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Abstract: Supersonic ejectors are used extensively in all kind of applications: compression of
refrigerants in cooling systems, pumping of volatile fluids or in vacuum generation. In vacuum
generation, also known as zero-secondary flow, the ejector has a transient behaviour. In this paper,
a numerical and experimental research of a supersonic compressible air nozzle is performed in order
to investigate and to simulate its behaviour. The CFD toolbox OpenFOAM 6 was used, with two
density-based solvers: explicit solver rhoCentralFoam, which implements Kurganov Central-upwind
schemes, and implicit solver HiSA, which implements the AUSM+up upwind scheme. The behaviour
of the transient evacuation ranges between adiabatic polytropic exponent at the beginning of the
process and isothermal at the end. A model for the computation of the transient polytropic exponent
is proposed. During the evacuation, two regimes are encountered in the second nozzle. In the
supercritic regime, the secondary is choked and sonic flow is reached. In the subcritic regime,
the secondary flow is subsonic. The final agreement is good with the two different solvers, although
simulation tends to slightly overestimate flow rate for large values region.

Keywords: supersonic vacuum ejector; vacuum generator; open source; Python; computational fluid
dynamics; CFD; compressible density-based; HiSA; rhoCentralFoam; OpenFOAM

1. Introduction

Supersonic ejectors use a primary supersonic flow, obtained from a pressure source, to generate a
secondary flow that mix with the former in a a mixing chamber. Both mixed flows are then expelled to
the atmosphere or used in a feedback cycle. A scheme of these flows is depicted in Figure 1. Vacuum
ejectors are extensively used for a wide number of applications: compression of refrigerants in cooling
systems, pumping of volatile fluids or in vacuum generation applications. Vacuum generators have,
presently, many applications because of their velocity of vacuum production. Vacuum can be used also
to manipulate objects. The mechanism is simple, since it only needs a pressure source, an ejector and a
vacuum cup. Although high vacuum levels as large as 99% can be reached, for objects manipulation in
industry vacuum ejectors can easily create what it is called a "useful vacuum", which is a vacuum level
of about 80%.
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(a)

(b)

Figure 1. (a) Drawing of the vacuum ejector and its boundary names; (b) Detail with schematic
representation of primary and secondary flow.

In recent years, a significant number of investigations have been performed. José Sierra-Pallares [1]
and García del Valle [2] did a shape optimization of a rectangular ejector for refrigeration, with R134a
with Ansys, and they increased the entrainment ratio to the valueof 16%. Lambert et al. [3–5] analysed,
by using OpenFOAM and experimental data, a new method of transport phenomena in supersonic
ejectors and found that net gain the secondary flow is maximum when the back pressure is close to its
critical value, and they found an explanation of the entrainment ratio limitation in supersonic ejectors
as the compound-choking theory. They used the rhoCentralFoam changing the outlet pressure instead
of the secondary inlet pressure. Expósito Carrillo et al. [6] optimized a single-phase ejector geometry
by means of a multi-objective evolutionary algorithm and CFD model with Ansys and they obtained
a potential increase of 55% and 110% in the back pressure, and also on the entrainment ratio ratio
for air. They used another gas, CO2, and air, as well. Petrovic et al. [7] evaluated the performance of
1-D models to predict variable area supersonic gas ejector performance, although they used different
gases. Arun Kumar et al. [8] showed the physics of vacuum generation in ejectors when they are in
zero-secondary flow such as bubbles on the secondary flow that obstruct the entrainment ratio of air.
Zhang et al. [9] studied the effect of the friction on the ejector and they found that it can, actually,
effect on the function, although their most incisive part of this are the constant-area section and the
diffuser, that were considered of low incidence for the present work. Chen et al. [10] developed a
theoretical model that could work overall modes although they worked with different gases. Croquer
et al. [11] compared an ejector designed by thermodynamic model versus another designed by CFD.
They found that they both are in a good agreement at the design conditions, about 2% difference.
Jafarian et al. [12] studied, both numerically and experimentally, the transient phenomenon when the
air is being evacuated. Although they worked basically on the motive flow profile they found that as
the slope of the motive flow pressure profile increases, the suction increases BY 40%. Kong et al. [13]
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studied analytical and with CFD the performance of vacuum of a chevron ejector and they found that
with this kind of nozzle helps the secondary stream into the mixing chamber. Mazzelli et al. [14] also
performed a numerical and experimental analyses in order to check the effectiveness of the different
turbulence models. They found that k−ω SST showed as the most suitable turbulence model in both
2D and 3D simulations.

The objective of the present work is to numerically simulate an ejector and study its transient
flow regimes. It is organised as follows. The next section describes both experimental and numerical
methods. Section 3 presents the main results obtained, in Section 4 these results are discussed, and
finally, conclusions are drawn.

2. Materials and Methods

2.1. Experimental Method

Two types of experiment were made. In the first experiment, the secondary flow rate moved by
the ejector from a vessel in steady state flow was measured, for different secondary pressure. It was
performed in a testbench with a 0.5 m3 vessel. The vacuum pressure in vessel (P3 in Figure 2) was
measured with open tubes manometers with mercury. In Figure 2, the experimental setup used for the
present paper is depicted and, in table 1, more details about the valves, gauges, are given.

Figure 2. Experimental setup used in LABSON laboratories.

Table 1. Data for the experimental setup.

Label Name Function

V1 Pressure Valve Setting for operating pressure
DP Flange orifice Pressure differential for primary flow rate
P1 Gauge pressure Inlet pressure
P3 Vacuometer sensor Pressure in the vessel
V2 Vacuum valve Setting the different vessel’s pressure
P2 Gauge Pressure Pressure for secondary flow rate

The primary flow rate was obtained with a flange orifice, according to ISO 5167 standard [15],

ṁp =
C√

1− β4
εA
√

2ρ1∆p (1)

where A is the orifice surface, β is the rate between orifice and pipe diameters, ρ1 is air density
upstream, ∆p is the pressure difference measured, ε is the expansion factor and C is the discharge
coefficient for the flange orifice. The calculations were performed with the python package fluids [16].
Secondary flow is measured with an inlet nozzle

ṁs = Cn An
√

2ρnPn (2)
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where An is the nozzle surface, ρn is the air density at atmospheric pressure and temperature , Pn is
the pressure measured and Cn = 0.9975 is the discharge coefficient for the nozzle.

Two diameter flanges’ orifices and two different fluids, in open tubes manometers, were used
to measure the pressure difference, ∆p. The secondary pressure in the vessel was normalised with
atmospheric pressure:

p∗s =
ps

pa
(3)

The first flange, with a diameter of 10.30 mm and water, was used to obtain ∆p from p∗s = 1 to
p∗s = 0.4. The second, with a diameter of 5.15 mm, was used from p∗s = 0.4 to p∗s = 0.3, with water.
From p∗s = 0.3 to its maximum vacuum pressure used the small flange and alcohol (ρ = 791.8 kg/m3)
because of its precision.

The primary pressure source, P in Figure 2, was kept steady and at a value of 6 bar (relative) for
all the measurements. The ball valve, in the scheme V2, controls the secondary flow rate when the
system reaches a steady state.

The second experiment consisted of the transient measurement of the pressure decay in the vessel
versus time. This experiment was performed with two different vessel volumes, 0.5 m3 and 0.1 m3.
For the 0.1 m3 a vacuometer sensor by AR-Vacuum [17], with an error of 200 Pa, was used.

2.2. Numerical Method

2.2.1. The Solver

The present work used the OpenFOAM [18] simulation toolbox that solves the equations for
unsteady compressible flow of mass, momentum and energy:

∂ρ

∂t
+

∂

∂xi
ρui = 0 (4)

∂

∂t
ρuj +

∂

∂xi
ρuiuj = −

∂p
∂xi

+
∂

∂xi
σij (5)

∂

∂t
ρE +

∂

∂xi
ρEui = −

∂ui p
∂xi

+
∂

∂xi

(
uiσij + k

∂T
∂xj

)
(6)

along with the equation for perfect gases
p = ρR′T (7)

where E = cvT + 1
2 |u|

2, cv is the specific heat at constant volume and R′ is the constant for the gas.
Equations (4)–(6) can be expressed as

∂W
∂t

=
∂Fv

∂xi
− ∂Fc

∂xi
(8)

where

W = [ρ, ρui, ρE] (9)

Fv = [0, σij, uiσij + k
∂T
∂xj

] (10)

Fc = [ρui, ρuiuj + pδij, ρEui + puiδij] (11)

with

σij = µ

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
∂uk
∂xk

δij

)
(12)
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An explicit and an implicit solver were used for the sake of comparison. The explicit solver, available in
the standard distribution of OpenFOAM, rhoCentralFoam, is a transient density-based solver, which
uses the Kurganov and Tadmor central-upwind schemes for face interpolation [19,20]. First-order
Euler explicit time scheme was used and the semi-discrete form for the set of equations reads

V
Wn+1 −Wn

∆t
= R(Wn) (13)

where V is the cell volume and R(W) is the right side of Equation (8) after face integration. This
integration is usually performed with some limiter, like a van Leer limiter in the present case. For
details about computational algorithm, the reader is referred to Greenshields et al. [19]. CFL number
was set in 0.5 for all the operating conditions, and the steady-state solution was stated by monitorization
of flow rate in outlet.

The open source transient implicit solver is HiSA, which implements the AUSM+up upwind
scheme for face fluxes [21,22]. This solver permits solving unsteady flows with a significant larger
Courant numbers than the explicit solvers. Moreover, it was also reported that for high Mach numbers,
implicit solvers are much more efficient and accurate that explicit solvers [20,23,24]. In the present
case, however, the steady-state time scheme was used, so that the set of non-linear equations is

R(Wn+1) = 0 (14)

These equations are solved with the Generalized Minimal Residual (GMRES) Algorithm [22,25]
with Lower-Upper Symmetric Gauss–Seidel (LU-SGS) preconditioning [26].

For the turbulence model we used k-ω SST, since it was reported to give better results for these
kind of simulation by comparison with k-ε , k-ε realizable and stress-ω Reynolds Stress Model [14].

2.2.2. The Mesh

A 2D axisymmetric mesh was used for the sake of simplicity and performance times. The general
view of the mesh is shown in Figure 3. The details of the mixing region of the supply flow and the
secondary flow are shown in Figure 4.

Figure 3. General view of the mesh.
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Figure 4. Detail of mixing region.

The mesh is composed of structured blocks, generated with blockMesh, with the help of the
open source Python script ofblockmeshdicthelper [27], which is useful when geometry is complex,
but the meshing process has to be fast and accurate [28]. A grid convergence study was performed in
order to state the goodness of the mesh. The study mesh is 2D axisymmetric with 20,300 tetrahedrical
cells. A coarser mesh, with 13,000 cells, and a finer mesh, with 29,250 cells, were tested. The study
was performed following the recommendations of Celik et al. [29] and, hence, the variation in cells
size is about 30% and the refinement was structured. Three results were considered for the grid
convergence study: primary and secondary flow rates for atmospheric inlet pressure (and, thus,
maximum secondary flow rate), and minimum pressure in secondary inlet. Data are presented
in Table 2.

Table 2. Data for grid convergence study.

Mesh Number of Cells ṁp [kg/s] ṁs [kg/s] ps,min [kPa]

Coarse mesh 13,000 0.00945 0.00932 21.57
Study mesh 20,300 0.00946 0.00938 21.73
Fine mesh 29,250 0.00948 0.00936 21.90

The grid convergence analysis gives a relative error of 0.4% for the secondary flow rate and,
hence, the result is ṁs = (94.2± 0.4)× 10−3 kg/s. The relative error for all the numerical results for
secondary flow rate will be considered the same in the rest of the work.

2.2.3. Boundary Conditions

The boundary condition in primary inlet is 6 bar (relative) of total pressure, and Neumann
condition for velocity for both HiSA and rhoCentralFoam solvers. In the secondary inlet also the
total pressure is prescribed in function of the operating condition, and the flow rate is given by the
simulation. In the outlet the standard atmospheric pressure is set but, in order to avoid reflections,
the waveTransmissive [30,31] boundary condition was used for the rhoCentralFoam solver. For
the implicit HiSA solver, the characteristic far field boundary condition [32] was used in outlet.
The temperature was set as the standard atmospheric total temperature of 293 K in all the boundaries.

2.2.4. Simulations Performance

The performance of both solvers were compared. All the simulations were executed in a 64
AMD Opteron cores cluster, with 64 GB of RAM memory, using 8 cores in each run, with the same
domain decomposition for parallel processing. As an illustration, here we show the performance of
the simulations for the case of atmospheric pressure in outlet boundary, when secondary flow rate is
maximum. Simulations were considered to be converged when secondary flow rate reaches a steady
value. Figure 5 shows the convergence history for both solvers. The transient explicit rhoCentralFoam
converges for about 0.003 s of flow time and the steady-state implicit HiSA needs about 15,000 iterations.
The run time for the first case (rhoCentralFoam) was about 2 h and half, and for the second case (HiSA)
was about half an hour, that is, 5 times smaller.
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(a)

(b)

Figure 5. Performance of CFD solvers for 1 atm in outlet boundary condition. (a) Transient explicit
rhoCentralFoam solver converges for about t = 0.003 s. (b) Steady-state implicit HiSA solver converges
for about 15,000 iterations.

3. Results

3.1. Experimental Data

Evacuation of air from the vessel is a process that can be considered to follow a general
polytropic relationship,

p
ρk =

p0

ρk
0

(15)

where p0 and ρ0 are pressure and density reference values. Continuity equation, combined with perfect
gases (7) and polytropic (15) expressions leads to

ṁs =
V

kR′T
dps

dt
(16)

where V is the volume of the vessel. Secondary flow rate is normalised with primary mass flow
rate (17), giving the entrainment ratio µ.

µ =
ṁs

ṁp
(17)

Results from the second experiment are shown in Figure 6. The pressure decay is presented versus
time. It was normalised with the characteristic time:

τ =
ρnV
ṁp

(18)
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Secondary pressure could be estimated from Equation (16) assuming a known value of k. If limit
values related to isothermal (k = 1) and adiabatic (k = 1.4) processes are considered, the result is
shown in Figure 7, compared with actual values of secondary mass flow rate measured in laboratory.

Figure 6. Experimental normalised pressure decay for both large and small vessel volumes.

Figure 7. Transient evacuation from adiabatic to isothermal polytropic coefficient.

It is clear from Figure 7 that air evacuation exhibits an adiabatic behaviour in the first phase
of the process, tending gradually to isothermal for small secondary flow rate at the end of the test.
This behaviour agrees with the intuitive argument that heat transfer is less efficient for a high flow rate
and, thus, process is adiabatic and, on the contrary, temperature has more time to balance for a small
flow rate and the process is more likely isothermal.

The actual value of the polytropic coefficient k can be experimentally estimated from the
computation of the pressure decay rate and the secondary flow rate for each value of the pressure.

k =
V

R′T
1

ṁs

dps

dt
(19)
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Secondary mass flow rate is obtained by experimental tests for the large vessel volume.
Computation of k, with Equation (19), is plotted in Figure 8, for both vessel volumes.

Figure 8. Different values of k, versus time.

This computation requires, besides the time derivative of the pressure, the value of the secondary
flow rate for each pressure. This value is obtained by the interpolation of the flow rate in function
of the vacuum pressure. This function can be considered to be a piece wise linear composition of
two segments [33] where the breakpoint is the change of regime from the supercritic, with choked
secondary flow, and the subcritic. The computation of the breakpoint, ṁp = 0.00075 kg/s and
p∗s = 0.226, was done with the python library pwlf [34], which uses global optimization for the location
of the point, as illustrated in Figure 9.

The polytropic coefficient starts with the expected value of 1.4, but it quickly decreases, almost
linearly, until it reaches the isothermal value of k = 1 for t ≈ τ. It seems to stabilise in this value up to
t ≈ 2τ. After that, the behaviour differs depending of the vessel’s volume. Since the measurements
with the larger volume were higher and they were acquired in a more accurate way, it is assumed that
from t ≈ 2τ the flow rate measurements with the small volume can be discarded. Then, the value
of k decreases slightly down to 0.9 dropping quickly to 0.6 at the very final stage of the process.
This roughly agrees with results by [35] with air discharging from a pressurised vessel.
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(a)

(b)

Figure 9. (a) Piecewise linear composition of performance function; (b) Detail of the breakpoint.

3.2. Numerical Simulations

The numerically simulated entrainment ratio is shown in Figure 10 for explicit (RCF) and implicit
(HiSA) solvers. In addition, experimental measurements are plotted for the sake of comparison.
Figure 10 shows the ejector turns to be zero-secondary flow [8] reach maximum vacuum pressure
of p∗s = 0.2 on the experimental results. However simulation results differ in vacuum pressure and
entrainment ratio at µ below 0.3. The maximum vacuum pressure obtained with HiSA is p∗s = 0.217
(see Figures 11 and 12). Instead, Figure 13 shows an entrainment ratio µ = 0.017 at p∗s = 0.2 for RCF.
This entrainment ratio, for the numerical results of HiSA, is found at p∗s = 0.29.
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Figure 10. Results from both solvers versus experimental results.

Figures 11 and 12 show contours of the Mach number for the secondary flow obtained from
the simulations with the implicit solver, HiSA. Normalised vacuum pressure ranges from p∗s = 1,
corresponding to the vessel at atmospheric pressure to the minimum secondary pressure, for zero
secondary flow rate, p∗s = 0.217.

In the first subfigure of Figure 11, for p∗s = 1 secondary flow accelerates until Ma = 1.5 at the
end of the second nozzle. Downstream there is a shock wave (not shown in Figure) before air exits to
atmospheric pressure.

At the pressure of p∗s = 0.8, the Ma = 1.5 in the entrainment ratio is not located at the end of the
nozzle, like in the previous subfigure, but advanced in the nozzle. Thus, downstream there is a shock
wave (not shown in Figure). In this case the shock wave is located more advanced.

At the pressure of p∗s = 0.6, the Ma = 1 is located in the middle of the secondary nozzle and at
p∗s = 0.4, the Ma = 1 is located advanced the middle, close to the entrance of the nozzle. The first
subfigure of Figure 12 is the last to reach Ma = 1 and it is situated at the entrance of the second nozzle.

At the pressure of p∗s = 0, 275, the flow does not reach the sonic condition (Ma = 1). Thus, the
flow is not choked. In the last subfigure, at the pressure of p∗s = 0, 217, there is no secondary flow rate
due to the flow expansion of the primary flow.

In the experimental results, the critical point is at p∗s = 0.225 and the flow rate is ṁs = 0.00075 kg/s.
The critical point in the HiSA numerical results was spotted qualitatively, although it could have
appeared a little higher p∗s . However HiSA numerical results for the critical point, approximately, are
22% higher the experimental ones: Ps = 0.275, and the flow rate is 2.5 times: ṁs = 0.0019 kg/s. Finally,
the maximum vacuum pressure reached on the experimental results is p∗s = 0.19. The maximum
vacuum pressure, on the HiSA numerical results, is 15% higher: p∗s = 0.22.
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Figure 11. Secondary flow for p∗s ≥ 0.4. The flow direction is from the left (inlet) to the right (outlet).
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Figure 12. Secondary flow for p∗s ≤ 0.4.

Figure 13. Secondary flow with explicit solver rhoCentralFoam for p∗s = 0.2.

4. Discussion

A good agreement was found after using two density-based solvers: explicit solver RCF, and
implicit solver HiSA. It seems that both solvers for numerical simulations overestimate the flow rate in
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the same suction pressure for small vacuum level (large values of suction pressure in secondary level)
while underestimate the flow rate in the low values region. It also tends to slightly overestimate the
value of maximum suction pressure (zero flow performance), especially the explicit solver for small
values of µ. Explicit RCF is not able to correctly resolve flow rate for small values of pressure in vessel.
On the contrary, implicit solver HiSA, although gives slightly high values of µ for large pressure in
vessel, gives a very good result for small values of pressure.

Whereas the implicit HiSA reaches ps = 0.217 as a maximum vacuum level, the explicit RCF
shows secondary flow choked for a vacuum level (ps = 0.2). Figure 13 shows the secondary flow is
choked. According to the experimental results, the maximum vacuum level reached for the ejector is
p∗s = 0.19. Thus, RCF is not able to calculate the primary flow rate expansions after the shock wave.

Two regimens of secondary flow rate are found in the second nozzle. In the supercritic regime the
secondary flow is choked and a sonic condition (Ma = 1) is reached to different points of the nozzle,
according to the pressure on the secondary inlet. However, the less pressure left at the vessel, the closer
to the entrance of the nozzle is found the sonic condition. In the subcritic regime, the secondary flow is
subsonic. Finally, the secondary flow gets stuck, creating a big bubble, and becoming a zero-secondary
flow ejector. Figure 12 shows the secondary flow retained before the mixing chamber, due to the flow
expansion of the primary flow. A breakpoint of regimes was spotted in the experimental results, and
confirmed by the numerical results from the simulation. Figure 9 shows, at the vacuum pressure
ps = [1, 0.8, 0.6, 0.4, 0.3], the entrainment ratio has a critical regime. The presence of Ma = 1 means
the flow is choked. Figure 12 shows that, at the vacuum pressure p∗s = [0.275, 0.25], the regime changes
to subcritical.

The air evacuation from the vessel is a transitory phenomenon and depends on the polytropic
coefficient. When the evacuation starts, flow rate is maximum and heat transport is negligible.
The process is practically adiabatic. For a time of the order of the characteristic time (Equation (18)) the
polytropic coefficient drops until the corresponding value to a isothermal flow. This progression of the
polytropic coefficient is more less lineal. From τ ≈ 2 to τ ≈ 3, the flow seems to behave isothermically.
Experimental measurements suggest that for τ >≈ 3 the polytropic coefficient adopt a value of k ≈ 0.9.

5. Conclusions

In this study, numerical simulations with an explicit and implicit density-based solver were used
to investigate the transient phenomenon in a vacuum ejector. Validation of the numerical results were
made with a double check of experiments in the laboratories with two vessel volumes.

The main measured parameters were flow rate and suction pressure in the vessel. The numerical
simulation offered results in compliance with experiments at an acceptable level of correspondence for
steady state experiments. Nevertheless, implicit solver presents better agreement with experimental
results than explicit solver for low flow rate regime. The maximum vacuum level obtained in laboratory
is about 19%. The implicit solver presents a value of 22% and the explicit solver tends to a much
inferior value. It is obvious that for the simulation of maximum vacuum level for an ejector geometry,
the implicit solver gives a better performance. For high values of entrainment ratio both solvers agree
with experimental results.

At the secondary pressure of 19%, the primary flow expanses in the mixing chamber and, as
a consequence of this expansion, obstructs the secondary flow and the vacuum ejector becomes a
zero-secondary ejector. This secondary pressure corresponds to the ultimate vacuum capacity of the
ejector.

Two different regimes of flow rate profiles were found, numerically and experimentally, on the
ejector performance: the supercritic and subcritic. In the first regime the secondary flow is choked in
the second nozzle of the ejector, whereas, in the second regime, there is no secondary choked flow.

Transient pressure decay was measured and a model for polytropic coefficient k transient
behaviour has been proposed. It was observed that k decreases linearly from its adiabatic value
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k = 1.4 to the isothermal value k = 1 in the first characteristic time τ and it keeps its value for about
another τ, dropping finally to about k = 0.9 until the end of the process, for τ = 3.

This work will be used in future investigations to infer transient behaviour for a numerical
simulation of an ejector from the performance curve of vacuum pressure versus flow rate obtained
from steady state simulations. The solver chosen, HiSA, will be used for future research.
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Abbreviations

The following abbreviations are used in this manuscript:

A flange orifice surface [m2]
An nozzle surface [m2]
β rate between orifice and pipe diameters
C discharge coefficient
Cn discharge coefficient
cv specific heat at constant volume
E specific heat at constant volume
ε expansion factor
k polytropic coefficient
R′ constant for gases [J/mol K]
τ characteristic time
ρ1 air density upstream [kg/m3]
ρn air density at atmospheric pressure and temperature [kg/m3]
ρ density [kg/m3]
Ma Mach number
µ entrainment ratio
ṁp primary flow rate [kg/s]
ṁs secondary flow rate [kg/s]
Pn pressure measured [Pa]
∆p pressure difference measured [Pa]
pa atmospheric pressure [Pa]
ps secondary pressure in vessel [Pa]
p∗s normalized secondary pressure in vessel
RCF rhoCentralFoam
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