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Abstract

The numerical resolution of the incompressible Navier-Stokes equations with
the Fractional Step Method, based on the Helmholtz-Hodge theorem, is
studied. Basic benchmark problems are solved previously, such as a generic
transient 2D heat conduction problem, potential flow around a rotating
and non-rotating cylinder and a generic convection-diffusion equation; with
excellent agreement with the results obtained and the ones on the literature.
The code for the incompressible Navier-Stokes equation is verified using
the benchmark results of the Lid-driven cavity problem with really good
agreement as well. Finally, laminar flow around a confined square cylinder
is studied and compared with the results from Breuer et. al. The drag
coefficient and Strouhal number are computed finding good agreement for
Reynolds numbers lower than 100 but important discrepancies for higher
Reynolds.
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Chapter 1

Introduction

1.1 Aim of the thesis
The main objective of this thesis is the elaboration, validation and veri-
fication of self-developed C++ codes in order to solve the incompressible
Navier-Stokes equations, being the final objective the study of the vortex
shedding phenomenon behind a square cylinder.

1.2 Background and Justification
The importance of numerical methods in engineering is widely known in the
industry, as the vast majority of problems can be modelled using differential
equations. As those equations can hardly ever be solved analytically, the
use of high order numerical schemes becomes vital to get precise results.

Computational Fluid Dynamics (CFD) is an example of numerical meth-
ods used in engineering. CFD is the branch of fluid mechanics that uses nu-
merical techniques to study the properties and characteristics of fluid flows
by means of a computer-based simulation. CFD is applied in many different
fields: aerodynamics, weather simulation, study of combustion phenomena,
biological fluid flows... [5]. The availability of high performance comput-
ing and algorithms in the recent years has increased the usage of CFD in
the industry, leading to the creation of many different software with user-
friendly interfaces. The advantages of Computational Fluid Dynamics over
experiment-based techniques are clear [6]:

• Possibility to test many different configurations and reach an optimum
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one through optimization algorithms without having to create different
prototypes, which would lead to a high increase in the expenses of the
study

• Ability to study systems in hazardous conditions in which real life
testing would not be possible or very expensive

• Ability to change the flow parameters without having to make another
experiment

Nevertheless, the main drawbacks of numerical simulations are also really
important and should be taken into account. As the equations are not solved
analytically, different errors are being accumulated in the solution process
[7]:

• Discretization errors: local truncation errors, global truncation error,
aliasing error...

• Residual of the solver and round-off errors.

Moreover, in order to get highly accurate results, the used mesh needs to
be extremely fine, specially with turbulent flows. With available codes in the
market, computation cost grows with Re3 [8], which increases dramatically
the computation time needed, specially for higher Reynolds simulations of
an aircraft, for example. To solve this problem, turbulence models are used,
decreasing computation time but also precision in the results.

1.3 Scope
In order to reach the final goal of the thesis, different benchmark problems
are previously solved to set up the basis. First of all, a 2D heat conduc-
tion problem is solved in order to study a typical diffusion equation.This is
followed by the study of potential flow around a rotating and non-rotating
cylinder using the stream function approach. The code is verified using re-
sults from literature.

Then, a general convection-diffusion equation is solved as the previous
step before solving the Navier-Stokes equations. Different numerical con-
vective schemes are studied, focusing in order of accuracy of each of them
and stability. The code is verified with different benchmark problems such
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as diagonal flow and Smith-Hutton problem.

Finally, the Navier-Stokes equations are solved using the Fractional Step
Method and the code is verified with the well-known results of the Lid-
Driven cavity problem. The same code is finally used to study the laminar
flow inside a channel (Poiseuille flow) and the vortex shedding phenomenon
behind a square cylinder.

1.4 Requirements
The necessary requirements of this thesis are the presentation of the self-
developed codes in C++ to solve all the benchmark problems mentioned
previously. All the figures shown made during the post-process of each study
are done using "Paraview" software, and the plots are done with "Matlab"
software, which are also mandatory in order to prove the proper functioning
of the developed codes.
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Chapter 2

Previous study

2.1 Introduction
In this chapter, the basis of computational fluid dynamics are set. The math-
ematical formulation of the Navier-Stokes equations is presented and the
differences between the finite volume method and finite difference method
are explained. Finally, different iterative solvers are briefly described in
conjunction with the most important properties of a numerical scheme.

2.2 Navier-Stokes equations: Mathematical for-
mulation

The Navier-Stokes equations are a set of coupled non-linear partial differ-
ential equations that describe the motion of a fluid. In general, it does not
exist an analytical solution for these equations, except for some concrete
flow and boundary conditions. In fact, they are an extension of the Euler
equations but considering the viscous effects [9].

The Navier-Stokes equations consist of one time-dependent conserva-
tion of mass equation, three time-dependent conservation of momentum
equations (one for each velocity component (u, v, , wq, and another time-
dependent conservation of energy equation. There are 4 independent vari-
ables, the three spatial coordinates px, y, and z) (in cartesian coordinates),
plus the time (t). However, there are 6 dependent variables (the three ve-
locity components, pressure, density and temperature), which means that
another equation such as an equation of state needs to be used in order to
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solve the system [10].

The Navier-Stokes equations are now presented:

Bρ

Bt
`
Bpρuq

Bx
`
Bpρvq

By
`
Bpρwq

Bz
“ 0 (2.2.1)

Bpρuq

Bt
`
Bpρuuq

Bx
`
Bpρvuq

By
`
Bpρwuq

Bz
“ ´

BP

Bx
`
Bτxx
Bx

`
Bτyx
By

`
Bτzx
Bz

` ρgx ` f
e
x (2.2.2)

Bpρvq

Bt
`
Bpρuvq

Bx
`
Bpρvvq

By
`
Bpρwvq

Bz
“ ´

BP

By
`
Bτxy
Bx

`
Bτyy
By

`
Bτzy
Bz

` ρgy ` f
e
y (2.2.3)
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`
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`
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`
Bτxz
Bx

`
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By

`
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z (2.2.4)
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`
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`
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ˆ
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`
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BpPuq

Bx
`
BpPvq

By
`
BpPwq

Bz

˙

`
B

Bx
puτxx ` vτxy ` wτxzq`

B

By
puτyx ` vτyy ` wτyzq `

B

Bz
puτzx ` vτzy ` wτzzq`

ρpgxu` gxv ` gzwq

(2.2.5)

Where, equation (2.2.1) is the mass conservation equation, equations
(2.2.2, 2.2.3 and 2.2.4) are the momentum conservation equations in x, y
and z, where, (fex, f ey and fez ) are external forces in each of the three
directions; and equation (2.2.5) is the energy conservation equation.

2.3 Finite Volume Method (FVM) or Finite Dif-
ference Method (FDM)

There are two main methods used to discretize the equations: The finite vol-
ume method and the finite difference method. The finite difference method
is based on the approximation of the partial derivatives of each equation
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by a Taylor expansion series with the desired order of accuracy. As it is
obvious, the higher the order of accuracy, the better the results. However,
complexity increases and computation time as well.

On the other hand, the Finite Volume method is also based on calculat-
ing the values at a concrete place in a discretized geometry (mesh). However,
instead of using the differential form of the equations, the integral form of
the governing equations is used, and all the volume integrals at each control
volume are converted into surface integrals using the divergence theorem.
As a result, theses terms are computed as fluxes of a certain value through
the cell face. As the flux entering a surface is the same as the flux leaving
the surface of the adjacent control volume, if conservation is ensured at each
control volume it is also ensured in all the domain. This, and the fact that
it can be easily implemented with non-structured meshes, makes it really
popular for CFD.

In this thesis the Finite Volume Method is used to solve all the problems,
and the nomenclature used to discretize the geometry is the following:

Figure 2.1: Nomenclature used at each control volume

Where the letters in capitals N, E, S and W refer to the northern, east-
ern, southern and western nodes respectively, while the lower case letters n,
e, s and w refer to the northern, eastern, southern and western cell faces
respectively. The same letters are used in the equations to refer to the same
properties of the control volume.
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2.4 Iterative solvers
As the solution of the desired property at each control volume depends on
the values at the adjacent ones (equations are coupled), an iterative method
to solve the equations is necessary. Iterative methods such as the Gauss-
Seidel Method [11] or the Jacobi method make use of an initial approxima-
tion value and start iterating, comparing the result of one iteration with
their initial guess. After each iteration, the calculated value becomes the
initial guess and this is done successively until the difference between the
calculated value and the predicted one is smaller than a certain convergence
criterion set by the user. These iterative methods might not converge for
non-diagonally dominant matrices.

Another popular algorithm is the TDMA (Tridiagonal matrix) [12]. How-
ever, as this solver only works for tridiagonal matrices, a more advanced
technique such as the Line-by-line can be used, which consists in solving
each line first, and them each column with the TDMA algorithm and then
compare the results obtained. If the values are not the same, an iterative
process starts until a certain convergence criterion is reached.

2.5 Properties of a numerical scheme
In order to evaluate if a numerical scheme is good enough or not, it must
verify some crucial properties [13]:

• Consistency: A numerical scheme is consistent if by reducing the
size of the mesh and the time-step, the truncation error of the approx-
imation vanishes, which means that the solution of the approximation
tends to the exact solution.

• Stability: A numerical scheme is considered stable if the errors decay
as the simulation proceeds, which means that the errors (round-off,
truncation...) are not magnified during the simulation.

• Conservation: Conservation of properties should be respected at
each discrete level.

• Boundness: Properties should remain within certain values without
experiencing sudden overshoot or undershoots. For example, proper-
ties such as density or concentrations should remain positive.
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• Convergence: The numerical solution should get closer to the exact
solution as the mesh is refined.

2.6 Conclusions
With everything mentioned above, the basis of computational fluid dynamics
are set. The difficulty of the Navier-Stokes equations is clear, specially due
to its non-linearity caused by the convective term (which is treated in detail
in future chapters). The differences between the finite volume method and
the finite difference method are also clear, and it has been seen that the fact
that the finite volume method ensures conservation in the whole domain,
makes it really suitable for CFD. Finally, the main properties of a numerical
scheme, in which attention should be paid in the following analysis, have
been described.
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Chapter 3

Diffusion equations - Heat
transfer problem

3.1 Introduction
The objective of this chapter is to study a generic diffusion problem, in
particular, a 2D heat transfer problem. The mathematical formulation and
discretization of equation is presented in the next section and a brief study
of the spatial and temporary discreitzation is done.

3.2 Mathematical formulation
In order to develop the equations that model any heat transfer problem, the
first principle of thermodynamics is applied:

B

Bt

¿

V

ρu dV “ ´

¿

S

9q ¨ n dS (3.2.1)

Where it has been considered that there is no work applied to the sys-
tem and the variation of kinetic and potential energy is zero. (Note that in
this notation u stands for internal energy rather than velocity in x direction).

An average internal energy per unit of mass and volume can be defined
as:

ū “
1
V p

¿

V

u dV (3.2.2)
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Assuming constant physical properties, density is considered a constant
and comes out of the integral (3.2.1). Combining (3.2.1) with (3.2.2) it can
be easily proved that:

ρV p
Bū

Bt
“

ÿ

9Q (3.2.3)

In equation (3.2.3) the integral of heat fluxes has been replaced by a
summation of the net heat fluxes entering the control volume.

Integrating both sides of the previous equation:

ż tn`1

tn
ρV p

Bū

Bt
dt “

ż tn`1

tn

ÿ

9Qdt (3.2.4)

Considering that the internal energy is a state function and thus, it only
depends on its initial and final values, and, assuming a second order ap-
proach for the integral on the left-hand side, the previous equation can be
rewritten as:

ρVppup
n`1 ´ up

nq “

ż tn`1

tn

ÿ

9Qdt (3.2.5)

The integral of the right-hand side of (3.2.5) can be approximated using
an explicit, implicit or crank-Nicolson approach:

• Explicit form:

The finite differences are taken at the beginning of the time-step, which
means that the integral is calculated using known values of the previ-
ous iteration. As a consequence, there is no need to solve a system of
equations at each time step. It is less demanding in terms of computa-
tion time, but the main drawback is that it does not always converge.
It is a first order approximation:
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Figure 3.1: Integral calculated explicitly

• Implicit form:

The finite differences are taken at the end of the time-step, which
means that the integral needs to be calculated by solving a system
of equations by iteration. As a consequence, the computation time
increases. However, this method is unconditionally stable but it is
also a first order approximation:

Figure 3.2: Integral calculated implicitly
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• Crank-Nicolson form:

This is a second order approximation for the integral and it is also
unconditionally stable. However it also requires solving a system of
equation by iteration, as it uses the values at the previous and new
time steps.

Figure 3.3: Integral calculated using Crank-Nicolson

And finally, a general form to express the integral can be written as:

ż tn`1

tn

ÿ

9Qdt «

«

β
i
ÿ

i“1

9Qn`1
pi ` p1´ βq

i
ÿ

i“1

9Qnpi

ff

∆t (3.2.6)

If β “ 0 the integral is calculated explicitly, if β “ 1, it is calculated
implicitly and if β “ 1{2, the integral is calculated by Crank-Nicolson.

Applying this integral approximation to equation (3.2.5), the overall
equation becomes:

ρVppup
n`1 ´ up

nq “

«

β
i
ÿ

i“1

9Qn`1
pi ` p1´ βq

i
ÿ

i“1

9Qnpi

ff

∆t (3.2.7)
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3.3 2D wall with 4 different materials
The benchmark problem to study consists of a 2D wall made out of 4 dif-
ferent materials, as it is shown in the figure below:

Figure 3.4: 2D wall with 4 different materials [1]

The coordinates of point p1, p2 and p3 and the physical properties of
each of the 4 materials are described below:

Point Xrms Y rms

p1 0,5 0,4
p2 0,5 0,7
p3 1,1 0,8

Table 3.1: Geometrical properties of the 2D wall (coordinates)

Material ρ rkg{m3s Cp rJ{kgKs K rW {mKs

M1 1500 750 170
M2 1600 770 140
M3 1900 810 200
M4 2500 930 140

Table 3.2: Physical properties of each material of the 2D wall

21



The physical properties of Table 3.3 are considered constant with tem-
perature variation.

The boundary conditions of the problem are described in the table below:

Wall Boundary conditions
Bottom Isotherm at T “ 23˝C
Top 9Qf low “ 60W {m
Left In contact with a fluid at Tg “ 33˝C and α “ 9W {mK
Right Uniform temperature T “ 8` 0, 005t˝C (t=time in seconds)

Table 3.3: Boundary conditions of the 2D wall

The initial temperature of the wall is 8˝C

3.3.1 Discretization of the geometry and equations

In order to solve the problem, a central node discretization is used. This is
an adequate discretization because if an harmonic mean is applied to cal-
culate the coefficients of thermal conductivity at the faces, there is no need
to differentiate the central nodes of the wall from the ones of the boundaries.

As nodes from the boundaries have also different boundary conditions,
their discretization equations are also different and need to be considered
separately:

• Top row nodes

Figure 3.5: Boundary conditions of the top nodes of the 2D wall
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ρPVpCp
∆t pTn`1

P ´ TnP q “

ˆ

´λw
TP ´ TW
dPW

Sw ´

λs
TP ´ TS
dPS

Ss ` λe
TE ´ TP
dPE

Se ` 9Q ¨ dx

˙n`1 (3.3.1)

Rearranging terms the overall equation can be written as:

aPT
n`1
p “ paETE ` aWTW ` aSTS ` aNTN ` bpq

n`1 (3.3.2)

Where:

aE “
λeSe
dPE

aS “
λsSs
dPS

aN “ 0 aW “
λwSw
dPW

bp “
ρPVpCPT

n
p

∆t ` 9Qdx aP “
ρPVpCp

∆t ` aE ` aW ` aN ` as

• Left column nodes

Figure 3.6: Boundary conditions of the left nodes of the 2D wall

ρPVpCp
∆t pTn`1

P ´ TnP q “

ˆ

´λs
TP ´ TS
dPS

Ss `

λe
TE ´ TP
dPE

Se ` λn
TN ´ TP
dPN

Sn ´ αgpTP ´ Tgqdy

˙n`1 (3.3.3)
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Rearranging terms the overall equation can be written as:

aPT
n`1
p “ paETE ` aWTW ` aSTS ` aNTN ` bpq

n`1 (3.3.4)

Where:

aE “
λeSe
dPE

aS “
λsSs
dPS

aW “ 0 aN “
λnSn
dPN

bp “
ρPVpCPT

n
p

∆t `αgTgdy aP “
ρPVpCp

∆t `aE`aW`aN`as`αgdy

• Top Left node

Figure 3.7: Boundary conditions of the top left node of the 2D wall

ρPVpCp
∆t pTn`1

P ´ TnP q “

ˆ

´λs
TP ´ TS
dPS

Ss `

λe
TE ´ TP
dPE

Se ´ αgpTP ´ Tgqdy ` 9Qdx
¯n`1

(3.3.5)

Rearranging terms the overall equation can be written as:

aPT
n`1
p “ paETE ` aWTW ` aSTS ` aNTN ` bpq

n`1 (3.3.6)
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Where:

aE “
λeSe
dPE

aS “
λsSs
dPS

aN “ 0 aW “ 0

bp “
ρPVpCPT

n
p

∆t ` αgTgdy ` 9Qdx

aP “
ρPVpCp

∆t ` aE ` aW ` aN ` as ` αgdy

• Central nodes

Figure 3.8: Boundary conditions of the central nodes of the 2D wall

ρPVpCp
∆t pTn`1

P ´ TnP q “

ˆ

´λs
TP ´ TS
dPS

Ss `

λe
TE ´ TP
dPE

Se ` λn
TN ´ TP
dPN

Sn ´ λw
TP ´ TW
dPW

Sw

˙n`1 (3.3.7)

Rearranging terms the overall equation can be written as:

aPT
n`1
p “ paETE ` aWTW ` aSTS ` aNTN ` bpq

n`1 (3.3.8)
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Where:

aE “
λeSe
dPE

aS “
λsSs
dPS

aN “
λnSn
dPN

aW “
λwSw
dPW

bp “
ρpVPCPT

n
P

∆t aP “
ρPVPCP

∆t ` aE ` aW ` aN ` aS

• Bottom row nodes As the temperature is prescribed, the tempera-
ture of the nodes of the bottom row can be directly imposed pT “ 23˝q

• Right column nodes As it happens with the nodes of the bottom
row, the temperature can be directly imposed pT “ 8` 0, 005t˝Cq

Finally and, before presenting the final algorithm, it is important to
mention that, in order to calculate the thermal conductivity coefficients at
the volume faces, the harmonic mean is applied. With this approach, if there
are two adjacent nodes with the same thermal conductivity coefficient, the
harmonic mean gives the same value at the face. However, if the two nodes
have different thermal conductivity coefficients, the coefficient at the face is
averaged depending on the size of each cell:

λe “
dPE

dPe
λP

`
deE
λE

(3.3.9)

λn “
dPN

dPn
λP

`
dnN
λN

(3.3.10)

λs “
dPS

dPs
λP

`
dsS
λS

(3.3.11)

λw “
dPW

dPw
λP

`
dwW
λW

(3.3.12)
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Figure 3.9: Proposed algorithm for the 2D heat conduction problem
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3.4 Results of the transient 2D heat conduction
problem

First of all and, as it is a transient heat conduction problem, different sur-
face colour maps of the temperature are presented at different times of the
simulation.

Figure 3.10: Temperature at t “ 300s (left) and at t “ 1100s (right)

Figure 3.11: Temperature at t “ 3000s (left) and at t “ 3600s (right)
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Figure 3.12: Temperature at t “ 5000s (left) and at t “ 10000s (right)

As it can be depicted in the figures above, the wall is initially at 8˝, while
the lower part of the wall is kept all the time at 23˝, which means that it
is the part of the wall at a higher temperature. As the time increases, the
temperature of the right part of the wall increases, which leads to a heat
transfer from right to left.

Figure 3.13: Evolution of temperature of points [0,74, 0,72] and [0,65, 0,56]
with respect to time
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Figure 3.13 shows the evolution of the temperature of two concrete points
on the wall with respect to time. The results where compared with the ones
provided by the CTTC to check that they were correct.

As the problem is discretized in space and time, it is important to analyse
the results depending on the spatial and temporary discretization.

Figure 3.14: Variation of temperature at [0,74, 0,72] at t=10000s and com-
putation time as a function of the number of nodes

It is clear that as the number of nodes increases the solution improves
and tends to the exact one. There is a point where the improvement in
accuracy of the results is not worth the increase in computation time. For
instance, between 9090 nodes and 11200, the difference in temperature is
only of 0, 03˝C. However, the increase in computation time is of 84,5 s.

As the problem is transient, the selected time-step is also important and
should be carefully chosen. Figure 3.15 shows that from 200 time-steps, the
improvement in the results is not worth the increase in computation time.
However, fewer time-steps should not be used as the error increases rapidly.
It is also important to notice that the running time does not grow linearly
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with the number of time-steps used.

Figure 3.15: Temperature at [0,65, 0,56] at t=10000s and computation time
as a function of the number of time-steps

Figure 3.16: Temperature at [0,65, 0,56] at t=10000s as a function of the
convergence criterion
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Finally, the convergence criterion (differnce between the result of one
iteration and the previous one to consider that the simulation has converged)
was also studied. As the mesh gets refined, a too high convergence criterion
can lead to important errors. It can be seen in figure 3.16, that even though
the mesh might be better, if the convergence criterion is not accurate enough,
errors can be higher. For instance, with a mesh of 16200 nodes and a
convergence criterion of 0.001, the error in the temperature at r0, 65, 0, 56s is
of 5, 4%, while a coarser mesh of only 11200 nodes, for the same convergence
criterion, the error reduces up to a 3, 75%.

3.5 Conclusions
In general, a very good agreement has been observed between the results
obtained and the ones provided by the "Centre Tecnològic de Transferència
de Calor" (CTTC). The advantages of the harmonic mean to calculate the
thermal conductivity coefficients at the cell faces are clear in order to be able
to treat all the nodes in the same way without differentiating them. The ob-
tained results show that from 9000 nodes approximately, the improvement
in the results is not worth the increase in computation time. Regarding
the number of time-steps used, 200 time-steps are enough to get good re-
sults. Finally, it has been observed that, as the mesh gets refined, a lower
convergence criterion needs to be used. However, it is not advisable to use
convergence criteria higher than 1¨10´6, as important errors start to appear.
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Chapter 4

Potential flow

4.1 Introduction
This chapter of the thesis describes the process to solve generic potential
flow problems. The main characteristic of potential flow is that the curl of
the velocity is zero, and thus, the velocity can be expressed as the gradient
of a scalar field (i.e velocity potential). However, in this chapter, the stream
function approach is used, as it is described in the next sections.

4.2 Mathematical formulation: Stream function
The mathematical formulation is based on the stream function definition.
The main advantage of this approach is that the stream function definition
can be used for non-irrotational flows. However, the main drawback is that
the theory is only valid for steady 2D flows.

The definition of the stream function in steady and 2D flow is:

vx “
ρ0
ρ

BΨ
By

vy “ ´
ρ0
ρ

BΨ
Bx

(4.2.1)

Where ρ0 is the density at reference conditions pP0, T0q. It can be proved
that the stream function verifies the mass conservation equation:

∇ ¨

ˆ

ρ0
ρ

BΨ
By
,´

ρ0
ρ

BΨ
Bx

˙

“ 0 (4.2.2)
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The curl of the velocity can also be calculated as follows:

∇^

ˆ

ρ0
ρ

BΨ
By
,´

ρ0
ρ

BΨ
Bx

˙

“ ´
B

Bx

ˆ

ρ0
ρ

BΨ
Bx

˙

´
B

By

ˆ

ρ0
ρ

BΨ
By

˙

(4.2.3)

The concept of circulation can be used, transforming a surface integral
of the flux of the curl of the velocity through a surface, into a line integral
of the velocity along the curve enclosed by the surface:

ż

∇^ v dS “

¿

C

v ¨ dl “ Γ (4.2.4)

A positive circulation is measured in the counterclockwise direction.

Considering a main control volume and its adjacent ones, the circulation
around the boundaries of the main control volume can be calculated as
follows:

Figure 4.1: Positive velocities and circulation direction

Γ “ vye∆yp ´ vxn∆xp ´ vyw∆yp ` vxs∆xp (4.2.5)
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Introducing (4.2.1) into (4.2.5):

Γ “ ´ρ0
ρe

BΨ
Bx

ˇ

ˇ

ˇ

ˇ

e

∆yp ´
ρ0
ρn

BΨ
By

ˇ

ˇ

ˇ

ˇ

n

∆xp `
ρ0
ρw

BΨ
Bx

ˇ

ˇ

ˇ

ˇ

w

∆yp `
ρ0
ρs

BΨ
By

ˇ

ˇ

ˇ

ˇ

s

∆xp(4.2.6)

Using a second order approximation for the partial derivatives, equation
(4.2.6) can be expressed with adjacent control volume values of Ψ:

Γ “ ´ρ0
ρe

ΨE ´ΨP

dPE
∆yp´

ρ0
ρn

ΨN ´ΨP

dPN
∆xp `

ρ0
ρw

ΨP ´ΨW

dPW
∆yp`

`
ρ0
ρs

ΨP ´ΨS

dPS
∆xp “ 0

(4.2.7)

Equation (4.2.7) is equal to 0 if the curl of the velocity is 0 (i.e irrotational
flow). Finally, the above equation can be expressed with coefficients as usual:

aPΨP “ aEΨE ` aWΨW ` aNΨN ` aSΨS (4.2.8)

Where:

aE “
ρ0
ρe

∆yP
dPE

aW “
ρ0
ρw

∆yP
dPW

aN “
ρ0
ρn

∆xP
dPN

aS “
ρ0
ρs

∆xP
dPS

aP “ aE ` aN ` aS ` aW bP “ 0

When the domain involves regions of fluid and solid, the blocking-off
method needs to be used. To apply this technique, the centroids of each
control volume are evaluated. If the centroid lays inside the solid region,
the whole control volume is considered as solid. However, if the centroid
lays inside the fluid region, it is considered as a fluid control volume.

In case of a solid-fluid interface, the continuity of the velocity must be
satisfied. To ensure this condition, the harmonic mean to evaluate the den-
sities on the control volume faces needs to be used, as it is demonstrated now:
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Figure 4.2: Velocity evaluation at interface between solid and fluid CVs

vye “ ´
ρ0
ρ´e

BΨ
Bx

´

e

“ ´
ρ0
ρ`e

BΨ
Bx

`

e

(4.2.9)

Discretizing the previous equation:

vye “ ´
ρ0
ρP

Ψe ´ΨP

dPe
“ ´

ρ0
ρE

ΨE ´Ψe

dEe
(4.2.10)

From equation (4.2.10) it can be easily obtained:

vye “ ´
ρ0
ρe

ΨE ´ΨP

dPE
(4.2.11)

Where ρ0{ρe is calculated as a harmonic mean of the nodal values:

ρ0
ρe
“

dPE
dP e
ρ0{ρP

`
dEe
ρ0{ρE

(4.2.12)
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4.3 Incompressible potential flow around a cylin-
der (rotating and non-rotating)

The benchmark problem is shown in the figure below:

Figure 4.3: Schematization of the problem

A rotating and non-rotating cylinder is studied in free flow conditions.

The boundary conditions are now summarised:

• Inlet:Ψ “ Ψknown

• Top:Ψ “ Ψtop

• Bottom:Ψ “ Ψbottom

• Outlet: If parallel flow is considered (i.e, outlet is far enough from the
cylinder), then BΨ

Bx “ 0

Before presenting the final algorithm, it is important to notice one thing.
If the cylinder is not rotating, the value of the stream function around the
cylinder is known. However, for the rotating cylinder, this value is not
known and needs to be calculated by iteration. To find the value of the
stream function around the cylinder, the bisection method is used. An in-
terval of possible stream function values is set, and this interval is bisected
until the value of the circulation around the cylinder is the correct one (for
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a rotating cylinder the circulation is Γ “ ´2πRpVθ ` 2V8q, where Vθ stand
for the tangential velocity on the top of the cylinder [14]). This process is
outlined in the following algorithm:
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Figure 4.4: Algorithm for potential flow

4.4 Non-rotating cylinder results
The first case that is solved is the incompressible flow around a non-rotating
cylinder for a free stream velocity of V8 “ 10 m{s. The results are compared
with the analytical solution extracted from [14].

The mesh was refined around the cylinder in order to capture correctly
the velocity variation around the geometry. However, near the inlet and
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the outlet zones, velocity gradients are less pronounced, which means that
a coarser mesh can be used, as it can be seen in figure 4.5.

Figure 4.5: Mesh around the cylinder

First of all, a plot of the values of the stream function is shown. It is
important to notice that the isolines of the stream function are, in fact,
streamlines of the flow around the cylinder. Another important thing to
notice is that the value of the stream function depends on a reference value,
that is why these results are not compared with an analytical solution.
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Figure 4.6: Stream Function values and Streamlines

As it can be seen, the flow is totally symmetric about the horizontal and
vertical axes through the center of the cylinder. As a consequence, velocity
and pressure distribution are also symmetric about both axes, which leads
to the d’Alembert’s paradox, as it is seen in the figures below.

In the next page, figure 4.7 is a representation of the values of the x
and y components of the velocity around the cylinder. Figure 4.8 shows the
modulus of the velocity around the cylinder and the comparison with the
analytical solution.

It can be seen that there are two stagnation points on θ “ 0 and θ “ 2π
(the reference point and direction of θ can be seen in the figure below). The
model is capable of capturing the velocity around the cylinder quite accu-
rately, except on the zones around θ “ π{2 and θ “ 3π{2. On the top and
on the bottom of the cylinder, there are important variations in the velocity
modulus, and, as a consequence, the biggest error happens in these regions.
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Figure 4.7: Vx (right) and Vy (left) in m/s

Figure 4.8: Velocity modulus around the cylinder and comparison with an-
alytical solution

Nevertheless, the absolute error can be decreased by using a more refined
mesh, using higher order approximations for the derivatives (remember that
a second order scheme has been used), or using a more refined method than
the blocking-off for the interfaces between solid and fluid control volumes.

The pressure coefficient can be calculated using the Bernoulli equation
(conservation of energy), and eventually, it can be expressed in terms of the
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square of the ratio of velocity and the free stream velocity:

Cp “ 1´
ˆ

V

V8

˙2
(4.4.1)

Figure 4.9: Cp around the cylinder and comparison with analytical solution

As shown in Figure 4.9, the same errors appear near the top and the
bottom of the cylinder. However, around the rest of this geometry the
results are quite accurate. An important thing to notice is that the pressure
distribution over the top and bottom are balanced, which means that the
cylinder does not generate a lifting force. Similarly, the pressure at the front
is exactly balanced by the pressure at the back of the cylinder, which means
that there is no net drag force (d’Alembert’s paradox, as mentioned before).

4.5 Rotating cylinder results
In this section, potential flow around a rotating cylinder is studied. The ve-
locity and coefficient of pressure are plotted for different rotating velocities.

As shown in figure 4.10, the streamlines are not symmetric about the x
axis anymore. Air is sped up on the top of the cylinder, creating a depres-
sion zone on its top, and thus, a net vertical lifting force appears (Magnus
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Figure 4.10: |V| and Cp for a rotating cylinder generating a circulation of
Γ “ 40m2{s

effect). The lift per unit span can be calculated using the Kutta-Joukowski
theorem pL1 “ ρ8V8Γq However, the flow is still symmetric about the y
axis, which means that there is no net drag force.

Another important thing to notice is that the coefficient of pressure on
top of the cylinder has decreased considerably in comparison with the one
for a non-rotating cylinder at the same point, reaching a minimum value of
Cp “ ´6. However, the coefficient of pressure on the bottom of the cylinder
has increased, from -3 to approximately -1.

Finally, it is important to stand out that the stagnation points have
moved to the bottom half of the cylinder, as it is predicted by the potential
theory.
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Figure 4.11: Cp for a rotating cylinder generating a circulation of Γ “

40m2{s and comparison with analytical solution

Figure 4.11 is the Cp computed for a rotating cylinder generating a cir-
culation of Γ “ 40m2{s for two different meshes, and its comparison with
the analytical solution. It is noticeable that, as the mesh is refined, the max-
imum error decreases. Again, as it is seen with the non-rotating cylinder
results, the maximum error happens on the top and bottom of the geometry,
where results are bad for coarser meshes. However, the results in the rest of
the cylinder are really accurate.

As the rotational speed of the cylinder increases, a certain value of cir-
culation is reached for which the two stagnation points merge into one at
the bottom of the cylinder and end up separating from its surface. This
critical circulation value is Γ “ 4πV8R, and for this specific problem with
V8 “ 10 m{s, this value is Γ “ 125, 66 m2{s.

As it is depicted in figure 4.12, for a higher circulation of Γ “ 170 m2{s
the stagnation point has separated completely from the surface of the cylin-
der. The pressure coefficient on its top is more negative, which means that
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the net lift force generated by the spinning cylinder is larger.

Figure 4.12: |V| and Cp for a cylinder generating a circulation of Γ “

170m2{s

4.6 Mesh discretization study
As both problems studied are solved in steady state conditions, there is no
time discretization that should be studied. A a consequence, the spatial
discretization is the main factor that should be analysed regarding the dis-
cretization of the problem.

As it has been said before, a non-uniform mesh has been used, so the
spatial discretization that is considered to do the mesh study is the one
around the cylinder. The study is done with the rotating cylinder generating
a circulation of Γ “ 40 m2{s. Figure 4.13 shows that as the mesh is refined,
the maximum absolute error decreases significantly. This maximum error
happens, as it has already been seen, at the top and at the bottom of the
cylinder. Using higher order schemes would mean more accurate results for
the same mesh. However, the results got are accurate enough to prove the
proper functioning of the code.
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Figure 4.13: Absolute error of Cp for a rotating cylinder generating a circu-
lation of Γ “ 40m2{s with respect to cell size around the cylinder

4.7 Conclusions
In general, reasonably good agreement has been observed between the sim-
ulated results and the ones predicted by the potential theory. However,
important errors appear on the top and bottom parts of the cylinder for
both velocity and coefficient of pressure. The error can be decreased by us-
ing a finer mesh, which increases considerably computation time. Another
option could be to use higher order approximations for the derivatives or to
use a more sophisticated method than the blocking-off to treat the interfaces
between solid and fluid control volumes. The bisection method used to find
the value of the stream function around the rotating cylinder proved to be
an efficient method, as it converged relatively fast, with the drawback of an
important increase in computation time.
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Chapter 5

Convection-diffusion
equation

5.1 Introduction
Until now, it has been presented a generic unsteady diffusion equation. How-
ever, Navier-Stokes equations are a particular case of a convection-diffusion
equation where the transport of a physical quantity (energy, temperature...)
is not only due to concentration gradients, but also due to the fluid flow.
In this chapter, a generic convection-diffusion equation is studied, given the
flow field as an input. The objective is to study different schemes to dis-
cretize the convective term.

5.2 Mathematical formulation
The generic form of the convection-diffusion transport equation can be writ-
ten as:

Bpρφq

Bt
`∇ ¨ pρvφq “ ∇ ¨ pΓφ∇φq ` Sφ (5.2.1)

Where φ is a generic variable like velocity, temperature, entropy... The
first term of the left-hand side is the unsteady term, the second term of the
left-hand side is the convective term, the first term of the right-hand side
is the diffusion term and the last term of the right-hand side is the source
term.
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Expanding the first partial derivative of (5.2.1) and applying the mass
conservation equation, the above equation can be written as:

ρ
Bφ

Bt
` ρv ¨∇φ “ ∇ ¨ pΓφ∇φq ` Sφ (5.2.2)

It is important to notice that to get equation (5.2.2) it has not been
assumed constant density, which means that the above equation is still ab-
solutely valid for compressible flow.

Therefore, the Navier-Stokes equations for a perfect gas can be expressed
as:

Equation φ Γφ Sφ
Mass 1 0 0
Momentum v µ ∇ ¨ pτ ´ µ∇vq ´∇P ` ρg
Energy T λ

Cv

1
Cv
p´∇ ¨ qr ´ p∇ ¨ v` τ : ∇v

Table 5.1: Convective term, diffusion term and source term of the Navier-
Stokes equations. Extracted from [4]

Conservation of mass equation discretization

The continuity equation in differential form can be written as:

Bρ

Bt
`∇ ¨ pρvq “ 0 (5.2.3)

Integrating over time and volume implicitly:

ż tn`1

tn

ż

Vp

Bρ

Bt
dV dt`

ż tn`1

tn

ż

Vp

∇ ¨ pρvqdV dt “ 0 (5.2.4)

And considering a second order approximation for the first volume inte-
gral, the continuity equation gets discretized as follows:

pρn`1
P ´ ρnP qV p` p 9me

n`1 ´ 9mw
n`1 ` 9mn

n`1 ´ 9ms
n`1q∆t “ 0 (5.2.5)
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Unsteady term discretization

Integrating implicitly over time and volume the unsteady term:

ż tn`1

tn

ż

Vp

Bpρφq

Bt
dV dt « V p

ż tn`1

tn

Bpρpφpq

Bt
dt “ Vppρ

n`1
p φn`1

p ´ ρnpφ
n
p q(5.2.6)

Where it has been considered a second order approach for the density
and variable of interest (φ) to approximate the volume integral.

Convective term discretization

Integrating implicitly over time and volume the convective term:

ż tn`1

tn

ż

Vp

∇ ¨ pρvφqdV dt (5.2.7)

Applying the divergence theorem to the equation above:

ż tn`1

tn

ż

Sf

ρvφ ¨ ndSdt « p 9me
n`1φn`1

e ´

9mw
n`1φn`1 ` 9mn

n`1φn`1
n ´ 9ms

n`1φn`1
s q∆t

(5.2.8)

Where an implicit approach has been used for the time integral once
again, and the property of interest (φ) has been considered constant along
the surface.

Diffusion term discretization

Integrating implicitly over time and volume, the diffusion term:
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ż tn`1

tn

ż

Vp

∇ ¨ pΓφ∇φqdV dt (5.2.9)

Applying the divergence theorem to the equation above:

ż tn`1

tn

ż

Sf

pΓφ∇φq ¨ ndSdt «
ˆ

Γe
φn`1
E ´ φn`1

P

dPE
Se

´Γw
φn`1
P ´ φn`1

W

dPW
Sw ` Γn

φn`1
N ´ φn`1

P

dPN
Sn ´ Γs

φn`1
P ´ φn`1

S

dPS
Ss

˙

∆t
(5.2.10)

Where a second order approach has been used to approximate the gra-
dient of the variable φ and the diffusive coefficient (Γ) has been considered
constant on each surface.

Source term discretization

Finally, the source term is discretized integrating over time and volume:

ż tn`1

tn

ż

Vp

SφdV dt « S̄φPVp∆t “ pS
φ
c
n`1 ` SφP

n`1φn`1
P qVp∆t (5.2.11)

Where the source term has been linearized.

General convection-diffusion equation discretization

Combining the discretizations made above, the general equation can be ob-
tained. For convenience, the superscript n corresponding to the previous
time step is substituted by the superscript 0, while the superscript n+1 is
dropped away.

ρPφP ´ ρ
0
Pφ

0
P

∆t VP ` p 9meφe ´ 9mwφw ` 9mnφn ´ 9msφsq “

DepφE ´ φP q ´DwpφP ´ φW q `DnpφN ´ φP q ´DspφP ´ φSq

`pSφc ` S
φ
PφP qVP

(5.2.12)

51



Where, De “ ΓeSe{dPE , Dw “ ΓwSw{dPW , etc.

Subtracting φP ¨ Equationp5.2.5q to each side of Equation (5.2.12), the
general convection-diffusion equation can be written as:

ρ0
P

φP ´ φ
0
P

∆t VP ` 9mepφe ´ φP q ´ 9mwpφw ´ φP q ` 9mnpφn ´ φP q

´ 9mspφs ´ φP q “ DepφE ´ φP q ´DwpφP ´ φW q `DnpφN ´ φP q

´DspφP ´ φSq ` pS
φ
c ` S

φ
PφP qVP

(5.2.13)

Equation (5.2.13) is second order accurate in the diffusion and source
term. The order of accuracy of the overall scheme depends on the scheme
used to approximate the convective term.

Evaluation of the convective term (I)

• Upwind-difference scheme (UDS): The upwind scheme approxi-
mates the convected value of property (φ) at the face as the one of the
upwind cell.

Figure 5.1: Upwind difference scheme

Where the letters ’U’ and ’D’ in red represent the upstream and down-
stream nodes respectively. This is a first order scheme, really stable.
However, numerical diffusion is an important problem with this ap-
proximation.

φe ´ φP “ fepφE ´ φP q

"

fe “ 0 if 9me ą 0
fe “ 1 if 9me ă 0 (5.2.14)
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• Central difference scheme (CDS): This is a second order scheme
that assumes a linear variation of the property φ. For the east face of
a control volume, notation would be as follows:

Figure 5.2: Central difference scheme

φe ´ φP “ fepφE ´ φP q fe “ dPe{dPE (5.2.15)

• Exponential Difference Scheme (EDS): The exponential differ-
ence scheme is a first order scheme that evaluates the property φ con-
sidering the analytical solution of the 2D steady convection-diffusion
equation without source term:

φe ´ φP “ fepφE ´ φP q fe “
ePedP e{dP E ´ 1

ePe ´ 1 , (5.2.16)

Where, Pe “ ρeVxedP E
Γe

.

Normalized variables for higher-order schemes

The schemes presented until now only use adjacent nodes to calculate the
value of the convected property at the cell face. However, there are other
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schemes such as QUICK, SUDS or SMART, that use a higher cell molecule.
That is why it is recommended to use normalised variables to apply these
schemes.

First of all, according to the mass flow direction, three nodes should be
considered: from a reference point at the cell face, the D node refers to the
downstream node, the C node refers to the first upstream node and the U
node refers to the second upstream node:

Figure 5.3: D, C and U nodes to normalise variables

Once these nodes have been identified, the normalised coordinates and
normalised property φ can be calculated according to:

x̂ “
x´ xU
xD ´ xU

φ̂ “
φ´ φU
φD ´ φU

(5.2.17)

Finally, the value of the convected property at the cell face can be cal-
culated as follows:

φf “ φU ` pφD ´ φU qφ̂f (5.2.18)

Where the subscript f stands for the concrete face.

Evaluation of the convective term II: Higher order schemes

With the normalised variable, other schemes can be applied:

• Second order upwind linear extrapolation (SUDS): This is a
second order scheme that uses a linear extrapolation using two up-
stream points instead of only one, resulting in a second order scheme.
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Figure 5.4: Second Order Upwind linear extrapolation Scheme

φ̂f “
x̂f
x̂C

φ̂C (5.2.19)

• Quadratic upwind interpolation for convective kinematics (QUICK):
This is a second/third order scheme that fits a quadratic curve using
two upstream nodes to evaluate the value of the convected property
at the cell face:

Figure 5.5: QUICK Scheme

φ̂f “ x̂f `
x̂f px̂f ´ 1q
x̂cpx̂c ´ 1q pφ̂c ´ x̂cq (5.2.20)

• Sharp andMonotonic Algorithm for Realistic Transport (SMART):
The CDS, SUDS and QUICK schemes presented above may present
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numerical instabilities in implicit calculations. SMART satisfies the
conditions for stability and accuracy formulated in [15], which leads
to a bounded convective scheme:
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if 0 ă φ̂C ă
x̂C
3 φ̂f “ ´

x̂f p1´3x̂c`2x̂f q

x̂cpx̂c´1q φ̂c

if x̂c
3 ă φ̂C ă

x̂C
x̂f
p1` x̂f ´ x̂cq φ̂f “

x̂f px̂f´x̂Cq

1´x̂C
`

x̂f px̂f´1q
x̂Cpx̂C´1q φ̂C

if x̂C
x̂f
p1` x̂f ´ x̂Cq ă φ̂c ă 1 φ̂f “ 1

Otherwise φ̂f “ φ̂C

(5.2.21)

Deferred correction approach

When a higher-order schemes is used, the size of the computational molecule
can have an important effect in storage and effort to solve the equations.
Generally speaking, it is interesting to use only the nearest neighbours of
the main node in the left-hand side of the equation to solve the problem,
as it usually leads to a tridiagonal matrix, which is easy to solve. However,
with the schemes presented above this is not possible. [16]

To solve this problem, the deferred correction approach is used. The
basic idea is to keep the higher order terms in the right-hand side of the
equation, calculated explicitly, and use a lower order approximation (UDS,
for example), which is added implicitly and subtracted explicitly:

φHRSf ´ φP “ pφ
UDS
f ´ φP q ` pφ

HRS˚

f ´ φUDS
˚

f q (5.2.22)

Where the superscript ’*’ indicates that the value is calculated at the
previous iteration, and the values without superscript indicate the current
calculated values. One convergence is reached, φUDS˚

f « φUDSf , which means
that φHRSf ´ φP « φHRS

˚

f ´ φP . It is important to notice that this method
gives good results only when convergence is achieved, i.e steady state is
reached. This approach would give bad results if the final results obtained
were at a concrete time step previous to the steady state.
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Discretization equation and coefficients (Higher order schemes and
deferred correction approach)

Using a higher order scheme and, using the deferred correction approach,
the discretization equation and coefficients are:

aPφP “ aEφE ` aWφW ` aNφN ` aSφS ` bP ; (5.2.23)

Where:

aE “ De ´
9me ´ | 9me|

2 ; aW “ Dw `
9mw ` | 9mw|

2 ;

aN “ Dn ´
9mn ´ | 9mn|

2 ; aS “ Ds `
9ms ` | 9ms|

2 ;

bp “
ρ0
PVp
∆t φ

0
P ` S

φ
c Vp ´ 9mepφ

HRS˚

e ´ φUDS
˚

e q ` 9mwpφ
HRS˚

w ´ φUDS
˚

w q ´

9mnpφ
HRS˚

n ´ φUDS
˚

n q ` 9mspφ
HRS˚

s ´ φUDS
˚

s q

aP “ aE ` aW ` aN ` aS `
ρ0
PVp
∆t ´ SφpVp

The final algorithm is presented in the following page:
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Figure 5.6: Algorithm for the convection-diffusion problem
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5.3 Unidimensional flow with an unidimensional
variation of the variable solved in the same
direction of the flow

For this particular problem, an analytical solution for the steady state exists.
It is an exponential function for a concrete value of the velocity field. The
problem to study is sketched below:

Figure 5.7: Unidimensional flow with an unidimensional variation of the
variable solved in the same direction of the flow

For a given velocity field like:

upx, yq “ U0

vpx, yq “ 0

The exact solution has the following form:

φ´ φ0
φL ´ φ0

“
exppPx{Lq ´ 1
exppP q ´ 1 (5.3.1)

Where P is the Péclet number: P “ ρuL{Γ

First of all, the problem is solved with a coarse mesh of only 5x5 control
volumes and different Péclet numbers using the UDS, SUDS, QUICK and
CDS schemes.
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Figure 5.8: Unidimensional flow with an unidimensional variation of the
variable solved in the same direction of the flow with 5x5 mesh and Pe “ 4

Figure 5.9: Unidimensional flow with an unidimensional variation of the
variable solved in the same direction of the flow with 5x5 mesh and Pe “
10, 25
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Figure 5.10: Unidimensional flow with an unidimensional variation of the
variable solved in the same direction of the flow with 5x5 mesh and Pe “ 20

As it is depicted in figure 5.8, all 4 schemes give reasonable good results
given the low resolution of the mesh used. QUICK and CDS schemes are
the ones that have more accurate results, as they are second order schemes.
SUDS scheme, which is also a second order scheme, gives slightly worse re-
sults than the other two schemes mentioned, and the UDS is the worst of
all four in terms of accuracy.

However, as the Péclet number increases up to Pe “ 10, 25, for the same
mesh used, all 4 schemes start presenting bigger absolute errors. The most
important thing to notice in figure 5.9 is that at x “ 1, 6, the CDS gives a
value of φ “ ´1.519. This is an evidence of an unbounded scheme, which
means that if the variable φ is a physically positive quantity, this undershoot
or overshoot that may appear leads to physically impossible results.

Finally, for a Péclet number of Pe “ 20, both the QUICK and CDS
experience overshoots and undershoots, giving negative values at a certain
point, which again leads to physically unrealisable results. The UDS stays
bounded in all the condition above, however, the absolute error is important
for this first order scheme.
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Next, a study of the Péclet number in the solution is done.

Figure 5.11: Unidimensional flow with an unidimensional variation of the
variable solved in the same direction of the flow with 100x100 mesh and
different Péclet numbers

As it is shown in figure 5.11, for low Péclet numbers, diffusive transport
is important. Thus, the property of interest φ tends to spread uniformly
inside the domain. However, as the Péclet number increases, convective
transport is much more dominating, which means that the property φ tends
to concentrate in the direction of the flow.

Finally, in order to make sure that the schemes are correctly imple-
mented. A log-log plot of the cell size vs the absolute error is graphed in
order to check the order of the overall scheme. Figure 5.12 shows the rate
of convergence of the overall scheme for different convective schemes used.
Clearly, using an UDS to obtain the value of φ at the cell faces, gives place to
a first order scheme, even though the diffusion term is approximated using
a second order approach. SUDS and CDS are second order schemes as seen
below, as well as the QUICK scheme using a uniform mesh. Another im-
portant thing to notice is that from the same mesh size, the QUICK scheme
is the one that gives the smaller error, followed by the CDS, the SUDS and
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finally the UDS.

Figure 5.12: log10p∆xq vs log10pAbsolute errorq for different convective
schemes

5.4 Unidimensional flow with an unidimensional
variation of the variable solved in the perpen-
dicular direction of the flow

This problem is similar to the one presented in the section above. However,
the only difference is the velocity field, which is expressed as it follows:
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Figure 5.13: Unidimensional flow with an unidimensional variation of the
variable solved in the perpendicular direction of the flow

upx, yq “ 0

vpx, yq “ ´V0

The exact solution has the following form:

φ “ φ0 `
φL ´ φ0

L
x (5.4.1)

It is important to notice that neither does the exact solution depend on
the flow field, nor it does on the Péclet number. Thus, the solution is only
a straight line joining the values of the convected property at the left and
right boundaries of the domain:
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Figure 5.14: Unidimensional flow with an unidimensional variation of the
variable solved in the perpendicular direction of the flow for φL=10, 70 &
200 and 100x100 mesh (UDS)

5.5 Diagonal Flow
For this third problem, the flow is in the main diagonal and an analytical
solution exists for an infinite Péclet number.

Figure 5.15: Diagonal flow
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For a given velocity field:

upx, yq “ V0 ¨ cospαq

vpx, yq “ V0 ¨ sinpαq

If the Péclet number is Pe “ 8:

φ “ φ1 above the diagonal (5.5.1)

φ “ φ2 below the diagonal

The solutions are graphed for different Péclet numbers:

Figure 5.16: Diagonal flow for Pe=10 (top left), Pe=100 (top right),
Pe=10000 (bottom left), Pe=1e30 (bottom right)
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As it is shown in figure 5.16, for low Péclet numbers, transport by diffus-
sion is quite important and thus, there is a smooth transition of the property
φ between the top and left boundaries and the bottom and right boundaries
of the volume. As the Péclet number increases and tends to infinity, there
is less transport by diffusion and, due to the velocity flow, the results tend
to the analytical solution.

Figure 5.17: Diagonal flow results for different Péclet numbers with UDS
and 100x100 mesh

However, it can be seen that for Pe “ 1e30, there is still some transport
of the property φ in the perpendicular direction of the flow (i.e diffusion).
This is due to numerical diffusion: which means that the numerical schemes
used to evaluate the variable φ at the interfaces between volumes are not
exact and give a false diffusion, even though there should not be any. Higher
order schemes, such as QUICK or CDS, give better performance and exhibit
less numerical diffusion in the results than lower order schemes such as UDS,
as it can be depicted in the graphs below:
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Figure 5.18: Diagonal flow results for a 100x100 mesh and Pe=1e30 using
UDS, SUDS and QUICK

QUICK and SUDS convective schemes experience a lot less false diffusion
compared to the UDS. However, as they are both unbounded schemes they
experience important overshoots and undershoots before and after the diag-
onal. QUICK scheme is slightly less numerically diffusive than the SUDS,
but it has slightly more important overshoots and undershoots. This is an
important phenomenon and should be considered when interpreting results.

Another important thing to take into account is the size of the mesh.
For coarser meshes, the false diffusion is also important, which means that
using a higher order scheme might still give poor results if the mesh is not
fine enough.

The graph below shows the results for a Péclet number of 1e30 and
different mesh sizes. It is clear that as the mesh gets refined, there is less
false diffusion on the results:
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Figure 5.19: Diagonal flow results for Pe=1e30 (UDS) for different mesh
sizes

5.6 Solenoidal Flow
The final benchmark problem to study in this section is the solenoidal flow,
also known as the Smith-Hutton problem. The problem is described below:

In a rectangular domain with a velocity field:

upx, yq “ 2yp1´ x2q

vpx, yq “ ´2xp1´ y2q

With the following boundary conditions:

φ “ 1` tanhr10p2x` 1qs ´ 1 ď x ď 0 y “ 0
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φ “ 1´ tanhr10s x “ ´1 0 ď y ď 1
φ “ 1´ tanhr10s ´ 1 ď x ď 1 y “ 1
φ “ 1´ tanhr10s x “ 1 0 ď y ď 1

Bφ

By
“ 0 0 ď x ď 1 y “ 0

Figure 5.20: Solenoidal flow (Smith-Hutton problem)

Numerical results at the outlet for different values of ρ{Γ are shown in
the following table:

Position x ρ{Γ “ 10 ρ{Γ “ 103 ρ{Γ “ 106

0.0 1.989 2.000 2.000
0.1 1.402 1.9990 2.000
0.2 1.146 1.9997 2.000
0.3 0.946 1.9850 1.999
0.4 0.775 1.8410 1.964
0.5 0.621 0.9510 1.000
0.6 0.480 0.1540 0.036
0.7 0.349 0.0010 0.001
0.8 0.227 0.0000 0.000
0.9 0.111 0.0000 0.000
1.0 0.000 0.0000 0.000

Table 5.2: Benchmark results for the Smith-Hutton problem. Extracted
from [4]
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The results are graphed and compared with the benchmark solution in
the following graph:

Figure 5.21: Diagonal flow (Smith-Hutton results for 200x200 mesh and
UDS)

Figure 5.22: Solenoidal flow (Smith-Hutton results for ρ{Γ “ 10)
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Figure 5.23: Solenoidal flow (Smith-Hutton results forfor ρ{Γ “ 103)

Figure 5.24: Solenoidal flow (Smith-Hutton results for for ρ{Γ “ 106)

5.7 Conclusions
In this chapter, excellent agreement has been observed between the simu-
lated and benchmark results. Different convective schemes have been studied
and its advantages and drawbacks have been observed. The UDS scheme
proved to be really stable and bounded in all the conditions tested. However,
being a first order scheme, the accuracy of its results is worse than the one
with higher order schemes. Moreover, numerical diffusion is important with
this scheme and needs to be considered when interpreting results. On the
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other hand, QUICK and CDS proved to be better in terms of accuracy (be-
ing QUICK slightly better than CDS) than the UDS. However, both schemes
are unbounded and with certain Péclet numbers they can experience impor-
tant overshoots and undershoots. On the other hand, they present a lot less
numerical diffusion. The SUDS scheme lies between the UDS and the other
two schemes in terms of accuracy and numerical diffusion.
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Chapter 6

Incompressible Navier-Stokes
equations: Fractional step
method approach

6.1 Introduction
This chapter is dedicated to the solution of the 2D incompressible Navier-
Stokes equations. The Fractional step method is used to solve them, making
emphasis in the mathematical formulation and the algorithm used for their
solution. Finally, the results are verified with the Lid-driven cavity problem.

6.2 Mathematical background: The Helmholtz-Hodge
theorem

The basis of the approach applied in this thesis to solve the incompressible
Navier-Stokes equations is the Helmholtz-Hodge theorem:

Theorem: Given a vector field ω defined in a bounded domain Ω ĎRn
for n “ 2, 3, with a smooth boundary BΩ, the vector field can be uniquely
decomposed in the following form:

ω “ u`∇ϕ (6.2.1)

Where:
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φ is a scalar field over Ω and u is a vector field of Ω that satisfies:

• ∇ ¨ u “ 0

• u ¨ n “ 0 over BΩ

Proof:

The divergence of the product of the vector field and the scalar field can
be decomposed as:

∇ ¨ puϕq “ p∇ ¨ uqϕ` u ¨ p∇ϕq

Considering that the vector field is divergence-free:

∇ ¨ puϕq “ u ¨ p∇ϕq

Calculating the scalar product between u and ∇ϕ in the region Ω, and
applying the divergence theorem:

ż

Ω
∇ϕ ¨ u dΩ “

ż

Ω
∇ ¨ pϕuq dΩ “

ż

BΩ
pϕuq ¨ ndS “ 0

Which is equal to 0 because the fluxes through the boundary of the do-
main are 0, as stated previously. As a consequence of this statement, the
orthogonality between the vector field u and ∇ϕ is proved.

To prove the unicity of the decomposition, two different decompositions
are assumed:

ω “ u1 `∇ϕ1 “ u2 `∇ϕ2

Rearranging terms:

75



u1 ´ u2 `∇pϕ1 ´ ϕ2q “ 0 (6.2.2)

The scalar product of the previous expression and pu1 ´ u2q, can be
expressed as:

ż

Ω

“

||u1 ´ u2||
2 ` pu1 ´ u2q ¨∇pϕ1 ´ ϕ2q

‰

dΩ “ 0

Applying (6.2.2) to the previous expression:

ż

Ω
||u1 ´ u2||

2dΩ “ 0

From which it is clear that:

u1 “ u2

∇ϕ1 “ ∇ϕ2 Ñ ϕ1 “ ϕ2 ` const.

Which proves that the decomposition is unique. The unique decomposi-
tion of the vector field is shown in the figure below:

Figure 6.1: Helmholtz-Hodge theorem
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6.3 Mathematical formulation
As it has already been said, the Fractional Step method is used to solve the
incompressible Navier-Stokes equations, using the Helmholtz-Hodge theo-
rem explained previously.

The Navier-Stokes equations (mass and momentum) for incompressible
and constant viscosity, and applying Newton’s viscosity law, can be written
as:

∇ ¨ v “ 0 (6.3.1)

ρ
Bv
Bt
` pρv ¨∇qv “ ´∇p` µ∆v (6.3.2)

Equation (6.3.2) can also be expressed as:

ρ
Bv
Bt
“ Rpvq ´∇p (6.3.3)

Where:

Rpvq “ ´pρv ¨∇qv` µ∆v (6.3.4)

Where Rpvq stands for the convective and diffusive terms.

Integrating implicitly over time the continuity equation:

∇ ¨ vn`1 “ 0 (6.3.5)

The time derivative term of the momentum equation is discretized using
a second order central difference scheme:

Bv
Bt

ˇ

ˇ

ˇ

ˇ

n`1{2
«

vn`1 ´ vn

∆t `Op∆t2q (6.3.6)
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While for the Rpvq, term a Second-order Adams-Bashforth scheme is
used:

Rn`1{2pvq « 3{2Rpvnq ´ 1{2Rpvn´1q `Op∆t2,∆xmq (6.3.7)

And finally, the pressure gradient term is calculated using a first-order
backward Euler scheme.

Due to the Helmholtz-Hodge theorem demonstrated above, there is a
unique decomposition that can be expressed as:

vp “ vn`1 `
∆t
ρ

∇pn`1 (6.3.8)

Which can be used to rewrite the momentum equation to the projection
momentum equation:

ρ
vp ´ vn

∆t “ 3{2Rpvnq ´ 1{2Rpvn´1q (6.3.9)

Applying the divergence operator to each side of equation (6.3.8):

∇ ¨ vn`1 “ ∇ ¨ vp ´∇ ¨ p
∆t
ρ

∇pn`1q (6.3.10)

And due to the continuity equation, a Poisson equation for the pressure
can be derived:

∆pn`1 “
ρ

∆t∇ ¨ vp (6.3.11)

And finally, the velocity at instant n+1 can be calculated using the
original decomposition (6.3.8).
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6.4 The checkerboard problem
Considering equation (6.3.8) for 1D spatial discretization, applying finite
differences at node P, the velocity at the time step n+1 can be computed as
follows:

un`1 “ up ´
∆t
ρ

ˆ

Pn`1
E ´ Pn`1

W

2∆x

˙

(6.4.1)

From the expression above, it is seen that the velocity at the node is
calculated from the pressure of the adjacent nodes, which means that con-
verged velocity fields can be obtained with an nonphysical pressure map:

Figure 6.2: Checkerboard problem

It is clear that the pressure map of the figure above is nonphysical. How-
ever, since the velocity is calculated using the pressure from adjacent nodes,
a velocity field will be obtained that will verify ∇P “ 0, which is far from
real.

6.5 Staggered meshes approach
To solve this problem, the concept of staggered mesh is used. A main mesh
is used to calculate the pressure at its nodes. A staggered mesh in the x
direction is also computed, whose nodes are placed at the vertical cell faces
of the main mesh. Finally, another staggered mesh in the y direction is used,
placing its nodes at the horizontal cell faces of the main mesh.

Figure 6.3 shows how both meshes are distributed from the main mesh.
It can be seen that with this approach, velocities both in x and y direction
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are calculated with the pressure values of the main node, and thus, the
checkerboard problem is solved. Horizontal velocities are calculated using
the staggered mesh in the x direction, while vertical velocities are computed
with the staggered mesh in the y direction.

Figure 6.3: Staggered meshes approach to solve the checkerboard problem

It is clear that this method allows to avoid an important problem, how-
ever, the way in which the mass flows are computed at each face needs to
be reconsidered in the following way.

For the staggered mesh in x direction:

Figure 6.4: Mass flow for the mesh staggered in x direction
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9me “ pρuAqe “
pρuqE ` pρuqP

2 Ae (6.5.1)

9mn “ pρvAqn “ pρvqAAAn ` pρvqBABN (6.5.2)

While for the staggered mesh in the y direction:

Figure 6.5: Mass flow for the mesh staggered in y direction

9me “ pρuAqe “ pρuqAAAn ` pρuqBABN (6.5.3)

9mn “ pρvAqn “
pρvqN ` pρvqP

2 An (6.5.4)

6.6 Equations discretization
The final step, before presenting the algorithm to solve the problem, is to
discretize the equations. Integrating equation (6.3.4) over the control volume
in the staggered x mesh:

ż

Ωx

RpuqdΩx “ ´

ż

Ωx

pρv ¨∇qudΩx `

ż

Ωx

µ∆udΩx (6.6.1)

And applying the divergence theorem:
ż

Ωx

RpuqdΩx “ ´

ż

BΩx

pρvqu ¨ ndS `
ż

BΩx

µ∇u ¨ ndS (6.6.2)
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Using a second order approximation for the gradient of the velocity, the
x component of equation (6.3.4) gets discretized in the following way:

RpuqΩxP « ´rp 9meue ´ 9mwuw ` 9mnun ´ 9msuss ` rµe
uE ´ uP
dEP

Ae´

µw
uP ´ uW
dWP

Aw ` µn
uN ´ uP
dNP

An ´ µs
uP ´ uS
dSP

Ass
(6.6.3)

Where the values ue, uw, un, us can be computed using any convective
scheme presented in the previous chapter (QUICK, SMART, CDS,...).

And the same can be done for the vertical component of the velocity on
the mesh staggered in the y direcion:

RpvqΩyP « ´rp 9meve ´ 9mwvw ` 9mnvn ´ 9msvss ` rµe
vE ´ vP
dEP

Ae´

µw
vP ´ vW
dWP

Aw ` µn
vN ´ vP
dNP

An ´ µs
vP ´ vS
dSP

Ass
(6.6.4)

Where the values ve, vw, vn, vs can be computed using any convective
scheme presented in the previous chapter (QUICK, SMART, CDS,...).

Equation (6.3.11) can also be discretized applying the divergence theo-
rem. The final discretized equations takes this form:

Pn`1
E ´ Pn`1

P

dEP
Ae ´

Pn`1
P ´ Pn`1

W

dWP
Aw `

Pn`1
N ´ Pn`1

P

dNP
An´

Pn`1
P ´ Pn`1

S

dSP
As “

1
∆t rpρu

P qeAe ´ pρu
P qwAw ` pρv

P qnAn ´ pρv
P qsAss

(6.6.5)

Finally, equation (6.3.8) can be discretized for both x and y component
as:

un`1
P “ uPP ´

∆t
ρ

pn`1
B ´ pn`1

A

dBA
(6.6.6)
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vn`1
P “ vPP ´

∆t
ρ

pn`1
B ´ pn`1

A

dBA
(6.6.7)

Figure 6.6: Velocity calculation (u (left) and v (right)) from pressure field
[2]

One last thing to take into account is the right time-step used for the
discretized equations.The Courant-Friedrichs-Lewy condition [17] is a con-
dition for numerical stability that states that during a certain time-step, the
information should only travel to adjacent nodes.

∆tc “ min

ˆ

0.35∆x
|v|

˙

(6.6.8)

∆td “ min

ˆ

0.20ρ∆x2

µ

˙

(6.6.9)

∆t “ min p∆tc,∆tdq (6.6.10)

Where the convective and diffusive transport are both considered to
ensure stability.

6.7 Boundary conditions
Finally, before presenting the final algorithm, the boundary conditions are
considered:
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• Wall boundary condition
Since a boundary layer is created at the wall, the gradient of the
pressure in the normal direction of the wall is 0.

Bp

Bn
“ 0 (6.7.1)

Figure 6.7: Pressure boundary condition at the wall

• Prescribed velocity
From equation (6.3.8), if vn`1

P is known, the relationship vP “ vn`1
P

can be set and thus: Bp
Bn “ 0

Figure 6.8: Prescribed velocity boundary condition

Finally, the general algorithm to solve the incompressible Navier-Stokes
equation using the Fractional Step method is presented in the following page:
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Figure 6.9: Algorithm for the incompressible Navier-Stokes equations using
the Fractional Step method
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6.8 Lid-driven cavity problem
The lid-driven cavity prblem is a well-known benchmark problem for vis-
cous incompressible flow. The problem consists of a square cavity with fixed
walls with no-slip condition on the left, right and bottom sides and a lid
that moves with a known tangential velocity on the top part of the box.

The problem and its boundary conditions are represented in the following
figure:

Figure 6.10: Lid-driven cavity problem

The behaviour of the results depends on the Reynolds number, which is
defined as Re “ ρUL

µ , where U is the tangential velocity of the top lid and
L is the width of the cavity.

Benchmark results are represented in the following table for the horizon-
tal and vertical velocity components in both center lines of the cavity, and
compared with the results obtined using Upwind and SMART convective
schemes.
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y Re “ 100 Re “ 400 Re “ 1000 Re “ 3200 Re “ 5000
1,0000 1,00000 1,00000 1,00000 1,00000 1,00000
0,9766 0,84123 0,75837 0,65928 0,53236 0,48223
0,9688 0,78871 0,68439 0,57492 0,48296 0,46120
0,9609 0,73722 0,61756 0,51117 0,46547 0,45992
0,9531 0,68717 0,55892 0,46604 0,46101 0,46036
0,8516 0,23151 0,29093 0,33304 0,34682 0,33556
0,7344 0,00332 0,16256 0,18719 0,19791 0,20087
0,6172 -0,13641 0,02135 0,05702 0,07156 0,08183
0,5000 -0,20581 -0,11477 -0,06080 -0,04272 -0,03039
0,4531 -0,21090 -0,17119 -0,10648 -0,86636 -0,07404
0,2813 -0,15662 -0,32726 -0,27805 -0,24427 -0,22855
0,1719 -0,10150 -0,24299 -0,38289 -0,34323 -0,33050
0,1016 -0,06434 -0,14612 -0,29730 -0,41933 -0,40435
0,0703 -0,04775 -0,10338 -0,22220 -0,37827 -0,43643
0,0625 -0,04192 -0,09266 -0,20196 -0,35344 -0,42901
0,0547 -0,03717 -0,08186 -0,18109 -0,32407 -0,41165
0,0000 0,00000 0,0000 0,00000 0,00000 0,00000

Table 6.1: Lid-driven cavity benchmark results. u in the vertical center line.
Extracted from [2]

Figure 6.11: Lid-driven cavity horizontal velocity in the vertical centerline
of the cavity for Re “ 100 (left) and Re “ 400 (right), compared with
benchmark solutions.
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Figure 6.12: Lid-driven cavity horizontal velocity in the vertical centerline
of the cavity for Re “ 1000 (left) and Re “ 3200 (right), compared with
benchmark solutions

Figure 6.13: Lid-driven cavity horizontal velocity in the vertical centerline
of the cavity for Re “ 5000, compared with benchmark solution
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x Re “ 100 Re “ 400 Re “ 1000 Re “ 3200 Re “ 5000
1,0000 0,00000 0,00000 0,00000 0,00000 0,00000
0,9688 -0,05906 -0,12146 -0,21388 -0,39017 -0,49774
0,9609 -0,07391 -0,15663 -0,27669 -0,47425 -0,55069
0,9531 -0,08864 -0,19254 -0,33714 -0,52357 -0,55408
0,9453 -0,10313 -0,22847 -0,39188 -0,54053 -0,52876
0,9063 -0,16914 -0,23827 -0,51550 -0,44307 -0,41442
0,8594 -0,22445 -0,44993 -0,42665 -0,37401 -0,36214
0,8047 -0,24533 -0,38598 -0,31966 -0,31184 -0,30018
0,5000 0,05454 0,05186 0,02526 0,00999 0,00945
0,2344 0,17527 0,30174 0,32235 0,28188 0,27280
0,2266 0,17507 0,30203 0,33075 0,29030 0,28066
0,1563 0,16077 0,28124 0,37095 0,37119 0,35368
0,0938 0,12317 0,22965 0,32627 0,42768 0,42951
0,0781 0,10890 0,20920 0,30353 0,41906 0,43648
0,0703 0,10091 0,19713 0,29012 0,40917 0,43329
0,0625 0,09233 0,18360 0,27485 0,39560 0,42447
0,000 0,00000 0,0000 0,00000 0,00000 0,00000

Table 6.2: Lid-driven cavity benchmark results. v in the horizontal center
line. Extracted from [2]

Figure 6.14: Lid-driven cavity vertical velocity in the horizontal centerline
of the cavity for Re “ 100 (left) and Re “ 400 (right), compared with
benchmark solutions.
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Figure 6.15: Lid-driven cavity vertical velocity in the horizontal centerline
of the cavity for Re “ 1000 (left) and Re “ 3200 (right), compared with
benchmark solutions

Figure 6.16: Lid-driven cavity vertical velocity in the horizontal centerline
of the cavity for Re “ 5000 compared with benchmark solution
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From the figures above, it is clear that the results using the SMART
convective scheme are very accurate for all the Reynolds numbers tested.
However, UDS works only fine for a Reynolds number lower than 100 and
then starts to exhibit really large errors. Nevertheless, both schemes increase
their respective errors as the Reynolds number increases, as it gets closer to
turbulent flow. With the UDS convective scheme, the error is: 25,61 times
the error with SMART at Re “ 400, 31,64 times the error with SMART at
Re “ 1000, 9,41 times the error with SMART at Re “ 3200 and 4,69 times
the error with SMART at Re “ 5000. Figure 6.17 shows the absolute error
as a function of the Reynolds number.

Figure 6.17: Absolute error and computation time as a function of the
Reynolds number for the UDS and SMART convective schemes

On the other hand, figure 6.17 also shows the computation time as a
function of the Reynolds number for the same schemes. While the compu-
tation time with the UDS increases nearly linearly, the computation time
with the SMART scheme increases a lot faster (nearly exponentially). The
computation time with the SMART scheme is: 3,44 times the computation
time with the UDS scheme at Re “ 5000, 2,052 time the computation time
with UDS at Re “ 3200, 1,247 times the computation time with UDS at
Re “ 1000, 1,1839 times the computation time with UDS at Re “ 400, and
1,2389 times the computation time with UDS at Re “ 100.

The colormaps and isolines of the velocity modulus at each Reynolds
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numbers are now presented:

Figure 6.18: Lid-driven cavity velocity modulus and isolines of the velocity
for Re “ 100

Figure 6.19: Lid-driven cavity velocity modulus and isolines of the velocity
for Re “ 400
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Figure 6.20: Lid-driven cavity velocity modulus and isolines of the velocity
for Re “ 1000

Figure 6.21: Lid-driven cavity velocity modulus and isolines of the velocity
for Re “ 3200
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Figure 6.22: Lid-driven cavity velocity modulus and isolines of the velocity
for Re “ 5000

Figure 6.23: Pressure distribution at Re “ 3200
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As it can be easily depicted in the figures above, there are important
velocity gradients on the top moving lid that induce the rotation of the
fluid inside the cavity. A big vortex characterised by a low pressure core is
created in the middle of the cavity that moves slightly towards the centre
and increases in size as the Reynolds number increase. Also, another small
vortex is formed in the top left corner of the cavity. Moreover, on the
top right corner of the cavity a stagnation point for the x-component of the
velocity leads to an important pressure build-up in this region, as it is shown
in the pressure plots.

Figure 6.24: Small vortex generated on the top left corner (left) and pressure
build-up on the top right corner (right)

6.9 Flow between flat plates: Poiseuille Flow
The following benchmark problem to study is the flow between flat plates
driven by a pressure difference (Poiseuille flow) [18]. In this problem, the
pressure gradient between the outlet and inlet of the channel drives the flow,
while the viscous forces balance the pressure forces, making the fluid flow at
constant velocity. However, due to these viscous forces, there is a pressure
loss through the channel.

This problem is commonly used to verify CFD codes as an analytical
solution of the problem exists. Considering two flat plates separated by a
distance H with the reference frame placed in the middle of the channel,
with the x direction on its symmetry axis:
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Figure 6.25: Poiseuille flow between flat plates

Considering the conservation of momentum in the x direction for 2D
flow, steady state conditions and constant density:

ρ

„

u
Bu

Bx
` v

Bu

By



“ ´
BP

Bx
` µ

ˆ

B2u

Bx2 `
B2u

By2

˙

(6.9.1)

And the conservation of mass:

Bu

Bx
`
Bv

By
“ 0 (6.9.2)

For fully developed flow:

Bu

Bx
“ 0 Ñ Bv

By
“ 0 (6.9.3)

Which leads to:

BP

Bx
“ µ

ˆ

B2u

By2

˙

(6.9.4)

Applying the necessary boundary conditions pU |y“´H{2 “ 0, U |y“H{2 “
0q

upyq “
1

2µ
BP

Bx

«

y2 ´

ˆ

H

2

˙2
ff

(6.9.5)
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Figure 6.26: Velocity across the channel

Figure 6.27: Velocity profile at different sections of the channel

The figures above show that as the flow enters inside the channel, two
boundary layers are formed and start to grow up in size. As a result, the
velocity increases at the centre of the section in order to keep the flow rate
constant. At a certain distance from the entrance section (about x “ 3, 5m)
the flow becomes fully developed and the parabolic velocity profile does not
change.
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The analytical solution shown in figure 6.27 was calculated using the
pressure drop shown in figure 6.28. It is seen that pressure varies until
the point were the flow becomes fully developed. From this point, pressure
decreases linearly across the pipe until matching the external pressure at
the outlet (which was set at 10 Pa).

Figure 6.28: Pressure loss across the channel

Figure 6.29: Pressure distribution across the channel
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Due to the important increase in viscous forces at the inlet of the section,
in contact with the plates, two pressure build up zones appear.The pressure
distribution at the inlet of the section is plotted in the figure below:

Figure 6.30: Pressure distribution at the inlet of the channel

6.10 Laminar flow around a square cylinder
The following benchmark problem to deal with is the flow around a square
cylinder. This is also a common problem to study, as there are several
benchmark solutions that can be found.

Figure 6.31: Flow around a square cylinder: geometry of the problem
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A square cylinder is confined between two flat plates. The details of the
geometry used are found in the following table:

D[m] L [m] l [m] H [m]
1,0 30,0 10,0 8,0

Table 6.3: Geometry details of the problem: flow around a square cylinder

The ratio D{H is known as the blockage ratio. In order to capture
correctly all the flow patterns around the square cylinder, the mesh was
divided in three separated zones in order to get a more dense region around
the cylinder and downstream.

Figure 6.32: Mesh used for the square cylinder problem

Figure 6.33: Close-up of the mesh around the square cylinder

To simulate fully developed laminar flow inside the channel, upstream
of the cylinder, a parabolic velocity profile is used at the inlet, with a pre-
scribed maximum velocity value. The pressure at the inlet can be computed
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with different techniques: extrapolating with downstream pressure values
or using a zero gradient approach. In this thesis both approaches were con-
sidered and, giving that results were nearly identical but computation time
was lower using the second approach, a zero pressure gradient was used as
a boundary condition at the inlet. At the outlet, a reference pressure was
set (0 Pa), while a null gradient of the velocity was used. Finally, on the
top and bottom walls, as boundary layers are formed, both components of
the velocity are null and a null pressure gradient normal to the surface exists.

U V Pressure

Inlet ´4
H2 y

2 ` 1 0 BP

Bn
“ 0

Outlet BU

Bn
“ 0 BV

Bn
“ 0 0

Top 0 0 BP

Bn
“ 0

Bottom 0 0 BP

Bn
“ 0

Table 6.4: Boundary conditions

Table 6.4 summarizes the boundary conditions already stated, where U
and V refer to the x and y components of the velocity (in m{s).

The same code used for the lid-driven cavity problem and for the flow
between flat plates was used with the new boundary conditions. The re-
sults obtained are compared with results from [3], where the Finite Volume
Method (FVM) and Lattice-Boltzmann automata (LBA) were used to com-
pare results.

First of all, streamlines are shown in order to obtain a qualitative under-
standing of the physics of the problem. For low Reynolds numbers, viscous
forces dominate over inertial forces. The flow passes over the cylinder and
a steady state is reached without separation behind the cylinder. However,
as the Reynolds number increases, viscous forces decrease in strength and
flow separation at the trailing edge starts to occur. A recirculation zone is
generated behind the cylinder with two symmetrical vortices placed at each
side of the x axis. The length of the recirculation zone and thus, the size
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of the vortices, increase as the Reynolds number increases. For Reynolds
higher than Re “ 60, approximately, the separated boundary layers on the
top and bottom parts of the cylinder start to interact between them and the
von Kárman vortex street is formed.

Figure 6.34: Streamlines around the square cylinder for Re “ 1, 30, and 45
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Figure 6.35: Streamlines around the square cylinder for Re “ 100, and 200

Figure 6.36: Close-up of the streamlines for Re “ 30 (left) and Re “ 45
(right)
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Figure 6.37: Close-up of the streamlines for Re “ 100 (left) and Re “ 200
(right)

The recirculation length (Lr) can be calculated as the distance that
streamwise velocity component (U) becomes negative behind the cylinder.

Figure 6.38: Recirculation length at Re “ 30

The recirculation length is calculated as a function of the Reynolds num-
ber and compared with the linear fit presented in [3]. It is shown in figure
6.39 that results are pretty similar for lower Reynolds numbers but start
to exhibit a small error of the order of a 5% from Re=30. This is not a
really large error and could be decreased with a finer mesh. Nevertheless,
it is clear that the size of the recirculation zone increases linearly as the
Reynolds number increases.

104



Figure 6.39: Recirculation length as a function of the Reynolds number and
comparison with results from [3]

Next, the streamwise velocity U and cross-stream velocity V are graphed
at different sections for different Reynolds numbers and compared with re-
sults presented in [3] for Re “ 100.

Figure 6.40: Streamwise (U) and cross-stream (V) velocities along the cen-
terline (y=0) for Re “ 1
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Figure 6.41: Streamwise (U) and cross-stream (V) velocities at different
positions (centre of the cylinder (x “ 0), near-wake (x “ 4) and far-wake
(x “ 8) for Re “ 1

Figure 6.42: Streamwise (U) and cross-stream (V) velocities along the cen-
terline (y=0) for Re “ 30
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Figure 6.43: Streamwise (U) and cross-stream (V) velocities at different
positions (centre of the cylinder (x “ 0), near-wake (x “ 4) and far-wake
(x “ 8) for Re “ 30

As it can be depicted in the figures above, for (Re “ 1), due to the short
wake, the cross-stream velocity at x “ 8m is nearly 0, which means that the
flow has nearly realigned with the x axis. With Re “ 30 the oscillations in
vertical velocity component are larger and persist further away due to the
bigger recirculation zone.

The same happens with the horizontal velocity component. It can be
seen that for Re “ 1 at x “ 8m the flow is barely affected by the vortices
at the trailing edge of the cylinder. However, at Re “ 30 the flow is still
affected.

At Re “ 100, as the flow becomes unsteady, in order to compare the
results with the ones presented in [3], the same moment to evaluate both
velocity components is chosen. The simulation is stopped when the cross-
stream velocity V at an axial position of x “ 10m behind the cylinder
changes its sign from positive to negative.

The comparison is shown in the plots below:
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Figure 6.44: Streamwise (U) velocity along the centerline (y “ 0) for Re “
100 and comparison with results from [3]

Figure 6.45: Cross-stream (V) velocity at along the centerline (y “ 0) for
Re “ 100 and comparison with results from [3]

108



Figure 6.46: Streamwise (U) velocity at different positions (centre of the
cylinder (x “ 0), near-wake (x “ 4) and far-wake (x “ 8) for Re “ 100 and
comparison with results from [3]

Figure 6.47: Cross-streamwise (V) velocity at different positions (centre of
the cylinder (x “ 0), near-wake (x “ 4) and far-wake (x “ 8) for Re “ 100
and comparison with results from [3]
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Once again, an extremely precise comparison of the results can not be
made. Nevertheless, some general information can be obtained. Starting
with the results of the streamwise velocity component along the horizontal
centerline, it can be depicted that there is a large recirculation zone behind
the cylinder, followed by an increase in horizontal velocity and finally led by
important oscillations in the U velocity component due to the vortex street
generated. For the vertical velocity component along the centerline, it can
be depicted that it changes its sign from positive to negative due to the wake
created. All the results presented are pretty similar to the ones from [3].
However, it is clear that there is a lack of resolution at the zones where im-
portant oscillations in velocity appear and thus, a more refined mesh would
lead to better results.

On the other hand, while at Re “ 1 and Re “ 30 the streamwise (U)
velocity tends to a parabolic profile as the distance from the trailing edge
of the cylinder increases, for Re “ 100 the big unsteady wake behind the
cylinder persists a lot further and thus, the velocity profiles shown in figures
6.46 and 6.47 change shape depending on the section. It is important to
notice that those are only the velocity profiles of an unsteady wake at a
concrete time-step of the simulation, which means that they change as the
wake develops.

Next, the different colormaps of the modulus of the velocity are shown:

Figure 6.48: Velocity modulus at Re “ 1
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Figure 6.49: Velocity modulus at Re “ 30, Re “ 100 and Re “ 200

The figures above show the already commented increase in recirculation
length at the trailing edge. Moreover, it is also seen that at Re “ 100 a
vortex street has already formed and the frequency of the vortex shedding
has increased at Re “ 200.
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In order to calculate drag and lift forces, the contribution of the pressure
and viscous forces needs to be considered. Both forces can be calculated as
follows:

d “ µ
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As it has already been mentioned, for Re ď 60 (approximately) a steady
solution is achieved and thus, a steady value of the Cd can be obtained. The
drag coefficient has been obtained using the maximum inlet velocity and the
square cylinder face length. The results are plotted in the following graph
and compared with results from [3].

Figure 6.50: Cd as a function of the Reynolds number in steady conditions
and comparison with results from [3]

It can be seen that results are pretty similar in both studies. As the
Reynolds number increases, the drag coefficient decreases, the viscous forces
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decrease in strength and the main drag component are the pressure forces.

For Reynolds numbers higher than 60, a steady value of the drag co-
efficient can not be obtained and thus, a time-averaged value needs to be
computed with the following plots.

Figure 6.51: Variation of Cd with time for Re “ 100 (left) and Re “ 150
(right)

Figure 6.52: Variation of Cd with time for Re “ 200 (left) and Re “ 250
(right)
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As it is shown in figure 6.53, for time-averaged drag coefficients lower
than 100, the results are pretty similar to the ones extracted from [3]. How-
ever, for Reynolds numbers larger than 100, the error is considerable. The
cause of this might be due to the use of too coarse grids, as in this figure
it can be depicted that the results with a 140x140 mesh are considerably
better than the ones with a 100x100 mesh.

Figure 6.53: Time-averaged Cd as a function of the Reynolds number

Another possible explanation could be the transition from laminar flow
to turbulent flow. The onset of 3D structures in the wake of a square cylin-
der is not clear in the literature. However, Franke (1991) estimates that the
upper limit to consider laminar flow is around Re “ 300, which is a close
value to the ones studied in this thesis [3].

Figure 6.53 also shows results of other studies with different conditions.
Sohankar et al. [19] studied the flow around a square cylinder at 5% block-
age. However, the upper and lower boundaries were treated as friction-free
walls. On the other hand, Gera et al. [20] simulated similar conditions with
5,5% blockage, while the upper and lower boundary conditions for the ve-
locity were considered to be free fow conditions. These results can not be
directly compared with the ones obtained in this thesis. However, it can be
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depicted that the behaviour of the time-averaged drag coefficient is similar
in all the studies, presenting a minimum value around Re “ 150.

Finally, the Strouhal number is computed. The Strouhal number is a
non-dimensional number to describe the mechanism of oscillating flow. It
can be calculated as St “ fL

U , where f is the frequency of the vortex shed-
ding, L is a characteristic length of the problem (in this case the cylinder’s
face length) and U a characteristic velocity (for this particular problem it is
the maximum velocity at the inlet). The values are computed as a function
of the Reynolds number, making use of the variation of the lift coefficient
with respect to time to get the vortex shedding frequency, and compared
with the results of other studies.

Figure 6.54: Variation of the Strouhal number with the Reynolds number

Once again, the order of magnitude of the results seems to be correct.
However, there are important differences with the results from [3]. Nev-
ertheless, the same tendency as the other studies is follwed: the Strouhal
number increases until Re “ 160 (approximately) and then starts decreas-
ing from this point. The values of Sohankar et al. [19] and Gera et al. [20]
are considerably different, even though both studies were conducted with
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similar blockage ratios. The Strouhal numbers calculated by Sohankar et
al. are higher than the ones from Breuer et al., even though is is well known
that an increase in blockage ratio leads to an increase in the vortex shedding
frequency (i.e. increase in the Strouhal number) [3].

6.11 Conclusions
In general, good agreement has been observed between the obtained re-
sults and the benchmark results. For the lid-driven cavity, SMART scheme
proved to work fine for all the Reynolds numbers tested, while with UDS
scheme important errors appear from Reynolds numbers higher than 100.
Computation time is considerably higher with SMART convective scheme,
specially as the Reynolds number increases. For the Poiseuille flow results,
excellent agreement has been observed with the theoretical results. Finally,
for the laminar flow around a square cylinder, really good agreement is seen
with the results of Breuer et al. for Reynolds numbers lower than 100 but
discrepancies appear for higher Reynolds. Nevertheless, the trend followed
by the results is similar: a recirculation zone appears at the trailing edge,
whose length increases linearly with the Reynolds number, and vortex shed-
ding appears at around Re “ 60. The values of the coefficient of drag
decreases until Re “ 150 approximately, and then increases again. Finally,
the Strouhal number presents a maximum value at around Re “ 160.
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Chapter 7

Budget of the study

The following budget is an estimation of the cost that a similar project would
have. However, this is just an approximation and some things need to be
considered before presenting the final cost of the study:

• This is just a project of an undergraduate aerospace engineering stu-
dent. This means that the salary that a engineer would be earning for
the same job would probably be higher than the one of a non-graduated
student. Taking this into account, the hourly price has been estimated
to be about 8 e /hour. I has been considered that the salary would be
higher than the minimum wage in Spain, but lower than the minimum
salary of an Industrial engineer [21] [22].

• The other thing that needs to be considered is the price of the software
used. All the codes have been developed with Dev C++ and all the
processed images have been done with Paraview which are free tools.
However, the rest of the graphs were done using Matlab, whose edu-
cational license has a price of 8,33e /month. The project was written
with Overleaf and the files were stored in Google Drive, which are free
cloud-based services.

• The price of the hardware is something that needs to be considered as
well. Considering that the price of the laptop was of 1900 e and it is
lifetime is expected to be around 5 years, the cost of the hardware for
a project of 4 months of duration is considered to be 126,7e .

• Finally, the price of the light used to power the computer, which has
been used throughout the whole project, is considered as well. The
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average cost of 1 Kw ¨ h is 0, 24 e , considering all the taxes and fees
added to the baseline price [23].

Table 7.1: Software budget

Table 7.2: Hardware budget

Table 7.3: Salary

Table 7.4: Total budget
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Chapter 8

Environmental impact

The environmental impact of this thesis is difficult to quantify. The main
concern regarding the influence that the development of this thesis could
have in the environment would be the electricity consumed to power the
computer. Even with this in mind, it is still difficult to estimate the impact
that the electricity has, as its origin is unknown: it could come from a re-
newable energy source (wind power, hydropower, solar energy...) in which
case the environmental impact would be zero; or it could come from a non-
renewable source of energy, (solid fuels used in thermal power stations, for
example), in which case the impact would not be zero, but still minimal.

One last thing to consider could be the amount of paper used to take
notes. Non-recycled paper has been used, which has an important envi-
ronmental impact from its production to its distribution. Nevertheless, the
impact of this is also difficult to estimate, even though it is not extremely
large.
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Chapter 9

Task planning

The Gantt chart presented in the following page is the initial schedule that
was done before starting the project. This means that some activities were
finished earlier, and some others later than what was planned.

The studies of the 2D heat conduction and potential flow around a rotat-
ing and non-rotating cylinders were completed in time. However, the study
of the general convection-diffusion equation took a bit longer than expected
due to the study of the order of accuracy and stability of different numerical
schemes.

The verification of the lid-driven cavity code also took a bit longer than
expected due to a small typing error in the code that took a few days to find.

The increase in time of the two studies already mentioned implied a short
delay in the project, which meant that a deeper study of the vortex shedding
phenomenon around the square cylinder was not possible. Nevertheless, the
followed schedule is the one presented in the following page:
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Chapter 10

Conclusions and future work

The final objective of this thesis was the numerical resolution of the Navier-
Stokes equations using the Fractional-Step method and the verification of
the results with the Lid-driven cavity problem; before solving the particular
case of the flow around a square cylinder. In general terms, the objectives
established before the study have been accomplished.

The finite volume method, in conjunction with the Fractional Step method,
has proved to be a really powerful technique to solve the incompressible form
of the Navier-Stokes equations. It has become clear the importance of the
good spatial and temporary discretization in order to get accurate results.
Moreover, the importance of the order of accuracy of the discretized equa-
tions is evident, specially regarding the selection of a good scheme to treat
the convective term, as it was seen with the results of the Lid-driven cavity
problem, where a bad selection of the convective scheme led to important
errors. The study of the order of accuracy of the overall approximation
proved to be a powerful and easy way to check the good implementation of
the numerical schemes and to find possible mistakes in the code, as it can
be seen in the study of the general convection-diffusion equation.

Regarding the results obtained with the study of laminar flow around
a square cylinder, a few conclusions can be gathered. First of all, and as
stated in [3], there is a lack of accurate data in the literature for the con-
fined laminar flow past a square cylinder. Due to this, results could only be
compared with the ones from Breuer et al., and other studies were used to
get a general idea of the trend of the results, but could not be used for a
precise comparison owing to the different blockage ratios used. Moreover,
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data of similar simulations in the literature are highly scattered, specially
when the wake behind the cylinder becomes unsteady.

Nevertheless, for Reynolds values lower than 60 an excellent agreement
is found between the results of this thesis and the ones presented in [3].
Between the Reynolds number range 60 ď Re ď 100, important deviations
are seen, and for Reynolds values larger than 100 the deviations are really
important. As stated previously, this discrepancies in the results could be
explained due to the need of a finer mesh, which leads to a really important
increase in computation time, or due to the transition from laminar to tur-
bulent flow.

The next steps to be done would be the improvement of the mesh used
until the results obtained are independent of the cell size. If the improve-
ment in the results is not enough, the turbulence phonemonon should be
considered and studied in detail before using a suitable turbulence model,
such as the Direct Numerical Simulation (DNS) or Large-Eddy Simulation
(LES). Moreover, the implementation of unstructured meshes would also be
important, even though this is not necessary for the simple geometry of a
square cylinder. Finally, it would be really interesting to study other prob-
lems where the energy equation plays an important role in the final results,
such as for problems where natural convection takes place.

123



Chapter 11

Bibliography

[1] CTTC - Universitat Politècnica de Catalunya, “A Two-dimensional
transient conduction problem,” pp. 1–3, 2014.

[2] ——, “Fractional Step Method Staggered Meshes,” pp. 1–33, 2014.

[3] Z. D. Breuer, Bernsdor, “Accurate computations of the laminar flow
past a square cylinder based on two different methods: Lattice-
Boltzmann and finite-volume,” International Journal of Heat and Fluid
Flow, vol. 21, no. 2, pp. 186–196, 2000.

[4] CTTC - Universitat Politècnica de Catalunya, “Numerical resolution
of the generic convection-diffusion equation,” pp. 1–28.

[5] “Computational fluid dynamics— Wikipedia, the free ency-
clopedia,” 2019. [Online]. Available: https://en.wikipedia.org/wiki/
Computational_fluid_dynamics

[6] H. K. Versteeg and W. Malaskekera, “An Introduction to Computa-
tional Fluid Dynamics: The Finite Volume Method,” p. 517, 1995.

[7] CTTC - Universitat Politècnica de Catalunya, “Computational engi-
neering - Tackling turbulence with (super)computers.”

[8] A. Jameson, “Computational Fluid Dynamics: Past, Present and
Future,” Future Directions in CDF Research, National Institute for
Aerospace, p. 75, 2012.

[9] “Navier-Stokes Equations — Wikipedia, the free encyclopedia,” 2019.
[Online]. Available: https://en.wikipedia.org/wiki/Navier%E2%80%
93Stokes_equations

124

https://en.wikipedia.org/wiki/Computational_fluid_dynamics
https://en.wikipedia.org/wiki/Computational_fluid_dynamics
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations


[10] NASA, “Navier-Stokes Equations.” [Online]. Available: https://www.
grc.nasa.gov/www/k-12/airplane/nseqs.html

[11] “Gauss–seidel method — Wikipedia, the free encyclopedia,” 2019.
[Online]. Available: https://en.wikipedia.org/wiki/Gauss%E2%80%
93Seidel_method

[12] “Tridiagonal matrix algorithm — Wikipedia, the free encyclopedia,”
2019. [Online]. Available: https://en.wikipedia.org/wiki/Tridiagonal_
matrix_algorithm

[13] “Properties of Numerical Methods,” Computational Engineering — In-
troduction to Numerical Methods, pp. 1–19, 2006.

[14] J. Anderson, Fundamentals of Aerodynamics, ser. McGraw-Hill series
in aeronautical and aerospace engineering. McGraw-Hill, 2011.

[15] P. H. Gaskell and A. K. C. Lau, “Curvature compensated convective
transport: SMART, a new boundedness preserving scheme,” vol. 8, no.
February 1987, pp. 617–635, 1988.

[16] MIT, “Numerical Fluid Mechanics Spring 2015,” pp. 1–24, 2015.

[17] Guilherme Caminha, “The cfl condition and how to choose
your timestep size – Simscale,” 2019. [Online]. Available: https:
//www.simscale.com/blog/2017/08/cfl-condition/

[18] “Hagen–Poiseuille equation — Wikipedia, the free encyclopedia,”
2019. [Online]. Available: https://en.wikipedia.org/wiki/Hagen%E2%
80%93Poiseuille_equation#Liquid_flow_through_a_pipe

[19] A. Sohankar, C. Norberg, and L. Davidson, “Numerical Simula-
tion of Unsteady low Reynolds Number Flow around a square Two-
Dimensional Cylinder,” Proc. 12 th Australian Fluid Mechanics Con-
ference, pp. 517–520, 1995.

[20] B. Gera, P. K. Sharma, and R. K. Singh, “CFD analysis of 2D un-
steady flow around a square cylinder,” International Journal of Applied
Engineering Research, Dindigul, vol. 1, no. 3, pp. 602–610, 2010.

[21] “Tusalario.es.” [Online]. Available: https://tusalario.es/salario/
comparatusalario?job-id=2141010000000#/

[22] “Salario Mínimo Interprofesional,” 2019. [Online]. Available:
http://www.salariominimo.es/2019.html

125

https://www.grc.nasa.gov/www/k-12/airplane/nseqs.html
https://www.grc.nasa.gov/www/k-12/airplane/nseqs.html
https://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method
https://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method
https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
https://www.simscale.com/blog/2017/08/cfl-condition/
https://www.simscale.com/blog/2017/08/cfl-condition/
https://en.wikipedia.org/wiki/Hagen%E2%80%93Poiseuille_equation#Liquid_flow_through_a_pipe
https://en.wikipedia.org/wiki/Hagen%E2%80%93Poiseuille_equation#Liquid_flow_through_a_pipe
https://tusalario.es/salario/comparatusalario?job-id=2141010000000#/
https://tusalario.es/salario/comparatusalario?job-id=2141010000000#/
http://www.salariominimo.es/2019.html


[23] “Tarifaluzhora.” [Online]. Available: https://tarifaluzhora.es/

[24] CTTC - Universitat Politècnica de Catalunya, “Verification strategies
for the convection-diffusion equation,” pp. 1–5, 2014.

[25] L. E. Schwer, “Is your mesh refined enough? Estimating Discretization
Error using GCI,” 7th LS-DYNA Anwenderforum, vol. 1, no. 1, pp.
45–54, 2008.

[26] “Normalized variable and space formulation methodology for high-
resolution schemes,” Numerical Heat Transfer, Part B: Fundamentals,
vol. 26, no. 1, pp. 79–96, 1994.

[27] CTTC - Universitat Politècnica de Catalunya, “Non viscous flow.”

[28] Z. C. Y. Shams-ul-Islam, Raheela Manzoor, “Effect of Reynolds Num-
ber on Flow past a Square Cylinder in Presence of Upstream and Down-
stream Flat Plate at Small Gap Spacing,” 2015.

126

https://tarifaluzhora.es/

	List of Figures
	List of Tables
	Introduction
	Aim of the thesis
	Background and Justification
	Scope
	Requirements

	Previous study
	Introduction
	Navier-Stokes equations: Mathematical formulation
	Finite Volume Method (FVM) or Finite Difference Method (FDM)
	Iterative solvers
	Properties of a numerical scheme
	Conclusions

	Diffusion equations - Heat transfer problem
	Introduction
	Mathematical formulation
	2D wall with 4 different materials
	Discretization of the geometry and equations

	Results of the transient 2D heat conduction problem
	Conclusions

	Potential flow
	Introduction
	Mathematical formulation: Stream function
	Incompressible potential flow around a cylinder (rotating and non-rotating)
	Non-rotating cylinder results
	Rotating cylinder results
	Mesh discretization study
	Conclusions

	Convection-diffusion equation
	Introduction
	Mathematical formulation
	Unidimensional flow with an unidimensional variation of the variable solved in the same direction of the flow
	Unidimensional flow with an unidimensional variation of the variable solved in the perpendicular direction of the flow
	Diagonal Flow
	Solenoidal Flow
	Conclusions

	Incompressible Navier-Stokes equations: Fractional step method approach
	Introduction
	Mathematical background: The Helmholtz-Hodge theorem
	Mathematical formulation
	The checkerboard problem
	Staggered meshes approach
	Equations discretization
	Boundary conditions
	Lid-driven cavity problem
	Flow between flat plates: Poiseuille Flow
	Laminar flow around a square cylinder
	Conclusions

	Budget of the study
	Environmental impact
	Task planning
	Conclusions and future work
	Bibliography

