
On a Conjecture Concerning Positive
Semi-definiteness

J. Recasens
Dept. Tecnologia de l’Arquitectura

Universitat Politècnica de Catalunya
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Abstract

In [7] a conjecture relating the positive definiteness of a similarity
with its transitivity with respect to the  Lukasiewicz t-norm is made.
In its current form, the conjecture is not true but from a modified
version interesting consequences can be derived.
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1 Introduction

In the paper [7] published in this journal an interesting Conjecture is pre-
sented concerning the positive definiteness of some similarities very much
related to Fuzzy Logic [11] and especially to the theory of indistinguisha-
bility operators [8]. This Conjecture is not true in its current form as will
be stated in the next section but in Section 3 a reformulation leading to
interesting consequences is stated and proved.

Let us recall the definition of similarity and the conjecture presented in
[7].

Definition 1.1. [7] Let E be a finite set and let P (E) be its power set. A
similarity is a mapping s from P (E)× P (E) into R+ such that

a) s(X,Y ) = s(Y, X) for all X, Y ∈ P (E)
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b) s(X,Y ) ≤ s(X, X) for all X,Y ∈ P (E).

A similarity s gives rise to a matrix S = (s(Ai, Aj)) that is called a
similarity matrix in [7].

Conjecture 1.2. [7] Let s : P (E) × P (E) → R+ be a similarity such that
s(X,X) = k for all X ∈ P (E) and s(X, Y ) + s(Y, Z) ≤ s(X,Z) + k for
all X,Y, Z ∈ P (E). Then the corresponding similarity matrix S is positive
semi-definite.

2 Counterexample and Comments

First of all let us notice that A is a positive semi-definite matrix if and only
if p · A is positive semi-definite for all p > 0. So that dividing the matrix S
by k in 1.2 we can assume that k = 1 (i.e., it is reflexive) and that s is valued
in [0, 1]. Then the condition of Conjecture 1.2 can be rewritten as

max(s(X, Y ) + s(Y, Z)− 1, 0) ≤ s(X, Z).

Definition 2.1. [5] The operation  L : [0, 1] × [0, 1] → [0, 1] defined for all
x, y ∈ [0, 1] by

 L(x, y) = max(x + y − 1, 0)

is called the  Lukasiewicz t-norm.

Definition 2.2. Given a set X, a similarity s : X×X → [0, 1] is  L-transitive
if for all x, y, z ∈ X,

 L(s(x, y), s(y, z)) ≤ s(x, z).

A generalization of Conjecture 1.2 to finite sets of any cardinality is then:

Conjecture 2.3. If a reflexive similarity s : X × X → [0, 1] on a finite
set X is  L-transitive, then its corresponding similarity matrix S is positive
semi-definite.

The next counterexample shows that the conjecture fails for sets of car-
dinality greater than or equal to 5.
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Counterexample 2.4. The similarity with matrix

S =


1 0.4 0.6 0.2 0.8

0.4 1 0.8 0.4 0.6
0.6 0.8 1 0.6 0.4
0.2 0.4 0.6 1 0.4
0.8 0.6 0.4 0.4 1


is reflexive and  L-transitive but its determinant is −0.03584 and one of its
eigenvalues is −0.0512922301693901.

The reason for this comes from the following results.

Definition 2.5. If a metric space (S, d) is isometrically embeddable in an
Euclidean space, we will say that d is Euclidean.

Proposition 2.6. [9] Let (S, d), S = {x0, x1, ..., xn}, be a finite metric space
of n + 1 points. Then d is Euclidean if and only if the matrix A with entries
xij = d2

0i + d2
0j − d2

ij, i, j = 1, ..., n where dij stands for d(xi, xj) is positive
semi-definite.

We can send x0 to the origin of coordinates and in the case that the
matrix A is reflexive, we have that

d(xi, xj) =
√

2
√

1− xij for i, j = 1, ..., n.

From this, the next result follows (see also [4]).

Corollary 2.7. Let s be a reflexive similarity on a finite set X = {x1, ...xn}
with positive semi-definite matrix S = (xij)i,j=1,..n where xij stands for s(xi, xj).
Then d : X ×X → [0, 1] defined for all xi, xj ∈ X by d(xi, xj) =

√
1− xij is

a metric and X is isometrically embeddable in an Euclidean space.

It is clear that if a distance d is Euclidean, then k · d, k > 0 is also Eu-
clidean. Hence, in order to consider euclidianity of distances we can assume
that they are valued in [0, 1].

The next proposition provides a relationship between distances and  L-
transitive reflexive similarities.

Proposition 2.8. [3, 8] Let s : X ×X → [0, 1] be a reflexive similarity on
a set X. s is  L-transitive if and only if 1− s is a pseudometric on X.
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Hence, every distance can be written in the form 1 − s where s is a
reflexive and  L-transitive similarity. Therefore, if the conjecture were true,
this would say that the square root of any distance would be Euclidean, a
fact that contradicts the results in [2].

Indeed, in [2] the authors study the values c for which, given a set X of
cardinality n and a distance d on X, the power of d to c (dc) is Euclidean. In
particular they prove that for a set of cardinality 6, the greatest value c6 of
c is 1

2
log2

3
2
∼ 0.2924 which is smaller than 1

2
. Of course, as the cardinality

n of the set increases, the corresponding greatest value cn decreases.

Thanks to a result by Blumenthal [1], c4 = 1
2

and the conjecture is true
for sets of cardinality smaller than or equal to 4.

3 A Reformulation

In this section we will modify the hypothesis of Conjecture 1.2 in order to
obtain a valid result with interesting consequences. For this, we need to
recall the definition of continuous Archimedean t-norm [5] and a couple of
considerations regarding [2].

Definition 3.1. A continuous Archimedean t-norm T is an operation T :
[0, 1]× [0, 1] → [0, 1] such that there exists a continuous decreasing mapping
t : [0, 1] → [0,∞] with t(1) = 0 and such that for all x, y ∈ [0, 1]

T (x, y) = t[−1](t(x) + t(y))

where t[−1] is the pseudoinverse of t defined for all x ∈ [0, 1] by

t[−1](x) =

{
t−1(x) if x ∈ [0, t(0)]
0 otherwise.

t is called an additive generator of T .

Definition 3.2. [8] Given a set X and a continuous Archimedean t-norm
T , a similarity s : X ×X → [0, 1] is T -transitive if for all x, y, z ∈ X,

T (s(x, y), s(y, z)) ≤ s(x, z).

The next result relates T -transitive similarities with distances.
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Proposition 3.3. [8] Let X be a set, T a continuous Archimedean t-norm
and t an additive generator of T . s : X × X → [0, 1] a reflexive and T -
transitive similarity on X if and only if t ◦ s is a pseudodistance on X.

The next family of continuous Archimedean t-norms (Yager’s family) will
be useful.

Example 3.4. [5] The Yager’s family of continuous Archimedean t-norms
(Tλ)λ∈(0,∞) is defined for all x, y ∈ [0, 1] by

Tλ(x, y) = max((1− (1− x)λ + (1− y)λ)
1
λ , 0).

tλ defined by tλ(x) = (1−x)λ for all x ∈ [0, 1] is an additive generator of Tλ.

N.B.

• If λ > µ, then Tλ(x, y) ≥ Tµ(x, y) for all x, y ∈ [0, 1].

• If λ = 1, then we recover the  Lukasiewicz t-norm and t1(x) = 1− x is
an additive generator.

• limλ→∞ Tλ(x, y) = min(x, y) for all x, y ∈ [0, 1].

Conjecture 1.2 is not true in its curent forma but now we can state and
prove an alternative result.

Proposition 3.5. Let n be a positive integer and cn the greatest value sat-
isfying that for every distance d on any finite set of cardinality n, dcn is an
Euclidean distance. Then a reflexive similarity s : X × X → [0, 1] on a set
X of cardinality n is T 1

2cn
-transitive if and only if its matrix S is positive

semi-definite.

Proof. If s is T 1
2cn

-transitive, then, thanks to Proposition 3.3, (1 − s)
1

2cn is

a pseudodistance and by Corollary 2.7 (1− s)
1

2cn
·cn = (1− s)

1
2 is Euclidean.

Hence S is positive semi-definite.

cn is not known except for very few values (for n = 2, 3, 4, 6, the corre-
sponding cn are c2 = ∞, c3 = 1, c4 = 1

2
, c6 = 1

2
log2

3
2
∼ 0.2924 [2]) but in [2]

a lower bound kn for cn is given. Namely, kn = 1
2n

log2 e ∼ 0.7213
n

. Therefore
we have the following result
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Proposition 3.6. If a reflexive similarity s : X ×X → [0, 1] on a set X of
cardinality n is T n

log2 e
-transitive, then its matrix S is positive semi-definite.

In [2] it is conjectured that the value of cn is

cn =

{ 1
2

log2(
n

n−2
) if n is even

1
2

log2(
n2−1

n2−2n−1
) if n is odd.

From this we can conjecture the following.

Conjecture 3.7.

• A reflexive similarity s : X ×X → [0, 1] on a set X of even cardinality
n is T 1

log2( n
n−2 )

-transitive if and only if its matrix S is positive semi-

definite.

• A reflexive similarity s : X ×X → [0, 1] on a set X of odd cardinality
n is T 1

log2( n2−1
n2−2n−1

)

-transitive if and only if its matrix S is positive semi-

definite.

We end this note by showing that Propositions 3.5 and 3.6 provide alter-
native proofs of two important well known facts.

• Since min(x, y) ≥ Tλ(x, y) for all λ ∈ (0,∞) and x, y ∈ [0, 1], every min-
transitive and reflexive similarity on a finite set is also Tλ-transitive for
all λ ∈ (0,∞). From Proposition 3.5 it follows the next result (see [6]
for an alternative proof).

Proposition 3.8. Every reflexive and min-transitive similarity on a
finite set has a positive semi-definite matrix.

• It is well known that s is a reflexive and min-transitive similarity on
a set X if and only if 1 − s is a pseudoultrametric [8]. By the last
proposition, its matrix S is positive semi-definite and therefore

√
1− s

is Euclidean. Since the power of pseudoultrametrics are also pseudoul-
trametrics we obtain a new proof of this well-known result ([10]).

Proposition 3.9. Every ultrametric on a finite set is Euclidean.
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