexe: User manual

 M. FAHAD HASSAN - 31 -

C. ANNEXE: USER MANUAL

This chapter describes the previous configuration of programs to edit the

modem files. It also describes the steps to follow to generate the modem for

FPGA.

I. Configuration

Before start developing the modem in Vivado, first, the configuration is

needed. During this hardware and software repositories are going to add in the

Viviado project. You can visit the following link to configure. The video describes

step by step the configuration of Vivado to use Cortex-M processor.

• Arm Cortex-M DesignStart FPGA: STEP 2 Prepare Vivado for Cortex-M

development

II. Generating modem

They are some steps to follow to generate the .bit file for FPGA. These steps

depend on whether the software is modified or hardware. If you need to modify

only software of the microcontroller continues to step 16 to generate a new

bitstream file.

When in the design any minimum change is made, the next steps are followed

to generate the bit file.

1. To modify hardware; goes to Vivado project, expand the

m1_for_arty_a7_wrapper, double click on the block diagram entry.

https://www.youtube.com/watch?v=GqyjiAQs0gM
https://www.youtube.com/watch?v=GqyjiAQs0gM

 Development of an acoustic modem

- 32 - M. FAHAD HASSAN

2. After modifying the design, first, you have to validate the design clicking

on validate design tick box.

3. If there is no error the design will be validated successfully. Save the block

diagram.

4. Next, generate a new bitstream image file. The new bitstream takes

around 20 min to build (depends on the PC).

5. When the new bitstream file has generated, we need to generate new

hardware file. Go to 𝑓𝑖𝑙𝑒 → 𝐸𝑥𝑝𝑜𝑟𝑡 → 𝐸𝑥𝑝𝑜𝑟𝑡 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 in Vivado to generate

new hardware description file.

Figure C-1: Opening Block diagram

Figure C-2: Validating design

Chapter C: Annexe: User manual

 M. FAHAD HASSAN - 33 -

6. The next window will appear when you click con Export Hardware.

7. In choose location, navigate to the folder Software, where the hardware

description file will be saved. If appears a warining click in ok, the waring

would be because you are going to rebuild the Hardware.

Figure C-3: Export Hardware

Figure C-4: Export Hardware window

 Development of an acoustic modem

- 34 - M. FAHAD HASSAN

8. Open a new windows folder and navigate to sdk_workspace

(…/software/m3_for_arty_a7_1/sdk_workspace). Delete all files and

folders because new bsp files will be saved in this folder.

9. Next, you need to launch SDK thus go to 𝑓𝑖𝑙𝑒 → 𝐿𝑎𝑢𝑛𝑐ℎ 𝑆𝐷𝐾 . The following

window will appear.

10.In Export location, navigate to the Software directory. In Workspace

navigate to …/software/m3_for_arty_a7_1/sdk_workspace, and click in

ok.

11.When the SDK has launched, go to 𝑋𝑖𝑙𝑖𝑛𝑥 → 𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑖𝑒𝑠.

12.There rescan the repositories and click in ok.

Figure C-5: Launch SDK

Figure C-6: SW repositories

Chapter C: Annexe: User manual

 M. FAHAD HASSAN - 35 -

13.Now go to 𝑓𝑖𝑙𝑒 → 𝑛𝑒𝑤 → 𝐵𝑜𝑎𝑟𝑑 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑃𝑎𝑐𝑘𝑎𝑔𝑒 and click on.

14.Click in finish

15.After a while, you will see in SDK log that the bsp has been created.

16.Now open the Keil uVision program from Software folder.

Figure C-7: Rescanning SW repositories

Figure C-8: Generating new BSP

Figure C-9:Generating standalone bsp

 Development of an acoustic modem

- 36 - M. FAHAD HASSAN

17.If you need to modify any software, modify.

18.Click in rebuild and ensure that there are no errors.

19.Open a new windows folder and navigate to Bulid Keil

(…/software/m3_for_arty_a7_1/Bulid_Keil). Click on make_hex_a7. This

will generate new bram_a7.hex file with the new program.

20.Go back to Vivado and Run Synthesis. After the synthesis has finished

successfully, generate Bitstream file.

21.Finally, when the Bitstream file is successfully generated, you can

implement the file in FPGA.

Chapter D: Annexe: Code

 M. FAHAD HASSAN - 37 -

D. ANNEXE: CODE

This chapter shows the software and hardware code of the device. This are

only codes which are created by the developer. Other elements are part of

Cortex-M3 and Vivado. These parts can be observed in Annexe Schematic.

The chapter is divided into two sections: Hardware Code and Software Code.

I. Hardware code

There are two elements created for modem using Verilog HDL. The two parts

generated are FF_D_T block and Square Generator block. Specified

FF_D_T

module FF_D_T#(

 parameter DWIDTH = 16

)

 (

 input [DWIDTH-1:0] DATA_INPUT,

 input CLK,

 input RST,

 input DRDY,

 input GOERT_STARTED,

 output [DWIDTH-1:0] DATA_OUTPUT,

 output DATA_ENABLE

);

Code D-1: FF-D-T module code (I); I/O declaration.

 Development of an acoustic modem

- 38 - M. FAHAD HASSAN

 reg [DWIDTH-1:0] D_OUT_AUX;

 reg D_ENABLE_AUX;

 reg GS_Z1;

 reg GS_Z2;

 always @(posedge CLK) begin

 if (!RST) begin

 D_OUT_AUX <= 0;

 end

 else if (DRDY) begin

 D_OUT_AUX <= DATA_INPUT;

 end

 end

 assign DATA_OUTPUT = D_OUT_AUX;

 always @(posedge CLK) begin

 if (!RST) begin

 D_ENABLE_AUX <= 0;

 GS_Z1 <= 0;

 GS_Z2 <= 0;

 end

 else if (!GS_Z1 && GS_Z2) D_ENABLE_AUX <= 0;

 else if(!GOERT_STARTED && DRDY) D_ENABLE_AUX <= !(D_ENABLE_AUX);

 GS_Z2 <= GS_Z1;

 GS_Z1 <= GOERT_STARTED;

 end

 assign DATA_ENABLE = D_ENABLE_AUX;

endmodule

Code D-2: FF-D-T module code (II).

Chapter D: Annexe: Code

 M. FAHAD HASSAN - 39 -

Square Generator

module Square_Generator#(

 parameter DO_Width = 8,

 parameter Input_Clock_Frequency = 50, // Clock time in MHz

 parameter Signal_Time = 5000, // Time in microseconds

 parameter Output_Signal_Frequency = 10000 // Frequency in Hz

)

 (

 input CLK,

 input RST,

 input Enable,

 output [DO_Width-1:0] Data_Out

);

 reg [DO_Width-1:0] D_OUT_AUX;

 reg EnableZ1;

 reg EnableZ;

 reg EAux;

 reg [31:0] Tem;

 reg [31:0] TS; // to count de period

 reg ES; // to obtain enable

Code D-3: Square Generator module code (I); I/O and internal registers

declaration.

 Development of an acoustic modem

- 40 - M. FAHAD HASSAN

always @(posedge CLK) begin

 /*

 Enable detection. The aux Enable is active for long time,

 until the complete signal is not transmit

 */

 if (!RST) begin

 EnableZ1 <= 0;

 EnableZ <= 0;

 TS <= 0;

 ES <= 0;

 D_OUT_AUX <= 0;

 Tem <= 0;

 end

 else begin

 EnableZ1 <= EnableZ;

 EnableZ <= Enable;

 if (EnableZ1 == 0 && EnableZ == 1) begin

 EAux <= 1;

 end

 /* Counter to create square signal period */

 if (EAux) begin

 // couter for signal T: Input_Freq / (Out_Freq * 2); Out_T/2 * 1/Input_T

 if (TS < (In_Clk_Frq*500000/Out_Sig_Frq - 1)) begin

 TS <= TS+1;

 end

 else if (TS == (In_Clk_Frq*500000/Out_Sig_Frq -1)) begin

 ES <= 1;

 TS <= 0;

 end

 end

Code D-4: Square Generator module code (II)

Chapter D: Annexe: Code

 M. FAHAD HASSAN - 41 -

 /* Signal generating and send during the signal time */

 if (EAux) begin

 if (Tem < (Signal_Time*In_Clk_Frq - 1)) begin

 if (ES) begin

 D_OUT_AUX <= ~D_OUT_AUX;

 ES <= 0;

 end

 Tem <= Tem +1;

 end

 else if (Tem == (Signal_Time*In_Clk_Frq - 1)) begin

 EAux <= 0;

 TS <= 0;

 Tem <= 0;

 D_OUT_AUX <= 0;

 end

 end

 end

end

assign Data_Out = D_OUT_AUX;

endmodule

Code D-5: Square Generator module code (II)

 Development of an acoustic modem

- 42 - M. FAHAD HASSAN

II. Software code

Five different type of files are needed for code. These files are used to

generate the program apart from other files generated by SDK. These are main

used program files. The following files are the most important files:

- main.c

- gpio.c

Other important files for program are included in the folder.

Chapter D: Annexe: Code

 M. FAHAD HASSAN - 43 -

Main

/* Program main file */

/* --------Included Headers-------- */

// Xilinx specific headers

#include "xparameters.h"

#include "xgpio.h"

#include "m3_for_arty.h" // Project specific header

#include "gpio.h"

int main (void)

{

 // Initialise the GPIO

 InitialiseGPIO();

 // Enable GPIO Interrupts

 NVIC_EnableIRQ(GPIO0_IRQn);

 NVIC_EnableIRQ(GPIO1_IRQn);

 NVIC_EnableIRQ(GPIO_ADC_IRQn);

 EnableGPIOInterrupts();

 while (1) {

 // Wait for interruption

 }

}

Code D-6: Program code main.c file.

 Development of an acoustic modem

- 44 - M. FAHAD HASSAN

Gpio C file

/* GPIO: Interruption attender file */

/*--------Included Headers--------*/

#include <math.h>

#include <limits.h>

#include <time.h>

#include "gpio.h"

#include "xparameters.h" // Project memory and device map

#include "xgpio.h" // Xilinx GPIO routines

#include "peripherallink.h" // IRQ definitions

#define M_PI 3.141592653589793

/*!< SysTick CTRL: Disable Mask */

#define SysTick_CTRL_ENABLE_MskN (0UL << SysTick_CTRL_ENABLE_Pos)

/************************** Variable Definitions ************************/

/*

 * The following are declared static to this module so they are zeroed and

so they are easily accessible from a debugger

 * Also they are initialised in main, but accessed by the IRQ routines

 */

static XGpio Gpio_ADC_Data_Control; /* The driver instance for GPIO ADC */

static XGpio Gpio_Data; /* The driver instance for GPIO Device 0 */

static XGpio Gpio_RGBLed_PB; /* The driver instance for GPIO Device 1 */

Code D-7: Program code gpio.c file (I).

Chapter D: Annexe: Code

 M. FAHAD HASSAN - 45 -

// Initialise the GPIO and zero the outputs

int InitialiseGPIO(void)

{

 // Define local variables

 int status;

 /** Initialize the GPIO driver so that it's ready to use,

 * specify the device ID that is generated in xparameters.h **/

 status = XGpio_Initialize(&Gpio_ADC_Data_Control, XPAR_ADC_AXI_GPIO_2_DEVICE_ID);

 if (status != XST_SUCCESS) {

 return XST_FAILURE;

 }

 status = XGpio_Initialize(&Gpio_Data, XPAR_AXI_GPIO_0_DEVICE_ID);

 if (status != XST_SUCCESS) {

 return XST_FAILURE;

 }

 status = XGpio_Initialize(&Gpio_RGBLed_PB, XPAR_AXI_GPIO_1_DEVICE_ID);

 if (status != XST_SUCCESS) {

 return XST_FAILURE;

 }

/* GPIOADC */

// In the ADC is needed to select channel data from which is want to see in output channel

// The port 0 of GPIO ADC is selected as output to write the address of desired converted data

XGpio_SetDataDirection(&Gpio_ADC_Data_Control, ARTY_A7_ADC_SIGNALS, 0xfffff000);

// the aux10 is selected to see converted data, addr of aux2 is 10010b -> 0x12

XGpio_DiscreteWrite(&Gpio_ADC_Data_Control, ARTY_A7_ADC_SIGNALS, 0x01A);

// Now the port is configured to be input

// Port0 drives control signals. Set bus to be input.

// (In this case a normal mode is used and ADC can't be configured.)

XGpio_SetDataDirection(&Gpio_ADC_Data_Control, ARTY_A7_ADC_SIGNALS, 0xffffffff);

// Port1 drives data bus. Set bus to be input.

// (In this case a normal mode is used and ADC can't be configured.)

XGpio_SetDataDirection(&Gpio_ADC_Data_Control, ARTY_A7_ADC_DATA, 0xffffffff);

/* GPIO0 */

// Port0 drives data out. Set bottom 16 UART ports to be outputs.

XGpio_SetDataDirection(&Gpio_Data, ARTY_A7_Output_DATA, 0xFFFF0000);

Code D-8: Program code gpio.c file (II).

 Development of an acoustic modem

- 46 - M. FAHAD HASSAN

/* GPIO1 */

 // Port0 drives led_rgb. Set 12 UART ports to be outputs.

 XGpio_SetDataDirection(&Gpio_RGBLed_PB, ARTY_A7_RGB_CHANNEL, 0xffffff00);

//ARTY_A7_GPIO1->TRI0 = 0xffffff00;

// Port 1 inputs the push button switches. Set to be inputs

 XGpio_SetDataDirection(&Gpio_RGBLed_PB, ARTY_A7_PB_CHANNEL, 0xffffffff);

//ARTY_A7_GPIO1->TRI1 = 0xffffffff;

/* Default Values */

// Default value of Data Out Bus

XGpio_DiscreteWrite(&Gpio_Data, ARTY_A7_Output_DATA, 0x0000);

//ARTY_A7_GPIO0 -> DATA0 = 0x0000;

// Default value of RGB LEDs

XGpio_DiscreteWrite(&Gpio_RGBLed_PB, ARTY_A7_RGB_CHANNEL, 0x00);

//ARTY_A7_GPIO1->DATA0 = 0x00;

 return XST_SUCCESS;

}

/* Set GPIO interrupts */

void EnableGPIOInterrupts(void) {

// ADC signals on Channel 2 to occur interrupt

XGpio_InterruptEnable(&Gpio_ADC_Data_Control, XGPIO_IR_CH1_MASK);

// Push buttons on Channel 2 to occur interrupt

 XGpio_InterruptEnable(&Gpio_RGBLed_PB, XGPIO_IR_CH2_MASK);

// Having enabled the M3 to handle the interrupts, now enable the GPIO to send the interrupts

XGpio_InterruptGlobalEnable(&Gpio_ADC_Data_Control);

XGpio_InterruptGlobalEnable(&Gpio_Data);

XGpio_InterruptGlobalEnable(&Gpio_RGBLed_PB);

}

/* Define the GPIO interrupt handlers */

void GPIO0_Handler (void){

 // Clear interrupt from GPIO

 XGpio_InterruptClear(&Gpio_Data, XGPIO_IR_MASK);

 // Clear interrupt in NVIC

 NVIC_ClearPendingIRQ(GPIO0_IRQn);

}

Code D-9: Program code gpio.c file (III).

Chapter D: Annexe: Code

 M. FAHAD HASSAN - 47 -

void GPIO1_Handler (void) {

 int mask, led_val, incr;

 volatile uint32_t gpio_push_buttons;

 volatile uint32_t gpio_leds_rgb;

 // For LEDs, cycle around color each time respective push button is pressed

 // Only change if a pushbutton is pressed.

 // This prevents a double change as the button is released.

 if(XGpio_DiscreteRead(&Gpio_RGBLed_PB, ARTY_A7_PB_CHANNEL) != 0) {

 // LEDs are on a 3 spacing. So multiply button press by 2^3 to increment the correct LED

 gpio_push_buttons = XGpio_DiscreteRead(&Gpio_RGBLed_PB, ARTY_A7_PB_CHANNEL);

 gpio_leds_rgb = XGpio_DiscreteRead(&Gpio_RGBLed_PB, ARTY_A7_RGB_CHANNEL);

 if (gpio_push_buttons & 0x1) {

 mask = 0x7;

 incr = 0x1;

 } else if (gpio_push_buttons & 0x2) {

 mask = (0x7 << 3);

 incr = (0x1 << 3);

 } else if (gpio_push_buttons & 0x4) {

 mask = (0x7 << 6);

 incr = (0x1 << 6);

 } else if (gpio_push_buttons & 0x8) {

 mask = (0x7 << 9);

 incr = (0x1 << 9);

 }

 led_val = gpio_leds_rgb & mask;

 led_val = (led_val+incr) & mask;

 gpio_leds_rgb = (gpio_leds_rgb & ~mask) | led_val;

 XGpio_DiscreteWrite(&Gpio_RGBLed_PB, ARTY_A7_RGB_CHANNEL, gpio_leds_rgb);

 }

 // Clear interrupt from GPIO

 XGpio_InterruptClear(&Gpio_RGBLed_PB, XGPIO_IR_MASK);

 // Clear interrupt in NVIC

 NVIC_ClearPendingIRQ(GPIO1_IRQn);

}

Code D-10: Program code gpio.c file (IV).

 Development of an acoustic modem

- 48 - M. FAHAD HASSAN

void GPIO_ADC_Handler (void){

volatile int32_t adc_data; // ADC data bus

volatile uint32_t adc_signals; // ADC signals bus

uint16_t i, j=0; // parameters for loop

uint32_t Frq; // Analyzed Frequency

 float NSamples; // number of samples to detect length of spesific frequency signal

 float z0, z1, z2; // to save previous and actual values (Goertzel Agorithm)

float coeff, cos_a, omega; // Coefficient, cos(a) and rotational speed (Goertzel algorithm)

int k; // Parameter for Goertzel algorithm

uint32_t Sampling_Frq; // ADC sampling rate

float power; // Power get from algorithm in float

uint16_t power_int; // Power in 16bits integer

uint16_t Power_Setpoint, E_Setpoint; // Setpoint of power and error

 /*------- Initial Conditions -------*/

 /* Detected Frequency = 10 kHz

 Number of Samples = 400

 Sampling Frequency = 80 kHz

 Error Setpoint = 3000

 Power Setpoint = 60000 */

/* Note: Sampling Frequency and Nº of sample was adjusted to obtain an accurate response */

Frq = 10000;

NSamples = 480.0;

//z0 = 0;

z1 = 0;

z2 = 0;

Sampling_Frq = 77000;

Power_Setpoint = 6000;

E_Setpoint = 3000;

// Goertzel algorithm applied to data

k = (int) (0.5 + ((NSamples * Frq) / Sampling_Frq));

omega = (2.0 * M_PI * k) / NSamples;

cos_a = cos(omega);

coeff = 2.0 * cos_a;

Code D-11: Program code gpio.c file (V).

Chapter D: Annexe: Code

 M. FAHAD HASSAN - 49 -

 adc_data = ((XGpio_DiscreteRead(&Gpio_ADC_Data_Control, ARTY_A7_ADC_DATA)) & 0xfff0);

if (adc_data > E_Setpoint){

 for (i = 0; i < NSamples; i++){

 // Get data and signals from GPIO

 adc_data = ((XGpio_DiscreteRead(&Gpio_ADC_Data_Control, ARTY_A7_ADC_DATA)) & 0xfff0);

 adc_signals = XGpio_DiscreteRead(&Gpio_ADC_Data_Control, ARTY_A7_ADC_SIGNALS);

 // drdy_out signal is bit 8 of adc signal bus

 // doing a bitwise AND operation of adc signals bus with all 0s except the 8th bit,

//drdy value can be get

 if (adc_signals & 0x0080){

 // The port 0 of GPIO ADC is selected as output to write data

 XGpio_SetDataDirection(&Gpio_ADC_Data_Control, ARTY_A7_ADC_SIGNALS, 0xfffff000);

 // the Goerz_Started (bit 9) is set to not modify data_enable

// (aux2 is also selected: 00011010b -> 0x1A) : 0x

 // the write enable is also 0 in previous case

 XGpio_DiscreteWrite(&Gpio_ADC_Data_Control, ARTY_A7_ADC_SIGNALS, 0x11A);

 z0 = coeff * z1 - z2 + adc_data;

 z2 = z1;

 z1 = z0;

 XGpio_DiscreteWrite(&Gpio_ADC_Data_Control, ARTY_A7_ADC_SIGNALS, 0x01A);

 // Port0 drives control signals. Set bus to be input.

 XGpio_SetDataDirection(&Gpio_ADC_Data_Control, ARTY_A7_ADC_SIGNALS, 0xffffffff);

 }

 }

}

/* Calculation of the real and imaginary part: real = z1 * cos_a - z2; imag = z1 * sin_a;

power = sqrt(real^2 + imag^2) = sqrt(z1^2*cos_a^2 - 2*z1*cos_a*z2 + z2^2 + z1^2*sin_a^2)

power = sqrt(z1^2 - 2*z1*z2*cos_a + z2^2) */

power = sqrt(z1*z1 + z2*z2 - 2*z1*z2*cos_a);

// power in integer value. It is divided by 100 to have numbers within 16-bit vector.

power_int = (uint16_t) (power/100);

XGpio_DiscreteWrite(&Gpio_Data, ARTY_A7_Output_DATA, power_int);

Code D-12: Program code gpio.c file (VI).

 Development of an acoustic modem

- 50 - M. FAHAD HASSAN

// Determine if the input signal frequency correspond to Frq

if (power_int > Power_Setpoint) {

XGpio_SetDataDirection(&Gpio_ADC_Data_Control, ARTY_A7_ADC_SIGNALS, 0xfffff000);

 XGpio_DiscreteWrite(&Gpio_ADC_Data_Control, ARTY_A7_ADC_SIGNALS, 0x021A);

 for(j = 0; j < 5; j++){}

 XGpio_DiscreteWrite(&Gpio_ADC_Data_Control, ARTY_A7_ADC_SIGNALS, 0x001A);

 // Port0 drives control signals. Set bus to be input.

 XGpio_SetDataDirection(&Gpio_ADC_Data_Control, ARTY_A7_ADC_SIGNALS, 0xffffffff);

}

XGpio_InterruptClear(&Gpio_ADC_Data_Control, XGPIO_IR_MASK);

// Clear interrupt in NVIC

NVIC_ClearPendingIRQ(GPIO_ADC_IRQn);

}

Code D-13: Program code gpio.c file (VII).

Chapter E: Annexe: Schematic

 M. FAHAD HASSAN - 51 -

E. ANNEXE: SCHEMATIC

The folder includes in PDF the design of ADC Diagram, Clock and resets

Diagram and the complete diagram of the modem. The folder also includes PDF

of Nexys 4DDR board schematic.

This page intentionally left blank

