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Abstract The eXtended Hybridizable Discontinuous Galerkin (X-HDG) method is devel-
oped for the solution of Stokes problems with void or material interfaces. X-HDG is a novel
method that combines the Hybridizable Discontinuous Galerkin (HDG) method with an
eXtended Finite Element (X-FEM) strategy, resulting in a high-order, unfitted, superconver-
gent method, with an explicit definition of the interface geometry by means of a level-set
function. For elements not cut by the interface, the standard HDG formulation is applied,
whereas a modified weak form for the local problem is proposed for cut elements. Heav-
iside enrichment is considered on cut faces and in cut elements in the case of bimaterial
problems. Two-dimensional numerical examples demonstrate that the applicability, accu-
racy, and superconvergence properties of HDG are inherited in X-HDG, with the freedom
of computational meshes that do not fit the interfaces.

Keywords interface · bimaterial · void · unfitted · Hybridizable Discontinuous Galerkin
(HDG) · high-order · level-set · X-FEM · X-HDG

1 Introduction

The eXtended Hybridizable Discontinuous Galerkin Method (X-HDG), initially proposed in
[15,14] for the Laplace equation, is further developed here for the solution of incompressible
flow problems with material or void interfaces. X-HDG is a novel method combining the
superconvergence and computational efficiency of the Hybridizable discontinuous Galerkin
(HDG) method with the flexibility of an eXtended Finite Element (X-FEM) philosophy with
respect to interface representation.

HDG [5,8] outperforms other discontinuous Galerkin (DG) methods for the solution of
steady problems or transient problems with implicit time integration: besides the accuracy
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gain due to superconvergence, the hybridization process underlying HDG significantly re-
duces the number of degrees of freedom (DOFs) in the linear system, similarly to static
condensation in the context of high-order continuous Galerkin (CG) finite elements. For in-
compressible flow problems [6,24], the HDG condensed system involves only the trace of
the velocity, i.e., the velocity at the mesh sides (faces in 3D), and the mean of the pressure
in each element, i.e., only a scalar variable per element for any degree of approximation k,
as unknowns. Thus, the number of DOFs for the velocity is slightly larger for HDG com-
pared to CG, due to the duplication of the vertex nodes (and edge nodes in 3D), but HDG
has fewer DOFs for the pressure. Moreover, the block structure of the sparsity pattern of
the HDG matrices has been shown to be convenient for linear solvers, concluding that HDG
is very competitive in front of CG, see [20,13,28] for efficiency comparisons for heat and
wave problems. A comparison of CPU time for the solution of 2D incompressible flow prob-
lems in [25] has found that HDG requires less CPU time for the direct linear solver than CG
for the same level of accuracy. In addition, HDG is based on a mixed formulation that is
stable even when all variables are approximated with polynomials of the same degree k.
Thus, in the case of Stokes problems, HDG provides convergence of order k + 1 in the L2

norm not only for the velocity but also for the derivative of the velocity and for the pressure
and, consequently, for the stress. In addition, a simple element-by-element postprocess of
the derivatives leads to a superconvergent approximation of the velocity, with convergence
of order k+2 in the L2 norm. HDG has been successfully applied to the solution of Laplace
and Stokes problems with interfaces in [18,27], but with a mesh fitting to the interface.

Advanced techniques for interface problems, such as the eXtended Finite Element (X-
FEM) method [23] or standard discretizations with phase-field models [19], have proved
their efficiency for the solution of multi-phase flow problems with non-fitted meshes. In
particular, phase-field models for flow problems have been successfully solved with DG
methods, see for instance [2,26], and the extension to HDG methods seems promising. The
strongest points of phase-field models are their suitability to consider the physics and chem-
istry between the different phases in a natural way, getting rid of defining specific interface
conditions, and the possibility of using standard continuous or discontinuous approxima-
tions for their solution. However, these models are based on a smeared representation of
interfaces, whose resolution depends on the discretization size and, therefore, extensive re-
finement around interfaces is necessary in practice [1]. X-FEM methods, on the other hand,
consider a sharp representation of the interface, which is usually implicitly represented by a
level-set function, and impose proper interface conditions. This allows these methods to be
accurate already for coarser meshes. The interface conditions are model dependent, see, for
example, [11] and references therein, and [4,9] for high-order approximations.

The X-HDG method developed here combines the advantageous aspects of HDG and
X-FEM, leading to a high-order unfitted numerical method, with a level-set description of
interfaces. X-HDG inherits the superconvergence properties of HDG, together with its re-
duced size of the linear system in the condensed variables, but with a mesh that does not
need to fit to the interface. With X-HDG, the computational mesh just covers the domain,
hence, the complexity of interface geometry does not add extra difficulty to the problem,
and no remeshing is required for evolving interfaces.

Similarly to standard HDG, a new variable for the trace of the velocity at the mesh
skeleton (i.e., the mesh sides) is introduced, and the Stokes equations are rewritten as a set
of local problems, corresponding to Dirichlet Stokes problems in each element, and some
global equations, imposing continuity of the tractions across element boundaries. For a non-
cut element, the solution of the local problem is exactly the same as for standard HDG. For
elements cut by an interface, modified local problems are stated and modified weak forms
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are proposed, depending on the type of interface. In the case of bimaterial interfaces, the
X-HDG approximation space at cut faces and cut elements is enriched with a Heaviside
function for all variables, in order to reproduce the discontinuities across the interface. For a
bimaterial interface or a Neumann boundary, following the HDG philosophy, a trace variable
is considered on the interface, similar to the one defined on the mesh skeleton, and continuity
of the velocity and the tractions across the interface is imposed in weak form. However, this
extra unknown can be isolated in the local problem using the interface conditions, and it does
not appear in the final condensed system. The modified local solver for cut elements has the
same structure as for standard elements: the solution at the element is expressed exclusively
in terms of the trace variable on the element faces and, for bimaterial and Dirichlet interfaces,
the mean of the pressure in the element.

To determine the trace variable on the element faces and the mean of the pressure, the
global problem is stated as for standard HDG, but this time it is discretized with an enriched
approximation in the case of cut faces. After condensation of the elemental variables, sim-
ilarly to standard HDG, the X-HDG linear system of equations involves only the trace of
the velocity on the mesh skeleton, and the elemental scalar for the mean of the pressure in
standard elements and in elements cut by Dirichlet or bimaterial interfaces. Thus, the X-
HDG system preserves the reduced number of DOFs, with a suitable block structure, but
with more DOFs (usually twice as many) for enriched faces.

The X-HDG method can also be interpreted as an immersed boundary method (IB),
see [22] for an overview, or a method with unfitted mesh [16] with overlapping for bimate-
rial problems, using the HDG natural strategies to impose boundary conditions or interface
continuity conditions on boundaries or interfaces.

Section 2 presents the X-HDG method for problems with unfitted boundary descriptions
of Dirichlet or Neumann kind, i.e., a problem with voids behind the interface. The X-HDG
method for bimaterial problems is presented in Section 3. In this case, the mesh is assumed
to fit to the domain boundary, but not to the bimaterial interface. For the sake of simplicity,
void and bimaterial interfaces are presented separately, but the extension of the formulation
to problems with both material and void interfaces, or problems with other boundary condi-
tions on the interface, is straightforward, following the ideas in this manuscript. Finally, the
applicability, the accuracy and the superconvergence properties of X-HDG are demonstrated
with numerical examples in Section 5. The proposed X-HDG formulation is applicable also
to 3D problems. The main difficulty in 3D computations is the implementation of the mod-
ification of the numerical integration for cut elements and the numerical integration on the
surface corresponding to the interface, which can be done following the proposals in [10] in
the context of X-FEM.

2 X-HDG formulation for void problems

Let Ω ⊂ Rd be a bounded domain with interior boundaries (also referred to as interfaces),
that may be of Dirichlet ID or Neumann IN type, and an exterior boundary ∂Ωext :=
∂Ω\(ID ∪ IN ). The following Stokes problem is considered,

−∇ · (ν∇u) +∇p = f in Ω
∇ · u = 0 in Ω

(−ν∇u+ pI) · n = g on IN

u = uD on ID
u = uD on ∂Ωext

(1)
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Fig. 1 Example of domain with two interfaces (left). The mesh covers the domain Ω (in gray) and fits
the exterior boundary ∂Ωext. Neumann and Dirichlet boundaries correspond to interfaces ID and IN , that
may cross some elements. Example of HDG computational mesh (right): representation of the nodes in the
elements and in the faces (mesh skeleton) for degree k = 3.

where u is the velocity, p is the pressure, ν is the material viscosity, I is the second-order
identity tensor, f is an external force, uD are prescribed values on the Dirichlet boundaries
ID and ∂Ωext, and g is a prescribed traction on the interior Neumann boundary IN . On
the exterior boundary ∂Ωext, Dirichlet boundary conditions are considered; however, other
boundary conditions do not add any difficulty, since they are implemented as in standard
HDG. The treatment of mixed boundary conditions on interfaces can also be deduced easily
following the ideas in this section.

The domainΩ is now assumed to be covered by a finite element mesh with nel elements
{Ki}neli=1, such that

Ω ⊂
nel⋃
i=1

Ki, Ki ∩Kj = ∅ for i 6= j, ∂Ωext ⊂ ∂

[
nel⋃
i=1

Ki

]
.

Note that the mesh fits the exterior boundary ∂Ωext, but some elements may be cut by the
interior boundaries ID and IN , see Figure 1. The union of all nfc faces Γf (sides for 2D)
intersecting the domain Ω is denoted as Γ , that is,

Γ =
nel⋃
i=1

[
∂Ki ∩Ω

]
=

nfc⋃
f=1

[
Γf ∩Ω

]
.

Elements are classified in four groups: elements cut by the Dirichlet interface, ED , ele-
ments cut by the Neumann interface, EN , stardard elements, ES , and elements in the void.
That is,

ED = {i ∈ E : Ki ∩ ID 6= ∅},
EN = {i ∈ E : Ki ∩ IN 6= ∅},
ES = {i ∈ E : Ki ⊂ Ω},

with E = {1, 2, . . . ,nel}. Elements cut by two interfaces are not considered here for sim-
plicity of explanations, but can be treated with similar procedures.

As in other X-FEM techniques, an interface may cut an element into two portions with
very different size, leading to ill-conditioning problems that may drastically affect to the
accuracy of the solution. In the numerical examples in this work, in the presence of bad-cut
situations, the mesh is slightly modified according to [14].
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Following the HDG rationale, problem (1) is split in a set of local problems, for each one
of the elements, and some global equations defined on element faces. The local problems
for the X-HDG formulation are

L−∇u = 0, ∇ · (−νL+ pI) = f and ∇ · u = 0 in Ki
u = û on ∂Ki

1

|∂Ki|

∫
∂Ki

p dS = ρi

 for i ∈ ES (2a)

L−∇u = 0, ∇ · (−νL+ pI) = f and ∇ · u = 0 in Ωi
u = uD on IDi
u = û on ∂Ωi\IDi

1

|∂Ωi|

∫
∂Ωi

p dS = ρi

 for i ∈ ED (2b)

L−∇u = 0, ∇ · (−νL+ pI) = f and ∇ · u = 0 in Ωi
(−ν∇u+ pI) · n = g on INi

u = û on ∂Ωi\INi

 for i ∈ EN (2c)

with the following definitions for cut elements

Ωi := Ki ∩Ω, IDi := ID ∩Ki, INi := IN ∩Ki.

As in standard HDG, the variable L is the gradient of u, allowing the splitting of the
PDE in two first order PDEs, û is the trace of u at the mesh faces Γ , and ρi is the mean of
the pressure at the boundary of the element, which is only a scalar for each element. The
new variables, û and {ρi}i∈ES∪ED , are assumed to be data in the local problems.

The local problem (2a) corresponds to the Stokes problem with Dirichlet boundary con-
ditions, u = û, for an uncut element. Note that the Stokes problem with only Dirichlet data
does not have a unique solution, and the last equation in (2a) closes the problem, setting the
mean of the pressure on the element boundary to ρi. The local problem for an element cut
by the Dirichlet interface (2b) is again a pure Dirichlet problem, with boundary conditions
on the interface IDi and on the faces ∂Ωi\IDi , and the mean of the pressure is set to ρi
to ensure a unique solution. Finally, the local problem for an element cut by the Neumann
interface (2c) corresponds to the Stokes problem in Ωi with Neumann boundary conditions
on the interface INi and Dirichlet boundary conditions on the element faces, ∂Ωi\INi . Note
that, in the last case, the problem is not a pure Dirichlet problem and, therefore, the mean of
the pressure is not set to any constant.

The local problems (2) can be solved element-by-element to determine u,L and p, given
û and ρi. Thus, now the problem reduces to determine û and {ρi}i∈ED∪ES with the global
equations

J(−νL+ pI) · nK = 0 on Γ\∂Ωext, (3a)∫
∂Ki∩Ω̄

û · n dS =

−
∫
IDi
uD · n dS for i ∈ ED

0 for i ∈ ES
(3b)

û = uD on ∂Ωext, (3c)

where J·K denotes the jump operator. On a face shared by two elements, KL and KR, the
jump is defined as

Jw · nK := wL · nL +wR · nR = (wL −wR) · nL,



6 C. Gürkan, M. Kronbichler, S. Fernández-Méndez

where w may be discontinuous across the face, and the subcript denotes the element where
the function, and the outward exterior normal, is evaluated.

Equation (3a) is the conservativity condition, weakly imposing continuity of the traction
across element faces. Equation (3b) imposes the incompressibility condition on the bound-
ary of the elements for i ∈ ES∪ED , ensuring well-posedness of the Dirichlet local problems
(2a) and (2b).

If the problem is a pure Dirichlet problem, i.e. IN = ∅, the solution of (1) is determined
up to a constant for the pressure. In this case, an additional constraint for the pressure must
be imposed at the global level, for instance, setting the mean of the pressure on the boundary
of the first element to 0, that is ρ1 = 0, or to a given constant.

Discretization spaces,

Vh :=
{
v ∈ L2(Ω) : v|Ki∩Ω ∈ Pk(Ki ∩Ω) for i ∈ ES ∪ ED ∪ EN}

Λh :=
{
v̂ ∈ L2(Γ ) : v̂|Γf∩Ω̄ ∈ Pk(Γf ∩ Ω̄) for f = 1, . . . ,nfc

}
,

are considered for elemental variables u, L and p, and for the trace variable û, respectively,
where Pk denotes the space of polynomials of degree less or equal to k. The discretiza-
tion of the local problems (2) and the global equations (3) leads to the complete X-HDG
formulation detailed next.

In next sections the space Vh does not appear explicitly. It is replaced by its restriction
to the element, that is Pk(Ki) or Pk(Ki ∩ Ω) for every element Ki, to highlight that local
problems (2) are stated and solved element-by-element in a decoupled way, with elemental
variables in the space Pk for each element. In all weak forms, the space for trace variables
will appear as Λh, to highlight that trace variables are global variables linked in the whole
mesh through the global equations (3).

2.1 X-HDG discretization for void problems: local problems

The X-HDG local problem for a standard element Ki, i ∈ ES , is the standard HDG local
problem corresponding to the discretization of (2a): given ûh ∈ [Λh]d and ρi ∈ R, find
uh ∈ [Pk(Ki)]

d, Lh ∈ [Pk(Ki)]
d×d and ph ∈ Pk(Ki) such that∫

Ki

(−∇ · (νLh) +∇ph) · v dV +

∫
∂Ki

τν(uh − ûh) · v dS =

∫
Ki

f · v dV∫
Ki

Lh : Q dV +

∫
Ki

(∇ ·Q) · uh dV −
∫
∂Ki

(Q · n) · ûh dS = 0∫
Ki

uh ·∇q dV −
∫
∂Ki

(ûh · n)q dS = 0

1

|∂Ki|

∫
∂Ki

ph dS = ρi,

(4)

for all v ∈ [Pk(Ki)]
d, Q ∈ [Pk(Ki)]

d×d and q ∈ Pk(Ki). The first equation in (4) can be
derived from the first equation in (2a) by applying integration by parts, replacing the velocity
gradient by the numerical velocity gradient,

L̂ := L+ τ(û− u)⊗ n, (5)

and undoing the integration by parts. The parameter τ is an stabilization parameter, here
taken as τ = 1, see [7,12] for details. The second and third equations are obtained from the
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weak form of the second and third equations in (2a) by simply applying integration by parts
and replacing the boundary condition u = û on the element boundary.

The X-HDG local problem for an element cut by the Dirichlet interface, Ki with i ∈
ED , corresponds to the discretization of (2b): given ûh ∈ [Λh]d and ρi ∈ R, find uh ∈
[Pk(Ωi)]

d, Lh ∈ [Pk(Ωi)]
d×d, ph ∈ Pk(Ωi) such that∫

Ωi

(−∇ · (νLh) +∇ph) · v dV +

∫
∂Ωi\IDi

ντ(uh − ûh) · v dS

+

∫
IDi

ντuh · v dS =

∫
Ωi

f · v dV +

∫
IDi

ντuD · v dS∫
Ωi

Lh : Q dV +

∫
Ωi

(∇ ·Q) · uh dV

−
∫
∂Ωi\IDi

(Q · n) · ûh dS =

∫
IDi

(Q · n) · uD dS∫
Ωi

uh ·∇q dV −
∫
∂Ωi\IDi

(ûh · n)q dS =

∫
IDi

(uD · n)q dS

1

|∂Ωi|

∫
∂Ωi

ph dS = ρi

(6)

for all v ∈ [Pk(Ωi)]
d, Q ∈ [Pk(Ωi)]

d×d and q ∈ Pk(Ωi). This local problem is exactly
the same as the local problem for standard elements (4), just integrating in the portion of
the element that is in the domain, Ωi, splitting the integrals on the Dirichlet boundary in
integrals on the faces and integrals on the Dirichlet interface, and replacing the Dirichlet
boundary data, u = uD , for the second ones.

The X-HDG local problem for an element cut by the Neumann interface, Ki with i ∈
EN , corresponds to the discretization of (2c): given ûh ∈ [Λh]d, find uh ∈ [Pk(Ωi)]

d,
Lh ∈ [Pk(Ωi)]

d×d, ph ∈ Pk(Ωi), ũih ∈ [Pk(INi )]d such that∫
Ωi

(−∇ · (νLh) +∇ph) · v dV +

∫
∂Ωi\INi

ντ(uh − ûh) · v dS

+

∫
INi

ντ(uh − ũih) · v dS =

∫
Ωi

f · v dV∫
Ωi

Lh : Q dV +

∫
Ωi

(∇ ·Q) · uh dV

−
∫
∂Ωi\INi

(Q · n) · ûh dS −
∫
INi

(Q · n) · ũih dS = 0∫
Ωi

uh ·∇q dV −
∫
∂Ωi\INi

(ûh · n)q dS −
∫
INi

(ũih · n)q dS = 0∫
INi

(−νLh · n+ phn) · ṽ dS +

∫
INi

τν(uh − ũih) · ṽ dS =

∫
INi

g · ṽ dS

(7)

for all v ∈ [Pk(Ωi)]
d,Q ∈ [Pk(Ωi)]

d×d, q ∈ Pk(Ωi) and ṽ ∈ [Pk(INi )]d. Comparing with
the previous local problems, the local problem for an element cut by the Neumann boundary
does not require setting the constant for the pressure. Moreover, now the trace of the velocity
on the interface is not a data, rather a new unknown ũih in the local problem, following the
HDG philosophy. This new unknown is local to an element and it is determined using the
discretization of the Neumann boundary condition on the interface, i.e., the last equation in
(7), which corresponds to the discretization of (3a) with the numerical velocity gradient

L̃ = L+ τ(ũi − u)⊗ n on INi . (8)
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u L p 

û û 

ũ u L p 

Fig. 2 Representation of the nodes for approximation for an standard element (left), and for an element cut
by the interface (right), for an approximation of degree k = 3. The nodal basis is defined in the whole
element, and on the faces intersecting the domain, but numerical integration in done only in the gray area of
the element and on the black portion of the faces associated with the domain Ω. The r + 1 white nodes on
the interface, in this case with r = k = 3, define the parametrization of degree k approximating the interface
in the element, in this case an isoparametric transformation from (−1, 1) to the curved segment.

The local problems in cut elements, (6) and (7), involve integrals in the portion of the
element in the domain, Ωi, and on the interface, Ii. Proper numerical quadrature rules to in-
tegrate in cut elements and interfaces are considered according to [4,15]. The interface INi
is approximated as a curved segment defined by an r-th degree polynomial parametrization,
which is given by r + 1 nodes on the interface, that is, the standard isoparametric transfor-
mation from (−1, 1) to a curved segment. A typical representation for r = k = 3 is given in
the right panel of Figure 2, see Section 4 for further details. The r-th degree parametrization
is used to define numerical quadratures on the interface, and on the cropped element.

Although the approximation in a cut element, or on a cut face, is defined as a polynomial
function in Ωi = Ki ∩ Ω, or on Γf ∩ Ω, respectively, standard nodal basis functions in the
whole element Ki, or face Γf , are considered. That is, the reference element is the standard
one but with a modified numerical quadrature rule to integrate only in the domain Ω. In
the example in Figure 2 right, polynomial nodal basis functions associated to all nodes (in
gray) are considered in the element, and they are integrated only in the gray area. On faces
intersecting the domain, nodal basis functions for all nodes (in black) are considered, and
they are integrated only in the black portion of the face. Faces not intersecting the domain
are disregarded in the integration.

The functional approximation space on the interface Pk(INi ) is defined as the trans-
formation of the one-dimensional k-th degree polynomial space from (−1, 1) to the curved
segment approximating the interface INi . The standard nodal basis in (−1, 1) is mapped to
the curved segment by means of the usual isoparametric transformation given by the coor-
dinates of the r + 1 nodes on INi .

The local problem for a standard element (4) or an element cut by the Dirichlet interface
(6) leads to a system of equations of the form

Ai
uu Ai

uL Ai
up 0

Ai
Lu Ai

LL 0 0

Ai
pu 0 0 Ai

ρp
T

0 0 Ai
ρp 0




ui

Li

pi

λ

 =


f iu

f iL

f ip

0

+


0

0

0

1

 ρi −


Ai
uû

Ai
Lû

Ai
pû

0

Λi (9)

with different expressions for the matrices and vectors, depending on the kind of element.
In system (9) the constraint for the mean of the pressure, 1

|∂Ωi|
∫
∂Ωi

p dS = ρi, is imposed

with a Lagrange multiplier λ, the vectors ui, Li and pi are elemental vectors of nodal values,
and Λi is a vector with the nodal values of the trace of the velocity ûf for the faces of the
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element. This system can be solved for each element, leading to the so-called local solver in
the element, that is, an explicit expression of the elemental variables ui, Li and pi, in terms
of the trace of the velocity at the faces Λi and the mean of the pressure ρi,

ui = SiuΛi + riuρi + f iU , Li = SiLΛi + riLρi + f iL, pi = SipΛ
i + ripρi + f ip, (10)

where the matrices Si∗ and the vectors ri∗, f i∗ depend on the matrices and vectors in (9).
In the case of an element cut by the Neumann interface (7), the system of equations is

of the form 
Ai
uu Ai

uL Ai
up Ai

uũ

Ai
Lu Ai

LL 0 Ai
Lũ

Ai
pu 0 0 Ai

pũ

Ai
ũu Ai

ũL Ai
ũp Ai

ũũ




ui

Li

pi

ũi

 =


f iu

0

0

gi

−


Ai
uû

Ai
Lû

Ai
pû

0

Λi.

Thus, the local solver can be written as

ui = SiuΛi + f iU , Li = SiLΛi + f iL, pi = SipΛ
i + f ip, (11)

expressing the elemental nodal values, ui, Li and pi, in terms of the trace of the velocity
at the faces Λi. The trace on the interface ũi is an elemental variable that could also be
expressed in terms of the trace values in Λi. However, its explicit expression is not used,
because ũi is just an auxiliary variable in the local problem, not present in the global equa-
tions.

2.2 X-HDG discretization for void problems: global problem

The X-HDG global problem corresponding to the discretization of (3) with the numerical
velocity gradient (5) is: find ûh ∈ [Λh]d and ρi ∈ R for i ∈ ES ∪ ED satisfying∫

Γ
v̂ · J(−νLh + phI) · nK dS + 2

∫
Γ
v̂ · ({ντuh} − {ντ}ûh) dS = 0 (12)

for all v̂ ∈ [Λh]d such that v̂ = 0 on ∂Ωext,

∫
∂Ki∩Ω̄

ûh · n dS =

−
∫
IDi
uD · n dS for i ∈ ED

0 for i ∈ ES
(13)

and
ûh = P2(uD) on ∂Ωext, (14)

where P2 denotes the L2 projection onto the discrete space on the exterior boundary, {·}
denotes the mean operator, and uh, Lh and ph are solutions to the local problem for each
element, i.e., the solution of (4), (6) or (7). The mean of a function w on a face shared by
two elements KL and KR is defined as

{w} :=
1

2
(wL + wR).
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Equations (12) and (13) can be written in matrix form as

Af,L
ûu uL(f) + Af,L

ûLL
L(f) + Af,L

ûp pL(f)

+Af,R
ûu uR(f) + Af,R

ûL L
R(f) + Af,R

ûp pR(f) + Af
ûûûf = 0

(15)

for f = 1, . . . ,nfc, and

AρûΛi =

{
f iD for i ∈ ED,
0 for i ∈ ES ,

(16)

where R(f) and L(f) denote the right and left elements sharing the face f . Replacing the
local solvers – that is, equations (10) or (11) for the elements KL(f) and KR(f) – in (15)
and (16), and applying the Dirichlet boundary condition (14), the global problem leads to a
system of equations involving only the trace variable {ûf}nfcf=1 and the mean of the pressure
on the boundary of the elements {ρi}i∈ES∪ED . After solving this global system, elemental
variables can be obtained by simply plugging in the solution, {ûf}nfcf=1 and {ρi}i∈ES∪ED ,
in the local solver for each element.

From an implementation point of view, the trace vector Λi can be defined to include the
nodal values only for faces intersecting the domain. However, the simplest implementation
assembles for all faces, even if they do not intersect the actual computational domain Ω.
The matrices assembled for faces not intersecting the domain are void matrices and, there-
fore, the corresponding rows and columns in the global system are void. Those rows and
columns are removed from the system, reducing its size and rendering the system solvable
with unique solution, after imposing boundary conditions.

2.3 X-HDG discretization for void problems: postprocess for superconvergent solution

Analogously to standard HDG, an element-by-element postprocessing provides a supercon-
vergent solution. The procedure in a standard or cropped element, Ωi = Ω ∩Ki, is: given
uh ∈ [Pk(Ωi)]

d and Lh ∈ [Pk(Ωi)]
d×d, find u∗h ∈ [Pk+1(Ωi)]

d such that∫
Ωi

∇u∗h :∇v dV =

∫
Ki

Lh :∇v dV ∀v ∈ [Pk+1(Ωi)]
d,∫

Ωi

u∗h dV =

∫
Ωi

uh dV .
(17)

The solution of this element-by-element computation u∗h converges with order k + 2 in the
L2 norm, see [8,6] for a proof for standard HDG.

2.4 On the stability of the X-HDG discretization

The present formulation is subject to the usual deterioration of condition numbers in the
linear system for very small cut scenarios, unless proper stabilization terms are used. The
stability behavior is indeed similar to the Laplace case discussed in [14], as opposed to
formulations using discretizations of the primal form where inf-sup stability needs to be
specifically taken into account when developing stabilized formulations, see e.g. [3]. Due to
the special construction of the cut scenario with an additional trace variable on the interface,
the standard HDG a priori error estimation presented in [6] carries over to the cut case with
our method. In particular, the representation of the velocity gradient L as polynomials of
degree k, the same as the pressure variable p, implies inf-sup stability also in elements cut
by the interface.
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3 X-HDG formulation for bimaterial problems

Let Ω ⊂ Rd be a bounded domain divided in two disjoint subdomains, Ω = Ω1 ∪Ω2, with
an interface I = Ω1 ∩Ω2. The following Stokes bimaterial problem is considered,

−∇ · (ν∇u) +∇p = f in Ω1 ∪Ω2,

∇ · u = 0 in Ω1 ∪Ω2,

Ju⊗ nK = 0 on I,
J(−ν∇u+ pI) · nK = g on I,

u = uD on ∂Ω,

(18)

where the material viscosity may be discontinuous across the interface (that is, ν = νi in
Ωi for i = 1, 2), and g is a given interface force. Again, Dirichlet boundary conditions
are considered on the exterior boundary, ∂Ω, for simplicity. An additional constraint on the
pressure is added to ensure a unique solution, for instance, setting the mean of the pressure
on the boundary of the first element to 0 or to a given constant.

The domain Ω is again assumed to be split into finite elements {Ki}neli=1, and Γ is now
the union of all faces in the mesh. Thus, the bimaterial Stokes problem (18) can be written as
a set of local problems, and global equations. The local problem for elements not intersecting
the interface is the standard HDG one (2a), whereas the local problem for an element cut by
the interface now incorporates the interface conditions,

L−∇u = 0, ∇ · (−νL+ pI) = f , ∇ · u = 0 in Ki
Ju⊗ nK = 0, J(−ν∇u+ pI) · nK = g on Ii

u = û on ∂Ki
1

|∂Ki|

∫
∂Ki

p dS = ρi


if Ii := I ∩Ki 6= ∅. (19)

The global problem is given by (3) with the solvability condition
∫
∂Ki

û · n dS = 0 for all
elements, and the global constraint for the pressure ρ1 = 0.

It is worth noting that the conservativity condition (3a) applies only to faces that do
not match the bimaterial interface. If a face coincides with the interface, the conservativity
condition with interface force, J(−ν∇u+ pI) · nK = g, should be considered.

The following discrete spaces for elemental variables, u, L and p, and for the trace
variable, û, are considered

Vhenr :=
{
v ∈ L2(Ω) : v|Ki

∈ Pk(Ki) if Ki ∩ I = ∅,
v|Ki

∈ Pk(Ki)⊕HPk(Ki) if Ki ∩ I 6= ∅
}
,

Λhenr :=
{
v̂ ∈ L2(Γ ) : v̂|Γi

∈ Pk(Γi) if Γi ∩ I = ∅,
v̂|Γi
∈ Pk(Γi)⊕HPk(Γi) if Γi ∩ I 6= ∅

}
.

(20)

The Heaviside function H enriches the approximation in cut elements and on cut faces and
is defined as

H =

{
1 in Ω1

−1 in Ω2.

The X-HDG approximation space is discontinuous across the interface for the velocity
u, its gradient L, and the pressure p. This is the natural choice for the enrichment of the gra-
dient L and the pressure p that are discontinuous across the interface. Despite the continuity
of the velocity u in the problem setting (18), X-HDG considers a discontinuous approxi-
mation and imposes the condition on the solution u and on the tractions in the usual HDG
fashion.
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For the sake of simplicity, all derivations in this section are done assuming that cut
elements are split into two regions, which corresponds to the usual situation. Thus, one
Heaviside enrichment is considered in (20). However, with high-order approximations more
complicated situations, dividing elements or faces into more regions, may appear. If it is the
case, an enrichment with multiple Heaviside functions should be considered to ensure an
independent approximation in each region of the element or face; for details see [14].

3.1 X-HDG for bimaterial Stokes: local problems

The local problem for standard elements is again the same as for standard HDG (4). The X-
HDG local problem for an element intersected by the material interface is the discretization
of (19), that is: given ûh ∈ [Λhenr]

d and ρi ∈ R, find uh ∈ [Pk(Ki) ⊕ HPk(Ki)]
d, Lh ∈

[Pk(Ki)⊕HPk(Ki)]
d×d, ph ∈ Pk(Ki)⊕HPk(Ki) and ũih ∈ [Pk(Ii)]d such that

∫
Ki

(−∇ · (νLh) +∇ph) · v dV +

∫
∂Ki

ντ(uh − ûh) · v dS

+2

∫
Ii

({τνuh} − {τν}ũih) · v dS =

∫
Ki

f · v dV∫
Ki

Lh : Q dV +

∫
Ki

(∇ ·Q) · uh dV −
∫
∂Ki

(Q · n) · ûh dS −
∫
Ii

JQ · nK · ũih dS = 0,∫
Ki

uh ·∇q dV −
∫
∂Ki

(ûh · n)q dS −
∫
Ii

JqnK · ũih dS = 0,

(21a)

1

|∂Ki|

∫
∂Ki

ph dS = ρi, (21b)

∫
Ii

J(−νLh · n+ phn)K · ṽ dS + 2

∫
Ii

({τνuh} − {τν}ũih) · ṽ dS =

∫
Ii
g · ṽ dS (21c)

holds for all v ∈ [Pk(Ki) ⊕ HPk(Ki)]
d, Q ∈ [Pk(Ki) ⊕ HPk(Ki)]

d×d, q ∈ Pk(Ki) ⊕
HPk(Ki) and ṽ ∈ [Pk(Ii)]d.

Again a new trace variable ũih is introduced to approximate the trace of the velocity on
the interface. With this auxiliary variable, the standard HDG local problem can be stated in
Ω1 ∩Ki and in Ω2 ∩Ki separately, setting the Dirichlet condition to û on ∂Ω1\Ii and on
∂Ω2\Ii, and to the new trace variable ũih on the interface Ii. Summing up the two local
problems results in equations (21a) and (21b). Finally, equation (21c) is the discretization
of the conservativity condition across the interface, J(−ν∇u+ pI) ·nK = g on Ii, with the
numerical velocity gradient (8).

A proper numerical quadrature must be considered for the numerical integration in the
element, accounting for the discontinuous nature of the approximations and the material
parameter ν. Again, the r-th degree parametrization of the interface Ii discussed in Section 4
is considered for the definition of numerical quadratures in each portion of the element, for
numerical integration on the interface Ii, and for the definition of the approximation space
for the trace on the interface Pk(Ii).
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Considering nodal basis functions and imposing the constraint on the pressure (21b)
with a Lagrange multiplier λ, the local problem (21) can be written in matrix form as



Ai
uu Ai

uL Ai
up Ai

uũ 0

Ai
Lu Ai

LL 0 Ai
Lũ 0

Ai
pu 0 0 Ai

pũ Ai
ρp
T

Ai
ũu Ai

ũL Ai
ũp Ai

ũũ 0

0 0 Ai
ρp 0 0





ui

Li

pi

ũi

λ


=



f iu

0

0

f iũ

0


+



0

0

0

0

1


ρi −



Ai
uû

Ai
Lû

Ai
pû

0

0


Λi. (22)

This system leads to a local solver of the form (10) expressing ui, Li and pi in terms of
the nodal values of the trace of the velocity, Λi, and the mean of the pressure in the boundary
of the elements, ρi. Similarly to the formulation with Neumann interfaces, the auxiliary trace
variable ũi is a variable in the local problems, that does not appear in the global problem.

3.2 X-HDG for bimaterial Stokes: global problem

The X-HDG global problem, corresponding to the discretization of (3) with the solvability
conditions and the global constraint for the pressure is to find ûh ∈ [Λhenr]

d and {ρi}neli=1

satisfying (12) for all v̂ ∈ {[Λhenr]
d : v̂ = 0 on ∂Ω},

∫
∂Ki

ûh · n dS = 0 for i = 1, . . . ,nel,
ûh = P2(uD) on ∂Ω and ρ1 = 0, where uh, Lh and ph solve the local problem for each
element, i.e., (4) or (21).

These equations are exactly the same as for standard HDG, but with enriched approxi-
mation spaces for cut elements and cut faces. They can be written in matrix form as (15) for
f = 1, . . . ,nfc, and AρûΛi = 0 for i = 1, . . . ,nel.

Similarly to standard HDG, inserting the result of the local solvers in the global equa-
tions leads to a linear system of equations involving only the mean of the pressure on the
boundary of the elements {ρi}neli=1 and the trace of the velocity {ûf}nelf=1, but with double
degrees of freedom for enriched faces.

3.3 X-HDG for bimaterial Stokes: postprocess for superconvergent solution

The element-by-element postprocessing to obtain a superconvergent solution in every cut
element Ki with Ki ∩ I 6= ∅ is: given uh ∈ [Pk(Ki) ⊕HPk(Ki)]

d and Lh ∈ [Pk(Ki) ⊕
HPk(Ki)]

d×d, find u∗h ∈ [Pk+1(Ki)⊕HPk+1(Ki)]
d such that∫

Ωi

∇u∗h :∇v dV =

∫
Ki

Lh :∇v dV ∀v ∈ [Pk+1(Ki)⊕HPk+1(Ki)]
d,∫

Ωi

u∗h dV =

∫
Ωi

uh dV ,∫
Ωi

Hu∗h dV =

∫
Ωi

Huh dV .

This elemental postprocess is equivalent to consider the usual postprocessing procedure (17)
on each one of the material domains, Ki ∩Ω1 and Ki ∩Ω2.
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4 Level-set representation of interfaces and approximation

Following the X-FEM philosophy, interfaces are assumed to be defined with level-set func-
tions given by nodal values on an r-th degree mesh, using the same elements as the compu-
tational mesh and degree r ≥ k.

Integrals in cut elements Ωi and on interfaces require quadrature that is restricted to the
portion of the elements intersecting with the actual computational domain. To keep high-
order convergence rates, a specific representation of the interface Ii := I ∩Ki in cut ele-
ments is necessary. For 2D computations, the r-degree representation proposed in [4,15] is
considered here: to define an r-th degree parametrization, r + 1 points are computed on the
interface Ii. In fact, the usual isoparametric transformation (superparametric transformation
for r > k) from the 1D reference element (−1, 1) to the physical curved segment defined
by the r+ 1 nodes, is applied, see an example in Figure 2 (right). This representation of the
interface leads to proper definitions of numerical quadratures in the domain Ωi and on the
interface Ii.

In addition, this parametrization is also used to define the approximation space for the
trace on the interface: Pk(Ii) is generated by the transformation of the nodal polynomial ba-
sis in (−1, 1) to the curved segment, approximating Ii by means of the usual isoparametric
transformation given by the coordinates of the r + 1 nodes on Ii.

A similar strategy could be considered for 3D computations. Points on the interface are
computed to define an r-th degree parametrization of the interface of the element, which is a
curved triangle or a quadrilateral. The parametrization induces a parametrization of the two
regions of the volume, which may be split in sub-cells for simplicity. These parametrizations
lead to numerical quadratures for the interface and for the volumes, see [10] for details, in the
context of X-FEM. In addition, the parametrization is used as transformation from the trian-
gle or quadrilateral reference element to the physical curved interface for X-HDG, defining
the approximation space for the trace variable as the transformation of the 2D standard poly-
nomial basis.

Only 2D numerical tests are considered in this manuscript. In all cases, a k-th degree
level set function is used for the X-HDG solution and an additional level set function with
polynomial degree r = k + 1 is used for the postprocessed solution. Nevertheless, it is
important mentioning that higher degrees for the level-set function may be necessary to en-
sure high-order convergence rates for bimaterial interfaces with involved interface geome-
tries. For instance, the heat problem with a kidney-shaped interface in [14] requires degree
r = k + 2 to show optimal convergence. According to the analysis for standard HDG with
meshes fitted to the interface in [18], a level set function with degree r = 2k + 1 provides
optimal convergence of X-HDG in the more general situation for bimaterial problems.

5 Numerical examples

The performance of X-HDG is assessed on several 2D numerical examples involving Neu-
mann, Dirichlet, or material interface conditions. In all tests, the stabilization parameter is
set to τ = 1 over all faces. A k-th degree level set function is used for the X-HDG solu-
tion and an additional level set function with polynomial degree r = k + 1 is used for the
postprocessed solution.
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Fig. 3 Circular void: computational mesh after two mesh refinements and circular interface with radius
R=0.41 (left), and x component of the velocity (right). White elements are in the interior of the domain.
Elements in light gray are elements cut by the interface I. Elements in dark gray are inside the void and
disregarded in the computation.
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Fig. 4 Circular void: convergence history of X-HDG velocity (left) and pressure (right), with Dirichlet bound-
ary conditions on the interface and radius R = 0.41. The numbers correspond to the slope of each segment,
and are underlined for postprocessed velocity.

5.1 Circular void

The Stokes problem (1) with ν = 1 is solved over a square domain with a centered circular
void of radius R, that is, Ω = (−1, 1)2\B((0, 0), R). We consider both Neumann and
Dirichlet boundary conditions on the void boundary I = ∂B((0, 0), R), while Dirichlet
boundary conditions are considered on the exterior boundary ∂Ω\I = ∂

(
(0, 1)2

)
. The

analytical solution is a smooth polynomial solution,

u(x, y) = (y5, x5)T , p = x+ y.

The right hand side f is chosen to match with this analyical solution. The computational
domain after two uniform refinements of the mesh as well as the x component of the velocity
are shown in Figure 3. As stated in section 2, the computational mesh covers the domain Ω
and fits to the exterior boundary ∂Ω\I. A level-set function is used to describe the interface
I. In all mesh representations, elements filled with white color are in the interior of the
domain, elements in light gray are elements cut by the interface I, and elements in dark
gray are inside the void and hence disregarded in the computation.
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Fig. 5 Circular void: convergence history of X-HDG velocity (top) and pressure (bottom), with Neumann
boundary conditions on the interface and radius R = 0.5, with uniform regular mesh (left) and with a
slightly modified the mesh to avoid ill-conditioning (right). The numbers correspond to the slope of each
segment, and are underlined for postprocessed velocity.

Figure 4 shows the evolution of the L2 error for the velocity and the postprocessed su-
perconvergent velocity (left) and for the pressure (right), for polynomial degrees k = 2, 3, 4
and 3 nested mesh refinement steps. Dirichlet boundary conditions are imposed on the circle.
This toy example verifies the optimal convergence rates of X-HDG without mesh fitting. In
this test, the radius of the circle has been selected to avoid ill-conditioning problems, leading
to optimal convergence rates for the velocity approximation, including superconvergence for
the post-processed velocity. However, ill-conditioning effects can be observed in the pres-
sure convergence plot for the finer meshes and the highest degree, k = 4.

Ill-conditionting problems can be avoided, for instance, by using the strategy described
in [14] that slightly modifies the mesh in the presence of bad-cut elements, that is, elements
cut by the interface with a small support inside the computational domain. Figures 5 and
6 illustrate the strategy. Figure 5 shows the convergence plots for velocity and pressure,
on a uniform regular mesh (left column) and a slightly modified mesh (right column), for
a circular interface with radius R = 0.5. In this case Neumann boundary conditions are
imposed on the circle. The presence of sliver cut elements in the uniform regular mesh case
with R = 0.5 leads to severe ill-conditioning of the matrix, spoiling the convergence for
the finer meshes and higher degrees. Figure 6 shows two details of the computational mesh,
depicting the elements that are cut by the interface in light gray. In the top left zoom, three
elements become very slow once they are cut, because they have one vertex very close to
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Fig. 6 Circular void: slight modification of the mesh to avoid ill-conditioning (right) for the interface with
R = 0.5. Details of the mesh before (left) and after (right) the modification. Light gray elements are cut by
the interface.

the interface. These nodes are moved on top of the interface such that the corresponding
elements are not cut elements anymore. The bottom left zoom shows two elements with a
face close to the interface, again in elements with a very small overlap with the domain. In
[14] those faces were moved to fit the interface, and the corresponding elements became non-
cut elements with a curved edge fitting to the interface. Here, to avoid curved edges, the node
closer to the interface is moved farther away from it, ensuring that the corresponding cut
elements have a large enough overlap with the computational domain. Both strategies lead
to better conditioning and recover optimal convergence rates for both velocity and pressure.

5.2 Kidney shaped void with Neumann conditions

The square domain (−1, 1)2 is cropped by the kidney-shaped interface defined as the 0-level
set of

ϕ(x, y) =
(

3
(

(x+ 0.5)2 + y2
)
− x− 0.5

)2
−
(

(x+ 0.5)2 + y2
)

+ 0.1,

as shown in the left panel of Figure 7. Neumann boundary conditions are considered at
the interface, and Dirichlet conditions are imposed on the exterior boundary. The analytical
solution reads

u(x, y) =
(

0, cos
(

1− x2
))T

, p = x+ y.

Computations are done for polynomial degrees k = 1, . . . , 4, and 3 nested mesh refinement
steps. Even though this test considers an involved geometry, which may require higher de-
grees for the level-set function (see [14]), a level-set representation with the same degree as



18 C. Gürkan, M. Kronbichler, S. Fernández-Méndez

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3

10−10

10−8

10−6

10−4

10−2

log
10

(Mesh Size)
L2

 e
rr

or

P1
P1 postp.
P2
P2 postp.
P3
P3 postp.
P4
P4 postp.

1.9
2.0

2.0 2.9

3.0
3.0

3.5

3.9

4.0

4.8

5.0

5.0

3.0
3.5

2.5 4.0

4.0

4.0

5.1

5.1

4.9

5.0

7.3

4.9

Fig. 7 Kidney shaped void with Neumann conditions: computational mesh after two mesh refinements and
kidney-shaped interface (left) and convergence of X-HDG velocity (right). Slopes corresponding to the post
processed solution u∗ are underlined.

the approximation is used here for the computation of the solution and of the superconver-
gent velocity.

Figure 7 right plots the evolution of the velocity L2 error, showing that X-HDG provides
optimal convergence rates and superconvergence also for a rather complex interface all the
way to errors below 10−10.

5.3 Bimaterial straight interface

Inspired by [17], a bimaterial problem with continuous solution is solved over a square
domain Ω = (−0.4, 1.6)2. The interface is a straight line passing through {y = 0}, and
material parameters are set to ν1 = 1 in Ω1 = {(x, y) ∈ Ω | y < 0}, and to ν2 = 2 in
Ω2 = Ω\Ω1, see the left panel of Figure 8. Dirichlet boundary conditions are applied on
the boundary ∂Ω and the analytical solution is

u(x, y) =

{(
(x5y)/ν1 , (−2.5x4y2)/ν1

)T in Ω1,(
(x5y)/ν2 , (−2.5x4y2)/ν2

)T in Ω2,

with p = x+ y in Ω, see Figure 9.
The right panel of Figure 8 shows the L2 error in the velocity for polynomial degrees

k = 1, . . . , 4 and 3 nested steps of refinement. The results show that the X-HDG formu-
lation for the bimaterial Stokes problems provides optimal convergence in the solution and
superconvergence in the post-processed solution for problems including a straight interface.

5.4 Bimaterial circular interface

After testing the performance of X-HDG with voids and straight material interfaces, X-HDG
is examined next over a bimaterial problem where the interface is defined by a second-
degree level-set function. The Stokes problem (18) is solved over the square domain Ω =
(−1, 1)2. A circular interface of radius R = 0.41 divides the domain into two regions,
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Fig. 8 Bimaterial straight interface: computational mesh after two mesh refinements and linear interface
(left), and convergence for velocity (right).

Fig. 9 Bimaterial straight interface: x and y components of the velocity.

Ω1 = {x ∈ Ω | ||x|| > R} and Ω2 = Ω\Ω1, with material parameters ν1 = 10 and
ν2 = 1, respectively, see Figure 10. The source term and the Dirichlet data on the exterior
boundary are set to yield the analytical solution

u(x, y) =

{(
y5, x5

)T in Ω1,(
cos(1− y5), sin(1− x5)

)T in Ω2,

and p = x + y in Ω. In this setting, both the velocity and the tractions are discontinuous
across the interface.

For this test, the interface conditions for the local problem in a cut element (19) are
given by

u1 − u2 = α on Ii,
J(−ν∇u+ pI) · nK = g on Ii,

where ui denotes the velocity from Ωi, and α and g are data consistent with the analytical
solution. The H-XDG discretization of the local problem (21a) is then modified with a new
definition of the auxiliary trace variable, so that u1 = ũih + α and u2 = ũih. The integrals∫
Ii τ1ν1α · v dS,

∫
Ii(Q1 · n1) ·α dS and

∫
Ii q1n1 ·α dS are added to the right-hand side

of the equations (21a), and the integral
∫
Ii τ1ν1α · ṽ dS is added to the right-hand side of

(21c).
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Fig. 10 Bimaterial circular interface: computational mesh after two mesh refinement steps and circular inter-
face (left), and the y component of the discontinuous velocity (right).
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Fig. 11 Bimaterial circular interface: convergence plot for velocity (left) and pressure (right).

Figure 11 presents the convergence plots for the velocity, the postprocessed superconver-
gent velocity and pressure, demonstrating good agreement with the theoretical convergence
rates.

5.5 Stationary air bubble

As a next example, the bimaterial Stokes problem defined in (18) is considered to model
a realistic case: an air bubble with radius R = 2/3 mm in an ambient water domain Ω =
[−1, 1]2, assuming a characteristic length L = 1 mm and a characteristic velocity U = 10−2

m/s. The non-dimensional viscosities are set to be ν1 = 10−1 for water and ν2 = 10−3 for
the air bubble. The pressure jump at the interface is induced by an artificial surface tension

force fI(v) =

∫
I
τκv · n dS with surface tension coefficient τs = 700. In this formula,

κ(x) denotes the local curvature of the interface, thus, τsκ = τs
2
R = 2100. The analytical

solution of the air bubble problem is given in [21], that is,

u(x, y) =


(
−yα(r)e−r

2

, xα(r)e−r
2
)T

in Ω1,(
−yα(r)e−r

2

, xα(r)e−r
2
)T

in Ω2
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Fig. 12 Stationary air bubble: computational mesh after two mesh refinements and interface of the circular
bubble (left), and pressure plot (right).
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Fig. 13 Stationary air bubble: convergence plots over three refined meshes and varying approximation de-
grees for velocity (left). Convergence plots for pressure with (dashed line) and without (solid line) mesh
modification (right).

with

α(r) =


1
ν1

+ ( 1
ν2
− 1
ν1

)er
2−R2

in Ω1,

1
ν2

in Ω2,

and

p(x, y) =

{
x3 in Ω1,

x3 + 2τs/R in Ω2.

Figure 12 shows the air bubble and the water domain together with a plot of the dis-
continuous pressure. Figure 13 left panel presents the optimal convergence plots for the ve-
locity and the postprocessed superconvergent velocity. Over the same figure on right panel,
the pressure convergence is detailed. It can be observed that pressure convergence is more
sensitive to the ill conditioning than the velocity, causing negative slopes. To avoid that, for
the highest approximation degree and the finest mesh, we have employed the mesh modi-
fication strategy detailed earlier in Section 5.1. Although mesh modification alleviates the
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Fig. 14 Flow around several obstacles: computational mesh, pressure and velocity for HDG with a fine fitted
mesh (left) and for X-HDG with uniform regular mesh (right)

ill conditioning and improves convergence, asymptotic rates are still not reached with the
meshes considered in this analysis.

5.6 Flow around several obstacles

As a last example, the flow around several obstacles in a rectangular domain is studied.
The obstacles are treated as voids with no-slip boundary conditions, u = 0. An inflow
condition is specified on the left of the computational domain with velocity u = (10, 0)T

and homogeneous Neumann boundary conditions are imposed in the rest of the boundary.
Figure 14 shows the computational mesh, the pressure, and the velocity components for
HDG with a fine fitted mesh (left), considered as a reference solution, and X-HDG with a
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Fig. 15 Flow around several obstacles: x component of the velocity along the line x = 1 using HDG and
X-HDG (left) y component of the velocity along the line x = 1 using HDG and X-HDG (right).

uniform regular mesh (right), in both cases with degree k = 2. As a result of this comparison,
X-HDG is observed to be in excellent agreement with the standard HDG reference solution,
using a non-fitted mesh. To strengthen this argument, in Figure 15, x and y components
of the velocity along the line x = 1, obtained using HDG and X-HDG are compared. As
expected, velocity solutions obtained using HDG and X-HDG are observed to be perfectly
overlapping.

6 Conclusions and final remarks

We have derived an eXtended Hybridizable Discontinuous Galerkin (X-HDG) formulation
for solving Stokes interface problems with unfitted meshes. The method combines the ac-
curacy and efficiency of high-order hybridizable discontinuous Galerkin method with an X-
FEM philosophy that allows arbitrary material interfaces or boundaries that are not aligned
with the computational mesh. In the proposed method, the interface is described by the zero
contour of a level-set function based on high-order polynomials in the domain. Weak in-
terface compatibility conditions are imposed in a consistent HDG setting for both Dirichlet
and Neumann boundaries as well as for material interfaces, by introducing a new interfacial
trace variable, similar to the one defined on the faces between elements. The interface trace
variable is local to the elements and can be expressed as part of the solutions of the local
solver, together with the element velocity, the velocity gradient, and the pressure. Thus, the
method follows the code structure of usual HDG implementations and can be added as an
extension of the local solver facilities. For bimaterial problems, Heaviside enrichments for
the velocity, the velocity gradient, the pressure, and the trace velocity have been added to
accommodate for two independent solution components inside the cut elements. As usual in
HDG, the global linear system is only expressed in terms of the trace of the velocity on the
mesh skeleton and the element-wise pressure average, only this time with more degrees of
freedom over cut faces. The proposed work follows previous work on the Laplace problem
[14,15], with integration on cut elements and interfaces done by a high-order quadrature
approach that was previously used for Laplace-type problems.

Six two-dimensional numerical examples have been presented demonstrating that the
proposed method carries over the optimal convergence rates and accuracy of the HDG
method to the unfitted mesh case, in the presence of Dirichlet voids, Neumann voids, and
bimaterial interfaces. A test on a setting typical of two-phase flow demonstrates that the
method is also applicable to settings with jumps in the pressure field, making it a promising
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approach for complex application problems that can profit from the accuracy and efficiency
of HDG.
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