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New L2-type exponentiality tests

Marija Cuparić1, Bojana Milošević2 and Marko Obradović3

Abstract

We introduce new consistent and scale-free goodness-of-fit tests for the exponential distribu-

tion based on the Puri-Rubin characterization. For the construction of test statistics we employ

weighted L2 distance between V -empirical Laplace transforms of random variables that appear in

the characterization. We derive the asymptotic behaviour under the null hypothesis as well as un-

der fixed alternatives. We compare our tests, in terms of the Bahadur efficiency, to the likelihood

ratio test, as well as some recent characterization based goodness-of-fit tests for the exponential

distribution. We also compare the power of our tests to the power of some recent and classical

exponentiality tests. According to both criteria, our tests are shown to be strong and outperform

most of their competitors.

MSC: 62G10, 62G20.

Keywords: Goodness-of-fit, exponential distribution, Laplace transform, Bahadur efficiency, V-

statistics with estimated parameters.

1. Introduction

The exponential distribution is one of the most widely studied distributions in theoretical

and applied statistics, and many models assume exponentiality of the data. For this rea-

son, a great variety of goodness-of-fit tests, for the case of the exponential distribution,

have been proposed in the literature.

The classical approach is to use the time-honoured goodness-of-fit tests based on

an empirical distribution function, such as Kolmogorov-Smirnov, Cramer-von Mises,

Anderson-Darling, applied to the case of the exponential distributions. The alterna-

tive approach is to use tests specifically designed for testing exponentiality. These test

statistics are mainly based on empirical counterparts of certain special properties of the

exponential distribution. Some of the tests employ properties related to different in-

tegral transforms such as: characteristic functions (see e.g. Henze, 1992, Henze and

Meintanis, 2002b, Henze and Meintanis, 2005); Laplace transforms (see e.g. Henze
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and Meintanis, 2002a, Klar, 2003, Meintanis, Nikitin and Tchirina, 2007); and other

integral transforms (see e.g. Klar, 2005, Meintanis, 2008). Other tests exploit proper-

ties such as maximal correlations (see Grané and Fortiana, 2009, Grané and Fortiana,

2011, Strzalkowska-Kominiak and Grané, 2017), entropy (see Alizadeh Noughabi and

Arghami, 2011), etc.

Among the various properties, those that characterize the distribution stand out. The

simple form of the exponential distribution give rise to many equidistribution type char-

acterizations. The equality in distribution can be expressed in many ways (equality

of distribution functions, densities, integral transforms, etc.), and hence is suitable for

building different types of test statistics. Such tests have become very popular in re-

cent times, as they are proven to be rather efficient. Tests that use U-empirical and V-

empirical distribution functions, of integral-type (integrated difference) and supremum-

type, can be found in Nikitin and Volkova (2010), Volkova (2015), Jovanović et al.(2015),

Milošević and Obradović (2016b), Milošević (2016), Nikitin and Volkova (2016). A

class of weighted integral-type tests that uses U-empirical Laplace transforms is pre-

sented in Milošević and Obradović (2016a).

Motivated by the power and efficiency of those tests, we create a similar test based on

an equidistribution characterization. The test statistics, measuring the distance between

two V-empirical Laplace transforms of the random variables that appear in the charac-

terization, are, for the first time, of weighted L2-type. This guarantees the consistency

of the test against all alternatives.

The paper is organized as follows. In Section 2 we introduce the test statistics and

derive their asymptotic properties, both under the null and the alternative hypotheses. In

Section 3 we calculate the approximate Bahadur slope of our tests, for different close

alternatives, and inspect the impact of the tuning parameter to the efficiencies of the

test. We also compare the proposed tests to their recent competitors via approximate

local relative Bahadur efficiency. In Section 4 we conduct a power study. We obtain

empirical powers of the tests, against different common alternatives, and compare them

to some recent and classical exponentiality tests. We also apply an algorithm for data

driven selection of the tuning parameter and obtain the corresponding powers in the

small sample case. Real data applications are presented in Section 5, while the proofs,

the datasets, and the code can be found in the appendices.

2. Test statistic

Consider the following characterization by Puri and Rubin (1970).

Characterization 2.1. Let X1 and X2 be two independent copies of a random variable

X with pdf f (x). Then X and |X1−X2| have the same distribution, if and only if for some

λ> 0, f (x) = λe−λx, for x ≥ 0.
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Let X1,X2, . . . ,Xn be independent and identically distributed (i.i.d.) non-negative

random variables with an unknown absolutely continuous distribution function F . We

consider the transformed sample Yi = λ̂nXi, i = 1,2..,n., where λ̂n is the reciprocal sam-

ple mean. For testing the null hypothesis H0 : F(x) = 1− e−λx, λ > 0, in view of the

characterization 2.1, we propose the following family of test statistics, depending on the

tuning parameter a > 0:

Mn,a(λ̂n) =

∞∫

0

(
L(1)

n (t)−L(2)
n (t)

)2

e−at dt, (1)

where

L(1)
n (t) =

1

n

n∑

i1=1

e−tYi1

L(2)
n (t) =

1

n2

n∑

i1,i2=1

e−t|Yi1
−Yi2

|

are V-empirical Laplace transforms of Y1 and |Y1 −Y2| respectively.

In order to explore the asymptotic properties we rewrite (1) as

Mn,a(λ̂n) =

∞∫

0


1

n

n∑

i1=1

e−tXi1
λ̂n − 1

n2

n∑

i1,i2=1

e−t|Xi1
−Xi2

|λ̂n




2

e−atdt

=
1

n4

∞∫

0

∑

i1,i2,i3,i4

(
e−tXi1

λ̂n − e−t|Xi1
−Xi2

|λ̂n

)(
e
−tXi3

λ̂n − e
−t|Xi3

−Xi4
|λ̂n

)
e−atdt

=
1

n4

∑

i1,i2,i3,i4

∞∫

0

g(Xi1,Xi2 , t; λ̂n)g(Xi3,Xi4 , t; λ̂n)e
−atdt

=
1

n4

∑

i1,i2,i3,i4

h(Xi1,Xi2 ,Xi3 ,Xi4 ,a; λ̂n),

where λ̂n = X
−1

n is a consistent estimator of λ and

h(X1,X2,X3,X4,a; λ̂n) =
1

4!

∑

π(4)

∞∫

0

g(Xi1,Xi2 , t; λ̂n)g(Xi3,Xi4 , t; λ̂n)e
−atdt,

with π(4) being the set of all 4! permutations of the numbers 1,2,3,4.
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Let us first focus on Mn,a(λ), for a fixed λ > 0. Notice that Mn,a(λ) is a V -statistic

with kernel h. Moreover, under the null hypothesis, its distribution does not depend on λ,

so we may assume λ= 1. It is easy to show that its first projection on a basic observation

is equal to zero. After some calculations, one can obtain its second projection given by

h̃2(x,y,a) = E(h(X1,X2,X3,X4,a)|X1 = x,X2 = y)

=−1

2
+

1

3
(e−x + e−y)+

1

6
ea−x−yEi(−a)

(
a(ex −2)(ey−2)− ex− ey +4

)

+
1

6
e−a−x−y

(
Ei(a)(4a+ ex+ ey −4)− (Ei(a+ x)(4(a+ x−1)+ey)

+Ei(a+ y)(4(a+ y−1)+ ex)−4(a+ x+ y−1)Ei(a+ x+ y))
)
+

1

6(a+ x+ y)
,

where Ei(x) = −
∫ ∞

−x
e−t

t
dt is the exponential integral. The function h̃2 is non-constant

for any a > 0. Hence, kernel h is degenerate with degree 2.

Since kernel h is bounded and degenerate, from the theorem for the asymptotic distri-

bution of U-statistics with degenerate kernels (Korolyuk and Borovskikh, 1994, Corol-

lary 4.4.2), and the Hoeffding representation of V -statistics, we get that, Mn,a(1), being

a V -statistic of degree 2, has the following asymptotic distribution

nMn,a(1)
d→ 6

∞∑

k=1

δkW
2

k , (2)

where {δk} are the eigenvalues of the integral operator Ma defined by

Maq(x) =

+∞∫

0

h̃2(x,y,a)q(y)dF(y), (3)

and {Wk} is the sequence of i.i.d. standard Gaussian random variables.

Our statistic Mn,a(λ̂n) can be rewritten as

Mn,a(λ̂n) =

∞∫

0


 1

n2

n∑

i1,i2=1

g(Xi1,Xi2 , t,a; λ̂n)




2

e−atdt

=

∞∫

0

Vn(λ̂n)
2e−atdt.

Here Vn(λ̂n) is a V -statistic of order 2 with an estimated parameter, and kernel g(Xi1,Xi2 ,

t,a; λ̂n).
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Since the function g(x1,x2, t,a;γ) is continuously differentiable with respect to γ at

the point γ = λ, the mean-value theorem gives

Vn(λ̂n) =Vn(λ)+(λ̂n −λ)
∂Vn(γ)

∂γ
|γ=λ∗ ,

for some λ∗ between λ and λ̂n.

From the Law of large numbers for V-statistics (Serfling, 2009, 6.4.2.), the partial

derivative
∂Vn(γ)

∂γ
converges to

E
(

t|X1 −X2|e−t|X1−X2|γ− tX1e−tX1γ
)
= 0.

Since
√

n(λ̂n − λ) is stochastically bounded, it follows that statistics
√

nVn(λ̂n) and√
nVn(1) are asymptotically equally distributed. Therefore, nMn,a(λ̂n) and nMn,a(1) will

have the same limiting distribution. We summarize this in the following theorem.

Theorem 2.2. Let X1, . . . ,Xn be an i.i.d. sample with distribution function F(x) = 1−
e−λx for some λ> 0. Then

nMn,a(λ̂n)
d→ 6

∞∑

k=1

δkW
2

k , (4)

where {δk} are the eigenvalues of the integral operator Ma defined in (3), and {Wk} is

the sequence of i.i.d standard Gaussian random variables.

2.1. Limiting distribution under fixed alternative

Now we consider the asymptotic behaviour of our statistics Mn,a under a fixed alternative

with finite expectation µ. Here, it is also easy to show that the first projection of kernel

h,

h1(s,a) = E(h(X1,X2,X3,X4,a;µ)|X1 = s)

is a non-constant function, hence the kernel is non-degenerate. Therefore, the limiting

distribution will differ from the null case. We present this in Theorem 2.3, where, for

brevity, we introduce the following notation: xxx = (x1,x2,x3,x4); GGG(xxx) = ∏
4
i=1 G(xi);

h′(xxx,a;µ) = ∂h(xxx,a;γ)
∂γ

∣∣∣
γ=µ

.

Theorem 2.3. Let X1, . . . ,Xn be an i.i.d. sample from an alternative distribution with

distribution function G. Then

√
n(Mn,a(µ̂)−∆)

d→N(0,Σ),
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where µ̂= Xn, ∆ = E(Mn,a(µ)), and

Σ = 16Var (h1(X1,a))+

( ∫

(R+)4

h′(xxx,a;µ)dGGG(xxx)

)2

Var(X1)+8

( ∫

(R+)4

x1h(xxx,a;µ)dGGG(xxx)

−
∫

R+

x1dG(x1)

∫

(R+)4

h(xxx,a;µ)dGGG(xxx)

)
.

(5)

Proof. See Appendix A.

3. Local approximate Bahadur efficiency

One way to compare tests is to calculate their relative Bahadur efficiency. We briefly

present it here. For more details we refer to Bahadur (1971) and Nikitin (1995).

For two tests with the same null and alternative hypotheses, H0 : θ ∈ Θ0 and H1 :

θ ∈ Θ1, the asymptotic relative Bahadur efficiency is defined as the ratio of sample sizes

needed to reach the same test power, when the level of significance approaches zero.

For two sequences of test statistics, it can be expressed as the ratio of Bahadur exact

slopes, functions proportional to the exponential rates of the decrease of their sizes,

for the increasing number of observations and a fixed alternative. The calculation of

these slopes depends on large deviation functions which are often hard to obtain. For

this reason, in many situations, the tests are compared using the approximate Bahadur

efficiency, which is shown to be a good approximation in the local case (when θ→ ∂Θ0).

Suppose that Tn = Tn(X1, . . . ,Xn) is a test statistic with its large values being signifi-

cant. Let the limiting distribution function of Tn, under H0, be FT , whose tail behaviour

is given by log(1−FT (t)) = − aT t2

2
(1+ o(1)), where aT is a positive real number, and

o(1)→ 0 as t →∞. Suppose also that the limit in probability limn→∞ Tn/
√

n= bT (θ)> 0

exists for θ ∈ Θ1. Then the relative approximate Bahadur efficiency of Tn, with respect

to another test statistic Vn (whose large values are significant), is

e∗T,V =
c∗T (θ)

c∗V (θ)
,

where c∗T (θ) = aT b2
T (θ) i c∗V (θ) = aV b2

V (θ) are approximate Bahadur slopes of Tn and Vn,

respectively.

We may suppose, without loss of generality, that Θ0 = {0}. Consequently, the ap-

proximate local relative Bahadur efficiency is given by

e∗T,V = lim
θ→0

e∗T,V (θ).
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Let G= {G(x,θ), θ > 0} be a family of alternative distribution functions with finite

expectations, such that G(x,θ) = 1− e−λx, for some λ> 0, if and only if θ = 0, and the

regularity conditions for V-statistics with weakly degenerate kernels from (Nikitin and

Peaucelle, 2004, Assumptions WD) are satisfied.

The logarithmic tail behaviour of the limiting distribution of Mn,a(λ̂n), under the null

hypothesis, is derived in the following lemma.

Lemma 3.1. For the statistic Mn,a(λ̂n) and a given alternative density g(x,θ) from G,

the Bahadur approximate slope satisfies the relation cM(θ)∼ bM(θ)
6δ1

, where bM(θ) is the

limit in Pθ probability of Mn,a(λ̂n), and δ1 is the largest eigenvalue of the sequence {δk}
from (2).

Proof. See Appendix A.

The limit in probability of our test statistic, under a close alternative, can be derived

using the following lemma.

Lemma 3.2. For a given alternative density g(x;θ) whose distribution belongs to G, we

have that the limit in probability of the statistic Mn,a(λ̂n) is

bM(θ) = 6

∞∫

0

∞∫

0

h̃2(x,y) f (x) f (y)dxdy · θ2+o(θ2),θ→ 0,

where f (x) = ∂
∂θ

g(x;θ)|θ=0.

Proof. See Appendix A.

To calculate the efficiency one needs to find δ1, the largest eigenvalue. Since we can

not obtain it analytically, we use the following approximation, introduced in Božin et al.

(2018).

It can be shown that δ1 is the limit of the sequence of the largest eigenvalues of linear

operators defined by (m+1)× (m+1) matrices M(m) = ||m(m)
i, j ||, 0 ≤ i ≤ m,0 ≤ j ≤ m,

where

m
(m)
i, j = h̃2

(
Bi

m
,

B j

m

)√
e

B(i)
m − e

B(i+1)
m ·

√
e

B( j)
m − e

B( j+1)
m · 1

1− e−B
, (6)

when m tends to infinity and F(B) approaches 1.

In Table 1, we present the largest eigenvalues for a =0.5, 1, 2 and 5, obtained using

(6) with m = 4500 and B = 10.
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Table 1: Approximate eigenvalues of Ma.

a 0.5 1 2 5

δ1 1.32 ·10−2 5.32 ·10−3 1.73 ·10−3 2.80 ·10−4

3.1. Efficiencies with respect to likelihood ratio tests

Lacking a theoretical upper bound, the approximate Bahadur slopes are often compared

(see e.g. Meintanis et al., 2007) to the approximate Bahadur slopes of the likelihood ra-

tio tests (LRT), which are known to be optimal parametric tests in terms of Bahadur ef-

ficiency. Hence, we may consider the approximate relative Bahadur efficiencies against

the LRT as a sort of “absolute” local approximate Bahadur efficiencies. We calculate it

for the following alternatives:

• a Weibull distribution with density

g(x,θ) = e−x1+θ
(1+ θ)xθ,θ > 0,x ≥ 0; (7)

• a Gamma distribution with density

g(x,θ) =
xθe−x

Γ(θ+1)
,θ > 0,x ≥ 0; (8)

• a Linear failure rate (LFR) distribution with density

g(x,θ) = e−x−θ x2

2 (1+ θx),θ> 0,x ≥ 0; (9)

• a mixture of exponential distributions with negative weights (EMNW(β)) with

density (see Jevremovic (1991))

g(x,θ) = (1+ θ)e−x− θβe−βx,θ ∈
(

0,
1

β−1

]
,x ≥ 0; (10)

It is easy to show that all densities given above belong to the family G.

The efficiencies, as functions of the tuning parameter a, are shown on Figure 1.

We can notice that the local efficiencies range from reasonable to high, and for some

values of a they are very high. Also, their behaviour with respect to the tuning parameter

a is very different. In the cases of Weibull and Linear failure rate alternatives, they are

increasing functions of a, while in the Gamma case, the function is decreasing. In the

case of EMNW(3), the efficiencies increase up to a certain point and then decrease.
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Figure 1: Local approximate Bahadur efficiencies w.r.t. LRT.

3.2. Comparison of efficiencies

In this section, we calculate the local approximate Bahadur relative efficiency of our

tests against some recent, characterization based integral-type tests, for the previously

mentioned alternatives.

The characterizations are of the equidistribution type and take the following form.

Let X1, . . . ,Xmax(m,p) be i.i.d with d.f. F, ω1 : Rm 7→ R1 and ω2 : Rp 7→ R1 two sample

functions. Then the following relation holds

ω1(X1, . . . ,Xm)
d
= ω2(X1, . . . ,Xp)

if and only if F(x) = 1− e−λx, for some λ> 0.
Notice that the Puri-Rubin characterization 2.1 is an example of such characteriza-

tions.

The first class of competitor tests consists of the integral-type tests with test statistic

In =

∞∫

0

(
G(1)

n (t)−G(2)
n (t)

)
dFn(t),

where G
(1)
n (t) and G

(2)
n (t) are V -empirical distribution functions of ω1 and ω2, respec-

tively and Fn is the empirical distribution function.

In particular, we consider the following integral-type test statistics:

• I
(1)
n,k , proposed in Jovanović et al. (2015), based on the Arnold and Villasenor char-

acterization, where ω1(X1, . . . ,Xk) = max(X1, . . . ,Xk) and ω2(X1, . . . ,Xk) = X1 +
X2
2
+ · · · Xk

k
(see Arnold and Villasenor, 2013, Milošević and Obradović, 2016c);
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• I
(2)
n , proposed in Milošević and Obradović (2016b), based on the Milošević-Obra-

dović characterization, where ω1(X1,X2) = max(X1.X2) and ω2(X1,X2,X3) =

min(X1,X2)+X3 (see Milošević and Obradović, 2016c);

• I
(3)
n , proposed in Milošević (2016), based on the Obradović characterization, where

ω1(X1,X2,X3)=max(X1,X2,X3) andω2(X1,X2,X3,X4)=X1+med(X2,X3,X4) (see

Obradović, 2015);

• I
(4)
n , proposed in Volkova (2015), based on the Yanev-Chakraborty characteriza-

tion, whereω1(X1,X2,X3)=max(X1,X2,X3) andω2(X1,X2,X3)=
X1
3
+max(X2,X3)

(see Yanev and Chakraborty, 2013).

We also consider integral-type tests of the form

Jn,a =

∞∫

0

(
L(1)

n (t)−L(2)
n (t)

)
Xne−atdt, (11)

where L
(1)
n (t) and L

(2)
n (t) are V -empirical Laplace transforms of ω1 and ω2, respec-

tively. This approach has been originally proposed in Milošević and Obradović (2016a).

There, particular cases of Desu characterization, with ω1(X1) = X1 and ω2(X1,X2) =

2min(X1,X2), and Puri-Rubin characterization were examined. We denote the corre-

sponding test statistics with JDn,a and JPn,a, respectively. The results are presented in Table

2. We can notice that in most cases tests that employ V -empirical Laplace transforms

are more efficient than those based on V -empirical distribution functions. On the other

hand, new tests are comparable with JPn,a and more efficient than JDn,a.

4. Power study

In this section we compare the empirical powers of our tests with those of some common

competitors. We choose the values of the tuning parameter to be 0.5, 1, 2 and 5. We

also consider the limiting case when a tends to infinity. The expression for this limiting

statistic is given in the following theorem.

Theorem 4.1. For fixed n, we have

lim
a→∞

a3Mn,a(λ̂n) = 2

(
1

n2

n∑

i, j=1

|Yi −Yj|−Y n

)2

,

where Yi = λ̂nXi, i = 1,2, . . . ,n.
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Table 2: Relative Bahadur efficiency of Mn,a with respect to its competitors.

I
(1)
n,2 Weibull 1.27 1.33 1.37 1.42

Gamma 1.14 1.13 1.10 1.06

LFR 2.44 3.13 3.93 5.08

EMNW (3) 1.25 1.34 1.40 1.42

I
(1)
n,3 Weibull 1.19 1.24 1.28 1.32

Gamma 1.17 1.15 1.12 1.09

LFR 1.59 2.04 2.56 3.31

EMNW (3) 1.08 1.17 1.22 1.23

I
(2)
n Weibull 1.05 1.10 1.14 1.17

Gamma 1.04 1.02 1.00 0.97

LFR 1.22 1.56 1.96 2.53

EMNW (3) 1.02 1.10 1.15 1.17

I
(3)
n Weibull 1.06 1.10 1.14 1.18

Gamma 1.18 1.16 1.14 1.10

LFR 0.82 1.05 1.32 1.71

EMNW (3) 0.94 1.02 1.06 1.08

I
(4)
n Weibull 1.21 1.27 1.31 1.35

Gamma 1.30 1.28 1.25 1.21

LFR 1.23 1.57 1.98 2.56

EMNW (3) 1.04 1.12 1.16 1.18

JPn,a Weibull 0.97 0.97 1.01 1.00

Gamma 0.98 0.99 1.00 1.02

LFR 0.97 0.93 0.91 0.93

EMNW (3) 0.97 0.98 0.99 1.00

JDn,a Weibull 1.00 0.95 0.93 0.95

Gamma 2.16 1.64 1.33 1.13

LFR 1.17 1.07 1.01 0.99

EMNW (3) 1.42 1.18 1.06 0.99

Proof. See Appendix A.

As competitor tests we use the following tests, listed in Henze and Meintanis (2005),

Milošević and Obradović (2016a) and Torabi, Montazeri and Grané (2018):

• the test based on mean density (see Epps and Pulley, 1986):

EPn =
√

48n

(
1
n

n∑
j=1

e−Y j − 1
2

)
, where Yj =

X j

Xn
;

• the tests based on the mean residual life function (see Baringhaus and Henze,

2000a):



36 New L2-type exponentiality tests

KSn =
√

nsup
t≥0

∣∣∣∣
1

n

n∑

j=1

min(Yj, t)−
1

n

n∑

j=1

I{Yj ≤ t}
∣∣∣∣;

CMn = n

∞∫

0

(
1

n

n∑

j=1

min(Yj, t)−
1

n

n∑

j=1

I{Yj ≤ t}
)2

e−tdt;

• the Cramer-von Mises test: ω2
n =

∞∫

0

(Fn(x)− (1− e−x))2e−xdx;

• the Kolmogorov-Smirnov test: KSn = sup
x≥0

|Fn(x)− (1− e−x)|;

• the test based on the integrated distribution function (see Klar, 2001):

KLn,a = na3

∞∫

0

(ψn(t)−ψ(t))2e−atdt, where

ψ(t) =

∞∫

t

(1−F(x))dx = e−t and ψn(t) =

∞∫

t

(1−Fn(x))dx;

• the test based on spacings and Gini index (see D’Agostino and Stephens, 1986):

Sn =
n−1∑

j=1

U j, where U j =
∑ j

i=1 Di∑n
i=1 Xi

and D j = (n+1− j)(X( j)−X( j−1));

• the score test of Cox and Oakes (1984): COn = n+
n∑

j=1

(1−Yj) logYj;

• the test of Milošević and Obradović: JDn,a and JPn,a from (11);

• the tests based on discrepancy measure (see Torabi et al., 2018):

H
(k)
n = 1

n

n∑

j=1

hk

(
1+F0(

X j

Xn
)

1+Fn(X j)

)
, where h1(x)= (ex−1−x)I[0,1](x)+

3
√
|x3 −1|I[1,∞)(x)

and h2(x) = (ex−1 − x)I[0,1](x)+
(x−1)2

(x+1)2 I[1,∞)(x);

• the test based on maximal correlations (see Fortiana and Grané, 2003): Qn =
sn

Xn
ρ+(Fn,F0), where s2

n is sample variance and ρ+(F1,F2) is Hoeffding maximum

correlation.

The Monte Carlo study is done for the small sample size n = 20, and a moderate

sample size n = 50, with N = 10000 replicates, for the level of significance α = 0.05

and the following alternative distributions:

• a Weibull W (θ) distribution with density (7);

• a Gamma Γ(θ) distribution with density (8);
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• a half-normal HN distribution with density

g(x) =

√
2

π
e−

x2

2 ,x ≥ 0;

• a uniform U distribution with density

g(x) = 1,0 ≤ x ≤ 1;

• a Chen’s CH(θ) distribution with density

g(x,θ) = 2θxθ−1exθ−2(1−exθ ),x ≥ 0;

• a linear failure rate LF(θ) distribution with density (9);

• a modified extreme value EV (θ) distributions with density

g(x,θ) =
1

θ
e

1−ex

θ +x,x ≥ 0.

The powers are presented in Tables 3 and 4.

Table 3: Percentage of rejected hypotheses for n = 20.

A
lt

.

E
x

p
(1
)

W
(1
.4
)

Γ
(2
)

H
N

U

C
H
(0
.5
)

C
H
(1
)

C
H
(1
.5
)

L
F
(2
)

L
F
(4
)

E
V
(1
.5
)

L
N
(0
.8
)

L
N
(1
.5
)

D
L
(1
)

D
L
(1
.5
)

EP 5 36 48 21 66 63 15 84 28 42 45 25 67 20 64

KS 5 35 46 24 72 47 18 79 32 44 48 28 55 22 6

CM 5 35 47 22 70 61 16 83 30 43 47 27 66 21 63

ω2 5 34 47 21 66 61 14 79 28 41 43 33 62 23 65
KS 5 28 40 18 52 56 13 67 24 34 35 30 58 20 56
KL 5 29 44 16 61 77 11 76 23 34 37 35 66 21 63
S 5 35 46 21 70 63 15 84 29 42 46 24 67 19 62

CO 5 37 54 19 50 80 13 81 25 37 37 33 60 25 72

JDn,1 5 42 64 20 45 15 15 15 29 40 36 47 32 28 72

JDn,5 5 48 64 28 70 20 21 21 36 52 53 33 57 24 70

JPn,1 5 49 65 29 73 21 22 21 38 51 54 34 41 24 68

JPn,5 5 48 62 32 79 23 23 23 41 56 58 27 59 21 65

H
(1)
n 5 49 60 31 78 0 24 91 40 55 23 33 0 30 74

H
(2)
n 5 6 10 2 18 79 2 29 4 7 8 8 71 4 20

Qn 5 32 38 23 86 43 17 85 30 42 54 18 61 15 50

Mn,0.5 5 46 66 25 64 19 18 19 35 49 46 57 1 39 81

Mn,1 5 49 66 28 72 21 21 21 38 52 53 51 2 37 81

Mn,2 5 50 67 31 75 22 23 23 40 55 56 45 6 37 81

Mn,5 5 48 62 32 80 22 23 24 40 56 58 42 21 33 80

Mn,∞ 5 47 59 31 81 23 23 23 40 56 59 33 51 26 73
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Table 4: Percentage of rejected hypotheses for n = 50.
A

lt
.

E
x

p
(1
)

W
(1
.4
)

Γ
(2
)

H
N

U

C
H
(0
.5
)

C
H
(1
)

C
H
(1
.5
)

L
F
(2
)

L
F
(4
)

E
V
(1
.5
)

L
N
(0
.8
)

L
N
(1
.5
)

D
L
(1
)

D
L
(1
.5
)

EP 5 80 91 54 98 94 38 100 69 87 90 45 95 39 97

KS 5 71 86 50 99 90 36 100 65 82 88 62 92 43 96

CM 5 77 90 53 99 94 37 100 69 87 90 65 95 44 97

ω2 5 75 90 48 98 95 32 100 64 83 86 76 94 52 98
KS 5 64 83 39 93 92 26 98 53 72 75 71 91 46 95
KL 5 72 93 37 97 99 23 100 54 75 79 92 94 66 99
S 5 79 90 54 99 94 38 100 69 87 90 47 95 39 97

CO 5 82 96 45 91 99 30 100 60 80 78 66 92 55 99

JDn,1 5 78 96 36 76 23 24 23 51 71 64 93 64 72 100

JDn,5 5 86 97 55 97 41 40 40 72 89 89 70 90 55 100

JPn,1 5 85 96 54 97 38 38 38 70 87 87 77 78 58 99

JPn,5 5 86 96 63 99 46 46 45 77 91 93 58 92 47 98

H
(1)
n 5 88 94 65 99 0 50 100 79 92 94 51 0 50 98

H
(2)
n 5 37 62 13 78 98 7 94 24 44 46 47 95 23 87

Qn 5 73 79 59 100 77 47 100 74 89 96 26 93 25 86

Mn,0.5 5 84 97 48 95 34 33 33 65 83 81 94 36 77 100

Mn,1 5 85 97 54 97 38 38 38 69 87 86 89 50 72 100

Mn,2 5 86 96 57 98 41 41 41 73 89 90 83 65 67 100

Mn,5 5 87 96 63 99 45 45 45 76 91 93 71 80 59 99

Mn,∞ 5 84 94 63 99 47 46 46 78 92 94 53 92 48 98

It can be noticed that our tests have good empirical sizes and their power ranges from

reasonable to high. In the majority of cases, our tests are either the most powerful or

their power is very close to the one of the most powerful competitor.

4.1. On a data-dependent choice of the tuning parameter

The powers of the proposed tests depend on the values of the tuning parameter a. There-

fore, a well-chosen value of a would help underpin making the right decision. However,

since the “right” value of a is rather different for various alternatives, a general conclu-

sion on which a is most suitable in practice, can not be made. Hence, in what follows,

we present an algorithm for a data driven selection of the tuning parameter, proposed

initially by Allison and Santana (2015):

1. fix a grid of positive values of a,(a1, . . . ,ak);
2. obtain a bootstrap sample XXX∗

n from the empirical distribution function of XXXn;

3. determine the value of the test statistic Mn,ai
, i = 1, . . . ,k, for the obtained sample;

4. repeat steps 2 and 3 B times and obtain series of values of test statistics for every

a, M∗
j,ai

, i = 1, . . . ,k, j = 1, . . . ,B;
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5. determine the empirical power of the test for every a, i.e.

P̂ai
=

1

B

B∑

j=1

I{M j,ai
≥ Čn,ai

(α)}, i = 1, . . . ,k,

where I{·} is the indicator function;

6. for the next calculation â = argmax
a∈{a1 ,...,ak}

P̂a will be used.

The critical value Čn,â is determined using the Monte Carlo procedure with N1 repli-

cates. Then, the empirical power of the test is determined based on the new sample from

the alternative distribution

p =
1

N1

N1∑

i=1

I{Mn,â ≥ Čn,â(α)}.

The previously described procedure is repeated N times and the average value is taken

as the estimated power:

P̃ =
1

N

N∑

i=1

pi.

The code of this algorithm is provided in Appendix C.

The results are presented in Tables 5 and 6. The numbers in the parentheses represent

the percentage of times that each value of a equals the estimated optimal one. It is im-

portant to note that these bootstrap powers are comparable to the maximum achievable

power for the tests calculated over a grid of values of the tuning parameter.

Table 5: Percentage of rejected samples for different value of a, n = 20, α= 0.05.

0.5 1 2 5 â

W (1.4) 46(50) 49(12) 50(15) 48(23) 48

Γ(2) 66 (63) 65(12) 65(10) 63(15) 65

HN 25(35) 28(14) 30(17) 32(34) 29

U 64(20) 72(9) 75(21) 80 (50) 75

CH(0.5) 19(37) 21(15) 22(17) 22(31) 21

CH(1) 18(35) 21(15) 23(16) 23(34) 21

CH(1.5) 19(35) 20(11) 20(20) 24(34) 21

LF(2) 35(33) 37(12) 38(20) 41 (35) 38

LF(4) 49(35) 53(14) 54(16) 54(35) 52

EW (1.5) 46(24) 53(12) 56(20) 58(44) 54

LN(0.8) 57(92) 51(3) 45(4) 42(1) 56

LN(1.5) 2(13) 3(2) 6(2) 20(83) 17

DL(1) 39(73) 37(8) 37(10) 33(9) 38

DL(1.5) 82(71) 81(6) 82(12) 79(11) 82
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Table 6: Percentage of rejected samples for different value of a, n = 50, α= 0.05.

0.5 1 2 5 â

W (1.4) 84(43) 86(19) 86(16) 87(22) 85

Γ(2) 97(68) 97(15) 96(11) 95(6) 97

HN 48(21) 53(13) 57(23) 62(43) 57

U 95(31) 97(12) 98(20) 99(37) 98

CH(0.5) 34(19) 37(11) 41(20) 44(50) 41

CH(1) 33(18) 37(13) 41(18) 46(51) 41

CH(1.5) 33(18) 37(13) 42(19) 44(50) 41

LF(2) 65(20) 69(12) 74(24) 76(44) 72

LF(4) 83(25) 86(16) 89(20) 91(39) 88

EW (1.5) 81(17) 87(13) 89(22) 93(48) 89

LN(0.8) 95(92) 89(6) 82(2) 70 (0) 94

LN(1.5) 38(2) 50(1) 64(4) 79(93) 78

DL(1) 77(81) 72(11) 68(4) 60(4) 67

DL(1.5) 100(84) 100(11) 100(4) 99(1) 100

5. Real data examples

In this section we apply our tests to three real datasets. The first dataset represents inter-

occurrence times of fatal accidents to British-registered passenger aircraft, 1946-1963,

measured in number of days and listed in the order of their occurrence in time (see Pyke,

1965).

The second dataset represents failure times for right rear breaks on D9G-66A Cater-

pillar tractors (see Barlow and Campo (1975)). The third dataset represents failure and

running times (1000 cycles) of a sample of 30 units of a larger electrical system (see

Meeker and Escobar (2014)). The third set was also analysed in Shakeel et al. (2016).

The datasets are given in Tables 8-10 of Appendix B, while their empirical and theoret-

ical density, cumulative distribution function, Q-Q and P-P plots, are shown in Figures

2-4. The figures suggest that the exponential distribution provides a good fit for the first

dataset, unlike for the remaining two.

In Table 7 we present, for all three datasets, the p-values of our test with data driven

selection of the tuning parameter, as well as for Mn,∞. For comparison purposes, we also

include some exponentiality tests that were shown to have good power performance in

Tables 3 and 4.

We can see that our tests confirm the conclusions suggested by the plots 2-4. While

the competitor tests mostly point to the same decisions, it is worth noting that, at the 5%

level of significance, few of them fail to reject the null hypothesis for the third dataset.
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Figure 2: Plots for dataset 1.

Table 7: p-values for three datasets.

Stat. EP ω2 CO H
(1)
n H

(2)
n JPn,1 Mn,â Mn,∞

Dataset 1 0.4037 0.9103 0.4907 0.6062 0.8737 0.3708 0.4902 0.8917

Dataset 2 0 0 0 0 0.0005 0 0 0

Dataset 3 0.0279 0.0059 0.1536 0.0420 0.0940 0.0163 0.0092 0.0074
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Figure 3: Plots for dataset 2.

6. Conclusion

In this paper we propose new consistent scale-free exponentiality tests based on the

Puri-Rubin characterization. The proposed tests are shown to be very efficient in the

Bahadur sense. Moreover, in the small sample case, the tests have reasonable to high

empirical powers. They also outperform many recent competitor tests in terms of both

efficiency and power. The quality of their performance is confirmed on two real data

examples. This makes them attractive for use in practice.
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Figure 4: Plots for dataset 3.

Appendix A - Proofs

Proof of Theorem 2.3. Since the kernel h is non-degenerate, from the theorem for V -

statistics with non-degenerate kernels (Korolyuk and Borovskikh, 1994, Theorem 4.2.5),

it follows √
n(Mn,a(µ)−∆)

d→N(0,16Var(h1(X1,a))).

As the function h(x1,x2,x3,x4,a;γ) is continuously differentiable with respect to γ

at the point γ = µ, the mean-value theorem gives

√
n(Mn,a(µ̂)−∆(µ)) =

√
n(Mn,a(µ)−∆(µ))+

√
n(µ̂−µ)

∂Mn,a(γ)

∂γ
|γ=µ∗ ,

for some µ∗ between µ and µ̂.

Using the Law of large numbers for V-statistics, the Slutsky theorem, and the fact

that the limit distribution of
√

n(Mn,a(µ)−∆, µ̂−µ) is two dimensional normal, it fol-
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lows that
√

n(Mn,a(µ̂)−∆(µ)) will converge in distribution to zero mean normal random

variable, with the variance equal to

16Var(h1(X1,a))+ lim
n→∞

E

(
∂Mn,a(γ)

∂γ

)2

Var(
√

nµ̂)+2 lim
n→∞

Cov(
√

nMn,a(µ),
√

nµ̂).

Calculating the limits, we obtain (5).

Proof of Lemma 3.1. Using the result of Zolotarev (1961), the logarithmic tail behaviour

of limiting distribution function of M̃n,a(λ̂n) =
√

nMn,a(λ̂n) is

log(1−F
M̃a
(t)) =− t2

12δ1

+o(t2), t → ∞.

Therefore, a
M̃a

= 1
6δ1

. The limit in probability Pθ of M̃n,a(λ̂n)/
√

n is

b
M̃a

=
√

bM(θ).

Inserting this into the expression for Bahadur slope completes the proof.

Proof of Lemma 3.2. For brevity, denote xxx = (x1,x2,x3,x4) and GGG(xxx;θ) = ∏
4
i=1 G(xi;θ).

Since Xn converges almost surely to its expected value µ(θ), using the Law of large

numbers for V -statistics with estimated parameters (see Iverson and Randles, 1989),

Mn,a(λ̂n) converges to

bM(θ) = Eθ(h(XXX,a;µ(θ)))

=

∫

(R+)4

(
µ(θ)

x1 + x3 +aµ(θ)
− µ(θ)

x3 + |x1 − x2|+aµ(θ)

− µ(θ)

x1 + |x3 − x4|+aµ(θ)
+

µ(θ)

|x1 − x2|+ |x3 − x4|+aµ(θ)

)
dGGG(xxx;θ).

We may assume that µ(0) = 1 due to the scale freeness of the test statistic under the null

hypothesis. After some calculations we get that b′M(0) = 0. Further,

b′′(0) =

∫

(R+)4

h(xxx,a;1)
∂ 2

∂θ2
dGGG(xxx,0) = 6

∫

(R+)2

h̃2(x,y) f (x) f (y)dxdy.

Expanding bM(θ) into the Maclaurin series we complete the proof.
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Proof of Theorem 4.1. Denote g(t) =
(

L
(1)
n (t)−L

(2)
n (t)

)2

. Then the test statistic can be

expressed as Mn,a(λ̂n) =
∞∫
0

g(t)e−atdt. The Maclaurin expansion of g(t) is

g(t) = t2

(
1

n2

n∑

i, j=1

|Yi −Yj|−Y n

)2

+ t3

(
1

n2

n∑

i, j=1

|Yi −Yj|−Y n

)(
Y n −

1

n2

n∑

i, j=1

(Yi −Yj)
2

)

+
t4

4

(
Y n −

1

n2

n∑

i, j=1

(Yi −Yj)
2

)
+o(t4).

Using an Abelian theorem for the Laplace transform from (Widder, 1946, Chapter 5.2.)

(see also from Baringhaus, Gürtler and Henze, 2000b, Proposition 1.1), and

lim
s→∞

Γ(4)s3

s∫

0

g(t)dt = 2

(
1

n2

n∑

i, j=1

|Yi −Yj|−Y n

)2

,

follows the statement of the theorem.

Appendix B - Datasets

Table 8: Dataset 1: inter-occurrence times of fatal accidents.

20 106 14 78 94 20 21 136 56 232 89

33 181 424 14 430 155 205 117 253 86 260

213 58 276 263 246 341 1105 50 136

Table 9: Dataset 2: failure times for right rear breaks.

56 83 104 116 244 305 429 452 453 503 552

614 661 673 683 685 753 763 806 834 838 862

897 904 981 1007 1008 1049 1060 1107 1125 1141 1153

1154 1193 1201 1253 1313 1329 1347 1454 1464 1490 1491

1532 1549 1568 1574 1586 1599 1608 1723 1769 1795 1927

1957 2005 2010 2016 2022 2037 2065 2096 2139 2150 2156

2160 2190 2210 2220 2248 2285 2325 2337 2351 2437 2454

2546 2565 2584 2624 2675 2701 2755 2877 2879 2922 2986

3092 3160 3185 3191 3439 3617 3685 3756 3826 3995 4007

4159 4300 4487 5074 5579 5623 6869 7739

Table 10: Dataset 3: failure and running times of units of an electrical system .

275 13 147 23 181 30 65 10 300 173

106 300 300 212 300 300 300 2 261 293

88 247 28 143 300 23 300 80 245 266
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Appendix C - Code

• expTestL2puri is a C-function which calculates the value of statistic Mn,a;

• bootstrapStat is an R-function which calculates statistics Mn,a based on boot-

strapped resamples from the initial sample;

• optimal_a is an R-function which implements the data-driven procedure from

Section 4.1.

double expTestL2puri(NumericVector x,double a)

{

int n = x.size();

double n1=double(n);

double total=0;

for(int i=0;i<n;i++)

{

for(int k=0;k<n;k++)

{

total+=n1*n1/(a+x[i]+x[k]);

for(int j=0;j<n;j++)

{

total-=2*n1/(a+x[k]+fabs(x[i]-x[j]));

for(int l=0;l<n;l++)

{

total+=(1.0/(a+fabs(x[i]-x[j])+fabs(x[k]-x[l])));

˝

˝

˝

˝

double stat=total/n1/n1/n1/n1;

return stat;

˝

bootstrapStat<-function(x,a,B=300){

n<-length(x)

Xs<-sample(x,B*n,replace = TRUE)

Xs<-array(Xs,c(n,B))

Tb<-apply(Xs/mean(Xs),2,expTestL2puri,a)

return(Tb)

˝

optimal_a<-function(y,a,B)

{

n=length(y)

P<-rep(0,length(a))

for(k in 1:length(a)){
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ts0<-rep(0,10000)

for(i in 1:10000){

x<-rexp(n)

ts0[i]<-expTestL2puri(x/mean(x),a[k])

˝

C<-quantile(ts0,0.95)

Tb<-bootstrapStat(y,a[k],B)

P[k]<-sum(Tb>=C)/B

˝

m<-which.max(P)

return(a[m])

˝
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Grané, A. and Fortiana, J. (2009). A location-and scale-free goodness-of-fit statistic for the exponential

distribution based on maximum correlations. Statistics, 43, 1–12.
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