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Abstract

When the same data are used to fit a model and estimate its predictive performance, this estimate

may be optimistic, and its correction is required. The aim of this work is to compare the behaviour

of different methods proposed in the literature when correcting for the optimism of the estimated

area under the receiver operating characteristic curve in logistic regression models. A simulation

study (where the theoretical model is known) is conducted considering different number of covari-

ates, sample size, prevalence and correlation among covariates. The results suggest the use of

k-fold cross-validation with replication and bootstrap.
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1. Introduction

Prediction models play an important role in daily clinical practice. They provide clin-

icians with a tool to identify individuals at higher risk, and thus help in the decision

making process. The development of risk prediction models for patients with diseases

such as breast cancer (Wishart et al., 2012), chronic obstructive pulmonary disease

(Quintana et al., 2014), or heart failure (Garcia-Gutierrez et al., 2017), among others,

has increased during the last years. Once a model is developed, the aim is generally

to apply it on new patients. Thus, a good but accurate predictive (or generalisation)
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model performance is required. This work focuses on logistic regression models. In

this setting, there are different ways to evaluate the performance, including calibration

and discrimination measures (Steyerberg, 2009). Calibration refers to the agreement

between observed outcomes or responses and predictions, while discrimination is con-

cerned with the ability of the model to discriminate between individuals with and with-

out the characteristic of interest. The area under the receiver operating characteristic

(ROC) curve (Bamber, 1975; Hanley and McNeil, 1982; Swets, 1988), on which this

work is focused, is a measure of discrimination.

It is well known that if in the development process of a prediction model, the same

data is used to, first, fit the model and, then, evaluate its performance, this estimate,

usually referred to as apparent or re-substituted performance, could be optimistic (see,

e.g., Efron, 1986; Copas and Corbett, 2002). This is a consequence of the fact that

most model fitting strategies rely on optimality criteria for the data used. Thus, in or-

der to guarantee the model’s usefulness when applied to new patients, the validation

or correction of this optimism is required. Arguably, the best strategy to estimate the

generalisation model performance is to apply it to new data. That is to say, the per-

formance of the model is estimated based on individuals (observations) that have not

been used in the model derivation/development process. This strategy is called external

validation. Unfortunately, in practice this is usually not feasible. Most of the times it

is not possible to obtain new data for that purpose due to difficulty or expense in their

collection. To overcome the problem, different approaches have been proposed in the

literature with the aim of estimating the performance of a model internally, i.e., re-using

the data where the model has been derived/fitted. Split-sample validation (Picard and

Berk, 1990; Snee, 1977) is possibly the most commonly used method in medical re-

search. However, especially for small sample sizes, it has shown to provide pessimistic

(over-corrected) estimates of the performance with a large variance (see, e.g., Steyerberg

et al., 2001; Austin and Steyerberg, 2017). Therefore, alternative approaches to split-

sample validation, such as k-fold cross-validation or bootstrap techniques, have been

suggested (Stone, 1974; Efron, 1983; Harrell, Lee and Mark, 1996).

For the specific case of binary outcomes (as is the case of this paper), the literature

contains several papers comparing different methods for correcting the optimism of the

apparent area under the ROC curve (AUC). Important references are Harrell (2001);

Steyerberg et al. (2001, 2003); Airola et al. (2011); Smith et al. (2014); Austin and

Steyerberg (2017). For instance, Airola et al. (2011) compare different cross-validation

techniques for estimating the AUC and propose the leave-pair-out cross-validation as

the preferred method for optimism correction. To a similar conclusion comes Smith

et al. (2014), who focus on small data sets. Yet, other authors recommend the use of

bootstrapping (e.g., Smith et al., 2014; Steyerberg et al., 2001; Austin and Steyerberg,

2017). The papers by Steyerberg et al. (2001, 2003); Smith et al. (2014) and Austin and

Steyerberg (2017) all focus on logistic regression models. In particular, all these papers

study the impact of different values of events per variable (EPV) on the performance

of several correction methods by means of simulations based on a large real data set.



Amaia Iparragirre, Irantzu Barrio and Marı́a Xosé Rodrı́guez-Álvarez 147

EPV is defined by the ratio of the number of events (i.e., the number of observations

in the smaller of the two groups of the binary outcome), relative to the number of re-

gression coefficients in the model (see e.g., van Smeden et al., 2018). In most of the

above-mentioned papers, simulations are done with a fixed number of covariates. Nev-

ertheless, in practice other factors beyond the EPV may impact the performance of the

methods, such as a) the number of covariates in the model, b) the available sample size,

c) the prevalence; and/or d) the correlation among covariates. The number of covari-

ates, sample size and prevalence are all together related to the EPV, but the last two are

imposed by the available data. It has been reported that the bias of the apparent model

performance estimate increases as the number of covariates increases (Hastie, Tibshirani

and Friedman, 2001; Copas and Corbett, 2002). However, to the best of our knowledge

there is a lack of studies comparing different correction methods in terms of the number

of covariates. Hence, the primary aim of this study is to empirically evaluate the effect

that the increase of the number of covariates may have on the performance of different

methods (including split-sample, cross-validation and bootstrap) for the correction of

the apparent AUC. In addition, we study the impact of the correlation among covari-

ates as well as the prevalence of the disease and the sample size. Finally, in contrast

to the above-mentioned studies, we conduct a simulation study in a situation where the

theoretical logistic regression model is known.

The rest of the paper is organised as follows. Section 2 outlines the optimism cor-

rection methods that have been considered in this work. In Section 3 the simulation

study conducted to analyse the performance of the optimism correction methods is de-

scribed. Additionally, the results obtained are reported. Finally, the paper closes with a

discussion in Section 4.

2. Methods

This section introduces the needed notation and background and describes the different

methods that have been considered throughout this study to correct for the optimism of

the apparent AUC. Recall that we denote as apparent AUC that which is obtained when

all the available data are used to, first, fit the model and then, estimate the AUC.

2.1. Notation and preliminaries

Consider a collection of p covariates denoted by the vector XXX = (1,X1,X2, . . . ,Xp)
T
, and

let D be the random variable denoting the presence (D = 1) or absence (D = 0) of the

characteristic of interest (e.g., a certain disease). Let p(xxx) = P(D = 1|XXX = xxx) denote the

conditional probability of being diseased for a patient with a vector of covariate values

xxx = (1,x1,x2, . . . ,xp)
T in the domain of XXX . It is assumed that D|XXX = xxx ∼ Bernoulli(p(xxx)).
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The specific form of the logistic regression model is:

p(xxx) =
eβ0+β1x1+...+βpxp

1+ eβ0+β1x1+...+βpxp
=

eβββ
T
xxx

1+ eβββ
Txxx
∈ (0,1), (1)

where βββ = (β0, . . . ,βp)
T

is the vector of (unknown) regression coefficients. Let us as-

sume that we have a sample of independent and identically distributed (i.i.d.) observa-

tions {(xxxi,di)}
n
i=1 from population (XXX ,D), and denote as β̂̂β̂β= (β̂0, . . . , β̂p)

T the maximum

likelihood estimator of βββ (Hosmer and Lemeshow, 2000; McCullagh and Nelder, 1989).

The estimated probabilities of being diseased for each individual in the sample can be

thus calculated as follows (see (1)):

p̂(xxxi) =
eβ̂ββ

T
xxxi

1+ eβ̂ββ
T
xxxi

(i = 1, . . . ,n). (2)

2.2. Discriminative ability

As said in the Introduction, this paper focuses on the AUC. The AUC ranges from 0.5
(in the case of an uninformative model) to 1 (a perfect model), and it is frequently

estimated by the Mann-Whitney U-statistic (Bamber, 1975; Hanley and McNeil, 1982;

Pepe, 2003). More precisely, for the specific case of the logistic regression model, we

have

ÂUC =
1

n0 ·n1

∑

j∈D0

∑

k∈D1

[I (p̂(xxx j)< p̂(xxxk))+0.5I (p̂(xxx j) = p̂(xxxk))] , (3)

where D0 and D1 are the index sets for D = 0 and D = 1, respectively and n0 and n1 their

respective sizes. Note that expression (3) corresponds to the so-called apparent AUC,

since all data are used for its calculation.

2.3. Optimism correction methods

2.3.1. Split-sample validation

In split-sample validation, the available sample {(xxxi,di)}
n
i=1 is randomly divided into

two subsamples, a derivation sample
({

xxxder
l ,dder

l

}nder

l=1

)
and a validation sample

({
xxxval

m ,

dval
m

}nval

m=1

)
, with n = nder + nval . Typically, the sample is split into two subsamples of

the same size (1/2 : 1/2) (Snee, 1977). Split-sample validation proceeds as follows. A

logistic regression model is fitted to the derivation sample and the regression coefficients

are estimated. These regression coefficients are used to estimate the predicted probabil-

ities for the individuals in the validation sample following expression (2), which then

are further used to calculate the corrected AUC by means of equation (3).
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2.3.2. K-fold cross-validation

This method consists in splitting the available sample into k subsamples of (approxi-

mately) the same size. In pretty much the same way as split-sample validation, k− 1

subsamples are considered as the derivation sample, and the remainder is used as vali-

dation sample to estimate the AUC. In contrast, however, to split-sample, the process is

repeated k times, leaving-out one different subsample every time as validation sample.

Finally, the corrected AUC is the average of these k estimated AUCs.

K-fold cross-validation with replication is another variant of this method (see, e.g.,

Smith et al., 2014). The process explained above is repeated r times, with a different

k-split of the sample each time. Finally, the corrected AUC is the average of r × k

estimated AUCs.

We would like to note that the described k-fold cross-validation method is usually

referred in the literature, for obvious reasons, as the averaging strategy in contrast to

the pooling strategy (see, e.g., Bradley, 1997). In the later, predicted probabilities are

calculated in each validation sample, which are then pooled and used to estimate the

corrected AUC. This work focuses on the averaging strategy, as it has shown a better

performance in previous studies (Parker, Günter and Bedo, 2007; Airola et al., 2011). In

particular, the averaging strategy does not suffer from the pessimism that occurs when

pooling, and it is not affected by the so-called stratification bias. These results have

also been corroborated in our setting (results not shown). However, averaging presents

a problem that pooling does not have. If the number of diseased (or healthy) individuals

is low (or the sample size small), it may happen that some folds will have few individuals

(or even none) of the underrepresented group. This will impact the estimate of the AUC

when these folds are used as the validation samples, which in turn can lead to a high

variance in the estimates of the corrected AUC (Airola et al., 2011).

2.3.3. Leave-one-out cross-validation

In leave-one-out cross-validation, a single observation is omitted from the original sam-

ple. The logistic regression model is fitted to the remaining observations (derivation

sample). Then, the fitted model is applied on the omitted observation and its predicted

probability is estimated (see equation (2)). The process is repeated n times (where n is

the size of the original sample), leaving-out one different observation every time. Fi-

nally, the AUC corrected by leave-one-out cross-validation method is calculated based

on the estimated predicted probabilities of all individuals (see, e.g., Airola et al., 2011;

Lachenbruch and Mickey, 1968).

2.3.4. Bootstrap validation

Another possibility to correct for the optimism of the AUC is to use bootstrap techniques

(Efron and Tibshirani, 1993). This method can be summarised as follows:
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Step 1. Fit the logistic regression model to the original sample {(xxxi,di)}
n
i=1 and estimate

the apparent AUC, say ÂUCapp.

For b = 1,2, . . . ,B (where B is the number of bootstrap resamples):

Step 2. Generate a bootstrap resample
({

xxxb
i ,d

b
i

}n

i=1

)
, of the same size as the original

sample, by resampling with replacement from the original sample.

Step 3. Fit a logistic regression model to the bootstrap resample, and estimate its ap-

parent AUC, say ÂUC
b

boot .

Step 4. Apply the fitted logistic regression model in Step 3. on the original sample,

calculate the predicted probabilities for each observation and estimate the AUC.

Let ÂUC
b

o be this estimate.

The optimism is estimated as follows:

Ô =
1

B

B∑

b=1

(ÂUC
b

boot − ÂUC
b

o),

and the corrected AUC is: ÂUCbootstrap = ÂUCapp − Ô.

3. Simulation study

This section describes and presents the results of the simulation study conducted to eval-

uate the behaviour of the correction methods discussed in Section 2.3.. Specifically, the

aim of the study was to compare the AUC estimates provided by the different methods

(including the apparent AUC) against the “true” out-of-sample AUC associated with the

derived logistic regression model. The “true” out-of-sample AUC refers to the true dis-

criminatory capacity of the derived/fitted model when applied to new data or subjects. A

variety of factors that could impact the performance of the methods were considered in

this study, such as, the number of covariates in the model, the available sample size, the

prevalence of the disease (i.e., prev = P(D = 1)) and the correlation among covariates.

The steps of the simulation study are described in detail in next section.

3.1. Scenarios and set-up

For a given number of covariates, say, p, the steps of the simulation study can be sum-

marised as follows:

Step 1. Generate two independent samples
{

xxx
(p)∗
i ,d∗

i

}n

i=1
and

{
xxx
(p)∗∗
l ,d∗∗

l

}N

l=1
of re-

spectively size n and N (the superscript (p) is used to emphasise the covariate

vector length) as follows:
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Step 1.1 Generate ηi ∼ Bernoulli(prev), and generate the covariate vector value

xxx
(p)∗
i 




xxx
(p)∗
i ∼ N

(
µµµ
(p)
D0
,ΣΣΣ(p)

)
if ηi = 0,

xxx
(p)∗
i ∼ N

(
µµµ
(p)
D1
,ΣΣΣ(p)

)
if ηi = 1.

(4)

By simulating the covariates in this way, the logistic regression model holds,

and the true value of the regression coefficient vector βββ(p) is known (see Ap-

pendix A). This vector is used in Step 1.2 below.

Step 1.2 Calculate p(xxx
(p)∗
i ) using equation (1).

Step 1.3 Generate d∗
i ∼ Bernoulli(p(xxx

(p)∗
i )).

(To generate
{

xxx
(p)∗∗
l ,d∗∗

l

}N

l=1
we followed the same steps. We note that this sample

is used in Step 3. to estimate the out-of-sample AUC.)

Step 2. Fit a logistic regression model to the first sample,
{

xxx
(p)∗
i ,d∗

i

}n

i=1
, and estimate

the apparent and corrected AUCs (by means of any method discussed in Section

2.3).

Step 3. Apply the fitted logistic regression model in Step 2. on sample
{

xxx
(p)∗∗
l ,d∗∗

l

}N

l=1
,

calculate the predicted probabilities for each observation and estimate the “true”

out-of-sample AUC (ÂUCoos).

Note that to generate the covariate vector in Step 1.1, the parameters of the multi-

variate normal distribution (see equation (4)) need to be specified. In particular, in this

study we considered:

{
µµµ
(10)
D0

= (0, . . . ,0)T,

µµµ
(10)
D1

= (0.6,0.55,0.5,0.45,0.4,0.3,0.25,0.2,0.15,0.1)T.

Thus, for example, for two covariates we have µµµ
(2)
D0

= (0,0)T and µµµ
(2)
D1

= (0.6,0.55)T.

Note that the covariates are sorted (and thus included in the simulation) from the most

explicative to the weakest. With respect to the variance-covariance matrix, we assumed

ΣΣΣ
(p) = (1−γ) · Ip×p +γ · Jp×p,

where Ip×p is the identity matrix of dimension p× p and Jp×p is the matrix of ones

of the same dimension. Here γ controls the correlation among covariates (when γ = 0

the covariates are independent). For a given number of covariates p (p ∈ {1, . . . ,10}),

different sample sizes (n ∈ {500,1000,2000}), prevalences (prev ∈ {0.1,0.2,0.5}) and

correlations (γ ∈ {0,0.15,0.60}) were considered, yielding a total of 27 different spec-
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ifications per number of covariates. In all results shown below, the out-of-sample AUC

(see Step 3.) was estimated on the basis of a sample of size N = 50000, and a total

of R = 500 replicates were performed. Split-sample validation was used with half of

the sample for derivation and the other half for validation (1/2 : 1/2). For k-fold cross-

validation we considered k = 10 folds (which is the one most commonly used in the

literature), without replicates (the procedure is performed only once) and with r = 20

replicates. Bootstrap validation was performed with B = 100 and B = 500 bootstrap

resamples. Recall that in addition to those methods, we also evaluated the performance

of the apparent AUC, and the leave-one-out cross-validation procedure. We note that for

split-sample validation, the logistic regression model in Step 2. was fitted on half of the

available data, and this fitted model was the one used in Step 3. to calculate the “true”

out-of-sample AUC. Thus, neither the fitted model nor the “true” out-of-sample AUC is

the same as for the other methods. We proceeded in this way since, in our experience,

the reported model is, in general, the one developed in the derivation sample and not us-

ing the whole sample. Finally, the performance of the methods was measured in terms

of bias and mean squared error (MSE), that were calculated over the R = 500 runs

Bias =
1

R

R∑

r=1

(
ÂUC

r

cor − ÂUC
r

oos

)
,

MSE =
1

R

R∑

r=1

(
ÂUC

r

cor − ÂUC
r

oos

)2

,

where ÂUCcor denotes the estimated AUC obtained by means of any of the methods

considered in this work (including the apparent), and ÂUCoos is the estimated out-of-

sample AUC (computed, based on a sample of size N=50000, as explained in Step 3.).

It is important to note that all methods considered in this work (except leave-one-

out cross-validation) are based on either splitting the data or resampling it. One may

argue that, for a particular sample, different splits or resamples can lead to different

corrected AUCs. Thus, in addition to the previous simulation, a smaller study was

performed with the aim of evaluating the variability of the corrected AUC estimates for

a particular sample. For simplicity, in this case we restricted our attention to the most

extreme parameter specification (n = 500, prev = 0.1, γ = 0.60) and an intermediate

one (n = 1000, prev = 0.2, γ= 0.15).

3.2. Results

Given the large number of proposed parameter specifications (a total of 270), we begin

by summarising the main findings. As could have been expected, the bias of the appar-

ent AUC increases as the number and correlation among covariates increase, and as the

prevalence and sample size decrease. With respect to the other methods considered in

the study, except for the leave-one-out cross-validation all seem to correct for the opti-
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mism of the apparent AUC (small bias) and there is not a clear method that performs

the best across all specifications. However, in terms of variability in the estimates, the

10-fold cross-validation without replication and the split-sample validation are the meth-

ods that present the largest variability, and this is especially remarkable for split-sample

validation. For split-sample, the large variability can come from two different sources.

First, the model is fitted to half of the data and therefore there is more uncertainty, and

second, the corrected AUC is estimated with also half of the data. This issue has also

been discussed by Smith et al. (2014). For 10-fold cross-validation without replication a

similar explanation as in split-sample can be given (Smith et al., 2014), but in addition,

an extra problem can arise, especially for small sample sizes and low prevalences. As

noted in Section 2.3.2, the random split of the full sample into 10 folds may yield folds

with very few events, which affects the estimation of the corrected AUC when using

these folds. However, this effect might be mitigated if the 10-fold cross-validation with

replication is used, as the corrected AUC is the average of a large number of values. In

our simulations we ensured that at least there is one event in each fold, but we are aware

that it might not be enough. To finish this part we would like to mention that, in contrast

to other studies (see, e.g., Austin and Steyerberg, 2017), in this work we compared the

corrected AUCs provided by the split-sample method with the out-of-sample AUCs ob-

tained based on the model fitted to the derivation sample. This may explain why we do

not observe a pessimistic behaviour (negative bias) of this method.

We now present some numerical and graphical results. Since the mayor differences

among the methods have been observed for the most extreme specifications, these are

the results shown here.

Table 1 shows the numerical results obtained for a correlation of 0.60 (γ = 0.60),

sample sizes of 500 and 2000 (n ∈ {500,2000}), prevalences of 0.1, 0.2 and 0.5 (prev∈
{0.1,0.2,0.5}) and 2, 5 and 8 number of covariates (p ∈ {2,5,8}). Specifically, the

average and standard deviation of the estimated AUCs are reported jointly with the bias

and MSE. Note that except for a small number of covariates and a large sample size, the

apparent AUC is optimistic (positive bias). Split-sample is the method presenting the

largest variability and therefore MSE. Note also that, the average of the estimated cor-

rected AUCs given by split-sample validation is in general the lowest. This is especially

remarkable for large number of covariates and small sample sizes, and is a consequence

of fitting the model using only half of the data. If we compare cross-validation with and

without replication, we observe that the presence of replicates reduces the variability

and therefore the MSE. Curiously, at least in our simulations, we do not observe a large

difference between B = 100 and B = 500 in the bootstrap method. In all the results

shown in Table 1, the largest MSE is obtained for split-sample (coming from the largest

variability). For the remaining methods, as the sample size increases, all perform al-

most indistinguishably. The largest differences among the methods are observed for a

sample size of n = 500 and a prevalence of 0.1. This can also be observed in Figure 1.

The figure depicts the bias associated to each method across the 500 runs, for 1 to 10

number of covariates (p ∈ {1,2, . . . ,10}), a prevalence of 0.1 (prev = 0.1), a correlation
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Figure 2: Bias associated to each correction method according to the number of covariates included in

the logistic regression model (p ∈ {1,2, . . . ,10}). The results shown are for a sample size of n = 1000 and

different prevalences and correlations: (a) prev = 0.2 and γ= 0, (b) prev = 0.5 and γ= 0, (c) prev = 0.2

and γ = 0.60, and (d) prev = 0.5 and γ= 0.60.

of 0.60 (γ = 0.60) and different sample sizes (n ∈ {500,1000,2000}). Note that for a

sample size of n = 500 the bias of 10-fold cross-validation with and without replication

and the leave-one-out cross-validation is very large, but the bias decreases as the sample

size increases. Thus, with a low prevalence, larger sample sizes are required for those

methods to perform well.
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Figure 2 shows also the bias associated to each method, but for other parameter

specifications. In particular, we present the results for a sample size of n = 1000,

but different prevalences and correlations. Figure 2(a) depicts the bias for n = 1000,

prev = 0.2 and γ = 0, Figure 2(b) for n = 1000, prev = 0.5 and γ = 0, Figure 2(c)

for n = 1000, prev = 0.5 and γ = 0.60, and Figure 2(d) for n = 1000, prev = 0.5 and

γ = 0.60. These results corroborate that the bias of the apparent AUC increases as the

correlation increases and/or the prevalence decreases. In all cases, leave-one-out cross-

validation is the method presenting the most pessimistic behaviour (negative bias), and,

as noted before, in terms of bias, split-sample validation seems to perform similarly

to 10-fold cross-validation (with and without replication) and bootstrap (with B = 100

and B = 500). These results also show that, on average, the corrected AUCs provided

by bootstrap are larger than those provided by 10-fold cross-validation (the difference

between the corrected AUCs and the out-of-sample AUC is larger), and this pattern is

maintained across all specifications.

To finish with the presentation of results we show in Figure 3 the variability of the es-

timated corrected AUCs when the methods were applied to 500 different random splits

or resamples of a particular sample. Recall that for these results we considered the

most extreme parameter specification (n = 500, prev = 0.1, γ = 0.60) and an inter-

mediate one (n = 1000, prev = 0.2, γ = 0.15), both including 5 covariates. For both

situations, it is remarkable the large variability of the split-sample validation and the

10-fold cross-validation without replication, with the other three methods (i.e., 10-fold

cross-validation with replication and, bootstrap with B = 100 and B = 500 resamples),

presenting a rather low variability (note that the scale of the y-axes is different in both

graphics). These results emphasise the above-discussed conclusions.

(a) (b)

Figure 3: Box-plot of the estimated corrected AUCs by means of the different correction methods when

applied to 500 different splits or resamples of the same sample. This figure illustrates the variability of the

different correction methods. (a) Most extreme parameter specification (n = 500, prev = 0.1, γ = 0.60, 5

covariates). (b) Intermediate specification (n = 1000, prev = 0.2, γ = 0.15, 5 covariates). Note that the

scale of the y-axes is different in both graphics.
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4. Discussion

In this work we compared the behaviour of different methods when correcting for the

optimism of the apparent AUC in logistic regression models. A large simulation study

was conducted in which different scenarios were considered regarding the number of

covariates, sample size, prevalence and correlation among covariates. The predictor

variables were simulated following a multivariate normal distribution in such a way

that the theoretical logistic regression model is known. We now summarise the main

conclusions that we have drawn throughout the study.

If enough data are available, all methods seem to properly correct for the optimism

of the apparent AUC, except for the leave-one-out cross-validation, which gives the

most pessimistic results. Moreover, in terms of bias the behaviour of all remaining

correction methods is similar (there is not a clear method that performs the best) and

the bias is, in general, low. In contrast, the problems appear when the available data is

insufficient and/or imbalanced. For example, when working with a low prevalence and

correlated covariates, larger sample sizes will be needed to ensure a good performance

of the optimism correction methods.

The results of the simulation study suggest the use of either k-fold cross-validation

with replication or bootstrap (we note that, for cross-validation, we only examined the

case of k = 10 number of folds). In particular, in the most extreme cases, the bootstrap

method should be used according to these results. Even though k-fold cross-validation

with replication and bootstrap are the most computationally demanding methods, for the

sample sizes considered in this study, the computing time was affordable (in general, less

than 10 seconds).

The results obtained in this work are in line with those obtained in previous studies

(Austin and Steyerberg, 2017; Airola et al., 2011; Steyerberg et al., 2001; Smith et al.,

2014). Nevertheless, we have also observed some differences.

On the one hand, we should note the differences in the results of the split-sample

validation. In previous studies, split-sample has given pessimistic results. In contrast,

in this study, the bias of the estimated AUC corrected by split-sample is very low. The

reason is the following. Some researchers have claimed that despite using split-sample

for the validation of the model, the final model should be based on the full sample

(see, e.g., Harrell et al., 1996; Steyerberg et al., 2001). For this reason, in previous

studies, the AUC corrected with split-sample was compared to the “true” out-of-sample

AUC of the full model (see, e.g., Austin and Steyerberg, 2017). Nevertheless, at least

in our experience, in practice, the model reported when split-sample validation is used

is, in general, the one developed in the derivation sample and not derived using the

whole sample (see, e.g., Quintana et al., 2014; Wada et al., 2017). Thus, in this study,

we compared the AUC corrected by split-sample validation to the “true” out-of-sample

AUC of the model fitted to the derivation sample. Our results suggest that, in terms

of the bias, split-sample validation properly corrects the apparent AUC of the model

fitted to the derivation sample. However, similarly to the results obtained in the above-
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mentioned studies, the variability of the split-sample validation is very large compared

to the other available methods. Furthermore, as only half of the data is used to derive the

model, model’s performance is in general worse than when the full sample is used, and

the “true” AUC of the model fitted to the derivation sample is also lower, unless enough

data is available. We conclude that we do not recommend the use of the split-sample

validation, because of its large variability and the worse performance of the final model.

On the other hand, for the same EPV values, very different results were obtained in

this study. For instance, for an EPV=10, for some parameter specifications the optimism

of the apparent AUC was successfully corrected, but for other parameter specifications,

the methods presented some bias. Thus, in addition to the EPV, the factors that were

analysed in this study (the number of covariates in the model, the available sample

size, the prevalence of the disease and the correlation among covariates) should also be

regarded when correcting for the optimism of the apparent AUC.

We would like to conclude commenting on the limitations of our study. In the first

place, we only studied the impact from 1 to 10 covariates in the model. In our daily

practice, it is not common to fit models with more than 10 covariates. Nevertheless, in

some cases, it could be interesting to study the impact of a larger number of covariates in

the behaviour of different correction methods (see, e.g., Airola et al., 2011). Secondly,

in our simulation study, we only considered the case of multivariate normally distributed

covariates. However, the results we obtained are in concordance with a similar simula-

tion study we conducted based on categorical covariates (results not shown), as well as

with the results other authors obtained in previous studies (Austin and Steyerberg, 2017;

Steyerberg et al., 2001; Smith et al., 2014). Also, for cross-validation we only examined

the case of k = 10. For small sample sizes and unbalanced data, this value may be too

large as it may yield into folds with very few events, thus affecting the behaviour of the

method. Further research is therefore guaranteed to study the impact of the number of

folds. Another limitation of this study is that we did not focus on important aspects in

the development of a prediction model, such as variable selection and model derivation,

but we went directly to the evaluation of the performance (and its optimism correction)

of a “pre-defined” model. Moreover, as noted in the introduction, we focused on the

discrimination of the model (measured by the AUC) rather than on its calibration (e.g.

goodness-of-fit), which should also be considered when developing prediction models.

An interesting area of research would be the study of the behaviour of the methods con-

sidered in this work when applied to measures of calibration. Finally, we did not study

the behaviour of the leave-pair-out cross-validation, which has shown good behaviour

in previous studies (see, e.g., Airola et al., 2011; Smith et al., 2014). We focused the

simulation study on the most commonly used correction methods in the literature.
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A Appendix

Let us assume that the vector of p covariates XXX is distributed according to a multi-

variate normal distribution in both healthy and diseased populations. That is to say,

XXXD0
≡ XXX |D = 0 ∼ N(µµµD0

,ΣΣΣ) and XXXD1
≡ XXX |D = 1 ∼ N(µµµD1

,ΣΣΣ), where the variance-

covariance matrix ΣΣΣ is assumed to be the same for both distributions. Given that ΣΣΣ

is a symmetric matrix, it can be shown that ΣΣΣ
−1 =

1

|ΣΣΣ|
AAA, where |ΣΣΣ| denotes the determi-

nant of ΣΣΣ and AAA is the adjoint matrix of ΣΣΣ. Under these assumptions, it is easy to show

that the logistic regression model (see eqn. (1)) holds and that the true values of the

regression coefficients are





β0 = ln

(
P(D = 1)

P(D = 0)

)
−

1

2 |ΣΣΣ|

∑p

k=1

∑p
j=1 A jk(µD1 j

µD1k
−µD0 j

µD0k
),

βk =
1

|ΣΣΣ|

∑p
j=1 A jk(µD1 j

−µD0 j
), (k = 1, . . . , p).
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