
A Survey on the Computation of

Quaternions from Rotation Matrices

Soheil Sarabandi and Federico Thomas
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Abstract

The parameterization of rotations is a central topic in many theo-
retical and applied fields such as rigid body mechanics, multibody dy-
namics, robotics, spacecraft attitude dynamics, navigation, 3D image
processing, computer graphics, etc. Nowadays, the main alternative to
the use of rotation matrices, to represent rotations in R

3, is the use of
Euler parameters arranged in quaternion form. Whereas the passage
from a set of Euler parameters to the corresponding rotation matrix
is unique and straightforward, the passage from a rotation matrix to
its corresponding Euler parameters has been revealed to be somewhat
tricky if numerical aspects are considered. Since the map from quater-
nions to 3×3 rotation matrices is a 2-to-1 covering map, this map can-
not be smoothly inverted. As a consequence, it is erroneously assumed
that all inversions should necessarily contain singularities that arise in
the form of quotients where the divisor can be arbitrarily small. This
misconception is herein clarified.

This paper reviews the most representative methods available in
the literature, including a comparative analysis of their computational
costs and error performances. The presented analysis leads to the
conclusion that Cayley’s factorization, a little-known method used to
compute the double quaternion representation of rotations in four di-
mensions from 4×4 rotation matrices, is the most robust method when
particularized to three dimensions.

Keywords: Euler parameters, quaternions, rotation matrices, numerical
accuracy.
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1 Introduction

Arbitrary rotations in R
3 can be represented using proper orthogonal 3×3

matrices (rotation matrices for short) of the form:

R =

⎛
⎝r11 r12 r13
r21 r22 r23
r31 r32 r33

⎞
⎠ . (1)

Since these matrices have 9 elements, while only 3 are independent, rota-
tions represented in this way are somewhat cumbersome to manipulate. As
a consequence, sets of fewer parameters have been proposed to represent
rotations. These sets include Euler parameters, Rodrigues parameters, Eu-
ler angles, Cayley-Klein parameters, etc. [1, 2]. Euler and Cayley-Klein
parameters require only 4 elements, which is the minimum number for a
representation of rotations in R

3 to be non-singular. Moreover, these two
parameterizations are quite convenient because, when concatenating rota-
tions, they are manipulated using the algebra of quaternions or the algebra
of spinors, respectively.

Euler parameters arranged in quaternion form have gained the favor of
the engineering community and, hence, the interest of computing them in a
simple, fast, and numerically stable way.

Euler’s theorem of rigid-body rotations states that the orientation of a
body after having undergone any sequence of rotations is equivalent to a
single rotation of that body through an angle θ about an axis that we will
represent by the unit vector n = (nx ny nz)

T (see [3, pp. 118-123] for a proof
of this theorem in terms of rotation matrices). The rotation matrix in (1),
expressed in terms of n and θ, has the following form (see [4, p. 30] for an
elementary deduction):

R(n̂, θ) =

⎛
⎝ c+ n2

x(1− c) nxny(1− c)− nzs nxnz(1− c) + nys
nynx(1− c) + nzs c+ n2

y(1− c) nynz(1− c)− nxs

nznx(1− c)− nys nzny(1 − c) + nxs c+ n2
z(1− c)

⎞
⎠
(2)

where s = sin θ and c = cos θ. Now, if we introduce the following change of
variables

e0 = cos(θ/2), (3)

e1 = nx sin(θ/2), (4)

e2 = ny sin(θ/2), (5)

e3 = nz sin(θ/2), (6)

2



then (2) can be rewritten as

R(e0, e1, e2, e3) =

⎛
⎝ 2(e20+e21)−1 2(e1e2−e0e3) 2(e1e3+e0e2)
2(e1e2+e0e3) 2(e20+e22)−1 2(e1e3−e0e1)
2(e1e3−e0e2) 2(e2e3+e0e1) 2(e20+e23)−1

⎞
⎠ . (7)

The parameters e0, e1, e2, e3 are defined as the Euler parameters. As ex-
pected, these parameters are not independent because only three are needed
to represent an arbitrary rotation in R

3. They are related through the fol-
lowing equation:

e20 + e21 + e22 + e23 = 1. (8)

In practice, this condition can be relaxed so that (e0, . . . , e3) is treated as a
vector of homogeneous coordinates [5]. In this case, when (8) is not satisfied,
a normalization is required prior to obtaining the corresponding rotation
matrix using (7).

In what follows, we use the following notation:

e = (e1, e2, e3)
T , (9)

ē = (e0 e)T = (e0 e1 e2 e3)
T . (10)

It is easy to conclude, by simply observing (7), that the Euler parameters
provide a double covering of the space of rotations in the sense that ē and
−ē represent the same rotation matrix. This fact is obviously present in
all methods that compute these parameters: they all give the same solution
within an undetermined overall sign.

As we have already said, there are no singularities associated with Euler
parameters, contrarily to what happens for example with Euler angles [2].
However, this does not mean that the methods to compute them could not
introduce their own singularities, as we will see below.

The most straightforward way to obtain the set of Euler parameters
consists in solving the system of nonlinear equations resulting from equating
the matrices in (1) and (7). From an algebraic point of view, the solution
to these non-linear equations must avoid dividing by zero and taking the
square root of negatives numbers. Nevertheless, from a computational point
of view, the conditions are more strict: the solution must minimize possible
floating-point rounding errors, which might be relevant, for example, when
dividing by (or when taking the square root of) a very small number [6]. As
we will see, this loss of accuracy near singularities is the essential problem
in many methods despite their algebraic correctness.
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The available methods for computing the Euler parameters from a rota-
tion matrices are varied: they are based on trigonometric, algebraic, or nu-
merical techniques. In aerial navigation, some of them have been named for
their inventors. This is the case of Hughes’, Shepperd’s, and Bar-Itzhack’s
methods. Although, in general, the origin of most methods and their vari-
ations is actually uncertain because of their trivial derivation, we mostly
adhere to the names given to the different methods by the aerial navigation
community.

This paper is organized as follows. We start in Section 2 with two
trigonometric methods which can be seen as indirect methods because they
consist in obtaining a different set of parameters to represent an orientation
which is then converted into Euler parameters. Then, in Section 3, we re-
view the algebraic methods such as the well-known Hughes’ and Shepperd’s
methods. In Section 4, we review two numerical methods. In Section 5, a
detailed comparison in terms of computational cost and error performance
of the reviewed methods is presented. Finally, Section 6 summarizes the
main conclusions.

2 Trigonometric methods

To the best of our knowledge, although trigonometric methods are implicit
in the first documents dealing with orientation representation in aeronautics
[7], it seems to have attracted little subsequent attention.

2.1 Trigonometric method 1

This method consists in first extracting a set of Euler angles from R, and
then converting the result to Euler parameters. Different Euler angle con-
ventions can be used to this end. For example, in [8], the x−y−z convention
is used. Nevertheless, here we propose to use the z−x−z convention because
the resulting formulas are much simpler.

Let us denote θ1, θ2, and θ3 a sequence of angles rotated, in local reference
frames, about the z, x, and z axes, respectively. Then, multiplying the
corresponding three rotations matrices yields [9]:

Rz(θ1)Rx(θ2)Rz(θ3) =

⎛
⎝−s1 c2 s3 + c1 c3 −s1 c2 c3 − c1 c3 s2 s1

c1 c2 s3 + s1 c3 c2 c1 c3 − s1 s3 −s2 c1
s2 s3 s2 c3 c2

⎞
⎠ ,

(11)
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where si and ci stand for sin θi and cos θi, respectively. By equating this
matrix to (7), we can obtain θ1, θ2, and θ3 as a function of rij, 1 ≤ i, j ≤ 3.
The simplest term to work with is cos θ2 = r33, so θ2 = arccos r33. Then,
there are three cases to consider (see [9] for details):

• If θ2 ∈ (0, π), then θ1 = atan2(r13,−r23), and θ3 = atan2(r31, r32).

• If θ2 = 0, then θ3 + θ1 = atan2(−r12, r11).
• If θ2 = π, then θ3 − θ1 = atan2(−r12, r11).

Now, the rotation described as a combination of the above Euler angles can
be expressed as Euler parameters as follows (see Appendix A in [7]):

e0 = cos

(
θ2
2

)
cos

(
θ1+θ3

2

)
, (12)

e1 = sin

(
θ2
2

)
cos

(
θ1−θ3

2

)
, (13)

e2 = sin

(
θ2
2

)
sin

(
θ1−θ3

2

)
, (14)

e3 = cos

(
θ2
2

)
sin

(
θ1+θ3

2

)
. (15)

This method requires only four additions, four multiplications, and the
evaluation of eleven trigonometric functions or their inverses. However, ob-
serve that it uses neither square roots nor divisions by variable quantities,
which is a good indication of numerical stability.

2.2 Trigonometric method 2

This other indirect method consist in first computing n and θ, and then con-
verting them to Euler parameters, which is a common practice in Robotics.
Here we will follow the description given in [4].

From equating the matrices in (1) and (2), it is possible to verify that

sin θ =
1

2

√
(r32 − r23)2 + (r13 − r31)2 + (r21 − r12)2, (16)

and

cos θ =
1

2
(r11 + r22 + r33 − 1). (17)

Therefore,

θ = arctan

(√
(r32 − r23)2 + (r13 − r31)2 + (r21 − r12)2

r11 + r22 + r22 − 1

)
. (18)
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Moreover, it is possible to conclude that

nx =
r32 − r23
2 sin θ

, (19)

ny =
r13 − r31
2 sin θ

, (20)

nz =
r21 − r12
2 sin θ

. (21)

When the angle of rotation is very small, the axis of rotation is physically
not well defined due to the small magnitude of both numerator and denom-
inator in (19)-(21). In this case, it is important to ensure that n is a unit
vector by renormalizing it. When the angle of rotation approaches π radi-
ans, the vector n is once again poorly defined. In this case, for θ > π/2, n
is determined as follows:

nx = sign(r32 − r23)

√
r11 − cos θ

1− cos θ
, (22)

ny = sign(r13 − r31)

√
r22 − cos θ

1− cos θ
, (23)

nz = sign(r21 − r12)

√
r33 − cos θ

1− cos θ
. (24)

The idea here is that we only keep the largest of the three components of
n given above, and the other two are computed according to the following
rules:

• If nx is the largest, then

ny =
r21 + r12

2nx(1− cos θ)
, (25)

nz =
r13 + r31

2nx(1− cos θ)
. (26)

• If ny is the largest, then

nx =
r21 + r12

2ny(1− cos θ)
, (27)

nz =
r32 + r23

2ny(1− cos θ)
. (28)
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• If nz is the largest, then

nx =
r31 + r13

2nz(1− cos θ)
, (29)

ny =
r32 + r23

2nz(1− cos θ)
. (30)

This method is complicated compared to all others. We will show that, in
general, it should be avoided.

3 Algebraic methods

The algebraic methods are directly based on solving the system of equations
resulting from equating the matrices in (1) and (7), which can be expressed
as:

4e20 = 1 + r11 + r22 + r33, (31)

4e21 = 1 + r11 − r22 − r33, (32)

4e22 = 1− r11 + r22 − r33, (33)

4e23 = 1− r11 − r22 + r33, (34)

4e2e3 = r23 + r32, (35)

4e1e3 = r31 + r13, (36)

4e1e2 = r12 + r21, (37)

4e0e1 = r32 − r23, (38)

4e0e2 = r13 − r31, (39)

4e0e3 = r21 − r12. (40)

This system of equations can be organized in a more compact way by
defining the matrix of products as:

P :=

⎛
⎜⎜⎝
e0
e1
e2
e3

⎞
⎟⎟⎠(e0 e1 e2 e3

)
=

⎛
⎜⎜⎝
e0e0 e0e1 e0e2 e0e3
e1e0 e1e1 e1e2 e1e3
e2e0 e2e1 e2e2 e2e3
e3e0 e3e1 e3e2 e3e3

⎞
⎟⎟⎠ . (41)
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Therefore, using equations (31)-(40), it can be verified that

P =
1

4

⎛
⎜⎜⎝

r11+r22+r33+1 r32−r23
r32−r23 r11−r22−r33+1
r13−r31 r21+r12
r21−r12 r31+r13

r13−r31 r21−r12
r21+r12 r31+r13

r22−r11−r33 + 1 r32+r23
r32+r23 r33−r11−r22 + 1

⎞
⎟⎟⎠ . (42)

3.1 Chiaverini-Siciliano’s method

This is the most straightforward algebraic method. It is used in [18] and
hence the name adopted here. From (31)-(34), we have that:

e0 =
1

2

√
1 + r11 + r22 + r33, (43)

e1 =
1

2

√
1 + r11 − r22 − r33, (44)

e2 =
1

2

√
1− r11 + r22 − r33, (45)

e3 =
1

2

√
1− r11 − r22 + r33. (46)

Due to the global undefined sign, if we assume that e0 is positive, then,
according to (38)-(40), we have to assign e1, e2 and e3 the signs of r32−r23,
r13−r31 and r21−r12, respectively.

This method has no singularities. It contains no multiplications nor
divisions, and all Euler parameters are treated in a similar way. It only
requires 12 additions and 4 square roots. However, this method only takes
into account the elements of the diagonal of R. We will see how considering
the values off the diagonal of R is necessary to obtain numerically accurate
results.

3.2 Hughes’ method

Despite its limitations which will become clear later, Hughes’ method [14]
it is still commonly used in many engineering areas (see, for example, [15,
pp. 122-123] and [16, p. 153]).

As in Chiaverini-Siciliano’s method, the first Euler parameter is given
by:

e0 =
1
2

√
r11 + r22 + r33 + 1, (47)
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and if e0 �= 0, from (38)-(40), we have that:

e1 =
r32 − r23

4e0
, (48)

e2 =
r13 − r31

4e0
, (49)

e3 =
r21 − r12

4e0
. (50)

If e0 = 0, (31)-(40) can be rewritten as:

e1 = ±
√

1 + r11
2

, (51)

e2 = ±
√

1 + r22
2

, (52)

e3 = ±
√

1 + r33
2

, (53)

e1e2 =
r12
2
, (54)

e2e3 =
r23
2
, (55)

e3e1 =
r31
2
. (56)

Again, equations (54)-(56) can serve to resolve the sign ambiguities in
(51)-(53). First, observe from (54)-(56) that (a) r12, r23, and r31 cannot be
simultaneously negative; and (b) if one of them is negative, another one has
also to be negative. Therefore, assuming that e1, e2, and e3 are initially
positive, their signs have to be changed according to the following rules:

• If r31 < 0 and r12 < 0, then we have to change the sign of e1.

• If r12 < 0 and r23 < 0, then we have to change the sign of e2.

• If r23 < 0 and r31 < 0, then we have to change the sign of e3.

To avoid this sign disambiguation, an alternative formulation can be
found in [16, p. 153], which is adapted from [15, p. 122], where the following
formulas are given for the case in which e0 = 0:

e1 =
r13r12√

r212r
2
13 + r212r

2
23 + r213r

2
23

, (57)

e2 =
r12r23√

r212r
2
13 + r212r

2
23 + r213r

2
23

, (58)

e3 =
r13r23√

r212r
2
13 + r212r

2
23 + r213r

2
23

. (59)
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Unfortunately, these formulas fail if r12 = r13 = 0, or r12 = r23 = 0, or
r23 = r13 = 0, because they lead to indeterminations of the form 0/0.
They correspond precisely to the cases in which the input rotation matrix
represents a pure rotation about the x, y, or z axis, respectively. Since (57)-
(59) are only used in the case in which e0 = 0, these situations are already
excluded except in those cases in which these rotations about the coordinate
axes are of π radians.

The essential problem with Hughes’ method is its poor behavior when
1 + r11 + r22 + r33 → 0. To alleviate this situation, Grubin [17] proposed
an algorithm that consisted in computing the following three alternative
solutions:

ē1 =
1

2

⎛
⎜⎜⎝
√
r11 + r22 + r33 + 1√

2(1 + r11)

(r11 + r21)/
√

2(1 + r11)

(r31 + r13)/
√

2(1 + r11)

⎞
⎟⎟⎠ , (60)

ē2 =
1

2

⎛
⎜⎜⎝
√
r11 + r22 + r33 + 1

(r11 + r21)/
√

2(1 + r2,2)√
2(1 + r22)

(r32 + r23)/
√

2(1 + r2,2)

⎞
⎟⎟⎠ , (61)

ē2 =
1

2

⎛
⎜⎜⎝
√
r11 + r22 + r33 + 1

(r31 + r13)/
√

2(1 + e3,3)

(r32 + r23)/
√

2(1 + e3,3)√
2(1 + r33)

⎞
⎟⎟⎠ . (62)

Then, if we determine the ordinal number i of the largest element in of the
following vector ⎛

⎝r11
r22
r33

⎞
⎠ , (63)

it is not difficult to prove that the best solution, from the numerical point of
view, is ēi. Using Grubin’s improvement, it is possible to compute the Euler
parameters using Hughes’ method for rotation matrices whose equivalent
rotated angle is π − ε, where ε is as small as 2×10−4 [17].

Grubin introduced an idea further exploited by Shepperd’s method: we
can choose from several alternative solutions using a voting scheme.
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3.3 Shepperd’s method

Since it was first proposed in [19], Shepperd’s method remains as one of
the most popular methods. It can be seen as an improvement on Hughes’
method in which the Euler parameters are computed without numerical
instabilities. It can be seen as an evolution of Grubin’s [10], Klumpp’s [11],
Spurrier’s[12], and Klumpp’s [13] methods.

Observe that, in Hughes’ method, e0 is calculated first and then it is
treated very differently from the remaining three parameters. Since we can
solve the system of equations (31)-(40) for any of the four Euler parameters,
there are four different formulas for computing the Euler parameters as
a function of the input rotation matrix, all of them formally equivalent.
Numerically, however, these four formulas are not identical and, depending
on the rotation matrix, one of them is numerically better conditioned than
the others.

From the system of equations (31)-(40), we arrive at these four different
solutions:

ē1 =
1

2

⎛
⎜⎜⎜⎝

(1 + r11 + r22 + r33)
1
2

(r32 − r23)/(1 + r11 + r22 + r33)
1
2

(r13 − r31)/(1 + r11 + r22 + r33)
1
2

(r21 − r12)/(1 + r11 + r22 + r33)
1
2

⎞
⎟⎟⎟⎠ , (64)

ē2 =
1

2

⎛
⎜⎜⎜⎝
(r32 − r23)/(1 + r11 − r22 − r33)

1
2

(1 + r11 − r22 − r33)
1
2

(r12 + r21)/(1 + r11 − r22 − r33)
1
2

(r31 + r13)/(1 + r11 − r22 − r33)
1
2

⎞
⎟⎟⎟⎠ , (65)

ē3 =
1

2

⎛
⎜⎜⎜⎝
(r13 − r31)/(1 − r11 + r22 − r33)

1
2

(r12 + r21)/(1 − r11 + r22 − r33)
1
2

(1− r11 + r22 − r33)
1
2

(r23 + r32)/(1 − r11 + r22 − r33)
1
2

⎞
⎟⎟⎟⎠ , (66)

ē4 =
1

2

⎛
⎜⎜⎜⎝
(r21 − r12)/(1 − r11 − r22 + r33)

1
2

(r31 + r13)/(1 − r11 − r22 + r33)
1
2

(r32 + r23)/(1 − r11 − r22 + r33)
1
2

(1− r11 − r22 + r33)
1
2

⎞
⎟⎟⎟⎠ . (67)

Depending on the entries of R, some of these functions can even lead to
complex solutions. To avoid such a situation, we determine the ordinal
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number i of the largest element in the following vector⎛
⎜⎜⎝
r11+r22+r33

r11
r22
r33

⎞
⎟⎟⎠ . (68)

Then, the best solution, from the numerical point of view, is considered to
be ēi. The result is a method without numerical instabilities.

This four-fold multiplicity of the solution arises in other methods. For ex-
ample, the one presented in [20], based on geometric arguments, was shown
to be equivalent to this method.

3.4 Sarabandi-Thomas’ method

This method, recently presented in [22], moves the voting scheme to the
computation of each Euler parameter.

If we only want to compute e0, we can directly use (43). That is,

e0 =
1

2

√
1 + r11 + r22 + r33. (69)

The term inside the square root lies in the interval [0, 4]. Indeed, observe
that Trace(R) = r11+r22+r33 = 2cos θ+1 [49, Section 2.3]. Unfortunately,
numerical problems arise when this term gets close to zero. In practice, it
can even become negative due to rounding errors. Since this term coincides
with 2+2 cos θ, (69) becomes ill-conditioned when θ → π. Observe that (69)
only takes into account the diagonal entries of R. To obtain an alternative
formula involving all the elements of the rotation matrix, let us substitute
in (8) the values of e20, e

2
1, e

2
2, and e23 obtained from (31), (38), (39), and

(40), respectively. The result is:

1+r11+r22+r33
4

+

(
r32−r23
4e0

)2

+

(
r13−r31
4e0

)2

+

(
r21−r12
4e0

)2

= 1 (70)

Solving the above equation for e0, we obtain

e0 =
1

2

√
(r32−r23)2+(r13−r31)2+(r21−r12)2

3−r11−r22−r33 . (71)

Now, the term in the denominator of (71) also lies in the interval [0, 4]. Since
this denominator coincides with 2− 2 cos θ, (71) is ill-conditioned for θ → 0.

12



When this happens, the diagonal of R is dominant and, as a consequence,
the numerator in (71) tends also to be small. Thus, (43) and (71) can be
seen as complementary. As a consequence, it is reasonable to establish a
threshold for the trace of R, whose optimal value is found to be equal to
0 in [22], above which it is preferable to use (71) instead of (43). In other
words, we have that

e1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

√
1+r11+r22+r33, if r11+r22+r33 > 0,

1
2

√
(r32−r23)2+(r13−r31)2+(r21−r12)2

3−r11−r22−r33 , otherwise.

(72)
Extending this reasoning to the computation of the other elements of the
quaternion, the result is:

e2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

√
1+r11−r22−r33, if r11−r22−r33 > 0,

1
2

√
(r32−r23)2+(r12+r21)

2+(r31+r13)
2

3−r11+r22+r33
, otherwise.

(73)

e3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

√
1−r11+r22−r33, if −r11+r22−r33 > 0,

1
2

√
(r13−r31)2+(r12+r21)

2+(r23+r32)
2

3+r11−r22+r33
, otherwise.

(74)

e4 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

√
1−r11−r22+r33, if −r11−r22+r33 > 0,

1
2

√
(r21−r12)2+(r31+r13)

2+(r32+r23)
2

3+r11+r22−r33 , otherwise.

(75)

Due to the presence of square roots, the signs of ei, i = 0, . . . , 3 are unde-
fined. As in Chiaverini-Siciliano’s method where these signs are undefined,
if we assume that e0 is positive, we have to assign e2, e3, and e4, the signs
of r32−r23, r13−r31, and r21−r12, respectively.
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Observe that this method computes two alternative solutions for each
Euler parameter. This implicitly means that this approach works with up
to 16 alternative solutions for each set of Euler parameters, which should ob-
viously lead to a global better numerical behavior than Shepperd’s method.

3.5 Cayley’s method

This method is actually used for the computation of the double quaternion
representation of rotations in four dimensions [21]. It is based on the analysis
of the matrix of products given in (41), where it is already particularized to
three dimensions (see [23] for details).

Observe that the norm of the row or column vector i of P in (41) equals
e2i−1(e

2
0 + e21 + e22 + e23) = e2i−1. As a consequence, computing the norms

of the row of the matrix in (42), we straightforwardly obtain the following
formulas:

e0 =
1

4

√
(r11+r22+r33 + 1)2 + (r32−r23)2 + (r13−r31)2 + (r21−r12)2, (76)

e1 =
1

4

√
(r32−r23)2 + (r11−r22−r33 + 1)2 + (r21+r12)2 + (r31+r13)2, (77)

e2 =
1

4

√
(r13−r31)2 + (r21+r12)2 + (r22−r11−r33 + 1)2 + (r32+r23)2, (78)

e3 =
1

4

√
(r21−r12)2 + (r31+r13)2 + (r32+r23)2 + (r33−r11−r22+1)2. (79)

As in Chiaverini-Siciliano’s method, if we assume that e0 is positive, we
can give a consistent set of signs to the other Euler parameters by simply
assigning e1, e2, and e3 the signs of (r32−r23), (r13−r31), and (r21−r12),
respectively.

This method has important advantages with respect to all other algebraic
methods:

1. It involves a single mapping. There is no voting scheme to select the
best solution from a set of possible solutions.

2. It requires no divisions.

3. The sum of terms under the square root symbol can never be negative
independently of any rounding error.

4. It involves all the elements of the rotation matrix in the computation
of each Euler parameter.
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According to these characteristics, it should perform much better than all
other algebraic methods.

Since this method provides us with a single mapping that depends on all
the entries of the rotation matrix, it allows us to straightforwardly obtain the
derivatives of any Euler parameter with respect to any entry of the rotation
matrix. For example,

∂e0
∂r11

=
r11 + r22 + r33 + 1

8 e0
, (80)

and
∂e0
∂r32

=
r32 − r23

8 e0
. (81)

Thus, it can be easily checked that the derivative of ei, i = 0, . . . , 3, with
respect to any of the entries of the rotation matrix tends to infinity as ei
tends to 0.

4 Numerical methods

All numerical methods reduce the problem of computing the quaternion rep-
resentation of a given rotation matrix to obtain the eigenvector correspond-
ing to a known eigenvalue, which in turn reduces to finding a matrix null
space. This problem can be numerically solved in many different ways. To
show how dependent these methods are on the adopted numerical method,
two alternatives will be considered in the analysis given in Section 5, one
based on the singular value decomposition (SVD) and the other on Gaussian
elimination.

4.1 Coope et al.’s method

This method was proposed in [24]. In this case, e0 is initially computed using
(47). If e0 is non-zero but below a certain threshold, for which numerical
instabilities arise, the following refinement for e0 is used

e0 ← 1

4
√

1− e20
norm

⎛
⎝r32 − r23
r13 − r31
r21 − r12

⎞
⎠ . (82)

This operation can actually be seen as a single step of a Newton-Raphson
method to find a better approximation of a root.
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In [24], the threshold is set at e0 = 0.1, which corresponds to values
of trace(R) = −0.96. Nevertheless, after some experiments using single-
precision floating-point numbers, better results are obtained by increasing
this threshold to trace(R) = −0.3.

To compute e = (e1, e2, e3)
T , this method relies on the property

Re = e. (83)

Thus, the problem is reduced to compute the one-dimensional null space
basis of R−I. The approach adopted in [24] is slightly different because
(83) can be rewritten as (R + RT )e = 2 e to transform the problem into
a real well-conditioned symmetric eigenvector problem for the eigenvalue
equal to 2. Nevertheless, we have observed that the results are numerically
more accurate when this extra transformation is not introduced when using
Gaussian elimination.

If v is the obtained eigenvector for the eigenvalue 1, then

ei =
√

1− e20 vi, i = 1, 2, 3. (84)

Due to the presence of square roots, the signs of ei, i = 1, 2, 3 are unde-
fined. Again, as in Chiaverini-Siciliano’s if e0 is assumed to be positive, e1,
e2, and e3 have to be assigned the signs of r32−r23, r13−r31, and r21−r12,
respectively.

4.2 Bar-Itzhack’s method

Almost all algorithms for estimating spacecraft attitude (orientation) from
vector measurements consists in finding the rotation matrix R that mini-
mizes the function ∑

i

|bi −Rri|2 , (85)

where ri and bi are unit vectors in the global reference frame and in the body
reference frame, respectively. This problem was first proposed by Wahba in
1965 [26]. The original formulation included the possibility of weighting
each measurement which is removed here for the sake of simplicity.

Some early methods to solve this minimization problem can be found
in [27]. The know most robust ones are Davenport’s q-method [28, 29]
and the SVD method [30]. Markley and Morari showed that the q-method
performs better than the SVD method [31]. According to the q-method, the
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quaternion corresponding to the sought rotation matrix R is the eigenvector
corresponding to the largest eigenvalue of the following 4×4 matrix [32, 33]:

K =

(
σ zT

z S−σI3

)
, (86)

where

σ =
∑
i

rTi bi, (87)

S =
∑
i

rib
T
i +

∑
i

bir
T
i , (88)

z =
∑
i

ri×bi. (89)

The definition of the matrix in (86) is not the same as the one given in
[32, 33] because its entries have been permuted, and an irrelevant change of
sign has been introduced here, to provide a neat connection with the other
methods reviewed in this paper.

Several algorithms were presented to bypass the need of obtaining the
maximum eigenvalue and the corresponding eigenvector like the QUEST
method [34], and its evolutions [35, 36, 37, 38, 39], the ESOQ method [40,
41], the ESOQ2 method [42, 43], the FOAM method [44], and the TRIAD
method [45, 46]. According to the analyses of Markley [31] and Duarte [47],
the QUEST method is the fastest one and performs nearly equally to the
ESOQ and the ESOQ2 methods.

Bar-Itzhack proposed a method for the computation of the quaternion
corresponding to a given rotation matrix based on the above results, in
particular on the q-method and the QUEST method [48].

In Bar-Itzhack method, the matrix in (86) is constructed using the el-
ements of the rotation matrix and then the quaternion is computed either
using an eigenvector computation routine or the QUEST method. If the
given rotation matrix is not noisy (i.e., it is perfectly orthogonal), then
there is no need to compute the eigenvalues of K and thus the voting pro-
cess, necessary in other algorithms, can be avoided.

Since two vector measurements are enough to determine the matrix that
describes the rotation from the global reference frame to the body reference
frame, we can take

r1 = (1, 0, 0)T , (90)

r2 = (0, 1, 0)T . (91)
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Then, since bi = Rri, we have that

b1 = (r11, r21, r31)
T , (92)

b2 = (r12, r22, r32)
T . (93)

As a consequence, the problem of computing the quaternion representation
of R reduces to computing the eigenvector associated with the eigenvalue
equal to 2 of the following matrix:

K1 =

⎛
⎜⎜⎝
r11+r22 r32 −r31 r21−r12

r32 r11−r22 r21+r12 r31
−r31 r21+r12 r22−r11 r32

r21−r12 r31 r32 −r11−r22

⎞
⎟⎟⎠ . (94)

We could use other couples of vectors, instead of (1, 0, 0) and (0, 1, 0),
thus leading to a different expressions for the matrix in (94). With the
taken choice, the elements of the third column of R are not included in the
computations. This column is certainty redundant, as it can be obtained
as the cross product of the other two, but from the numerical point of view
it is better to take all the entries of R into account. Therefore, it seems
reasonable to use the triad r1 = (1, 0, 0)T , r2 = (0, 1, 0)T , and r3 = (0, 0, 1)T ,
in which case the problem reduces to computing the eigenvector associated
with the eigenvalue equal to 3 of the following matrix:

K2 =

⎛
⎜⎜⎝
r11+r22+r33 r32−r23 r13−r31 r21−r12

r32−r23 r11−r22−r33 r12+r21 r13+r31
r13−r31 r12+r21 r22−r11−r33 r23+r32
r21−r12 r13+r31 r23+r32 r33−r11−r22

⎞
⎟⎟⎠ . (95)

In other words, the problem reduces to finding the base vector for the
one-dimensional null space either of K1−2I or of K2−3I. We analyze the
behavior of both alternatives in the next section where are referenced to as
Bar-Itzhack-1 and Bar-Itzhack-2, respectively.

5 A Comparison

This paper has supplementary downloadable multimedia material. This ma-
terial includes MATLAB� functions implementing all methods described in
this paper, and several scripts needed to reproduce the comparisons in-
cluded below. No particular requirements, except for an installed copy of
MATLAB� version R2013 or higher, are needed.
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All comparisons have been implemented using single-precision floating-
point numbers according to IEEE Standard 754. Using this representation,
a number greater than approximately 3.4× 1038 or less than approximately
−3.4× 10−38 cannot be represented.

The following comparison is based on an in-depth statistical analysis.
To this end, we first need to generate random Euler parameters. Since this
is equivalent to generate random points uniformly distributed in S

3, we can
use the algorithm described in [50]. For each generated set of Euler pa-
rameters, we can generate a rotation matrix using (7), and then recover the
original Euler parameters using the reviewed methods. The committed error
is evaluated as the the norm of the vector difference between the original
and recovered parameters. In general, this is not a good way to compute
the distance between two orientations. Nevertheless, since in our case the
error is assumed to be very small, the length of the vector connecting both
orientations in S

3 is going to coincide with the value of the angle formed
by them as seen from the center of S3. Now, observe that this angle can
be taken as a distance between any two elements of the 3D rotation group
SO(3) [51].

The time and error performances of the described methods for 106 ran-
dom orientations are compiled in Table 1 and Table 2, respectively. These
results have been obtained for a MATLAB� implementation, included as
downloadable multimedia material, running on an Intel� CoreTMi7 with 32
GB of RAM.

Table 1: Time performance in microseconds

Method Average Best-case

Trigonometric-1 16.5 7.5
Trigonometric-2 21.4 12.9

Chiaverini-Siciliano 13.2 5.3
Hughes 9.2 4.3
Shepperd 13.6 7.5
Sarabandi-Thomas 10.5 6.0
Cayley 6.7 3.9

Coope et al. Gaussian 702.1 403.2
Coope et al. SVD 35.6 19.7
Bar-Itzhack-1 Gaussian 1094.0 608.3
Bar-Itzhack-1 SVD 36.7 21.7
Bar-Itzhack-2 Gaussian 1064.3 623.9
Bar-Itzhack-2 SVD 28.5 19.3
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Table 2: Error performance

Orientations Standard
Method recovered Worst-case Average deviation

without error ×10−6 ×10−6 ×10−6

Trigonometric-1 22703 2749.20 0.0732 2.750
Trigonometric-2 48641 65447.00 0.2252 72.775

Chiaverini-Siciliano 51202 203.70 NaN NaN
Hughes 153211 1178700.01 NaN NaN
Shepperd 244191 0.17 0.0304 0.0407
Sarabandi-Thomas 254643 0.12 0.0248 0.0346
Cayley 318168 0.18 0.0247 0.0361

Coope et al. Gaussian 27677 24911.03 0.0992 43.5392
Coope et al. SVD 16997 9.20 0.0929 0.0110
Bar-Itzhack-1 Gaussian 17909 59694.31 0.7151 79.7434
Bar-Itzhack-1 SVD 1448 0.88 0.0135 0.0150
Bar-Itzhack-2 Gaussian 26005 77301.52 0.6476 105.1176
Bar-Itzhack-2 SVD 8276 0.47 0.0100 0.0113

In Table 1, the first column gives the average time required for each
method to compute a set of Euler parameters; and the second column, the
time required in the best of the cases. The time for the worst case is mean-
ingless on a multitasking computer and hence it is excluded. In Table 2, we
have four columns. The first shows the number of cases, out of the 106 ori-
entations, in which the original orientation is recovered without error. The
other three correspond to the error committed in the worst-case, the average
error, and the standard deviation of the error, respectively. Observe that,
for Chiaverini-Siciliano’s and Hughes’ methods, some orientations could not
be recovered because they lead to negative radicands in their formulations,
and hence the NaNs —standing for “not a number”— appearing in the
corresponding rows.

We can draw two important conclusions from these results:

• Although they are used in Robotics, the second trigonometric method,
Chiaverini-Siciliano’s and Hughes’s method should be avoided.

• Cayley’s method, besides being the simplest one, is superior in terms
of accuracy and speed.

Among the numerical methods, the second version of Bar-Itzhack’s method
is the only one that deserves some attention as it can be used to obtain the
quaternion corresponding to a non-perfectly orthogonal rotation matrix [48].

20



In this case, the quaternion corresponds to the nearest orthogonal matrix to
the input non-orthogonal matrix, where closeness is expressed in the Frobe-
nius norm [52].

6 Conclusion

We have reviewed 13 methods proposed in the literature to compute the
quaternion corresponding to a given rotation matrix. These methods have
been organized in three groups (trigonometric, algebraic and numerical) and
they have been compared based on their time and error performance. From
this review and comparison, we have concluded that Cayley’s method is the
simplest, and yet the best, in terms of time and error performance. Cayley’s
method was previously used to obtain the double quaternion representation
of rotations in four dimensions. In this survey, we have simply particularized
it to the three dimensional case.

So far, the most common method used in most applications —Shepperd’s
method— introduces four different mappings, being thus necessary to select
the one that is numerically most stable in every case. We have shown that
this strategy is not necessary as Cayley’s method provides a single mapping
that works well in all cases.
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